linux/fs/ubifs/budget.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file implements the budgeting sub-system which is responsible for UBIFS
  13 * space management.
  14 *
  15 * Factors such as compression, wasted space at the ends of LEBs, space in other
  16 * journal heads, the effect of updates on the index, and so on, make it
  17 * impossible to accurately predict the amount of space needed. Consequently
  18 * approximations are used.
  19 */
  20
  21#include "ubifs.h"
  22#include <linux/writeback.h>
  23#include <linux/math64.h>
  24
  25/*
  26 * When pessimistic budget calculations say that there is no enough space,
  27 * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
  28 * or committing. The below constant defines maximum number of times UBIFS
  29 * repeats the operations.
  30 */
  31#define MAX_MKSPC_RETRIES 3
  32
  33/*
  34 * The below constant defines amount of dirty pages which should be written
  35 * back at when trying to shrink the liability.
  36 */
  37#define NR_TO_WRITE 16
  38
  39/**
  40 * shrink_liability - write-back some dirty pages/inodes.
  41 * @c: UBIFS file-system description object
  42 * @nr_to_write: how many dirty pages to write-back
  43 *
  44 * This function shrinks UBIFS liability by means of writing back some amount
  45 * of dirty inodes and their pages.
  46 *
  47 * Note, this function synchronizes even VFS inodes which are locked
  48 * (@i_mutex) by the caller of the budgeting function, because write-back does
  49 * not touch @i_mutex.
  50 */
  51static void shrink_liability(struct ubifs_info *c, int nr_to_write)
  52{
  53        down_read(&c->vfs_sb->s_umount);
  54        writeback_inodes_sb_nr(c->vfs_sb, nr_to_write, WB_REASON_FS_FREE_SPACE);
  55        up_read(&c->vfs_sb->s_umount);
  56}
  57
  58/**
  59 * run_gc - run garbage collector.
  60 * @c: UBIFS file-system description object
  61 *
  62 * This function runs garbage collector to make some more free space. Returns
  63 * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
  64 * negative error code in case of failure.
  65 */
  66static int run_gc(struct ubifs_info *c)
  67{
  68        int err, lnum;
  69
  70        /* Make some free space by garbage-collecting dirty space */
  71        down_read(&c->commit_sem);
  72        lnum = ubifs_garbage_collect(c, 1);
  73        up_read(&c->commit_sem);
  74        if (lnum < 0)
  75                return lnum;
  76
  77        /* GC freed one LEB, return it to lprops */
  78        dbg_budg("GC freed LEB %d", lnum);
  79        err = ubifs_return_leb(c, lnum);
  80        if (err)
  81                return err;
  82        return 0;
  83}
  84
  85/**
  86 * get_liability - calculate current liability.
  87 * @c: UBIFS file-system description object
  88 *
  89 * This function calculates and returns current UBIFS liability, i.e. the
  90 * amount of bytes UBIFS has "promised" to write to the media.
  91 */
  92static long long get_liability(struct ubifs_info *c)
  93{
  94        long long liab;
  95
  96        spin_lock(&c->space_lock);
  97        liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth;
  98        spin_unlock(&c->space_lock);
  99        return liab;
 100}
 101
 102/**
 103 * make_free_space - make more free space on the file-system.
 104 * @c: UBIFS file-system description object
 105 *
 106 * This function is called when an operation cannot be budgeted because there
 107 * is supposedly no free space. But in most cases there is some free space:
 108 *   o budgeting is pessimistic, so it always budgets more than it is actually
 109 *     needed, so shrinking the liability is one way to make free space - the
 110 *     cached data will take less space then it was budgeted for;
 111 *   o GC may turn some dark space into free space (budgeting treats dark space
 112 *     as not available);
 113 *   o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
 114 *
 115 * So this function tries to do the above. Returns %-EAGAIN if some free space
 116 * was presumably made and the caller has to re-try budgeting the operation.
 117 * Returns %-ENOSPC if it couldn't do more free space, and other negative error
 118 * codes on failures.
 119 */
 120static int make_free_space(struct ubifs_info *c)
 121{
 122        int err, retries = 0;
 123        long long liab1, liab2;
 124
 125        do {
 126                liab1 = get_liability(c);
 127                /*
 128                 * We probably have some dirty pages or inodes (liability), try
 129                 * to write them back.
