linux/fs/ubifs/super.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Artem Bityutskiy (Битюцкий Артём)
   8 *          Adrian Hunter
   9 */
  10
  11/*
  12 * This file implements UBIFS initialization and VFS superblock operations. Some
  13 * initialization stuff which is rather large and complex is placed at
  14 * corresponding subsystems, but most of it is here.
  15 */
  16
  17#include <linux/init.h>
  18#include <linux/slab.h>
  19#include <linux/module.h>
  20#include <linux/ctype.h>
  21#include <linux/kthread.h>
  22#include <linux/parser.h>
  23#include <linux/seq_file.h>
  24#include <linux/mount.h>
  25#include <linux/math64.h>
  26#include <linux/writeback.h>
  27#include "ubifs.h"
  28
  29/*
  30 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
  31 * allocating too much.
  32 */
  33#define UBIFS_KMALLOC_OK (128*1024)
  34
  35/* Slab cache for UBIFS inodes */
  36static struct kmem_cache *ubifs_inode_slab;
  37
  38/* UBIFS TNC shrinker description */
  39static struct shrinker ubifs_shrinker_info = {
  40        .scan_objects = ubifs_shrink_scan,
  41        .count_objects = ubifs_shrink_count,
  42        .seeks = DEFAULT_SEEKS,
  43};
  44
  45/**
  46 * validate_inode - validate inode.
  47 * @c: UBIFS file-system description object
  48 * @inode: the inode to validate
  49 *
  50 * This is a helper function for 'ubifs_iget()' which validates various fields
  51 * of a newly built inode to make sure they contain sane values and prevent
  52 * possible vulnerabilities. Returns zero if the inode is all right and
  53 * a non-zero error code if not.
  54 */
  55static int validate_inode(struct ubifs_info *c, const struct inode *inode)
  56{
  57        int err;
  58        const struct ubifs_inode *ui = ubifs_inode(inode);
  59
  60        if (inode->i_size > c->max_inode_sz) {
  61                ubifs_err(c, "inode is too large (%lld)",
  62                          (long long)inode->i_size);
  63                return 1;
  64        }
  65
  66        if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
  67                ubifs_err(c, "unknown compression type %d", ui->compr_type);
  68                return 2;
  69        }
  70
  71        if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
  72                return 3;
  73
  74        if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
  75                return 4;
  76
  77        if (ui->xattr && !S_ISREG(inode->i_mode))
  78                return 5;
  79
  80        if (!ubifs_compr_present(c, ui->compr_type)) {
  81                ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
  82                           inode->i_ino, ubifs_compr_name(c, ui->compr_type));
  83        }
  84
  85        err = dbg_check_dir(c, inode);
  86        return err;
  87}
  88
  89struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
  90{
  91        int err;
  92        union ubifs_key key;
  93        struct ubifs_ino_node *ino;
  94        struct ubifs_info *c = sb->s_fs_info;
  95        struct inode *inode;
  96        struct ubifs_inode *ui;
  97
  98        dbg_gen("inode %lu", inum);
  99
 100        inode = iget_locked(sb, inum);
 101        if (!inode)
 102                return ERR_PTR(-ENOMEM);
 103        if (!(inode->i_state & I_NEW))
 104                return inode;
 105        ui = ubifs_inode(inode);
 106
 107        ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
 108        if (!ino) {
 109                err = -ENOMEM;
 110                goto out;
 111        }
 112
 113        ino_key_init(c, &key, inode->i_ino);
 114
 115        err = ubifs_tnc_lookup(c, &key, ino);
 116        if (err)
 117                goto out_ino;
 118
 119        inode->i_flags |= S_NOCMTIME;
 120
 121        if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
 122                inode->i_flags |= S_NOATIME;
 123
 124        set_nlink(inode, le32_to_cpu(ino->nlink));
 125        i_uid_write(inode, le32_to_cpu(ino->uid));
 126        i_gid_write(inode, le32_to_cpu(ino->gid));
 127        inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
 128        inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
 129        inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
 130        inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
 131        inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
 132        inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
 133        inode->i_mode = le32_to_cpu(ino->mode);
 134        inode->i_size = le64_to_cpu(ino->size);
 135
 136        ui->data_len    = le32_to_cpu(ino->data_len);
 137        ui->flags       = le32_to_cpu(ino->flags);
 138        ui->compr_type  = le16_to_cpu(ino->compr_type);
 139        ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
 140        ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
 141        ui->xattr_size  = le32_to_cpu(ino->xattr_size);
 142        ui->xattr_names = le32_to_cpu(ino->xattr_names);
 143        ui->synced_i_size = ui->ui_size = inode->i_size;
 144
 145        ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
 146
 147        err = validate_inode(c, inode);
 148        if (err)
 149                goto out_invalid;
 150
 151        switch (inode->i_mode & S_IFMT) {
 152        case S_IFREG:
 153                inode->i_mapping->a_ops = &ubifs_file_address_operations;
 154                inode->i_op = &ubifs_file_inode_operations;
 155                inode->i_fop = &ubifs_file_operations;
 156                if (ui->xattr) {
 157                        ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 158                        if (!ui->data) {
 159                                err = -ENOMEM;
 160                                goto out_ino;
 161                        }
 162                        memcpy(ui->data, ino->data, ui->data_len);
 163                        ((char *)ui->data)[ui->data_len] = '\0';
 164                } else if (ui->data_len != 0) {
 165                        err = 10;
 166                        goto out_invalid;
 167                }
 168                break;
 169        case S_IFDIR:
 170                inode->i_op  = &ubifs_dir_inode_operations;
 171                inode->i_fop = &ubifs_dir_operations;
 172                if (ui->data_len != 0) {
 173                        err = 11;
 174                        goto out_invalid;
 175                }
 176                break;
 177        case S_IFLNK:
 178                inode->i_op = &ubifs_symlink_inode_operations;
 179                if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
 180                        err = 12;
 181                        goto out_invalid;
 182                }
 183                ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 184                if (!ui->data) {
 185                        err = -ENOMEM;
 186                        goto out_ino;
 187                }
 188                memcpy(ui->data, ino->data, ui->data_len);
 189                ((char *)ui->data)[ui->data_len] = '\0';
 190                break;
 191        case S_IFBLK:
 192        case S_IFCHR:
 193        {
 194                dev_t rdev;
 195                union ubifs_dev_desc *dev;
 196
 197                ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
 198                if (!ui->data) {
 199                        err = -ENOMEM;
 200                        goto out_ino;
 201                }
 202
 203                dev = (union ubifs_dev_desc *)ino->data;
 204                if (ui->data_len == sizeof(dev->new))
 205                        rdev = new_decode_dev(le32_to_cpu(dev->new));
 206                else if (ui->data_len == sizeof(dev->huge))
 207                        rdev = huge_decode_dev(le64_to_cpu(dev->huge));
 208                else {
 209                        err = 13;
 210                        goto out_invalid;
 211                }
 212                memcpy(ui->data, ino->data, ui->data_len);
 213                inode->i_op = &ubifs_file_inode_operations;
 214                init_special_inode(inode, inode->i_mode, rdev);
 215                break;
 216        }
 217        case S_IFSOCK:
 218        case S_IFIFO:
 219                inode->i_op = &ubifs_file_inode_operations;
 220                init_special_inode(inode, inode->i_mode, 0);
 221                if (ui->data_len != 0) {
 222                        err = 14;
 223                        goto out_invalid;
 224                }
 225                break;
 226        default:
 227                err = 15;
 228                goto out_invalid;
 229        }
 230
 231        kfree(ino);
 232        ubifs_set_inode_flags(inode);
 233        unlock_new_inode(inode);
 234        return inode;
 235
 236out_invalid:
 237        ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
 238        ubifs_dump_node(c, ino);
 239        ubifs_dump_inode(c, inode);
 240        err = -EINVAL;
 241out_ino:
 242        kfree(ino);
 243out:
 244        ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
 245        iget_failed(inode);
 246        return ERR_PTR(err);
 247}
 248
 249static struct inode *ubifs_alloc_inode(struct super_block *sb)
 250{
 251        struct ubifs_inode *ui;
 252
 253        ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
 254        if (!ui)
 255                return NULL;
 256
 257        memset((void *)ui + sizeof(struct inode), 0,
 258               sizeof(struct ubifs_inode) - sizeof(struct inode));
 259        mutex_init(&ui->ui_mutex);
 260        spin_lock_init(&ui->ui_lock);
 261        return &ui->vfs_inode;
 262};
 263
 264static void ubifs_free_inode(struct inode *inode)
 265{
 266        struct ubifs_inode *ui = ubifs_inode(inode);
 267
 268        kfree(ui->data);
 269        fscrypt_free_inode(inode);
 270
 271        kmem_cache_free(ubifs_inode_slab, ui);
 272}
 273
 274/*
 275 * Note, Linux write-back code calls this without 'i_mutex'.
