linux/fs/ubifs/journal.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Artem Bityutskiy (Битюцкий Артём)
   8 *          Adrian Hunter
   9 */
  10
  11/*
  12 * This file implements UBIFS journal.
  13 *
  14 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
  15 * length and position, while a bud logical eraseblock is any LEB in the main
  16 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
  17 * contains only references to buds and some other stuff like commit
  18 * start node. The idea is that when we commit the journal, we do
  19 * not copy the data, the buds just become indexed. Since after the commit the
  20 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
  21 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
  22 * become leafs in the future.
  23 *
  24 * The journal is multi-headed because we want to write data to the journal as
  25 * optimally as possible. It is nice to have nodes belonging to the same inode
  26 * in one LEB, so we may write data owned by different inodes to different
  27 * journal heads, although at present only one data head is used.
  28 *
  29 * For recovery reasons, the base head contains all inode nodes, all directory
  30 * entry nodes and all truncate nodes. This means that the other heads contain
  31 * only data nodes.
  32 *
  33 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
  34 * time of commit, the bud is retained to continue to be used in the journal,
  35 * even though the "front" of the LEB is now indexed. In that case, the log
  36 * reference contains the offset where the bud starts for the purposes of the
  37 * journal.
  38 *
  39 * The journal size has to be limited, because the larger is the journal, the
  40 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
  41 * takes (indexing in the TNC).
  42 *
  43 * All the journal write operations like 'ubifs_jnl_update()' here, which write
  44 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
  45 * unclean reboots. Should the unclean reboot happen, the recovery code drops
  46 * all the nodes.
  47 */
  48
  49#include "ubifs.h"
  50
  51/**
  52 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
  53 * @ino: the inode to zero out
  54 */
  55static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
  56{
  57        memset(ino->padding1, 0, 4);
  58        memset(ino->padding2, 0, 26);
  59}
  60
  61/**
  62 * zero_dent_node_unused - zero out unused fields of an on-flash directory
  63 *                         entry node.
  64 * @dent: the directory entry to zero out
  65 */
  66static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
  67{
  68        dent->padding1 = 0;
  69}
  70
  71/**
  72 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
  73 *                         node.
  74 * @trun: the truncation node to zero out
  75 */
  76static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
  77{
  78        memset(trun->padding, 0, 12);
  79}
  80
  81static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum)
  82{
  83        if (ubifs_authenticated(c))
  84                ubifs_add_dirt(c, lnum, ubifs_auth_node_sz(c));
  85}
  86
  87/**
  88 * reserve_space - reserve space in the journal.
  89 * @c: UBIFS file-system description object
  90 * @jhead: journal head number
  91 * @len: node length
  92 *
  93 * This function reserves space in journal head @head. If the reservation
  94 * succeeded, the journal head stays locked and later has to be unlocked using
  95 * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
  96 * be done, and other negative error codes in case of other failures.
  97 */
  98static int reserve_space(struct ubifs_info *c, int jhead, int len)
  99{
 100        int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
 101        struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
 102
 103        /*
 104         * Typically, the base head has smaller nodes written to it, so it is
 105         * better to try to allocate space at the ends of eraseblocks. This is
 106         * what the squeeze parameter does.
 107         */
 108        ubifs_assert(c, !c->ro_media && !c->ro_mount);
 109        squeeze = (jhead == BASEHD);
 110again:
 111        mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 112
 113        if (c->ro_error) {
 114                err = -EROFS;
 115                goto out_unlock;
 116        }
 117
 118        avail = c->leb_size - wbuf->offs - wbuf->used;
 119        if (wbuf->lnum != -1 && avail >= len)
 120                return 0;
 121
 122        /*
 123         * Write buffer wasn't seek'ed or there is no enough space - look for an
 124         * LEB with some empty space.
 125         */
 126        lnum = ubifs_find_free_space(c, len, &offs, squeeze);
 127        if (lnum >= 0)
 128                goto out;
 129
 130        err = lnum;
 131        if (err != -ENOSPC)
 132                goto out_unlock;
 133
 134        /*
 135         * No free space, we have to run garbage collector to make
 136         * some. But the write-buffer mutex has to be unlocked because
 137         * GC also takes it.
 138         */
 139        dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
 140        mutex_unlock(&wbuf->io_mutex);
 141
 142        lnum = ubifs_garbage_collect(c, 0);
 143        if (lnum < 0) {
 144                err = lnum;
 145                if (err != -ENOSPC)
 146                        return err;
 147
 148                /*
 149                 * GC could not make a free LEB. But someone else may
 150                 * have allocated new bud for this journal head,
 151                 * because we dropped @wbuf->io_mutex, so try once
 152                 * again.
 153                 */
 154                dbg_jnl("GC couldn't make a free LEB for jhead %s",
 155                        dbg_jhead(jhead));
 156                if (retries++ < 2) {
 157                        dbg_jnl("retry (%d)", retries);
 158                        goto again;
 159                }
 160
 161                dbg_jnl("return -ENOSPC");
 162                return err;
 163        }
 164
 165        mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 166        dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
 167        avail = c->leb_size - wbuf->offs - wbuf->used;
 168
 169        if (wbuf->lnum != -1 && avail >= len) {
 170                /*
 171                 * Someone else has switched the journal head and we have
 172                 * enough space now. This happens when more than one process is
 173                 * trying to write to the same journal head at the same time.
 174                 */
 175                dbg_jnl("return LEB %d back, already have LEB %d:%d",
 176                        lnum, wbuf->lnum, wbuf->offs + wbuf->used);
 177                err = ubifs_return_leb(c, lnum);
 178                if (err)
 179                        goto out_unlock;
 180                return 0;
 181        }
 182
 183        offs = 0;
 184
 185out:
 186        /*
 187         * Make sure we synchronize the write-buffer before we add the new bud
 188         * to the log. Otherwise we may have a power cut after the log
 189         * reference node for the last bud (@lnum) is written but before the
 190         * write-buffer data are written to the next-to-last bud
 191         * (@wbuf->lnum). And the effect would be that the recovery would see
 192         * that there is corruption in the next-to-last bud.
 193         */
 194        err = ubifs_wbuf_sync_nolock(wbuf);
 195        if (err)
 196                goto out_return;
 197        err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
 198        if (err)
 199                goto out_return;
 200        err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
 201        if (err)
 202                goto out_unlock;
 203
 204        return 0;
 205
 206out_unlock:
 207        mutex_unlock(&wbuf->io_mutex);
 208        return err;
 209
 210out_return:
 211        /* An error occurred and the LEB has to be returned to lprops */
 212        ubifs_assert(c, err < 0);
 213        err1 = ubifs_return_leb(c, lnum);
 214        if (err1 && err == -EAGAIN)
 215                /*
 216                 * Return original error code only if it is not %-EAGAIN,
 217                 * which is not really an error. Otherwise, return the error
 218                 * code of 'ubifs_return_leb()'.
 219                 */
 220                err = err1;
 221        mutex_unlock(&wbuf->io_mutex);
 222        return err;
 223}
 224
 225static int ubifs_hash_nodes(struct ubifs_info *c, void *node,
 226                             int len, struct shash_desc *hash)
 227{
 228        int auth_node_size = ubifs_auth_node_sz(c);
 229        int err;
 230
 231        while (1) {
 232                const struct ubifs_ch *ch = node;
 233                int nodelen = le32_to_cpu(ch->len);
 234
 235                ubifs_assert(c, len >= auth_node_size);
 236
 237                if (len == auth_node_size)
 238                        break;
 239
 240                ubifs_assert(c, len > nodelen);
 241                ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC));
 242
 243                err = ubifs_shash_update(c, hash, (void *)node, nodelen);
 244                if (err)
 245                        return err;
 246
 247                node += ALIGN(nodelen, 8);
 248                len -= ALIGN(nodelen, 8);
 249        }
 250
 251        return ubifs_prepare_auth_node(c, node, hash);
 252}
 253
 254/**
 255 * write_head - write data to a journal head.