 130                 */
 131                dbg_budg("liability %lld, run write-back", liab1);
 132                shrink_liability(c, NR_TO_WRITE);
 133
 134                liab2 = get_liability(c);
 135                if (liab2 < liab1)
 136                        return -EAGAIN;
 137
 138                dbg_budg("new liability %lld (not shrunk)", liab2);
 139
 140                /* Liability did not shrink again, try GC */
 141                dbg_budg("Run GC");
 142                err = run_gc(c);
 143                if (!err)
 144                        return -EAGAIN;
 145
 146                if (err != -EAGAIN && err != -ENOSPC)
 147                        /* Some real error happened */
 148                        return err;
 149
 150                dbg_budg("Run commit (retries %d)", retries);
 151                err = ubifs_run_commit(c);
 152                if (err)
 153                        return err;
 154        } while (retries++ < MAX_MKSPC_RETRIES);
 155
 156        return -ENOSPC;
 157}
 158
 159/**
 160 * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index.
 161 * @c: UBIFS file-system description object
 162 *
 163 * This function calculates and returns the number of LEBs which should be kept
 164 * for index usage.
 165 */
 166int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
 167{
 168        int idx_lebs;
 169        long long idx_size;
 170
 171        idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx;
 172        /* And make sure we have thrice the index size of space reserved */
 173        idx_size += idx_size << 1;
 174        /*
 175         * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
 176         * pair, nor similarly the two variables for the new index size, so we
 177         * have to do this costly 64-bit division on fast-path.
 178         */
 179        idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size);
 180        /*
 181         * The index head is not available for the in-the-gaps method, so add an
 182         * extra LEB to compensate.
 183         */
 184        idx_lebs += 1;
 185        if (idx_lebs < MIN_INDEX_LEBS)
 186                idx_lebs = MIN_INDEX_LEBS;
 187        return idx_lebs;
 188}
 189
 190/**
 191 * ubifs_calc_available - calculate available FS space.
 192 * @c: UBIFS file-system description object
 193 * @min_idx_lebs: minimum number of LEBs reserved for the index
 194 *
 195 * This function calculates and returns amount of FS space available for use.
 196 */
 197long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
 198{
 199        int subtract_lebs;
 200        long long available;
 201
 202        available = c->main_bytes - c->lst.total_used;
 203
 204        /*
 205         * Now 'available' contains theoretically available flash space
 206         * assuming there is no index, so we have to subtract the space which
 207         * is reserved for the index.
 208         */
 209        subtract_lebs = min_idx_lebs;
 210
 211        /* Take into account that GC reserves one LEB for its own needs */
 212        subtract_lebs += 1;
 213
 214        /*
 215         * The GC journal head LEB is not really accessible. And since
 216         * different write types go to different heads, we may count only on
 217         * one head's space.
 218         */
 219        subtract_lebs += c->jhead_cnt - 1;
 220
 221        /* We also reserve one LEB for deletions, which bypass budgeting */
 222        subtract_lebs += 1;
 223
 224        available -= (long long)subtract_lebs * c->leb_size;
 225
 226        /* Subtract the dead space which is not available for use */
 227        available -= c->lst.total_dead;
 228
 229        /*
 230         * Subtract dark space, which might or might not be usable - it depends
 231         * on the data which we have on the media and which will be written. If
 232         * this is a lot of uncompressed or not-compressible data, the dark
 233         * space cannot be used.
 234         */
 235        available -= c->lst.total_dark;
 236
 237        /*
 238         * However, there is more dark space. The index may be bigger than
 239         * @min_idx_lebs. Those extra LEBs are assumed to be available, but
 240         * their dark space is not included in total_dark, so it is subtracted
 241         * here.
 242         */
 243        if (c->lst.idx_lebs > min_idx_lebs) {
 244                subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
 245                available -= subtract_lebs * c->dark_wm;
 246        }
 247
 248        /* The calculations are rough and may end up with a negative number */
 249        return available > 0 ? available : 0;
 250}
 251
 252/**
 253 * can_use_rp - check whether the user is allowed to use reserved pool.
 254 * @c: UBIFS file-system description object
 255 *
 256 * UBIFS has so-called "reserved pool" which is flash space reserved
 257 * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
 258 * This function checks whether current user is allowed to use reserved pool.
 259 * Returns %1  current user is allowed to use reserved pool and %0 otherwise.