 276 */
 277static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
 278{
 279        int err = 0;
 280        struct ubifs_info *c = inode->i_sb->s_fs_info;
 281        struct ubifs_inode *ui = ubifs_inode(inode);
 282
 283        ubifs_assert(c, !ui->xattr);
 284        if (is_bad_inode(inode))
 285                return 0;
 286
 287        mutex_lock(&ui->ui_mutex);
 288        /*
 289         * Due to races between write-back forced by budgeting
 290         * (see 'sync_some_inodes()') and background write-back, the inode may
 291         * have already been synchronized, do not do this again. This might
 292         * also happen if it was synchronized in an VFS operation, e.g.
 293         * 'ubifs_link()'.
 294         */
 295        if (!ui->dirty) {
 296                mutex_unlock(&ui->ui_mutex);
 297                return 0;
 298        }
 299
 300        /*
 301         * As an optimization, do not write orphan inodes to the media just
 302         * because this is not needed.
 303         */
 304        dbg_gen("inode %lu, mode %#x, nlink %u",
 305                inode->i_ino, (int)inode->i_mode, inode->i_nlink);
 306        if (inode->i_nlink) {
 307                err = ubifs_jnl_write_inode(c, inode);
 308                if (err)
 309                        ubifs_err(c, "can't write inode %lu, error %d",
 310                                  inode->i_ino, err);
 311                else
 312                        err = dbg_check_inode_size(c, inode, ui->ui_size);
 313        }
 314
 315        ui->dirty = 0;
 316        mutex_unlock(&ui->ui_mutex);
 317        ubifs_release_dirty_inode_budget(c, ui);
 318        return err;
 319}
 320
 321static void ubifs_evict_inode(struct inode *inode)
 322{
 323        int err;
 324        struct ubifs_info *c = inode->i_sb->s_fs_info;
 325        struct ubifs_inode *ui = ubifs_inode(inode);
 326
 327        if (ui->xattr)
 328                /*
 329                 * Extended attribute inode deletions are fully handled in
 330                 * 'ubifs_removexattr()'. These inodes are special and have
 331                 * limited usage, so there is nothing to do here.
 332                 */
 333                goto out;
 334
 335        dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
 336        ubifs_assert(c, !atomic_read(&inode->i_count));
 337
 338        truncate_inode_pages_final(&inode->i_data);
 339
 340        if (inode->i_nlink)
 341                goto done;
 342
 343        if (is_bad_inode(inode))
 344                goto out;
 345
 346        ui->ui_size = inode->i_size = 0;
 347        err = ubifs_jnl_delete_inode(c, inode);
 348        if (err)
 349                /*
 350                 * Worst case we have a lost orphan inode wasting space, so a
 351                 * simple error message is OK here.
 352                 */
 353                ubifs_err(c, "can't delete inode %lu, error %d",
 354                          inode->i_ino, err);
 355
 356out:
 357        if (ui->dirty)
 358                ubifs_release_dirty_inode_budget(c, ui);
 359        else {
 360                /* We've deleted something - clean the "no space" flags */
 361                c->bi.nospace = c->bi.nospace_rp = 0;
 362                smp_wmb();
 363        }
 364done:
 365        clear_inode(inode);
 366        fscrypt_put_encryption_info(inode);
 367}
 368
 369static void ubifs_dirty_inode(struct inode *inode, int flags)
 370{
 371        struct ubifs_info *c = inode->i_sb->s_fs_info;
 372        struct ubifs_inode *ui = ubifs_inode(inode);
 373
 374        ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
 375        if (!ui->dirty) {
 376                ui->dirty = 1;
 377                dbg_gen("inode %lu",  inode->i_ino);
 378        }
 379}
 380
 381static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
 382{
 383        struct ubifs_info *c = dentry->d_sb->s_fs_info;
 384        unsigned long long free;
 385        __le32 *uuid = (__le32 *)c->uuid;
 386
 387        free = ubifs_get_free_space(c);
 388        dbg_gen("free space %lld bytes (%lld blocks)",
 389                free, free >> UBIFS_BLOCK_SHIFT);
 390
 391        buf->f_type = UBIFS_SUPER_MAGIC;
 392        buf->f_bsize = UBIFS_BLOCK_SIZE;
 393        buf->f_blocks = c->block_cnt;
 394        buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
 395        if (free > c->report_rp_size)
 396                buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
 397        else
 398                buf->f_bavail = 0;
 399        buf->f_files = 0;
 400        buf->f_ffree = 0;
 401        buf->f_namelen = UBIFS_MAX_NLEN;
 402        buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
 403        buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
 404        ubifs_assert(c, buf->f_bfree <= c->block_cnt);
 405        return 0;
 406}
 407
 408static int ubifs_show_options(struct seq_file *s, struct dentry *root)
 409{
 410        struct ubifs_info *c = root->d_sb->s_fs_info;
 411
 412        if (c->mount_opts.unmount_mode == 2)
 413                seq_puts(s, ",fast_unmount");
 414        else if (c->mount_opts.unmount_mode == 1)
 415                seq_puts(s, ",norm_unmount");
 416
 417        if (c->mount_opts.bulk_read == 2)
 418                seq_puts(s, ",bulk_read");
 419        else if (c->mount_opts.bulk_read == 1)
 420                seq_puts(s, ",no_bulk_read");
 421
 422        if (c->mount_opts.chk_data_crc == 2)
 423                seq_puts(s, ",chk_data_crc");
 424        else if (c->mount_opts.chk_data_crc == 1)
 425                seq_puts(s, ",no_chk_data_crc");
 426
 427        if (c->mount_opts.override_compr) {
 428                seq_printf(s, ",compr=%s",
 429                           ubifs_compr_name(c, c->mount_opts.compr_type));
 430        }
 431
 432        seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
 433        seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
 434
 435        return 0;
 436}
 437
 438static int ubifs_sync_fs(struct super_block *sb, int wait)
 439{
 440        int i, err;
 441        struct ubifs_info *c = sb->s_fs_info;
 442
 443        /*
 444         * Zero @wait is just an advisory thing to help the file system shove
 445         * lots of data into the queues, and there will be the second
 446         * '->sync_fs()' call, with non-zero @wait.
 447         */
 448        if (!wait)
 449                return 0;
 450
 451        /*
 452         * Synchronize write buffers, because 'ubifs_run_commit()' does not
 453         * do this if it waits for an already running commit.
 454         */
 455        for (i = 0; i < c->jhead_cnt; i++) {
 456                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
 457                if (err)
 458                        return err;
 459        }
 460
 461        /*
 462         * Strictly speaking, it is not necessary to commit the journal here,
 463         * synchronizing write-buffers would be enough. But committing makes
 464         * UBIFS free space predictions much more accurate, so we want to let
 465         * the user be able to get more accurate results of 'statfs()' after
 466         * they synchronize the file system.
 467         */
 468        err = ubifs_run_commit(c);
 469        if (err)
 470                return err;
 471
 472        return ubi_sync(c->vi.ubi_num);
 473}
 474
 475/**
 476 * init_constants_early - initialize UBIFS constants.
 477 * @c: UBIFS file-system description object
 478 *
 479 * This function initialize UBIFS constants which do not need the superblock to
 480 * be read. It also checks that the UBI volume satisfies basic UBIFS
 481 * requirements. Returns zero in case of success and a negative error code in
 482 * case of failure.
 483 */
 484static int init_constants_early(struct ubifs_info *c)
 485{
 486        if (c->vi.corrupted) {
 487                ubifs_warn(c, "UBI volume is corrupted - read-only mode");
 488                c->ro_media = 1;
 489        }
 490
 491        if (c->di.ro_mode) {
 492                ubifs_msg(c, "read-only UBI device");
 493                c->ro_media = 1;
 494        }
 495
 496        if (c->vi.vol_type == UBI_STATIC_VOLUME) {
 497                ubifs_msg(c, "static UBI volume - read-only mode");
 498                c->ro_media = 1;
 499        }
 500
 501        c->leb_cnt = c->vi.size;
 502        c->leb_size = c->vi.usable_leb_size;
 503        c->leb_start = c->di.leb_start;
 504        c->half_leb_size = c->leb_size / 2;
 505        c->min_io_size = c->di.min_io_size;
 506        c->min_io_shift = fls(c->min_io_size) - 1;
 507        c->max_write_size = c->di.max_write_size;
 508        c->max_write_shift = fls(c->max_write_size) - 1;
 509
 510        if (c->leb_size < UBIFS_MIN_LEB_SZ) {
 511                ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
 512                           c->leb_size, UBIFS_MIN_LEB_SZ);
 513                return -EINVAL;
 514        }
 515
 516        if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
 517                ubifs_errc(c, "too few LEBs (%d), min. is %d",
 518                           c->leb_cnt, UBIFS_MIN_LEB_CNT);
 519                return -EINVAL;
 520        }
 521
 522        if (!is_power_of_2(c->min_io_size)) {
 523                ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
 524                return -EINVAL;
 525        }
 526
 527        /*
 528         * Maximum write size has to be greater or equivalent to min. I/O
 529         * size, and be multiple of min. I/O size.