 256 * @c: UBIFS file-system description object
 257 * @jhead: journal head
 258 * @buf: buffer to write
 259 * @len: length to write
 260 * @lnum: LEB number written is returned here
 261 * @offs: offset written is returned here
 262 * @sync: non-zero if the write-buffer has to by synchronized
 263 *
 264 * This function writes data to the reserved space of journal head @jhead.
 265 * Returns zero in case of success and a negative error code in case of
 266 * failure.
 267 */
 268static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
 269                      int *lnum, int *offs, int sync)
 270{
 271        int err;
 272        struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
 273
 274        ubifs_assert(c, jhead != GCHD);
 275
 276        *lnum = c->jheads[jhead].wbuf.lnum;
 277        *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
 278        dbg_jnl("jhead %s, LEB %d:%d, len %d",
 279                dbg_jhead(jhead), *lnum, *offs, len);
 280
 281        if (ubifs_authenticated(c)) {
 282                err = ubifs_hash_nodes(c, buf, len, c->jheads[jhead].log_hash);
 283                if (err)
 284                        return err;
 285        }
 286
 287        err = ubifs_wbuf_write_nolock(wbuf, buf, len);
 288        if (err)
 289                return err;
 290        if (sync)
 291                err = ubifs_wbuf_sync_nolock(wbuf);
 292        return err;
 293}
 294
 295/**
 296 * make_reservation - reserve journal space.
 297 * @c: UBIFS file-system description object
 298 * @jhead: journal head
 299 * @len: how many bytes to reserve
 300 *
 301 * This function makes space reservation in journal head @jhead. The function
 302 * takes the commit lock and locks the journal head, and the caller has to
 303 * unlock the head and finish the reservation with 'finish_reservation()'.
 304 * Returns zero in case of success and a negative error code in case of
 305 * failure.
 306 *
 307 * Note, the journal head may be unlocked as soon as the data is written, while
 308 * the commit lock has to be released after the data has been added to the
 309 * TNC.
 310 */
 311static int make_reservation(struct ubifs_info *c, int jhead, int len)
 312{
 313        int err, cmt_retries = 0, nospc_retries = 0;
 314
 315again:
 316        down_read(&c->commit_sem);
 317        err = reserve_space(c, jhead, len);
 318        if (!err)
 319                /* c->commit_sem will get released via finish_reservation(). */
 320                return 0;
 321        up_read(&c->commit_sem);
 322
 323        if (err == -ENOSPC) {
 324                /*
 325                 * GC could not make any progress. We should try to commit
 326                 * once because it could make some dirty space and GC would
 327                 * make progress, so make the error -EAGAIN so that the below
 328                 * will commit and re-try.
 329                 */
 330                if (nospc_retries++ < 2) {
 331                        dbg_jnl("no space, retry");
 332                        err = -EAGAIN;
 333                }
 334
 335                /*
 336                 * This means that the budgeting is incorrect. We always have
 337                 * to be able to write to the media, because all operations are
 338                 * budgeted. Deletions are not budgeted, though, but we reserve
 339                 * an extra LEB for them.
 340                 */
 341        }
 342
 343        if (err != -EAGAIN)
 344                goto out;
 345
 346        /*
 347         * -EAGAIN means that the journal is full or too large, or the above
 348         * code wants to do one commit. Do this and re-try.
 349         */
 350        if (cmt_retries > 128) {
 351                /*
 352                 * This should not happen unless the journal size limitations
 353                 * are too tough.
 354                 */
 355                ubifs_err(c, "stuck in space allocation");
 356                err = -ENOSPC;
 357                goto out;
 358        } else if (cmt_retries > 32)
 359                ubifs_warn(c, "too many space allocation re-tries (%d)",
 360                           cmt_retries);
 361
 362        dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
 363                cmt_retries);
 364        cmt_retries += 1;
 365
 366        err = ubifs_run_commit(c);
 367        if (err)
 368                return err;
 369        goto again;
 370
 371out:
 372        ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
 373                  len, jhead, err);
 374        if (err == -ENOSPC) {
 375                /* This are some budgeting problems, print useful information */
 376                down_write(&c->commit_sem);
 377                dump_stack();
 378                ubifs_dump_budg(c, &c->bi);
 379                ubifs_dump_lprops(c);
 380                cmt_retries = dbg_check_lprops(c);
 381                up_write(&c->commit_sem);
 382        }
 383        return err;
 384}
 385
 386/**
 387 * release_head - release a journal head.
 388 * @c: UBIFS file-system description object
 389 * @jhead: journal head
 390 *
 391 * This function releases journal head @jhead which was locked by
 392 * the 'make_reservation()' function. It has to be called after each successful
 393 * 'make_reservation()' invocation.
 394 */
 395static inline void release_head(struct ubifs_info *c, int jhead)
 396{
 397        mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
 398}
 399
 400/**
 401 * finish_reservation - finish a reservation.
 402 * @c: UBIFS file-system description object
 403 *
 404 * This function finishes journal space reservation. It must be called after
 405 * 'make_reservation()'.
 406 */
 407static void finish_reservation(struct ubifs_info *c)
 408{
 409        up_read(&c->commit_sem);
 410}
 411
 412/**
 413 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
 414 * @mode: inode mode
 415 */
 416static int get_dent_type(int mode)
 417{
 418        switch (mode & S_IFMT) {
 419        case S_IFREG:
 420                return UBIFS_ITYPE_REG;
 421        case S_IFDIR:
 422                return UBIFS_ITYPE_DIR;
 423        case S_IFLNK:
 424                return UBIFS_ITYPE_LNK;
 425        case S_IFBLK:
 426                return UBIFS_ITYPE_BLK;
 427        case S_IFCHR:
 428                return UBIFS_ITYPE_CHR;
 429        case S_IFIFO:
 430                return UBIFS_ITYPE_FIFO;
 431        case S_IFSOCK:
 432                return UBIFS_ITYPE_SOCK;
 433        default:
 434                BUG();
 435        }
 436        return 0;
 437}
 438
 439/**
 440 * pack_inode - pack an inode node.
 441 * @c: UBIFS file-system description object
 442 * @ino: buffer in which to pack inode node
 443 * @inode: inode to pack
 444 * @last: indicates the last node of the group
 445 */
 446static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
 447                       const struct inode *inode, int last)
 448{
 449        int data_len = 0, last_reference = !inode->i_nlink;
 450        struct ubifs_inode *ui = ubifs_inode(inode);
 451
 452        ino->ch.node_type = UBIFS_INO_NODE;
 453        ino_key_init_flash(c, &ino->key, inode->i_ino);
 454        ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
 455        ino->atime_sec  = cpu_to_le64(inode->i_atime.tv_sec);
 456        ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
 457        ino->ctime_sec  = cpu_to_le64(inode->i_ctime.tv_sec);
 458        ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
 459        ino->mtime_sec  = cpu_to_le64(inode->i_mtime.tv_sec);
 460        ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
 461        ino->uid   = cpu_to_le32(i_uid_read(inode));
 462        ino->gid   = cpu_to_le32(i_gid_read(inode));
 463        ino->mode  = cpu_to_le32(inode->i_mode);
 464        ino->flags = cpu_to_le32(ui->flags);
 465        ino->size  = cpu_to_le64(ui->ui_size);
 466        ino->nlink = cpu_to_le32(inode->i_nlink);
 467        ino->compr_type  = cpu_to_le16(ui->compr_type);
 468        ino->data_len    = cpu_to_le32(ui->data_len);
 469        ino->xattr_cnt   = cpu_to_le32(ui->xattr_cnt);
 470        ino->xattr_size  = cpu_to_le32(ui->xattr_size);
 471        ino->xattr_names = cpu_to_le32(ui->xattr_names);
 472        zero_ino_node_unused(ino);
 473
 474        /*
 475         * Drop the attached data if this is a deletion inode, the data is not
 476         * needed anymore.