 260 */
 261static int can_use_rp(struct ubifs_info *c)
 262{
 263        if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) ||
 264            (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid)))
 265                return 1;
 266        return 0;
 267}
 268
 269/**
 270 * do_budget_space - reserve flash space for index and data growth.
 271 * @c: UBIFS file-system description object
 272 *
 273 * This function makes sure UBIFS has enough free LEBs for index growth and
 274 * data.
 275 *
 276 * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
 277 * would take if it was consolidated and written to the flash. This guarantees
 278 * that the "in-the-gaps" commit method always succeeds and UBIFS will always
 279 * be able to commit dirty index. So this function basically adds amount of
 280 * budgeted index space to the size of the current index, multiplies this by 3,
 281 * and makes sure this does not exceed the amount of free LEBs.
 282 *
 283 * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables:
 284 * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
 285 *    be large, because UBIFS does not do any index consolidation as long as
 286 *    there is free space. IOW, the index may take a lot of LEBs, but the LEBs
 287 *    will contain a lot of dirt.
 288 * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW,
 289 *    the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs.
 290 *
 291 * This function returns zero in case of success, and %-ENOSPC in case of
 292 * failure.
 293 */
 294static int do_budget_space(struct ubifs_info *c)
 295{
 296        long long outstanding, available;
 297        int lebs, rsvd_idx_lebs, min_idx_lebs;
 298
 299        /* First budget index space */
 300        min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 301
 302        /* Now 'min_idx_lebs' contains number of LEBs to reserve */
 303        if (min_idx_lebs > c->lst.idx_lebs)
 304                rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
 305        else
 306                rsvd_idx_lebs = 0;
 307
 308        /*
 309         * The number of LEBs that are available to be used by the index is:
 310         *
 311         *    @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
 312         *    @c->lst.taken_empty_lebs
 313         *
 314         * @c->lst.empty_lebs are available because they are empty.
 315         * @c->freeable_cnt are available because they contain only free and
 316         * dirty space, @c->idx_gc_cnt are available because they are index
 317         * LEBs that have been garbage collected and are awaiting the commit
 318         * before they can be used. And the in-the-gaps method will grab these
 319         * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
 320         * already been allocated for some purpose.
 321         *
 322         * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
 323         * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
 324         * are taken until after the commit).
 325         *
 326         * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
 327         * because of the way we serialize LEB allocations and budgeting. See a
 328         * comment in 'ubifs_find_free_space()'.
 329         */
 330        lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
 331               c->lst.taken_empty_lebs;
 332        if (unlikely(rsvd_idx_lebs > lebs)) {
 333                dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d",
 334                         min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs);
 335                return -ENOSPC;
 336        }
 337
 338        available = ubifs_calc_available(c, min_idx_lebs);
 339        outstanding = c->bi.data_growth + c->bi.dd_growth;
 340
 341        if (unlikely(available < outstanding)) {
 342                dbg_budg("out of data space: available %lld, outstanding %lld",
 343                         available, outstanding);
 344                return -ENOSPC;
 345        }
 346
 347        if (available - outstanding <= c->rp_size && !can_use_rp(c))
 348                return -ENOSPC;
 349
 350        c->bi.min_idx_lebs = min_idx_lebs;
 351        return 0;
 352}
 353
 354/**
 355 * calc_idx_growth - calculate approximate index growth from budgeting request.
 356 * @c: UBIFS file-system description object
 357 * @req: budgeting request
 358 *
 359 * For now we assume each new node adds one znode. But this is rather poor
 360 * approximation, though.
 361 */
 362static int calc_idx_growth(const struct ubifs_info *c,
 363                           const struct ubifs_budget_req *req)
 364{
 365        int znodes;
 366
 367        znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
 368                 req->new_dent;
 369        return znodes * c->max_idx_node_sz;
 370}
 371
 372/**
 373 * calc_data_growth - calculate approximate amount of new data from budgeting
 374 * request.
 375 * @c: UBIFS file-system description object
 376 * @req: budgeting request
 377 */
 378static int calc_data_growth(const struct ubifs_info *c,
 379                            const struct ubifs_budget_req *req)
 380{
 381        int data_growth;
 382
 383        data_growth = req->new_ino  ? c->bi.inode_budget : 0;
 384        if (req->new_page)
 385                data_growth += c->bi.page_budget;
 386        if (req->new_dent)
 387                data_growth += c->bi.dent_budget;
 388        data_growth += req->new_ino_d;
 389        return data_growth;
 390}
 391
 392/**
 393 * calc_dd_growth - calculate approximate amount of data which makes other data
 394 * dirty from budgeting request.