 530         */
 531        if (c->max_write_size < c->min_io_size ||
 532            c->max_write_size % c->min_io_size ||
 533            !is_power_of_2(c->max_write_size)) {
 534                ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
 535                           c->max_write_size, c->min_io_size);
 536                return -EINVAL;
 537        }
 538
 539        /*
 540         * UBIFS aligns all node to 8-byte boundary, so to make function in
 541         * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
 542         * less than 8.
 543         */
 544        if (c->min_io_size < 8) {
 545                c->min_io_size = 8;
 546                c->min_io_shift = 3;
 547                if (c->max_write_size < c->min_io_size) {
 548                        c->max_write_size = c->min_io_size;
 549                        c->max_write_shift = c->min_io_shift;
 550                }
 551        }
 552
 553        c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
 554        c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
 555
 556        /*
 557         * Initialize node length ranges which are mostly needed for node
 558         * length validation.
 559         */
 560        c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
 561        c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
 562        c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
 563        c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
 564        c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
 565        c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
 566        c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
 567        c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
 568                                UBIFS_MAX_HMAC_LEN;
 569        c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
 570        c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
 571
 572        c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
 573        c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
 574        c->ranges[UBIFS_ORPH_NODE].min_len =
 575                                UBIFS_ORPH_NODE_SZ + sizeof(__le64);
 576        c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
 577        c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
 578        c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
 579        c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
 580        c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
 581        c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
 582        c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
 583        /*
 584         * Minimum indexing node size is amended later when superblock is
 585         * read and the key length is known.
 586         */
 587        c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
 588        /*
 589         * Maximum indexing node size is amended later when superblock is
 590         * read and the fanout is known.
 591         */
 592        c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
 593
 594        /*
 595         * Initialize dead and dark LEB space watermarks. See gc.c for comments
 596         * about these values.
 597         */
 598        c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
 599        c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
 600
 601        /*
 602         * Calculate how many bytes would be wasted at the end of LEB if it was
 603         * fully filled with data nodes of maximum size. This is used in
 604         * calculations when reporting free space.
 605         */
 606        c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
 607
 608        /* Buffer size for bulk-reads */
 609        c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
 610        if (c->max_bu_buf_len > c->leb_size)
 611                c->max_bu_buf_len = c->leb_size;
 612
 613        /* Log is ready, preserve one LEB for commits. */
 614        c->min_log_bytes = c->leb_size;
 615
 616        return 0;
 617}
 618
 619/**
 620 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
 621 * @c: UBIFS file-system description object
 622 * @lnum: LEB the write-buffer was synchronized to
 623 * @free: how many free bytes left in this LEB
 624 * @pad: how many bytes were padded
 625 *
 626 * This is a callback function which is called by the I/O unit when the
 627 * write-buffer is synchronized. We need this to correctly maintain space
 628 * accounting in bud logical eraseblocks. This function returns zero in case of
 629 * success and a negative error code in case of failure.
 630 *
 631 * This function actually belongs to the journal, but we keep it here because
 632 * we want to keep it static.
 633 */
 634static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
 635{
 636        return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
 637}
 638
 639/*
 640 * init_constants_sb - initialize UBIFS constants.
 641 * @c: UBIFS file-system description object
 642 *
 643 * This is a helper function which initializes various UBIFS constants after
 644 * the superblock has been read. It also checks various UBIFS parameters and
 645 * makes sure they are all right. Returns zero in case of success and a
 646 * negative error code in case of failure.
 647 */
 648static int init_constants_sb(struct ubifs_info *c)
 649{
 650        int tmp, err;
 651        long long tmp64;
 652
 653        c->main_bytes = (long long)c->main_lebs * c->leb_size;
 654        c->max_znode_sz = sizeof(struct ubifs_znode) +
 655                                c->fanout * sizeof(struct ubifs_zbranch);
 656
 657        tmp = ubifs_idx_node_sz(c, 1);
 658        c->ranges[UBIFS_IDX_NODE].min_len = tmp;
 659        c->min_idx_node_sz = ALIGN(tmp, 8);
 660
 661        tmp = ubifs_idx_node_sz(c, c->fanout);
 662        c->ranges[UBIFS_IDX_NODE].max_len = tmp;
 663        c->max_idx_node_sz = ALIGN(tmp, 8);
 664
 665        /* Make sure LEB size is large enough to fit full commit */
 666        tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
 667        tmp = ALIGN(tmp, c->min_io_size);
 668        if (tmp > c->leb_size) {
 669                ubifs_err(c, "too small LEB size %d, at least %d needed",
 670                          c->leb_size, tmp);
 671                return -EINVAL;
 672        }
 673
 674        /*
 675         * Make sure that the log is large enough to fit reference nodes for
 676         * all buds plus one reserved LEB.
 677         */
 678        tmp64 = c->max_bud_bytes + c->leb_size - 1;
 679        c->max_bud_cnt = div_u64(tmp64, c->leb_size);
 680        tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
 681        tmp /= c->leb_size;
 682        tmp += 1;
 683        if (c->log_lebs < tmp) {
 684                ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
 685                          c->log_lebs, tmp);
 686                return -EINVAL;
 687        }
 688
 689        /*
 690         * When budgeting we assume worst-case scenarios when the pages are not
 691         * be compressed and direntries are of the maximum size.
 692         *
 693         * Note, data, which may be stored in inodes is budgeted separately, so
 694         * it is not included into 'c->bi.inode_budget'.
 695         */
 696        c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
 697        c->bi.inode_budget = UBIFS_INO_NODE_SZ;
 698        c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
 699
 700        /*
 701         * When the amount of flash space used by buds becomes
 702         * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
 703         * The writers are unblocked when the commit is finished. To avoid
 704         * writers to be blocked UBIFS initiates background commit in advance,
 705         * when number of bud bytes becomes above the limit defined below.
 706         */
 707        c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
 708
 709        /*
 710         * Ensure minimum journal size. All the bytes in the journal heads are
 711         * considered to be used, when calculating the current journal usage.
 712         * Consequently, if the journal is too small, UBIFS will treat it as
 713         * always full.
 714         */
 715        tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
 716        if (c->bg_bud_bytes < tmp64)
 717                c->bg_bud_bytes = tmp64;
 718        if (c->max_bud_bytes < tmp64 + c->leb_size)
 719                c->max_bud_bytes = tmp64 + c->leb_size;
 720
 721        err = ubifs_calc_lpt_geom(c);
 722        if (err)
 723                return err;
 724
 725        /* Initialize effective LEB size used in budgeting calculations */
 726        c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
 727        return 0;
 728}
 729
 730/*
 731 * init_constants_master - initialize UBIFS constants.
 732 * @c: UBIFS file-system description object
 733 *
 734 * This is a helper function which initializes various UBIFS constants after
 735 * the master node has been read. It also checks various UBIFS parameters and
 736 * makes sure they are all right.
 737 */
 738static void init_constants_master(struct ubifs_info *c)
 739{
 740        long long tmp64;
 741
 742        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 743        c->report_rp_size = ubifs_reported_space(c, c->rp_size);
 744
 745        /*
 746         * Calculate total amount of FS blocks. This number is not used
 747         * internally because it does not make much sense for UBIFS, but it is
 748         * necessary to report something for the 'statfs()' call.
 749         *
 750         * Subtract the LEB reserved for GC, the LEB which is reserved for
 751         * deletions, minimum LEBs for the index, and assume only one journal
 752         * head is available.
 753         */
 754        tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
 755        tmp64 *= (long long)c->leb_size - c->leb_overhead;
 756        tmp64 = ubifs_reported_space(c, tmp64);
 757        c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
 758}
 759
 760/**
 761 * take_gc_lnum - reserve GC LEB.