 477         */
 478        if (!last_reference) {
 479                memcpy(ino->data, ui->data, ui->data_len);
 480                data_len = ui->data_len;
 481        }
 482
 483        ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
 484}
 485
 486/**
 487 * mark_inode_clean - mark UBIFS inode as clean.
 488 * @c: UBIFS file-system description object
 489 * @ui: UBIFS inode to mark as clean
 490 *
 491 * This helper function marks UBIFS inode @ui as clean by cleaning the
 492 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
 493 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
 494 * just do nothing.
 495 */
 496static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
 497{
 498        if (ui->dirty)
 499                ubifs_release_dirty_inode_budget(c, ui);
 500        ui->dirty = 0;
 501}
 502
 503static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
 504{
 505        if (c->double_hash)
 506                dent->cookie = prandom_u32();
 507        else
 508                dent->cookie = 0;
 509}
 510
 511/**
 512 * ubifs_jnl_update - update inode.
 513 * @c: UBIFS file-system description object
 514 * @dir: parent inode or host inode in case of extended attributes
 515 * @nm: directory entry name
 516 * @inode: inode to update
 517 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
 518 * @xent: non-zero if the directory entry is an extended attribute entry
 519 *
 520 * This function updates an inode by writing a directory entry (or extended
 521 * attribute entry), the inode itself, and the parent directory inode (or the
 522 * host inode) to the journal.
 523 *
 524 * The function writes the host inode @dir last, which is important in case of
 525 * extended attributes. Indeed, then we guarantee that if the host inode gets
 526 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
 527 * the extended attribute inode gets flushed too. And this is exactly what the
 528 * user expects - synchronizing the host inode synchronizes its extended
 529 * attributes. Similarly, this guarantees that if @dir is synchronized, its
 530 * directory entry corresponding to @nm gets synchronized too.
 531 *
 532 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
 533 * function synchronizes the write-buffer.
 534 *
 535 * This function marks the @dir and @inode inodes as clean and returns zero on
 536 * success. In case of failure, a negative error code is returned.
 537 */
 538int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
 539                     const struct fscrypt_name *nm, const struct inode *inode,
 540                     int deletion, int xent)
 541{
 542        int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
 543        int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
 544        int last_reference = !!(deletion && inode->i_nlink == 0);
 545        struct ubifs_inode *ui = ubifs_inode(inode);
 546        struct ubifs_inode *host_ui = ubifs_inode(dir);
 547        struct ubifs_dent_node *dent;
 548        struct ubifs_ino_node *ino;
 549        union ubifs_key dent_key, ino_key;
 550        u8 hash_dent[UBIFS_HASH_ARR_SZ];
 551        u8 hash_ino[UBIFS_HASH_ARR_SZ];
 552        u8 hash_ino_host[UBIFS_HASH_ARR_SZ];
 553
 554        ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
 555
 556        dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
 557        ilen = UBIFS_INO_NODE_SZ;
 558
 559        /*
 560         * If the last reference to the inode is being deleted, then there is
 561         * no need to attach and write inode data, it is being deleted anyway.
 562         * And if the inode is being deleted, no need to synchronize
 563         * write-buffer even if the inode is synchronous.
 564         */
 565        if (!last_reference) {
 566                ilen += ui->data_len;
 567                sync |= IS_SYNC(inode);
 568        }
 569
 570        aligned_dlen = ALIGN(dlen, 8);
 571        aligned_ilen = ALIGN(ilen, 8);
 572
 573        len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
 574        /* Make sure to also account for extended attributes */
 575        if (ubifs_authenticated(c))
 576                len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c);
 577        else
 578                len += host_ui->data_len;
 579
 580        dent = kzalloc(len, GFP_NOFS);
 581        if (!dent)
 582                return -ENOMEM;
 583
 584        /* Make reservation before allocating sequence numbers */
 585        err = make_reservation(c, BASEHD, len);
 586        if (err)
 587                goto out_free;
 588
 589        if (!xent) {
 590                dent->ch.node_type = UBIFS_DENT_NODE;
 591                if (nm->hash)
 592                        dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
 593                else
 594                        dent_key_init(c, &dent_key, dir->i_ino, nm);
 595        } else {
 596                dent->ch.node_type = UBIFS_XENT_NODE;
 597                xent_key_init(c, &dent_key, dir->i_ino, nm);
 598        }
 599
 600        key_write(c, &dent_key, dent->key);
 601        dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
 602        dent->type = get_dent_type(inode->i_mode);
 603        dent->nlen = cpu_to_le16(fname_len(nm));
 604        memcpy(dent->name, fname_name(nm), fname_len(nm));
 605        dent->name[fname_len(nm)] = '\0';
 606        set_dent_cookie(c, dent);
 607
 608        zero_dent_node_unused(dent);
 609        ubifs_prep_grp_node(c, dent, dlen, 0);
 610        err = ubifs_node_calc_hash(c, dent, hash_dent);
 611        if (err)
 612                goto out_release;
 613
 614        ino = (void *)dent + aligned_dlen;
 615        pack_inode(c, ino, inode, 0);
 616        err = ubifs_node_calc_hash(c, ino, hash_ino);
 617        if (err)
 618                goto out_release;
 619
 620        ino = (void *)ino + aligned_ilen;
 621        pack_inode(c, ino, dir, 1);
 622        err = ubifs_node_calc_hash(c, ino, hash_ino_host);
 623        if (err)
 624                goto out_release;
 625
 626        if (last_reference) {
 627                err = ubifs_add_orphan(c, inode->i_ino);
 628                if (err) {
 629                        release_head(c, BASEHD);
 630                        goto out_finish;
 631                }
 632                ui->del_cmtno = c->cmt_no;
 633        }
 634
 635        err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
 636        if (err)
 637                goto out_release;
 638        if (!sync) {
 639                struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
 640
 641                ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
 642                ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
 643        }
 644        release_head(c, BASEHD);
 645        kfree(dent);
 646        ubifs_add_auth_dirt(c, lnum);
 647
 648        if (deletion) {
 649                if (nm->hash)
 650                        err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
 651                else
 652                        err = ubifs_tnc_remove_nm(c, &dent_key, nm);
 653                if (err)
 654                        goto out_ro;
 655                err = ubifs_add_dirt(c, lnum, dlen);
 656        } else
 657                err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen,
 658                                       hash_dent, nm);
 659        if (err)
 660                goto out_ro;
 661
 662        /*
 663         * Note, we do not remove the inode from TNC even if the last reference
 664         * to it has just been deleted, because the inode may still be opened.
 665         * Instead, the inode has been added to orphan lists and the orphan
 666         * subsystem will take further care about it.
 667         */
 668        ino_key_init(c, &ino_key, inode->i_ino);
 669        ino_offs = dent_offs + aligned_dlen;
 670        err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen, hash_ino);
 671        if (err)
 672                goto out_ro;
 673
 674        ino_key_init(c, &ino_key, dir->i_ino);
 675        ino_offs += aligned_ilen;
 676        err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
 677                            UBIFS_INO_NODE_SZ + host_ui->data_len, hash_ino_host);
 678        if (err)
 679                goto out_ro;
 680
 681        finish_reservation(c);
 682        spin_lock(&ui->ui_lock);
 683        ui->synced_i_size = ui->ui_size;
 684        spin_unlock(&ui->ui_lock);
 685        if (xent) {
 686                spin_lock(&host_ui->ui_lock);
 687                host_ui->synced_i_size = host_ui->ui_size;
 688                spin_unlock(&host_ui->ui_lock);
 689        }
 690        mark_inode_clean(c, ui);
 691        mark_inode_clean(c, host_ui);
 692        return 0;
 693
 694out_finish:
 695        finish_reservation(c);
 696out_free:
 697        kfree(dent);
 698        return err;
 699
 700out_release:
 701        release_head(c, BASEHD);
 702        kfree(dent);
 703out_ro:
 704        ubifs_ro_mode(c, err);
 705        if (last_reference)
 706                ubifs_delete_orphan(c, inode->i_ino);
 707        finish_reservation(c);
 708        return err;
 709}
 710
 711/**
 712 * ubifs_jnl_write_data - write a data node to the journal.