 395 * @c: UBIFS file-system description object
 396 * @req: budgeting request
 397 */
 398static int calc_dd_growth(const struct ubifs_info *c,
 399                          const struct ubifs_budget_req *req)
 400{
 401        int dd_growth;
 402
 403        dd_growth = req->dirtied_page ? c->bi.page_budget : 0;
 404
 405        if (req->dirtied_ino)
 406                dd_growth += c->bi.inode_budget << (req->dirtied_ino - 1);
 407        if (req->mod_dent)
 408                dd_growth += c->bi.dent_budget;
 409        dd_growth += req->dirtied_ino_d;
 410        return dd_growth;
 411}
 412
 413/**
 414 * ubifs_budget_space - ensure there is enough space to complete an operation.
 415 * @c: UBIFS file-system description object
 416 * @req: budget request
 417 *
 418 * This function allocates budget for an operation. It uses pessimistic
 419 * approximation of how much flash space the operation needs. The goal of this
 420 * function is to make sure UBIFS always has flash space to flush all dirty
 421 * pages, dirty inodes, and dirty znodes (liability). This function may force
 422 * commit, garbage-collection or write-back. Returns zero in case of success,
 423 * %-ENOSPC if there is no free space and other negative error codes in case of
 424 * failures.
 425 */
 426int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
 427{
 428        int err, idx_growth, data_growth, dd_growth, retried = 0;
 429
 430        ubifs_assert(c, req->new_page <= 1);
 431        ubifs_assert(c, req->dirtied_page <= 1);
 432        ubifs_assert(c, req->new_dent <= 1);
 433        ubifs_assert(c, req->mod_dent <= 1);
 434        ubifs_assert(c, req->new_ino <= 1);
 435        ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA);
 436        ubifs_assert(c, req->dirtied_ino <= 4);
 437        ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
 438        ubifs_assert(c, !(req->new_ino_d & 7));
 439        ubifs_assert(c, !(req->dirtied_ino_d & 7));
 440
 441        data_growth = calc_data_growth(c, req);
 442        dd_growth = calc_dd_growth(c, req);
 443        if (!data_growth && !dd_growth)
 444                return 0;
 445        idx_growth = calc_idx_growth(c, req);
 446
 447again:
 448        spin_lock(&c->space_lock);
 449        ubifs_assert(c, c->bi.idx_growth >= 0);
 450        ubifs_assert(c, c->bi.data_growth >= 0);
 451        ubifs_assert(c, c->bi.dd_growth >= 0);
 452
 453        if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) {
 454                dbg_budg("no space");
 455                spin_unlock(&c->space_lock);
 456                return -ENOSPC;
 457        }
 458
 459        c->bi.idx_growth += idx_growth;
 460        c->bi.data_growth += data_growth;
 461        c->bi.dd_growth += dd_growth;
 462
 463        err = do_budget_space(c);
 464        if (likely(!err)) {
 465                req->idx_growth = idx_growth;
 466                req->data_growth = data_growth;
 467                req->dd_growth = dd_growth;
 468                spin_unlock(&c->space_lock);
 469                return 0;
 470        }
 471
 472        /* Restore the old values */
 473        c->bi.idx_growth -= idx_growth;
 474        c->bi.data_growth -= data_growth;
 475        c->bi.dd_growth -= dd_growth;
 476        spin_unlock(&c->space_lock);
 477
 478        if (req->fast) {
 479                dbg_budg("no space for fast budgeting");
 480                return err;
 481        }
 482
 483        err = make_free_space(c);
 484        cond_resched();
 485        if (err == -EAGAIN) {
 486                dbg_budg("try again");
 487                goto again;
 488        } else if (err == -ENOSPC) {
 489                if (!retried) {
 490                        retried = 1;
 491                        dbg_budg("-ENOSPC, but anyway try once again");
 492                        goto again;
 493                }
 494                dbg_budg("FS is full, -ENOSPC");
 495                c->bi.nospace = 1;
 496                if (can_use_rp(c) || c->rp_size == 0)
 497                        c->bi.nospace_rp = 1;
 498                smp_wmb();
 499        } else
 500                ubifs_err(c, "cannot budget space, error %d", err);
 501        return err;
 502}
 503
 504/**
 505 * ubifs_release_budget - release budgeted free space.