 762 * @c: UBIFS file-system description object
 763 *
 764 * This function ensures that the LEB reserved for garbage collection is marked
 765 * as "taken" in lprops. We also have to set free space to LEB size and dirty
 766 * space to zero, because lprops may contain out-of-date information if the
 767 * file-system was un-mounted before it has been committed. This function
 768 * returns zero in case of success and a negative error code in case of
 769 * failure.
 770 */
 771static int take_gc_lnum(struct ubifs_info *c)
 772{
 773        int err;
 774
 775        if (c->gc_lnum == -1) {
 776                ubifs_err(c, "no LEB for GC");
 777                return -EINVAL;
 778        }
 779
 780        /* And we have to tell lprops that this LEB is taken */
 781        err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
 782                                  LPROPS_TAKEN, 0, 0);
 783        return err;
 784}
 785
 786/**
 787 * alloc_wbufs - allocate write-buffers.
 788 * @c: UBIFS file-system description object
 789 *
 790 * This helper function allocates and initializes UBIFS write-buffers. Returns
 791 * zero in case of success and %-ENOMEM in case of failure.
 792 */
 793static int alloc_wbufs(struct ubifs_info *c)
 794{
 795        int i, err;
 796
 797        c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
 798                            GFP_KERNEL);
 799        if (!c->jheads)
 800                return -ENOMEM;
 801
 802        /* Initialize journal heads */
 803        for (i = 0; i < c->jhead_cnt; i++) {
 804                INIT_LIST_HEAD(&c->jheads[i].buds_list);
 805                err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
 806                if (err)
 807                        return err;
 808
 809                c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
 810                c->jheads[i].wbuf.jhead = i;
 811                c->jheads[i].grouped = 1;
 812                c->jheads[i].log_hash = ubifs_hash_get_desc(c);
 813                if (IS_ERR(c->jheads[i].log_hash))
 814                        goto out;
 815        }
 816
 817        /*
 818         * Garbage Collector head does not need to be synchronized by timer.
 819         * Also GC head nodes are not grouped.
 820         */
 821        c->jheads[GCHD].wbuf.no_timer = 1;
 822        c->jheads[GCHD].grouped = 0;
 823
 824        return 0;
 825
 826out:
 827        while (i--)
 828                kfree(c->jheads[i].log_hash);
 829
 830        return err;
 831}
 832
 833/**
 834 * free_wbufs - free write-buffers.
 835 * @c: UBIFS file-system description object
 836 */
 837static void free_wbufs(struct ubifs_info *c)
 838{
 839        int i;
 840
 841        if (c->jheads) {
 842                for (i = 0; i < c->jhead_cnt; i++) {
 843                        kfree(c->jheads[i].wbuf.buf);
 844                        kfree(c->jheads[i].wbuf.inodes);
 845                        kfree(c->jheads[i].log_hash);
 846                }
 847                kfree(c->jheads);
 848                c->jheads = NULL;
 849        }
 850}
 851
 852/**
 853 * free_orphans - free orphans.
 854 * @c: UBIFS file-system description object
 855 */
 856static void free_orphans(struct ubifs_info *c)
 857{
 858        struct ubifs_orphan *orph;
 859
 860        while (c->orph_dnext) {
 861                orph = c->orph_dnext;
 862                c->orph_dnext = orph->dnext;
 863                list_del(&orph->list);
 864                kfree(orph);
 865        }
 866
 867        while (!list_empty(&c->orph_list)) {
 868                orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
 869                list_del(&orph->list);
 870                kfree(orph);
 871                ubifs_err(c, "orphan list not empty at unmount");
 872        }
 873
 874        vfree(c->orph_buf);
 875        c->orph_buf = NULL;
 876}
 877
 878/**
 879 * free_buds - free per-bud objects.
 880 * @c: UBIFS file-system description object
 881 */
 882static void free_buds(struct ubifs_info *c)
 883{
 884        struct ubifs_bud *bud, *n;
 885
 886        rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
 887                kfree(bud);
 888}
 889
 890/**
 891 * check_volume_empty - check if the UBI volume is empty.
 892 * @c: UBIFS file-system description object
 893 *
 894 * This function checks if the UBIFS volume is empty by looking if its LEBs are
 895 * mapped or not. The result of checking is stored in the @c->empty variable.
 896 * Returns zero in case of success and a negative error code in case of
 897 * failure.
 898 */
 899static int check_volume_empty(struct ubifs_info *c)
 900{
 901        int lnum, err;
 902
 903        c->empty = 1;
 904        for (lnum = 0; lnum < c->leb_cnt; lnum++) {
 905                err = ubifs_is_mapped(c, lnum);
 906                if (unlikely(err < 0))
 907                        return err;
 908                if (err == 1) {
 909                        c->empty = 0;
 910                        break;
 911                }
 912
 913                cond_resched();
 914        }
 915
 916        return 0;
 917}
 918
 919/*
 920 * UBIFS mount options.
 921 *
 922 * Opt_fast_unmount: do not run a journal commit before un-mounting
 923 * Opt_norm_unmount: run a journal commit before un-mounting
 924 * Opt_bulk_read: enable bulk-reads
 925 * Opt_no_bulk_read: disable bulk-reads
 926 * Opt_chk_data_crc: check CRCs when reading data nodes
 927 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
 928 * Opt_override_compr: override default compressor
 929 * Opt_assert: set ubifs_assert() action
 930 * Opt_auth_key: The key name used for authentication
 931 * Opt_auth_hash_name: The hash type used for authentication
 932 * Opt_err: just end of array marker
 933 */
 934enum {
 935        Opt_fast_unmount,
 936        Opt_norm_unmount,
 937        Opt_bulk_read,
 938        Opt_no_bulk_read,
 939        Opt_chk_data_crc,
 940        Opt_no_chk_data_crc,
 941        Opt_override_compr,
 942        Opt_assert,
 943        Opt_auth_key,
 944        Opt_auth_hash_name,
 945        Opt_ignore,
 946        Opt_err,
 947};
 948
 949static const match_table_t tokens = {
 950        {Opt_fast_unmount, "fast_unmount"},
 951        {Opt_norm_unmount, "norm_unmount"},
 952        {Opt_bulk_read, "bulk_read"},
 953        {Opt_no_bulk_read, "no_bulk_read"},
 954        {Opt_chk_data_crc, "chk_data_crc"},
 955        {Opt_no_chk_data_crc, "no_chk_data_crc"},
 956        {Opt_override_compr, "compr=%s"},
 957        {Opt_auth_key, "auth_key=%s"},
 958        {Opt_auth_hash_name, "auth_hash_name=%s"},
 959        {Opt_ignore, "ubi=%s"},
 960        {Opt_ignore, "vol=%s"},
 961        {Opt_assert, "assert=%s"},
 962        {Opt_err, NULL},
 963};
 964
 965/**
 966 * parse_standard_option - parse a standard mount option.
 967 * @option: the option to parse
 968 *
 969 * Normally, standard mount options like "sync" are passed to file-systems as
 970 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
 971 * be present in the options string. This function tries to deal with this
 972 * situation and parse standard options. Returns 0 if the option was not
 973 * recognized, and the corresponding integer flag if it was.
 974 *
 975 * UBIFS is only interested in the "sync" option, so do not check for anything
 976 * else.
 977 */
 978static int parse_standard_option(const char *option)
 979{
 980
 981        pr_notice("UBIFS: parse %s\n", option);
 982        if (!strcmp(option, "sync"))
 983                return SB_SYNCHRONOUS;
 984        return 0;
 985}
 986
 987/**
 988 * ubifs_parse_options - parse mount parameters.
 989 * @c: UBIFS file-system description object
 990 * @options: parameters to parse
 991 * @is_remount: non-zero if this is FS re-mount
 992 *
 993 * This function parses UBIFS mount options and returns zero in case success
 994 * and a negative error code in case of failure.
 995 */
 996static int ubifs_parse_options(struct ubifs_info *c, char *options,
 997                               int is_remount)
 998{
 999        char *p;
1000        substring_t args[MAX_OPT_ARGS];
1001
1002        if (!options)
1003                return 0;
1004
1005        while ((p = strsep(&options, ","))) {
1006                int token;
1007
1008                if (!*p)
1009                        continue;
1010
1011                token = match_token(p, tokens, args);
1012                switch (token) {
1013                /*
1014                 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1015                 * We accept them in order to be backward-compatible. But this
1016                 * should be removed at some point.