 713 * @c: UBIFS file-system description object
 714 * @inode: inode the data node belongs to
 715 * @key: node key
 716 * @buf: buffer to write
 717 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
 718 *
 719 * This function writes a data node to the journal. Returns %0 if the data node
 720 * was successfully written, and a negative error code in case of failure.
 721 */
 722int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
 723                         const union ubifs_key *key, const void *buf, int len)
 724{
 725        struct ubifs_data_node *data;
 726        int err, lnum, offs, compr_type, out_len, compr_len, auth_len;
 727        int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
 728        int write_len;
 729        struct ubifs_inode *ui = ubifs_inode(inode);
 730        bool encrypted = ubifs_crypt_is_encrypted(inode);
 731        u8 hash[UBIFS_HASH_ARR_SZ];
 732
 733        dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
 734                (unsigned long)key_inum(c, key), key_block(c, key), len);
 735        ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
 736
 737        if (encrypted)
 738                dlen += UBIFS_CIPHER_BLOCK_SIZE;
 739
 740        auth_len = ubifs_auth_node_sz(c);
 741
 742        data = kmalloc(dlen + auth_len, GFP_NOFS | __GFP_NOWARN);
 743        if (!data) {
 744                /*
 745                 * Fall-back to the write reserve buffer. Note, we might be
 746                 * currently on the memory reclaim path, when the kernel is
 747                 * trying to free some memory by writing out dirty pages. The
 748                 * write reserve buffer helps us to guarantee that we are
 749                 * always able to write the data.
 750                 */
 751                allocated = 0;
 752                mutex_lock(&c->write_reserve_mutex);
 753                data = c->write_reserve_buf;
 754        }
 755
 756        data->ch.node_type = UBIFS_DATA_NODE;
 757        key_write(c, key, &data->key);
 758        data->size = cpu_to_le32(len);
 759
 760        if (!(ui->flags & UBIFS_COMPR_FL))
 761                /* Compression is disabled for this inode */
 762                compr_type = UBIFS_COMPR_NONE;
 763        else
 764                compr_type = ui->compr_type;
 765
 766        out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
 767        ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
 768        ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
 769
 770        if (encrypted) {
 771                err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
 772                if (err)
 773                        goto out_free;
 774
 775        } else {
 776                data->compr_size = 0;
 777                out_len = compr_len;
 778        }
 779
 780        dlen = UBIFS_DATA_NODE_SZ + out_len;
 781        if (ubifs_authenticated(c))
 782                write_len = ALIGN(dlen, 8) + auth_len;
 783        else
 784                write_len = dlen;
 785
 786        data->compr_type = cpu_to_le16(compr_type);
 787
 788        /* Make reservation before allocating sequence numbers */
 789        err = make_reservation(c, DATAHD, write_len);
 790        if (err)
 791                goto out_free;
 792
 793        ubifs_prepare_node(c, data, dlen, 0);
 794        err = write_head(c, DATAHD, data, write_len, &lnum, &offs, 0);
 795        if (err)
 796                goto out_release;
 797
 798        err = ubifs_node_calc_hash(c, data, hash);
 799        if (err)
 800                goto out_release;
 801
 802        ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
 803        release_head(c, DATAHD);
 804
 805        ubifs_add_auth_dirt(c, lnum);
 806
 807        err = ubifs_tnc_add(c, key, lnum, offs, dlen, hash);
 808        if (err)
 809                goto out_ro;
 810
 811        finish_reservation(c);
 812        if (!allocated)
 813                mutex_unlock(&c->write_reserve_mutex);
 814        else
 815                kfree(data);
 816        return 0;
 817
 818out_release:
 819        release_head(c, DATAHD);
 820out_ro:
 821        ubifs_ro_mode(c, err);
 822        finish_reservation(c);
 823out_free:
 824        if (!allocated)
 825                mutex_unlock(&c->write_reserve_mutex);
 826        else
 827                kfree(data);
 828        return err;
 829}
 830
 831/**
 832 * ubifs_jnl_write_inode - flush inode to the journal.
 833 * @c: UBIFS file-system description object
 834 * @inode: inode to flush
 835 *
 836 * This function writes inode @inode to the journal. If the inode is
 837 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
 838 * success and a negative error code in case of failure.
 839 */
 840int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
 841{
 842        int err, lnum, offs;
 843        struct ubifs_ino_node *ino, *ino_start;
 844        struct ubifs_inode *ui = ubifs_inode(inode);
 845        int sync = 0, write_len = 0, ilen = UBIFS_INO_NODE_SZ;
 846        int last_reference = !inode->i_nlink;
 847        int kill_xattrs = ui->xattr_cnt && last_reference;
 848        u8 hash[UBIFS_HASH_ARR_SZ];
 849
 850        dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
 851
 852        /*
 853         * If the inode is being deleted, do not write the attached data. No
 854         * need to synchronize the write-buffer either.
 855         */
 856        if (!last_reference) {
 857                ilen += ui->data_len;
 858                sync = IS_SYNC(inode);
 859        } else if (kill_xattrs) {
 860                write_len += UBIFS_INO_NODE_SZ * ui->xattr_cnt;
 861        }
 862
 863        if (ubifs_authenticated(c))
 864                write_len += ALIGN(ilen, 8) + ubifs_auth_node_sz(c);
 865        else
 866                write_len += ilen;
 867
 868        ino_start = ino = kmalloc(write_len, GFP_NOFS);
 869        if (!ino)
 870                return -ENOMEM;
 871
 872        /* Make reservation before allocating sequence numbers */
 873        err = make_reservation(c, BASEHD, write_len);
 874        if (err)
 875                goto out_free;
 876
 877        if (kill_xattrs) {
 878                union ubifs_key key;
 879                struct fscrypt_name nm = {0};
 880                struct inode *xino;
 881                struct ubifs_dent_node *xent, *pxent = NULL;
 882
 883                if (ui->xattr_cnt >= ubifs_xattr_max_cnt(c)) {
 884                        ubifs_err(c, "Cannot delete inode, it has too much xattrs!");
 885                        goto out_release;
 886                }
 887
 888                lowest_xent_key(c, &key, inode->i_ino);
 889                while (1) {
 890                        xent = ubifs_tnc_next_ent(c, &key, &nm);
 891                        if (IS_ERR(xent)) {
 892                                err = PTR_ERR(xent);
 893                                if (err == -ENOENT)
 894                                        break;
 895
 896                                goto out_release;
 897                        }
 898
 899                        fname_name(&nm) = xent->name;
 900                        fname_len(&nm) = le16_to_cpu(xent->nlen);
 901
 902                        xino = ubifs_iget(c->vfs_sb, xent->inum);
 903                        if (IS_ERR(xino)) {
 904                                err = PTR_ERR(xino);
 905                                ubifs_err(c, "dead directory entry '%s', error %d",
 906                                          xent->name, err);
 907                                ubifs_ro_mode(c, err);
 908                                goto out_release;
 909                        }
 910                        ubifs_assert(c, ubifs_inode(xino)->xattr);
 911
 912                        clear_nlink(xino);
 913                        pack_inode(c, ino, xino, 0);
 914                        ino = (void *)ino + UBIFS_INO_NODE_SZ;
 915                        iput(xino);
 916
 917                        kfree(pxent);
 918                        pxent = xent;
 919                        key_read(c, &xent->key, &key);
 920                }
 921                kfree(pxent);
 922        }
 923
 924        pack_inode(c, ino, inode, 1);
 925        err = ubifs_node_calc_hash(c, ino, hash);
 926        if (err)
 927                goto out_release;
 928
 929        err = write_head(c, BASEHD, ino_start, write_len, &lnum, &offs, sync);
 930        if (err)
 931                goto out_release;
 932        if (!sync)
 933                ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
 934                                          inode->i_ino);
 935        release_head(c, BASEHD);
 936
 937        ubifs_add_auth_dirt(c, lnum);
 938
 939        if (last_reference) {
 940                err = ubifs_tnc_remove_ino(c, inode->i_ino);
 941                if (err)
 942                        goto out_ro;
 943                ubifs_delete_orphan(c, inode->i_ino);
 944                err = ubifs_add_dirt(c, lnum, write_len);
 945        } else {
 946                union ubifs_key key;
 947
 948                ino_key_init(c, &key, inode->i_ino);
 949                err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash);
 950        }
 951        if (err)
 952                goto out_ro;
 953
 954        finish_reservation(c);
 955        spin_lock(&ui->ui_lock);
 956        ui->synced_i_size = ui->ui_size;
 957        spin_unlock(&ui->ui_lock);
 958        kfree(ino_start);
 959        return 0;
 960
 961out_release:
 962        release_head(c, BASEHD);
 963out_ro:
 964        ubifs_ro_mode(c, err);
 965        finish_reservation(c);
 966out_free:
 967        kfree(ino_start);
 968        return err;
 969}
 970
 971/**
 972 * ubifs_jnl_delete_inode - delete an inode.