 506 * @c: UBIFS file-system description object
 507 * @req: budget request
 508 *
 509 * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
 510 * since the index changes (which were budgeted for in @req->idx_growth) will
 511 * only be written to the media on commit, this function moves the index budget
 512 * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed
 513 * by the commit operation.
 514 */
 515void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
 516{
 517        ubifs_assert(c, req->new_page <= 1);
 518        ubifs_assert(c, req->dirtied_page <= 1);
 519        ubifs_assert(c, req->new_dent <= 1);
 520        ubifs_assert(c, req->mod_dent <= 1);
 521        ubifs_assert(c, req->new_ino <= 1);
 522        ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA);
 523        ubifs_assert(c, req->dirtied_ino <= 4);
 524        ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
 525        ubifs_assert(c, !(req->new_ino_d & 7));
 526        ubifs_assert(c, !(req->dirtied_ino_d & 7));
 527        if (!req->recalculate) {
 528                ubifs_assert(c, req->idx_growth >= 0);
 529                ubifs_assert(c, req->data_growth >= 0);
 530                ubifs_assert(c, req->dd_growth >= 0);
 531        }
 532
 533        if (req->recalculate) {
 534                req->data_growth = calc_data_growth(c, req);
 535                req->dd_growth = calc_dd_growth(c, req);
 536                req->idx_growth = calc_idx_growth(c, req);
 537        }
 538
 539        if (!req->data_growth && !req->dd_growth)
 540                return;
 541
 542        c->bi.nospace = c->bi.nospace_rp = 0;
 543        smp_wmb();
 544
 545        spin_lock(&c->space_lock);
 546        c->bi.idx_growth -= req->idx_growth;
 547        c->bi.uncommitted_idx += req->idx_growth;
 548        c->bi.data_growth -= req->data_growth;
 549        c->bi.dd_growth -= req->dd_growth;
 550        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 551
 552        ubifs_assert(c, c->bi.idx_growth >= 0);
 553        ubifs_assert(c, c->bi.data_growth >= 0);
 554        ubifs_assert(c, c->bi.dd_growth >= 0);
 555        ubifs_assert(c, c->bi.min_idx_lebs < c->main_lebs);
 556        ubifs_assert(c, !(c->bi.idx_growth & 7));
 557        ubifs_assert(c, !(c->bi.data_growth & 7));
 558        ubifs_assert(c, !(c->bi.dd_growth & 7));
 559        spin_unlock(&c->space_lock);
 560}
 561
 562/**
 563 * ubifs_convert_page_budget - convert budget of a new page.
 564 * @c: UBIFS file-system description object
 565 *
 566 * This function converts budget which was allocated for a new page of data to
 567 * the budget of changing an existing page of data. The latter is smaller than
 568 * the former, so this function only does simple re-calculation and does not
 569 * involve any write-back.
 570 */
 571void ubifs_convert_page_budget(struct ubifs_info *c)
 572{
 573        spin_lock(&c->space_lock);
 574        /* Release the index growth reservation */
 575        c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 576        /* Release the data growth reservation */
 577        c->bi.data_growth -= c->bi.page_budget;
 578        /* Increase the dirty data growth reservation instead */
 579        c->bi.dd_growth += c->bi.page_budget;
 580        /* And re-calculate the indexing space reservation */
 581        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 582        spin_unlock(&c->space_lock);
 583}
 584
 585/**
 586 * ubifs_release_dirty_inode_budget - release dirty inode budget.
 587 * @c: UBIFS file-system description object
 588 * @ui: UBIFS inode to release the budget for
 589 *
 590 * This function releases budget corresponding to a dirty inode. It is usually
 591 * called when after the inode has been written to the media and marked as
 592 * clean. It also causes the "no space" flags to be cleared.
 593 */
 594void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
 595                                      struct ubifs_inode *ui)
 596{
 597        struct ubifs_budget_req req;
 598
 599        memset(&req, 0, sizeof(struct ubifs_budget_req));
 600        /* The "no space" flags will be cleared because dd_growth is > 0 */
 601        req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8);
 602        ubifs_release_budget(c, &req);
 603}
 604
 605/**
 606 * ubifs_reported_space - calculate reported free space.