1017                 */
1018                case Opt_fast_unmount:
1019                        c->mount_opts.unmount_mode = 2;
1020                        break;
1021                case Opt_norm_unmount:
1022                        c->mount_opts.unmount_mode = 1;
1023                        break;
1024                case Opt_bulk_read:
1025                        c->mount_opts.bulk_read = 2;
1026                        c->bulk_read = 1;
1027                        break;
1028                case Opt_no_bulk_read:
1029                        c->mount_opts.bulk_read = 1;
1030                        c->bulk_read = 0;
1031                        break;
1032                case Opt_chk_data_crc:
1033                        c->mount_opts.chk_data_crc = 2;
1034                        c->no_chk_data_crc = 0;
1035                        break;
1036                case Opt_no_chk_data_crc:
1037                        c->mount_opts.chk_data_crc = 1;
1038                        c->no_chk_data_crc = 1;
1039                        break;
1040                case Opt_override_compr:
1041                {
1042                        char *name = match_strdup(&args[0]);
1043
1044                        if (!name)
1045                                return -ENOMEM;
1046                        if (!strcmp(name, "none"))
1047                                c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1048                        else if (!strcmp(name, "lzo"))
1049                                c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1050                        else if (!strcmp(name, "zlib"))
1051                                c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1052                        else if (!strcmp(name, "zstd"))
1053                                c->mount_opts.compr_type = UBIFS_COMPR_ZSTD;
1054                        else {
1055                                ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1056                                kfree(name);
1057                                return -EINVAL;
1058                        }
1059                        kfree(name);
1060                        c->mount_opts.override_compr = 1;
1061                        c->default_compr = c->mount_opts.compr_type;
1062                        break;
1063                }
1064                case Opt_assert:
1065                {
1066                        char *act = match_strdup(&args[0]);
1067
1068                        if (!act)
1069                                return -ENOMEM;
1070                        if (!strcmp(act, "report"))
1071                                c->assert_action = ASSACT_REPORT;
1072                        else if (!strcmp(act, "read-only"))
1073                                c->assert_action = ASSACT_RO;
1074                        else if (!strcmp(act, "panic"))
1075                                c->assert_action = ASSACT_PANIC;
1076                        else {
1077                                ubifs_err(c, "unknown assert action \"%s\"", act);
1078                                kfree(act);
1079                                return -EINVAL;
1080                        }
1081                        kfree(act);
1082                        break;
1083                }
1084                case Opt_auth_key:
1085                        c->auth_key_name = kstrdup(args[0].from, GFP_KERNEL);
1086                        if (!c->auth_key_name)
1087                                return -ENOMEM;
1088                        break;
1089                case Opt_auth_hash_name:
1090                        c->auth_hash_name = kstrdup(args[0].from, GFP_KERNEL);
1091                        if (!c->auth_hash_name)
1092                                return -ENOMEM;
1093                        break;
1094                case Opt_ignore:
1095                        break;
1096                default:
1097                {
1098                        unsigned long flag;
1099                        struct super_block *sb = c->vfs_sb;
1100
1101                        flag = parse_standard_option(p);
1102                        if (!flag) {
1103                                ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1104                                          p);
1105                                return -EINVAL;
1106                        }
1107                        sb->s_flags |= flag;
1108                        break;
1109                }
1110                }
1111        }
1112
1113        return 0;
1114}
1115
1116/**
1117 * destroy_journal - destroy journal data structures.
1118 * @c: UBIFS file-system description object
1119 *
1120 * This function destroys journal data structures including those that may have
1121 * been created by recovery functions.
1122 */
1123static void destroy_journal(struct ubifs_info *c)
1124{
1125        while (!list_empty(&c->unclean_leb_list)) {
1126                struct ubifs_unclean_leb *ucleb;
1127
1128                ucleb = list_entry(c->unclean_leb_list.next,
1129                                   struct ubifs_unclean_leb, list);
1130                list_del(&ucleb->list);
1131                kfree(ucleb);
1132        }
1133        while (!list_empty(&c->old_buds)) {
1134                struct ubifs_bud *bud;
1135
1136                bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1137                list_del(&bud->list);
1138                kfree(bud);
1139        }
1140        ubifs_destroy_idx_gc(c);
1141        ubifs_destroy_size_tree(c);
1142        ubifs_tnc_close(c);
1143        free_buds(c);
1144}
1145
1146/**
1147 * bu_init - initialize bulk-read information.
1148 * @c: UBIFS file-system description object
1149 */
1150static void bu_init(struct ubifs_info *c)
1151{
1152        ubifs_assert(c, c->bulk_read == 1);
1153
1154        if (c->bu.buf)
1155                return; /* Already initialized */
1156
1157again:
1158        c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1159        if (!c->bu.buf) {
1160                if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1161                        c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1162                        goto again;
1163                }
1164
1165                /* Just disable bulk-read */
1166                ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1167                           c->max_bu_buf_len);
1168                c->mount_opts.bulk_read = 1;
1169                c->bulk_read = 0;
1170                return;
1171        }
1172}
1173
1174/**
1175 * check_free_space - check if there is enough free space to mount.
1176 * @c: UBIFS file-system description object
1177 *
1178 * This function makes sure UBIFS has enough free space to be mounted in
1179 * read/write mode. UBIFS must always have some free space to allow deletions.
1180 */
1181static int check_free_space(struct ubifs_info *c)
1182{
1183        ubifs_assert(c, c->dark_wm > 0);
1184        if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1185                ubifs_err(c, "insufficient free space to mount in R/W mode");
1186                ubifs_dump_budg(c, &c->bi);
1187                ubifs_dump_lprops(c);
1188                return -ENOSPC;
1189        }
1190        return 0;
1191}
1192
1193/**
1194 * mount_ubifs - mount UBIFS file-system.
1195 * @c: UBIFS file-system description object
1196 *
1197 * This function mounts UBIFS file system. Returns zero in case of success and
1198 * a negative error code in case of failure.
1199 */
1200static int mount_ubifs(struct ubifs_info *c)
1201{
1202        int err;
1203        long long x, y;
1204        size_t sz;
1205
1206        c->ro_mount = !!sb_rdonly(c->vfs_sb);
1207        /* Suppress error messages while probing if SB_SILENT is set */
1208        c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1209
1210        err = init_constants_early(c);
1211        if (err)
1212                return err;
1213
1214        err = ubifs_debugging_init(c);
1215        if (err)
1216                return err;
1217
1218        err = check_volume_empty(c);
1219        if (err)
1220                goto out_free;
1221
1222        if (c->empty && (c->ro_mount || c->ro_media)) {
1223                /*
1224                 * This UBI volume is empty, and read-only, or the file system
1225                 * is mounted read-only - we cannot format it.
1226                 */
1227                ubifs_err(c, "can't format empty UBI volume: read-only %s",
1228                          c->ro_media ? "UBI volume" : "mount");
1229                err = -EROFS;
1230                goto out_free;
1231        }
1232
1233        if (c->ro_media && !c->ro_mount) {
1234                ubifs_err(c, "cannot mount read-write - read-only media");
1235                err = -EROFS;
1236                goto out_free;
1237        }
1238
1239        /*
1240         * The requirement for the buffer is that it should fit indexing B-tree
1241         * height amount of integers. We assume the height if the TNC tree will
1242         * never exceed 64.
1243         */
1244        err = -ENOMEM;
1245        c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1246                                         GFP_KERNEL);
1247        if (!c->bottom_up_buf)
1248                goto out_free;
1249
1250        c->sbuf = vmalloc(c->leb_size);
1251        if (!c->sbuf)
1252                goto out_free;
1253
1254        if (!c->ro_mount) {
1255                c->ileb_buf = vmalloc(c->leb_size);
1256                if (!c->ileb_buf)
1257                        goto out_free;
1258        }
1259
1260        if (c->bulk_read == 1)
1261                bu_init(c);
1262
1263        if (!c->ro_mount) {
1264                c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1265                                               UBIFS_CIPHER_BLOCK_SIZE,
1266                                               GFP_KERNEL);
1267                if (!c->write_reserve_buf)
1268                        goto out_free;
1269        }
1270
1271        c->mounting = 1;
1272
1273        if (c->auth_key_name) {
1274                if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1275                        err = ubifs_init_authentication(c);
1276                        if (err)
1277                                goto out_free;
1278                } else {
1279                        ubifs_err(c, "auth_key_name, but UBIFS is built without"
1280                                  " authentication support");
1281                        err = -EINVAL;
1282                        goto out_free;
1283                }
1284        }
1285
1286        err = ubifs_read_superblock(c);
1287        if (err)
1288                goto out_free;
1289
1290        c->probing = 0;
1291
1292        /*
1293         * Make sure the compressor which is set as default in the superblock
1294         * or overridden by mount options is actually compiled in.