 973 * @c: UBIFS file-system description object
 974 * @inode: inode to delete
 975 *
 976 * This function deletes inode @inode which includes removing it from orphans,
 977 * deleting it from TNC and, in some cases, writing a deletion inode to the
 978 * journal.
 979 *
 980 * When regular file inodes are unlinked or a directory inode is removed, the
 981 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
 982 * direntry to the media, and adds the inode to orphans. After this, when the
 983 * last reference to this inode has been dropped, this function is called. In
 984 * general, it has to write one more deletion inode to the media, because if
 985 * a commit happened between 'ubifs_jnl_update()' and
 986 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
 987 * anymore, and in fact it might not be on the flash anymore, because it might
 988 * have been garbage-collected already. And for optimization reasons UBIFS does
 989 * not read the orphan area if it has been unmounted cleanly, so it would have
 990 * no indication in the journal that there is a deleted inode which has to be
 991 * removed from TNC.
 992 *
 993 * However, if there was no commit between 'ubifs_jnl_update()' and
 994 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
 995 * inode to the media for the second time. And this is quite a typical case.
 996 *
 997 * This function returns zero in case of success and a negative error code in
 998 * case of failure.
 999 */
1000int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
1001{
1002        int err;
1003        struct ubifs_inode *ui = ubifs_inode(inode);
1004
1005        ubifs_assert(c, inode->i_nlink == 0);
1006
1007        if (ui->xattr_cnt || ui->del_cmtno != c->cmt_no)
1008                /* A commit happened for sure or inode hosts xattrs */
1009                return ubifs_jnl_write_inode(c, inode);
1010
1011        down_read(&c->commit_sem);
1012        /*
1013         * Check commit number again, because the first test has been done
1014         * without @c->commit_sem, so a commit might have happened.
1015         */
1016        if (ui->del_cmtno != c->cmt_no) {
1017                up_read(&c->commit_sem);
1018                return ubifs_jnl_write_inode(c, inode);
1019        }
1020
1021        err = ubifs_tnc_remove_ino(c, inode->i_ino);
1022        if (err)
1023                ubifs_ro_mode(c, err);
1024        else
1025                ubifs_delete_orphan(c, inode->i_ino);
1026        up_read(&c->commit_sem);
1027        return err;
1028}
1029
1030/**
1031 * ubifs_jnl_xrename - cross rename two directory entries.
1032 * @c: UBIFS file-system description object
1033 * @fst_dir: parent inode of 1st directory entry to exchange
1034 * @fst_inode: 1st inode to exchange
1035 * @fst_nm: name of 1st inode to exchange
1036 * @snd_dir: parent inode of 2nd directory entry to exchange
1037 * @snd_inode: 2nd inode to exchange
1038 * @snd_nm: name of 2nd inode to exchange
1039 * @sync: non-zero if the write-buffer has to be synchronized
1040 *
1041 * This function implements the cross rename operation which may involve
1042 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
1043 * and returns zero on success. In case of failure, a negative error code is
1044 * returned.
1045 */
1046int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
1047                      const struct inode *fst_inode,
1048                      const struct fscrypt_name *fst_nm,
1049                      const struct inode *snd_dir,
1050                      const struct inode *snd_inode,
1051                      const struct fscrypt_name *snd_nm, int sync)
1052{
1053        union ubifs_key key;
1054        struct ubifs_dent_node *dent1, *dent2;
1055        int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
1056        int aligned_dlen1, aligned_dlen2;
1057        int twoparents = (fst_dir != snd_dir);
1058        void *p;
1059        u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1060        u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1061        u8 hash_p1[UBIFS_HASH_ARR_SZ];
1062        u8 hash_p2[UBIFS_HASH_ARR_SZ];
1063
1064        ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
1065        ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
1066        ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
1067        ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
1068
1069        dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
1070        dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
1071        aligned_dlen1 = ALIGN(dlen1, 8);
1072        aligned_dlen2 = ALIGN(dlen2, 8);
1073
1074        len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
1075        if (twoparents)
1076                len += plen;
1077
1078        len += ubifs_auth_node_sz(c);
1079
1080        dent1 = kzalloc(len, GFP_NOFS);
1081        if (!dent1)
1082                return -ENOMEM;
1083
1084        /* Make reservation before allocating sequence numbers */
1085        err = make_reservation(c, BASEHD, len);
1086        if (err)
1087                goto out_free;
1088
1089        /* Make new dent for 1st entry */
1090        dent1->ch.node_type = UBIFS_DENT_NODE;
1091        dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
1092        dent1->inum = cpu_to_le64(fst_inode->i_ino);
1093        dent1->type = get_dent_type(fst_inode->i_mode);
1094        dent1->nlen = cpu_to_le16(fname_len(snd_nm));
1095        memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
1096        dent1->name[fname_len(snd_nm)] = '\0';
1097        set_dent_cookie(c, dent1);
1098        zero_dent_node_unused(dent1);
1099        ubifs_prep_grp_node(c, dent1, dlen1, 0);
1100        err = ubifs_node_calc_hash(c, dent1, hash_dent1);
1101        if (err)
1102                goto out_release;
1103
1104        /* Make new dent for 2nd entry */
1105        dent2 = (void *)dent1 + aligned_dlen1;
1106        dent2->ch.node_type = UBIFS_DENT_NODE;
1107        dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
1108        dent2->inum = cpu_to_le64(snd_inode->i_ino);
1109        dent2->type = get_dent_type(snd_inode->i_mode);
1110        dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1111        memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1112        dent2->name[fname_len(fst_nm)] = '\0';
1113        set_dent_cookie(c, dent2);
1114        zero_dent_node_unused(dent2);
1115        ubifs_prep_grp_node(c, dent2, dlen2, 0);
1116        err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1117        if (err)
1118                goto out_release;
1119
1120        p = (void *)dent2 + aligned_dlen2;
1121        if (!twoparents) {
1122                pack_inode(c, p, fst_dir, 1);
1123                err = ubifs_node_calc_hash(c, p, hash_p1);
1124                if (err)
1125                        goto out_release;
1126        } else {
1127                pack_inode(c, p, fst_dir, 0);
1128                err = ubifs_node_calc_hash(c, p, hash_p1);
1129                if (err)
1130                        goto out_release;
1131                p += ALIGN(plen, 8);
1132                pack_inode(c, p, snd_dir, 1);
1133                err = ubifs_node_calc_hash(c, p, hash_p2);
1134                if (err)
1135                        goto out_release;
1136        }
1137
1138        err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1139        if (err)
1140                goto out_release;
1141        if (!sync) {
1142                struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1143
1144                ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1145                ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1146        }
1147        release_head(c, BASEHD);
1148
1149        ubifs_add_auth_dirt(c, lnum);
1150
1151        dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1152        err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, snd_nm);
1153        if (err)
1154                goto out_ro;
1155
1156        offs += aligned_dlen1;
1157        dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1158        err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, fst_nm);
1159        if (err)
1160                goto out_ro;
1161
1162        offs += aligned_dlen2;
1163
1164        ino_key_init(c, &key, fst_dir->i_ino);
1165        err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p1);
1166        if (err)
1167                goto out_ro;
1168
1169        if (twoparents) {
1170                offs += ALIGN(plen, 8);
1171                ino_key_init(c, &key, snd_dir->i_ino);
1172                err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p2);
1173                if (err)
1174                        goto out_ro;
1175        }
1176
1177        finish_reservation(c);
1178
1179        mark_inode_clean(c, ubifs_inode(fst_dir));
1180        if (twoparents)
1181                mark_inode_clean(c, ubifs_inode(snd_dir));
1182        kfree(dent1);
1183        return 0;
1184
1185out_release:
1186        release_head(c, BASEHD);
1187out_ro:
1188        ubifs_ro_mode(c, err);
1189        finish_reservation(c);
1190out_free:
1191        kfree(dent1);
1192        return err;
1193}
1194
1195/**
1196 * ubifs_jnl_rename - rename a directory entry.