 607 * @c: the UBIFS file-system description object
 608 * @free: amount of free space
 609 *
 610 * This function calculates amount of free space which will be reported to
 611 * user-space. User-space application tend to expect that if the file-system
 612 * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
 613 * are able to write a file of size N. UBIFS attaches node headers to each data
 614 * node and it has to write indexing nodes as well. This introduces additional
 615 * overhead, and UBIFS has to report slightly less free space to meet the above
 616 * expectations.
 617 *
 618 * This function assumes free space is made up of uncompressed data nodes and
 619 * full index nodes (one per data node, tripled because we always allow enough
 620 * space to write the index thrice).
 621 *
 622 * Note, the calculation is pessimistic, which means that most of the time
 623 * UBIFS reports less space than it actually has.
 624 */
 625long long ubifs_reported_space(const struct ubifs_info *c, long long free)
 626{
 627        int divisor, factor, f;
 628
 629        /*
 630         * Reported space size is @free * X, where X is UBIFS block size
 631         * divided by UBIFS block size + all overhead one data block
 632         * introduces. The overhead is the node header + indexing overhead.
 633         *
 634         * Indexing overhead calculations are based on the following formula:
 635         * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number
 636         * of data nodes, f - fanout. Because effective UBIFS fanout is twice
 637         * as less than maximum fanout, we assume that each data node
 638         * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes.
 639         * Note, the multiplier 3 is because UBIFS reserves thrice as more space
 640         * for the index.
 641         */
 642        f = c->fanout > 3 ? c->fanout >> 1 : 2;
 643        factor = UBIFS_BLOCK_SIZE;
 644        divisor = UBIFS_MAX_DATA_NODE_SZ;
 645        divisor += (c->max_idx_node_sz * 3) / (f - 1);
 646        free *= factor;
 647        return div_u64(free, divisor);
 648}
 649
 650/**
 651 * ubifs_get_free_space_nolock - return amount of free space.
 652 * @c: UBIFS file-system description object
 653 *
 654 * This function calculates amount of free space to report to user-space.
 655 *
 656 * Because UBIFS may introduce substantial overhead (the index, node headers,
 657 * alignment, wastage at the end of LEBs, etc), it cannot report real amount of
 658 * free flash space it has (well, because not all dirty space is reclaimable,
 659 * UBIFS does not actually know the real amount). If UBIFS did so, it would
 660 * bread user expectations about what free space is. Users seem to accustomed
 661 * to assume that if the file-system reports N bytes of free space, they would
 662 * be able to fit a file of N bytes to the FS. This almost works for
 663 * traditional file-systems, because they have way less overhead than UBIFS.
 664 * So, to keep users happy, UBIFS tries to take the overhead into account.
 665 */
 666long long ubifs_get_free_space_nolock(struct ubifs_info *c)
 667{
 668        int rsvd_idx_lebs, lebs;
 669        long long available, outstanding, free;
 670
 671        ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
 672        outstanding = c->bi.data_growth + c->bi.dd_growth;
 673        available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 674
 675        /*
 676         * When reporting free space to user-space, UBIFS guarantees that it is
 677         * possible to write a file of free space size. This means that for
 678         * empty LEBs we may use more precise calculations than
 679         * 'ubifs_calc_available()' is using. Namely, we know that in empty
 680         * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
 681         * Thus, amend the available space.
 682         *
 683         * Note, the calculations below are similar to what we have in
 684         * 'do_budget_space()', so refer there for comments.
 685         */
 686        if (c->bi.min_idx_lebs > c->lst.idx_lebs)
 687                rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs;
 688        else
 689                rsvd_idx_lebs = 0;
 690        lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
 691               c->lst.taken_empty_lebs;
 692        lebs -= rsvd_idx_lebs;
 693        available += lebs * (c->dark_wm - c->leb_overhead);
 694
 695        if (available > outstanding)
 696                free = ubifs_reported_space(c, available - outstanding);
 697        else
 698                free = 0;
 699        return free;
 700}
 701
 702/**
 703 * ubifs_get_free_space - return amount of free space.
 704 * @c: UBIFS file-system description object
 705 *
 706 * This function calculates and returns amount of free space to report to
 707 * user-space.
 708 */
 709long long ubifs_get_free_space(struct ubifs_info *c)
 710{
 711        long long free;
 712
 713        spin_lock(&c->space_lock);
 714        free = ubifs_get_free_space_nolock(c);
 715        spin_unlock(&c->space_lock);
 716
 717        return free;
 718}
 719