1295         */
1296        if (!ubifs_compr_present(c, c->default_compr)) {
1297                ubifs_err(c, "'compressor \"%s\" is not compiled in",
1298                          ubifs_compr_name(c, c->default_compr));
1299                err = -ENOTSUPP;
1300                goto out_free;
1301        }
1302
1303        err = init_constants_sb(c);
1304        if (err)
1305                goto out_free;
1306
1307        sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1308        c->cbuf = kmalloc(sz, GFP_NOFS);
1309        if (!c->cbuf) {
1310                err = -ENOMEM;
1311                goto out_free;
1312        }
1313
1314        err = alloc_wbufs(c);
1315        if (err)
1316                goto out_cbuf;
1317
1318        sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1319        if (!c->ro_mount) {
1320                /* Create background thread */
1321                c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1322                if (IS_ERR(c->bgt)) {
1323                        err = PTR_ERR(c->bgt);
1324                        c->bgt = NULL;
1325                        ubifs_err(c, "cannot spawn \"%s\", error %d",
1326                                  c->bgt_name, err);
1327                        goto out_wbufs;
1328                }
1329                wake_up_process(c->bgt);
1330        }
1331
1332        err = ubifs_read_master(c);
1333        if (err)
1334                goto out_master;
1335
1336        init_constants_master(c);
1337
1338        if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1339                ubifs_msg(c, "recovery needed");
1340                c->need_recovery = 1;
1341        }
1342
1343        if (c->need_recovery && !c->ro_mount) {
1344                err = ubifs_recover_inl_heads(c, c->sbuf);
1345                if (err)
1346                        goto out_master;
1347        }
1348
1349        err = ubifs_lpt_init(c, 1, !c->ro_mount);
1350        if (err)
1351                goto out_master;
1352
1353        if (!c->ro_mount && c->space_fixup) {
1354                err = ubifs_fixup_free_space(c);
1355                if (err)
1356                        goto out_lpt;
1357        }
1358
1359        if (!c->ro_mount && !c->need_recovery) {
1360                /*
1361                 * Set the "dirty" flag so that if we reboot uncleanly we
1362                 * will notice this immediately on the next mount.
1363                 */
1364                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1365                err = ubifs_write_master(c);
1366                if (err)
1367                        goto out_lpt;
1368        }
1369
1370        /*
1371         * Handle offline signed images: Now that the master node is
1372         * written and its validation no longer depends on the hash
1373         * in the superblock, we can update the offline signed
1374         * superblock with a HMAC version,
1375         */
1376        if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1377                err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1378                if (err)
1379                        goto out_lpt;
1380                c->superblock_need_write = 1;
1381        }
1382
1383        if (!c->ro_mount && c->superblock_need_write) {
1384                err = ubifs_write_sb_node(c, c->sup_node);
1385                if (err)
1386                        goto out_lpt;
1387                c->superblock_need_write = 0;
1388        }
1389
1390        err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1391        if (err)
1392                goto out_lpt;
1393
1394        err = ubifs_replay_journal(c);
1395        if (err)
1396                goto out_journal;
1397
1398        /* Calculate 'min_idx_lebs' after journal replay */
1399        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1400
1401        err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1402        if (err)
1403                goto out_orphans;
1404
1405        if (!c->ro_mount) {
1406                int lnum;
1407
1408                err = check_free_space(c);
1409                if (err)
1410                        goto out_orphans;
1411
1412                /* Check for enough log space */
1413                lnum = c->lhead_lnum + 1;
1414                if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1415                        lnum = UBIFS_LOG_LNUM;
1416                if (lnum == c->ltail_lnum) {
1417                        err = ubifs_consolidate_log(c);
1418                        if (err)
1419                                goto out_orphans;
1420                }
1421
1422                if (c->need_recovery) {
1423                        if (!ubifs_authenticated(c)) {
1424                                err = ubifs_recover_size(c, true);
1425                                if (err)
1426                                        goto out_orphans;
1427                        }
1428
1429                        err = ubifs_rcvry_gc_commit(c);
1430                        if (err)
1431                                goto out_orphans;
1432
1433                        if (ubifs_authenticated(c)) {
1434                                err = ubifs_recover_size(c, false);
1435                                if (err)
1436                                        goto out_orphans;
1437                        }
1438                } else {
1439                        err = take_gc_lnum(c);
1440                        if (err)
1441                                goto out_orphans;
1442
1443                        /*
1444                         * GC LEB may contain garbage if there was an unclean
1445                         * reboot, and it should be un-mapped.
1446                         */
1447                        err = ubifs_leb_unmap(c, c->gc_lnum);
1448                        if (err)
1449                                goto out_orphans;
1450                }
1451
1452                err = dbg_check_lprops(c);
1453                if (err)
1454                        goto out_orphans;
1455        } else if (c->need_recovery) {
1456                err = ubifs_recover_size(c, false);
1457                if (err)
1458                        goto out_orphans;
1459        } else {
1460                /*
1461                 * Even if we mount read-only, we have to set space in GC LEB
1462                 * to proper value because this affects UBIFS free space
1463                 * reporting. We do not want to have a situation when
1464                 * re-mounting from R/O to R/W changes amount of free space.
1465                 */
1466                err = take_gc_lnum(c);
1467                if (err)
1468                        goto out_orphans;
1469        }
1470
1471        spin_lock(&ubifs_infos_lock);
1472        list_add_tail(&c->infos_list, &ubifs_infos);
1473        spin_unlock(&ubifs_infos_lock);
1474
1475        if (c->need_recovery) {
1476                if (c->ro_mount)
1477                        ubifs_msg(c, "recovery deferred");
1478                else {
1479                        c->need_recovery = 0;
1480                        ubifs_msg(c, "recovery completed");
1481                        /*
1482                         * GC LEB has to be empty and taken at this point. But
1483                         * the journal head LEBs may also be accounted as
1484                         * "empty taken" if they are empty.
1485                         */
1486                        ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1487                }
1488        } else
1489                ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1490
1491        err = dbg_check_filesystem(c);
1492        if (err)
1493                goto out_infos;
1494
1495        dbg_debugfs_init_fs(c);
1496
1497        c->mounting = 0;
1498
1499        ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1500                  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1501                  c->ro_mount ? ", R/O mode" : "");
1502        x = (long long)c->main_lebs * c->leb_size;
1503        y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1504        ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1505                  c->leb_size, c->leb_size >> 10, c->min_io_size,
1506                  c->max_write_size);
1507        ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1508                  x, x >> 20, c->main_lebs,
1509                  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1510        ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1511                  c->report_rp_size, c->report_rp_size >> 10);
1512        ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1513                  c->fmt_version, c->ro_compat_version,
1514                  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1515                  c->big_lpt ? ", big LPT model" : ", small LPT model");
1516
1517        dbg_gen("default compressor:  %s", ubifs_compr_name(c, c->default_compr));
1518        dbg_gen("data journal heads:  %d",
1519                c->jhead_cnt - NONDATA_JHEADS_CNT);
1520        dbg_gen("log LEBs:            %d (%d - %d)",
1521                c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1522        dbg_gen("LPT area LEBs:       %d (%d - %d)",
1523                c->lpt_lebs, c->lpt_first, c->lpt_last);
1524        dbg_gen("orphan area LEBs:    %d (%d - %d)",
1525                c->orph_lebs, c->orph_first, c->orph_last);
1526        dbg_gen("main area LEBs:      %d (%d - %d)",
1527                c->main_lebs, c->main_first, c->leb_cnt - 1);
1528        dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1529        dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1530                c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1531                c->bi.old_idx_sz >> 20);
1532        dbg_gen("key hash type:       %d", c->key_hash_type);
1533        dbg_gen("tree fanout:         %d", c->fanout);
1534        dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1535        dbg_gen("max. znode size      %d", c->max_znode_sz);
1536        dbg_gen("max. index node size %d", c->max_idx_node_sz);
1537        dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1538                UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1539        dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1540                UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1541        dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1542                UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1543        dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1544                UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1545                UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1546        dbg_gen("dead watermark:      %d", c->dead_wm);
1547        dbg_gen("dark watermark:      %d", c->dark_wm);
1548        dbg_gen("LEB overhead:        %d", c->leb_overhead);
1549        x = (long long)c->main_lebs * c->dark_wm;
1550        dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1551                x, x >> 10, x >> 20);
1552        dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1553                c->max_bud_bytes, c->max_bud_bytes >> 10,
1554                c->max_bud_bytes >> 20);
1555        dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1556                c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1557                c->bg_bud_bytes >> 20);
1558        dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1559                c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1560        dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1561        dbg_gen("commit number:       %llu", c->cmt_no);
1562        dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1563        dbg_gen("max orphans:           %d", c->max_orphans);
1564
1565        return 0;
1566
1567out_infos:
1568        spin_lock(&ubifs_infos_lock);
1569        list_del(&c->infos_list);
1570        spin_unlock(&ubifs_infos_lock);
1571out_orphans:
1572        free_orphans(c);
1573out_journal:
1574        destroy_journal(c);
1575out_lpt:
1576        ubifs_lpt_free(c, 0);
1577out_master:
1578        kfree(c->mst_node);
1579        kfree(c->rcvrd_mst_node);
1580        if (c->bgt)
1581                kthread_stop(c->bgt);
1582out_wbufs:
1583        free_wbufs(c);
1584out_cbuf:
1585        kfree(c->cbuf);
1586out_free:
1587        kfree(c->write_reserve_buf);
1588        kfree(c->bu.buf);
1589        vfree(c->ileb_buf);
1590        vfree(c->sbuf);
1591        kfree(c->bottom_up_buf);
1592        ubifs_debugging_exit(c);
1593        return err;
1594}
1595
1596/**
1597 * ubifs_umount - un-mount UBIFS file-system.