1197 * @c: UBIFS file-system description object
1198 * @old_dir: parent inode of directory entry to rename
1199 * @old_dentry: directory entry to rename
1200 * @new_dir: parent inode of directory entry to rename
1201 * @new_dentry: new directory entry (or directory entry to replace)
1202 * @sync: non-zero if the write-buffer has to be synchronized
1203 *
1204 * This function implements the re-name operation which may involve writing up
1205 * to 4 inodes and 2 directory entries. It marks the written inodes as clean
1206 * and returns zero on success. In case of failure, a negative error code is
1207 * returned.
1208 */
1209int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1210                     const struct inode *old_inode,
1211                     const struct fscrypt_name *old_nm,
1212                     const struct inode *new_dir,
1213                     const struct inode *new_inode,
1214                     const struct fscrypt_name *new_nm,
1215                     const struct inode *whiteout, int sync)
1216{
1217        void *p;
1218        union ubifs_key key;
1219        struct ubifs_dent_node *dent, *dent2;
1220        int err, dlen1, dlen2, ilen, lnum, offs, len;
1221        int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1222        int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1223        int move = (old_dir != new_dir);
1224        struct ubifs_inode *uninitialized_var(new_ui);
1225        u8 hash_old_dir[UBIFS_HASH_ARR_SZ];
1226        u8 hash_new_dir[UBIFS_HASH_ARR_SZ];
1227        u8 hash_new_inode[UBIFS_HASH_ARR_SZ];
1228        u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1229        u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1230
1231        ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1232        ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1233        ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1234        ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1235
1236        dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1237        dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1238        if (new_inode) {
1239                new_ui = ubifs_inode(new_inode);
1240                ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1241                ilen = UBIFS_INO_NODE_SZ;
1242                if (!last_reference)
1243                        ilen += new_ui->data_len;
1244        } else
1245                ilen = 0;
1246
1247        aligned_dlen1 = ALIGN(dlen1, 8);
1248        aligned_dlen2 = ALIGN(dlen2, 8);
1249        len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
1250        if (move)
1251                len += plen;
1252
1253        len += ubifs_auth_node_sz(c);
1254
1255        dent = kzalloc(len, GFP_NOFS);
1256        if (!dent)
1257                return -ENOMEM;
1258
1259        /* Make reservation before allocating sequence numbers */
1260        err = make_reservation(c, BASEHD, len);
1261        if (err)
1262                goto out_free;
1263
1264        /* Make new dent */
1265        dent->ch.node_type = UBIFS_DENT_NODE;
1266        dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1267        dent->inum = cpu_to_le64(old_inode->i_ino);
1268        dent->type = get_dent_type(old_inode->i_mode);
1269        dent->nlen = cpu_to_le16(fname_len(new_nm));
1270        memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1271        dent->name[fname_len(new_nm)] = '\0';
1272        set_dent_cookie(c, dent);
1273        zero_dent_node_unused(dent);
1274        ubifs_prep_grp_node(c, dent, dlen1, 0);
1275        err = ubifs_node_calc_hash(c, dent, hash_dent1);
1276        if (err)
1277                goto out_release;
1278
1279        dent2 = (void *)dent + aligned_dlen1;
1280        dent2->ch.node_type = UBIFS_DENT_NODE;
1281        dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1282
1283        if (whiteout) {
1284                dent2->inum = cpu_to_le64(whiteout->i_ino);
1285                dent2->type = get_dent_type(whiteout->i_mode);
1286        } else {
1287                /* Make deletion dent */
1288                dent2->inum = 0;
1289                dent2->type = DT_UNKNOWN;
1290        }
1291        dent2->nlen = cpu_to_le16(fname_len(old_nm));
1292        memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1293        dent2->name[fname_len(old_nm)] = '\0';
1294        set_dent_cookie(c, dent2);
1295        zero_dent_node_unused(dent2);
1296        ubifs_prep_grp_node(c, dent2, dlen2, 0);
1297        err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1298        if (err)
1299                goto out_release;
1300
1301        p = (void *)dent2 + aligned_dlen2;
1302        if (new_inode) {
1303                pack_inode(c, p, new_inode, 0);
1304                err = ubifs_node_calc_hash(c, p, hash_new_inode);
1305                if (err)
1306                        goto out_release;
1307
1308                p += ALIGN(ilen, 8);
1309        }
1310
1311        if (!move) {
1312                pack_inode(c, p, old_dir, 1);
1313                err = ubifs_node_calc_hash(c, p, hash_old_dir);
1314                if (err)
1315                        goto out_release;
1316        } else {
1317                pack_inode(c, p, old_dir, 0);
1318                err = ubifs_node_calc_hash(c, p, hash_old_dir);
1319                if (err)
1320                        goto out_release;
1321
1322                p += ALIGN(plen, 8);
1323                pack_inode(c, p, new_dir, 1);
1324                err = ubifs_node_calc_hash(c, p, hash_new_dir);
1325                if (err)
1326                        goto out_release;
1327        }
1328
1329        if (last_reference) {
1330                err = ubifs_add_orphan(c, new_inode->i_ino);
1331                if (err) {
1332                        release_head(c, BASEHD);
1333                        goto out_finish;
1334                }
1335                new_ui->del_cmtno = c->cmt_no;
1336        }
1337
1338        err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1339        if (err)
1340                goto out_release;
1341        if (!sync) {
1342                struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1343
1344                ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1345                ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1346                if (new_inode)
1347                        ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1348                                                  new_inode->i_ino);
1349        }
1350        release_head(c, BASEHD);
1351
1352        ubifs_add_auth_dirt(c, lnum);
1353
1354        dent_key_init(c, &key, new_dir->i_ino, new_nm);
1355        err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, new_nm);
1356        if (err)
1357                goto out_ro;
1358
1359        offs += aligned_dlen1;
1360        if (whiteout) {
1361                dent_key_init(c, &key, old_dir->i_ino, old_nm);
1362                err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, old_nm);
1363                if (err)
1364                        goto out_ro;
1365
1366                ubifs_delete_orphan(c, whiteout->i_ino);
1367        } else {
1368                err = ubifs_add_dirt(c, lnum, dlen2);
1369                if (err)
1370                        goto out_ro;
1371
1372                dent_key_init(c, &key, old_dir->i_ino, old_nm);
1373                err = ubifs_tnc_remove_nm(c, &key, old_nm);
1374                if (err)
1375                        goto out_ro;
1376        }
1377
1378        offs += aligned_dlen2;
1379        if (new_inode) {
1380                ino_key_init(c, &key, new_inode->i_ino);
1381                err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash_new_inode);
1382                if (err)
1383                        goto out_ro;
1384                offs += ALIGN(ilen, 8);
1385        }
1386
1387        ino_key_init(c, &key, old_dir->i_ino);
1388        err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_old_dir);
1389        if (err)
1390                goto out_ro;
1391
1392        if (move) {
1393                offs += ALIGN(plen, 8);
1394                ino_key_init(c, &key, new_dir->i_ino);
1395                err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_new_dir);
1396                if (err)
1397                        goto out_ro;
1398        }
1399
1400        finish_reservation(c);
1401        if (new_inode) {
1402                mark_inode_clean(c, new_ui);
1403                spin_lock(&new_ui->ui_lock);
1404                new_ui->synced_i_size = new_ui->ui_size;
1405                spin_unlock(&new_ui->ui_lock);
1406        }
1407        mark_inode_clean(c, ubifs_inode(old_dir));
1408        if (move)
1409                mark_inode_clean(c, ubifs_inode(new_dir));
1410        kfree(dent);
1411        return 0;
1412
1413out_release:
1414        release_head(c, BASEHD);
1415out_ro:
1416        ubifs_ro_mode(c, err);
1417        if (last_reference)
1418                ubifs_delete_orphan(c, new_inode->i_ino);
1419out_finish:
1420        finish_reservation(c);
1421out_free:
1422        kfree(dent);
1423        return err;
1424}
1425
1426/**
1427 * truncate_data_node - re-compress/encrypt a truncated data node.