1598 * @c: UBIFS file-system description object
1599 *
1600 * Note, this function is called to free allocated resourced when un-mounting,
1601 * as well as free resources when an error occurred while we were half way
1602 * through mounting (error path cleanup function). So it has to make sure the
1603 * resource was actually allocated before freeing it.
1604 */
1605static void ubifs_umount(struct ubifs_info *c)
1606{
1607        dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1608                c->vi.vol_id);
1609
1610        dbg_debugfs_exit_fs(c);
1611        spin_lock(&ubifs_infos_lock);
1612        list_del(&c->infos_list);
1613        spin_unlock(&ubifs_infos_lock);
1614
1615        if (c->bgt)
1616                kthread_stop(c->bgt);
1617
1618        destroy_journal(c);
1619        free_wbufs(c);
1620        free_orphans(c);
1621        ubifs_lpt_free(c, 0);
1622        ubifs_exit_authentication(c);
1623
1624        kfree(c->auth_key_name);
1625        kfree(c->auth_hash_name);
1626        kfree(c->cbuf);
1627        kfree(c->rcvrd_mst_node);
1628        kfree(c->mst_node);
1629        kfree(c->write_reserve_buf);
1630        kfree(c->bu.buf);
1631        vfree(c->ileb_buf);
1632        vfree(c->sbuf);
1633        kfree(c->bottom_up_buf);
1634        ubifs_debugging_exit(c);
1635}
1636
1637/**
1638 * ubifs_remount_rw - re-mount in read-write mode.
1639 * @c: UBIFS file-system description object
1640 *
1641 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1642 * mode. This function allocates the needed resources and re-mounts UBIFS in
1643 * read-write mode.
1644 */
1645static int ubifs_remount_rw(struct ubifs_info *c)
1646{
1647        int err, lnum;
1648
1649        if (c->rw_incompat) {
1650                ubifs_err(c, "the file-system is not R/W-compatible");
1651                ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1652                          c->fmt_version, c->ro_compat_version,
1653                          UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1654                return -EROFS;
1655        }
1656
1657        mutex_lock(&c->umount_mutex);
1658        dbg_save_space_info(c);
1659        c->remounting_rw = 1;
1660        c->ro_mount = 0;
1661
1662        if (c->space_fixup) {
1663                err = ubifs_fixup_free_space(c);
1664                if (err)
1665                        goto out;
1666        }
1667
1668        err = check_free_space(c);
1669        if (err)
1670                goto out;
1671
1672        if (c->need_recovery) {
1673                ubifs_msg(c, "completing deferred recovery");
1674                err = ubifs_write_rcvrd_mst_node(c);
1675                if (err)
1676                        goto out;
1677                if (!ubifs_authenticated(c)) {
1678                        err = ubifs_recover_size(c, true);
1679                        if (err)
1680                                goto out;
1681                }
1682                err = ubifs_clean_lebs(c, c->sbuf);
1683                if (err)
1684                        goto out;
1685                err = ubifs_recover_inl_heads(c, c->sbuf);
1686                if (err)
1687                        goto out;
1688        } else {
1689                /* A readonly mount is not allowed to have orphans */
1690                ubifs_assert(c, c->tot_orphans == 0);
1691                err = ubifs_clear_orphans(c);
1692                if (err)
1693                        goto out;
1694        }
1695
1696        if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1697                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1698                err = ubifs_write_master(c);
1699                if (err)
1700                        goto out;
1701        }
1702
1703        if (c->superblock_need_write) {
1704                struct ubifs_sb_node *sup = c->sup_node;
1705
1706                err = ubifs_write_sb_node(c, sup);
1707                if (err)
1708                        goto out;
1709
1710                c->superblock_need_write = 0;
1711        }
1712
1713        c->ileb_buf = vmalloc(c->leb_size);
1714        if (!c->ileb_buf) {
1715                err = -ENOMEM;
1716                goto out;
1717        }
1718
1719        c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1720                                       UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1721        if (!c->write_reserve_buf) {
1722                err = -ENOMEM;
1723                goto out;
1724        }
1725
1726        err = ubifs_lpt_init(c, 0, 1);
1727        if (err)
1728                goto out;
1729
1730        /* Create background thread */
1731        c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1732        if (IS_ERR(c->bgt)) {
1733                err = PTR_ERR(c->bgt);
1734                c->bgt = NULL;
1735                ubifs_err(c, "cannot spawn \"%s\", error %d",
1736                          c->bgt_name, err);
1737                goto out;
1738        }
1739        wake_up_process(c->bgt);
1740
1741        c->orph_buf = vmalloc(c->leb_size);
1742        if (!c->orph_buf) {
1743                err = -ENOMEM;
1744                goto out;
1745        }
1746
1747        /* Check for enough log space */
1748        lnum = c->lhead_lnum + 1;
1749        if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1750                lnum = UBIFS_LOG_LNUM;
1751        if (lnum == c->ltail_lnum) {
1752                err = ubifs_consolidate_log(c);
1753                if (err)
1754                        goto out;
1755        }
1756
1757        if (c->need_recovery) {
1758                err = ubifs_rcvry_gc_commit(c);
1759                if (err)
1760                        goto out;
1761
1762                if (ubifs_authenticated(c)) {
1763                        err = ubifs_recover_size(c, false);
1764                        if (err)
1765                                goto out;
1766                }
1767        } else {
1768                err = ubifs_leb_unmap(c, c->gc_lnum);
1769        }
1770        if (err)
1771                goto out;
1772
1773        dbg_gen("re-mounted read-write");
1774        c->remounting_rw = 0;
1775
1776        if (c->need_recovery) {
1777                c->need_recovery = 0;
1778                ubifs_msg(c, "deferred recovery completed");
1779        } else {
1780                /*
1781                 * Do not run the debugging space check if the were doing
1782                 * recovery, because when we saved the information we had the
1783                 * file-system in a state where the TNC and lprops has been
1784                 * modified in memory, but all the I/O operations (including a
1785                 * commit) were deferred. So the file-system was in
1786                 * "non-committed" state. Now the file-system is in committed
1787                 * state, and of course the amount of free space will change
1788                 * because, for example, the old index size was imprecise.
1789                 */
1790                err = dbg_check_space_info(c);
1791        }
1792
1793        mutex_unlock(&c->umount_mutex);
1794        return err;
1795
1796out:
1797        c->ro_mount = 1;
1798        vfree(c->orph_buf);
1799        c->orph_buf = NULL;
1800        if (c->bgt) {
1801                kthread_stop(c->bgt);
1802                c->bgt = NULL;
1803        }
1804        free_wbufs(c);
1805        kfree(c->write_reserve_buf);
1806        c->write_reserve_buf = NULL;
1807        vfree(c->ileb_buf);
1808        c->ileb_buf = NULL;
1809        ubifs_lpt_free(c, 1);
1810        c->remounting_rw = 0;
1811        mutex_unlock(&c->umount_mutex);
1812        return err;
1813}
1814
1815/**
1816 * ubifs_remount_ro - re-mount in read-only mode.
1817 * @c: UBIFS file-system description object
1818 *
1819 * We assume VFS has stopped writing. Possibly the background thread could be
1820 * running a commit, however kthread_stop will wait in that case.