1428 * @c: UBIFS file-system description object
1429 * @inode: inode which referes to the data node
1430 * @block: data block number
1431 * @dn: data node to re-compress
1432 * @new_len: new length
1433 *
1434 * This function is used when an inode is truncated and the last data node of
1435 * the inode has to be re-compressed/encrypted and re-written.
1436 */
1437static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1438                              unsigned int block, struct ubifs_data_node *dn,
1439                              int *new_len)
1440{
1441        void *buf;
1442        int err, dlen, compr_type, out_len, old_dlen;
1443
1444        out_len = le32_to_cpu(dn->size);
1445        buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS);
1446        if (!buf)
1447                return -ENOMEM;
1448
1449        dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1450        compr_type = le16_to_cpu(dn->compr_type);
1451
1452        if (ubifs_crypt_is_encrypted(inode)) {
1453                err = ubifs_decrypt(inode, dn, &dlen, block);
1454                if (err)
1455                        goto out;
1456        }
1457
1458        if (compr_type == UBIFS_COMPR_NONE) {
1459                out_len = *new_len;
1460        } else {
1461                err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1462                if (err)
1463                        goto out;
1464
1465                ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1466        }
1467
1468        if (ubifs_crypt_is_encrypted(inode)) {
1469                err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block);
1470                if (err)
1471                        goto out;
1472
1473                out_len = old_dlen;
1474        } else {
1475                dn->compr_size = 0;
1476        }
1477
1478        ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1479        dn->compr_type = cpu_to_le16(compr_type);
1480        dn->size = cpu_to_le32(*new_len);
1481        *new_len = UBIFS_DATA_NODE_SZ + out_len;
1482        err = 0;
1483out:
1484        kfree(buf);
1485        return err;
1486}
1487
1488/**
1489 * ubifs_jnl_truncate - update the journal for a truncation.
1490 * @c: UBIFS file-system description object
1491 * @inode: inode to truncate
1492 * @old_size: old size
1493 * @new_size: new size
1494 *
1495 * When the size of a file decreases due to truncation, a truncation node is
1496 * written, the journal tree is updated, and the last data block is re-written
1497 * if it has been affected. The inode is also updated in order to synchronize
1498 * the new inode size.
1499 *
1500 * This function marks the inode as clean and returns zero on success. In case
1501 * of failure, a negative error code is returned.
1502 */
1503int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1504                       loff_t old_size, loff_t new_size)
1505{
1506        union ubifs_key key, to_key;
1507        struct ubifs_ino_node *ino;
1508        struct ubifs_trun_node *trun;
1509        struct ubifs_data_node *uninitialized_var(dn);
1510        int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1511        struct ubifs_inode *ui = ubifs_inode(inode);
1512        ino_t inum = inode->i_ino;
1513        unsigned int blk;
1514        u8 hash_ino[UBIFS_HASH_ARR_SZ];
1515        u8 hash_dn[UBIFS_HASH_ARR_SZ];
1516
1517        dbg_jnl("ino %lu, size %lld -> %lld",
1518                (unsigned long)inum, old_size, new_size);
1519        ubifs_assert(c, !ui->data_len);
1520        ubifs_assert(c, S_ISREG(inode->i_mode));
1521        ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1522
1523        sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1524             UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1525
1526        sz += ubifs_auth_node_sz(c);
1527
1528        ino = kmalloc(sz, GFP_NOFS);
1529        if (!ino)
1530                return -ENOMEM;
1531
1532        trun = (void *)ino + UBIFS_INO_NODE_SZ;
1533        trun->ch.node_type = UBIFS_TRUN_NODE;
1534        trun->inum = cpu_to_le32(inum);
1535        trun->old_size = cpu_to_le64(old_size);
1536        trun->new_size = cpu_to_le64(new_size);
1537        zero_trun_node_unused(trun);
1538
1539        dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1540        if (dlen) {
1541                /* Get last data block so it can be truncated */
1542                dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1543                blk = new_size >> UBIFS_BLOCK_SHIFT;
1544                data_key_init(c, &key, inum, blk);
1545                dbg_jnlk(&key, "last block key ");
1546                err = ubifs_tnc_lookup(c, &key, dn);
1547                if (err == -ENOENT)
1548                        dlen = 0; /* Not found (so it is a hole) */
1549                else if (err)
1550                        goto out_free;
1551                else {
1552                        int dn_len = le32_to_cpu(dn->size);
1553
1554                        if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1555                                ubifs_err(c, "bad data node (block %u, inode %lu)",
1556                                          blk, inode->i_ino);
1557                                ubifs_dump_node(c, dn);
1558                                goto out_free;
1559                        }
1560
1561                        if (dn_len <= dlen)
1562                                dlen = 0; /* Nothing to do */
1563                        else {
1564                                err = truncate_data_node(c, inode, blk, dn, &dlen);
1565                                if (err)
1566                                        goto out_free;
1567                        }
1568                }
1569        }
1570
1571        /* Must make reservation before allocating sequence numbers */
1572        len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1573
1574        if (ubifs_authenticated(c))
1575                len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c);
1576        else
1577                len += dlen;
1578
1579        err = make_reservation(c, BASEHD, len);
1580        if (err)
1581                goto out_free;
1582
1583        pack_inode(c, ino, inode, 0);
1584        err = ubifs_node_calc_hash(c, ino, hash_ino);
1585        if (err)
1586                goto out_release;
1587
1588        ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1589        if (dlen) {
1590                ubifs_prep_grp_node(c, dn, dlen, 1);
1591                err = ubifs_node_calc_hash(c, dn, hash_dn);
1592                if (err)
1593                        goto out_release;
1594        }
1595
1596        err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1597        if (err)
1598                goto out_release;
1599        if (!sync)
1600                ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1601        release_head(c, BASEHD);
1602
1603        ubifs_add_auth_dirt(c, lnum);
1604
1605        if (dlen) {
1606                sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1607                err = ubifs_tnc_add(c, &key, lnum, sz, dlen, hash_dn);
1608                if (err)
1609                        goto out_ro;
1610        }
1611
1612        ino_key_init(c, &key, inum);
1613        err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ, hash_ino);
1614        if (err)
1615                goto out_ro;
1616
1617        err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1618        if (err)
1619                goto out_ro;
1620
1621        bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1622        blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1623        data_key_init(c, &key, inum, blk);
1624
1625        bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1626        blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1627        data_key_init(c, &to_key, inum, blk);
1628
1629        err = ubifs_tnc_remove_range(c, &key, &to_key);
1630        if (err)
1631                goto out_ro;
1632
1633        finish_reservation(c);
1634        spin_lock(&ui->ui_lock);
1635        ui->synced_i_size = ui->ui_size;
1636        spin_unlock(&ui->ui_lock);
1637        mark_inode_clean(c, ui);
1638        kfree(ino);
1639        return 0;
1640
1641out_release:
1642        release_head(c, BASEHD);
1643out_ro:
1644        ubifs_ro_mode(c, err);
1645        finish_reservation(c);
1646out_free:
1647        kfree(ino);
1648        return err;
1649}
1650
1651
1652/**
1653 * ubifs_jnl_delete_xattr - delete an extended attribute.
1654 * @c: UBIFS file-system description object
1655 * @host: host inode
1656 * @inode: extended attribute inode
1657 * @nm: extended attribute entry name
1658 *
1659 * This function delete an extended attribute which is very similar to
1660 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1661 * updates the target inode. Returns zero in case of success and a negative
1662 * error code in case of failure.
1663 */
1664int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1665                           const struct inode *inode,
1666                           const struct fscrypt_name *nm)
1667{
1668        int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len;
1669        struct ubifs_dent_node *xent;
1670        struct ubifs_ino_node *ino;
1671        union ubifs_key xent_key, key1, key2;
1672        int sync = IS_DIRSYNC(host);
1673        struct ubifs_inode *host_ui = ubifs_inode(host);
1674        u8 hash[UBIFS_HASH_ARR_SZ];
1675
1676        ubifs_assert(c, inode->i_nlink == 0);
1677        ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1678
1679        /*
1680         * Since we are deleting the inode, we do not bother to attach any data
1681         * to it and assume its length is %UBIFS_INO_NODE_SZ.
1682         */
1683        xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1684        aligned_xlen = ALIGN(xlen, 8);
1685        hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1686        len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1687
1688        write_len = len + ubifs_auth_node_sz(c);
1689
1690        xent = kzalloc(write_len, GFP_NOFS);
1691        if (!xent)
1692                return -ENOMEM;
1693
1694        /* Make reservation before allocating sequence numbers */
1695        err = make_reservation(c, BASEHD, write_len);
1696        if (err) {
1697                kfree(xent);
1698                return err;
1699        }
1700
1701        xent->ch.node_type = UBIFS_XENT_NODE;
1702        xent_key_init(c, &xent_key, host->i_ino, nm);
1703        key_write(c, &xent_key, xent->key);
1704        xent->inum = 0;
1705        xent->type = get_dent_type(inode->i_mode);
1706        xent->nlen = cpu_to_le16(fname_len(nm));
1707        memcpy(xent->name, fname_name(nm), fname_len(nm));
1708        xent->name[fname_len(nm)] = '\0';
1709        zero_dent_node_unused(xent);
1710        ubifs_prep_grp_node(c, xent, xlen, 0);
1711
1712        ino = (void *)xent + aligned_xlen;
1713        pack_inode(c, ino, inode, 0);
1714        ino = (void *)ino + UBIFS_INO_NODE_SZ;
1715        pack_inode(c, ino, host, 1);
1716        err = ubifs_node_calc_hash(c, ino, hash);
1717        if (err)
1718                goto out_release;
1719
1720        err = write_head(c, BASEHD, xent, write_len, &lnum, &xent_offs, sync);
1721        if (!sync && !err)
1722                ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1723        release_head(c, BASEHD);
1724
1725        ubifs_add_auth_dirt(c, lnum);
1726        kfree(xent);
1727        if (err)
1728                goto out_ro;
1729
1730        /* Remove the extended attribute entry from TNC */
1731        err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1732        if (err)
1733                goto out_ro;
1734        err = ubifs_add_dirt(c, lnum, xlen);
1735        if (err)
1736                goto out_ro;
1737
1738        /*
1739         * Remove all nodes belonging to the extended attribute inode from TNC.
1740         * Well, there actually must be only one node - the inode itself.
1741         */
1742        lowest_ino_key(c, &key1, inode->i_ino);
1743        highest_ino_key(c, &key2, inode->i_ino);
1744        err = ubifs_tnc_remove_range(c, &key1, &key2);
1745        if (err)
1746                goto out_ro;
1747        err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1748        if (err)
1749                goto out_ro;
1750
1751        /* And update TNC with the new host inode position */
1752        ino_key_init(c, &key1, host->i_ino);
1753        err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen, hash);
1754        if (err)
1755                goto out_ro;
1756
1757        finish_reservation(c);
1758        spin_lock(&host_ui->ui_lock);
1759        host_ui->synced_i_size = host_ui->ui_size;
1760        spin_unlock(&host_ui->ui_lock);
1761        mark_inode_clean(c, host_ui);
1762        return 0;
1763
1764out_release:
1765        kfree(xent);
1766        release_head(c, BASEHD);
1767out_ro:
1768        ubifs_ro_mode(c, err);
1769        finish_reservation(c);
1770        return err;
1771}
1772
1773/**
1774 * ubifs_jnl_change_xattr - change an extended attribute.
1775 * @c: UBIFS file-system description object
1776 * @inode: extended attribute inode
1777 * @host: host inode
1778 *
1779 * This function writes the updated version of an extended attribute inode and
1780 * the host inode to the journal (to the base head). The host inode is written
1781 * after the extended attribute inode in order to guarantee that the extended
1782 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1783 * consequently, the write-buffer is synchronized. This function returns zero
1784 * in case of success and a negative error code in case of failure.
1785 */
1786int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1787                           const struct inode *host)
1788{
1789        int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1790        struct ubifs_inode *host_ui = ubifs_inode(host);
1791        struct ubifs_ino_node *ino;
1792        union ubifs_key key;
1793        int sync = IS_DIRSYNC(host);
1794        u8 hash_host[UBIFS_HASH_ARR_SZ];
1795        u8 hash[UBIFS_HASH_ARR_SZ];
1796
1797        dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1798        ubifs_assert(c, host->i_nlink > 0);
1799        ubifs_assert(c, inode->i_nlink > 0);
1800        ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1801
1802        len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1803        len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1804        aligned_len1 = ALIGN(len1, 8);
1805        aligned_len = aligned_len1 + ALIGN(len2, 8);
1806
1807        aligned_len += ubifs_auth_node_sz(c);
1808
1809        ino = kzalloc(aligned_len, GFP_NOFS);
1810        if (!ino)
1811                return -ENOMEM;
1812
1813        /* Make reservation before allocating sequence numbers */
1814        err = make_reservation(c, BASEHD, aligned_len);
1815        if (err)
1816                goto out_free;
1817
1818        pack_inode(c, ino, host, 0);
1819        err = ubifs_node_calc_hash(c, ino, hash_host);
1820        if (err)
1821                goto out_release;
1822        pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1823        err = ubifs_node_calc_hash(c, (void *)ino + aligned_len1, hash);
1824        if (err)
1825                goto out_release;
1826
1827        err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1828        if (!sync && !err) {
1829                struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1830
1831                ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1832                ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1833        }
1834        release_head(c, BASEHD);
1835        if (err)
1836                goto out_ro;
1837
1838        ubifs_add_auth_dirt(c, lnum);
1839
1840        ino_key_init(c, &key, host->i_ino);
1841        err = ubifs_tnc_add(c, &key, lnum, offs, len1, hash_host);
1842        if (err)
1843                goto out_ro;
1844
1845        ino_key_init(c, &key, inode->i_ino);
1846        err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2, hash);
1847        if (err)
1848                goto out_ro;
1849
1850        finish_reservation(c);
1851        spin_lock(&host_ui->ui_lock);
1852        host_ui->synced_i_size = host_ui->ui_size;
1853        spin_unlock(&host_ui->ui_lock);
1854        mark_inode_clean(c, host_ui);
1855        kfree(ino);
1856        return 0;
1857
1858out_release:
1859        release_head(c, BASEHD);
1860out_ro:
1861        ubifs_ro_mode(c, err);
1862        finish_reservation(c);
1863out_free:
1864        kfree(ino);
1865        return err;
1866}
1867
1868