1821 */
1822static void ubifs_remount_ro(struct ubifs_info *c)
1823{
1824        int i, err;
1825
1826        ubifs_assert(c, !c->need_recovery);
1827        ubifs_assert(c, !c->ro_mount);
1828
1829        mutex_lock(&c->umount_mutex);
1830        if (c->bgt) {
1831                kthread_stop(c->bgt);
1832                c->bgt = NULL;
1833        }
1834
1835        dbg_save_space_info(c);
1836
1837        for (i = 0; i < c->jhead_cnt; i++) {
1838                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1839                if (err)
1840                        ubifs_ro_mode(c, err);
1841        }
1842
1843        c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1844        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1845        c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1846        err = ubifs_write_master(c);
1847        if (err)
1848                ubifs_ro_mode(c, err);
1849
1850        vfree(c->orph_buf);
1851        c->orph_buf = NULL;
1852        kfree(c->write_reserve_buf);
1853        c->write_reserve_buf = NULL;
1854        vfree(c->ileb_buf);
1855        c->ileb_buf = NULL;
1856        ubifs_lpt_free(c, 1);
1857        c->ro_mount = 1;
1858        err = dbg_check_space_info(c);
1859        if (err)
1860                ubifs_ro_mode(c, err);
1861        mutex_unlock(&c->umount_mutex);
1862}
1863
1864static void ubifs_put_super(struct super_block *sb)
1865{
1866        int i;
1867        struct ubifs_info *c = sb->s_fs_info;
1868
1869        ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1870
1871        /*
1872         * The following asserts are only valid if there has not been a failure
1873         * of the media. For example, there will be dirty inodes if we failed
1874         * to write them back because of I/O errors.
1875         */
1876        if (!c->ro_error) {
1877                ubifs_assert(c, c->bi.idx_growth == 0);
1878                ubifs_assert(c, c->bi.dd_growth == 0);
1879                ubifs_assert(c, c->bi.data_growth == 0);
1880        }
1881
1882        /*
1883         * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1884         * and file system un-mount. Namely, it prevents the shrinker from
1885         * picking this superblock for shrinking - it will be just skipped if
1886         * the mutex is locked.
1887         */
1888        mutex_lock(&c->umount_mutex);
1889        if (!c->ro_mount) {
1890                /*
1891                 * First of all kill the background thread to make sure it does
1892                 * not interfere with un-mounting and freeing resources.
1893                 */
1894                if (c->bgt) {
1895                        kthread_stop(c->bgt);
1896                        c->bgt = NULL;
1897                }
1898
1899                /*
1900                 * On fatal errors c->ro_error is set to 1, in which case we do
1901                 * not write the master node.
1902                 */
1903                if (!c->ro_error) {
1904                        int err;
1905
1906                        /* Synchronize write-buffers */
1907                        for (i = 0; i < c->jhead_cnt; i++) {
1908                                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1909                                if (err)
1910                                        ubifs_ro_mode(c, err);
1911                        }
1912
1913                        /*
1914                         * We are being cleanly unmounted which means the
1915                         * orphans were killed - indicate this in the master
1916                         * node. Also save the reserved GC LEB number.
1917                         */
1918                        c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1919                        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1920                        c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1921                        err = ubifs_write_master(c);
1922                        if (err)
1923                                /*
1924                                 * Recovery will attempt to fix the master area
1925                                 * next mount, so we just print a message and
1926                                 * continue to unmount normally.
1927                                 */
1928                                ubifs_err(c, "failed to write master node, error %d",
1929                                          err);
1930                } else {
1931                        for (i = 0; i < c->jhead_cnt; i++)
1932                                /* Make sure write-buffer timers are canceled */
1933                                hrtimer_cancel(&c->jheads[i].wbuf.timer);
1934                }
1935        }
1936
1937        ubifs_umount(c);
1938        ubi_close_volume(c->ubi);
1939        mutex_unlock(&c->umount_mutex);
1940}
1941
1942static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1943{
1944        int err;
1945        struct ubifs_info *c = sb->s_fs_info;
1946
1947        sync_filesystem(sb);
1948        dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1949
1950        err = ubifs_parse_options(c, data, 1);
1951        if (err) {
1952                ubifs_err(c, "invalid or unknown remount parameter");
1953                return err;
1954        }
1955
1956        if (c->ro_mount && !(*flags & SB_RDONLY)) {
1957                if (c->ro_error) {
1958                        ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1959                        return -EROFS;
1960                }
1961                if (c->ro_media) {
1962                        ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1963                        return -EROFS;
1964                }
1965                err = ubifs_remount_rw(c);
1966                if (err)
1967                        return err;
1968        } else if (!c->ro_mount && (*flags & SB_RDONLY)) {
1969                if (c->ro_error) {
1970                        ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1971                        return -EROFS;
1972                }
1973                ubifs_remount_ro(c);
1974        }
1975
1976        if (c->bulk_read == 1)
1977                bu_init(c);
1978        else {
1979                dbg_gen("disable bulk-read");
1980                mutex_lock(&c->bu_mutex);
1981                kfree(c->bu.buf);
1982                c->bu.buf = NULL;
1983                mutex_unlock(&c->bu_mutex);
1984        }
1985
1986        if (!c->need_recovery)
1987                ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1988
1989        return 0;
1990}
1991
1992const struct super_operations ubifs_super_operations = {
1993        .alloc_inode   = ubifs_alloc_inode,
1994        .free_inode    = ubifs_free_inode,
1995        .put_super     = ubifs_put_super,
1996        .write_inode   = ubifs_write_inode,
1997        .evict_inode   = ubifs_evict_inode,
1998        .statfs        = ubifs_statfs,
1999        .dirty_inode   = ubifs_dirty_inode,
2000        .remount_fs    = ubifs_remount_fs,
2001        .show_options  = ubifs_show_options,
2002        .sync_fs       = ubifs_sync_fs,
2003};
2004
2005/**
2006 * open_ubi - parse UBI device name string and open the UBI device.
2007 * @name: UBI volume name
2008 * @mode: UBI volume open mode
2009 *
2010 * The primary method of mounting UBIFS is by specifying the UBI volume
2011 * character device node path. However, UBIFS may also be mounted withoug any
2012 * character device node using one of the following methods:
2013 *
2014 * o ubiX_Y    - mount UBI device number X, volume Y;
2015 * o ubiY      - mount UBI device number 0, volume Y;
2016 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2017 * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2018 *
2019 * Alternative '!' separator may be used instead of ':' (because some shells
2020 * like busybox may interpret ':' as an NFS host name separator). This function
2021 * returns UBI volume description object in case of success and a negative
2022 * error code in case of failure.
2023 */
2024static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2025{
2026        struct ubi_volume_desc *ubi;
2027        int dev, vol;
2028        char *endptr;
2029
2030        if (!name || !*name)
2031                return ERR_PTR(-EINVAL);
2032
2033        /* First, try to open using the device node path method */
2034        ubi = ubi_open_volume_path(name, mode);
2035        if (!IS_ERR(ubi))
2036                return ubi;
2037
2038        /* Try the "nodev" method */
2039        if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2040                return ERR_PTR(-EINVAL);
2041
2042        /* ubi:NAME method */
2043        if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2044                return ubi_open_volume_nm(0, name + 4, mode);
2045
2046        if (!isdigit(name[3]))
2047                return ERR_PTR(-EINVAL);
2048
2049        dev = simple_strtoul(name + 3, &endptr, 0);
2050
2051        /* ubiY method */
2052        if (*endptr == '\0')
2053                return ubi_open_volume(0, dev, mode);
2054
2055        /* ubiX_Y method */
2056        if (*endptr == '_' && isdigit(endptr[1])) {
2057                vol = simple_strtoul(endptr + 1, &endptr, 0);
2058                if (*endptr != '\0')
2059                        return ERR_PTR(-EINVAL);
2060                return ubi_open_volume(dev, vol, mode);
2061        }
2062
2063        /* ubiX:NAME method */
2064        if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2065                return ubi_open_volume_nm(dev, ++endptr, mode);
2066
2067        return ERR_PTR(-EINVAL);
2068}
2069
2070static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2071{
2072        struct ubifs_info *c;
2073
2074        c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2075        if (c) {
2076                spin_lock_init(&c->cnt_lock);
2077                spin_lock_init(&c->cs_lock);
2078                spin_lock_init(&c->buds_lock);
2079                spin_lock_init(&c->space_lock);
2080                spin_lock_init(&c->orphan_lock);
2081                init_rwsem(&c->commit_sem);
2082                mutex_init(&c->lp_mutex);
2083                mutex_init(&c->tnc_mutex);
2084                mutex_init(&c->log_mutex);
2085                mutex_init(&c->umount_mutex);
2086                mutex_init(&c->bu_mutex);
2087                mutex_init(&c->write_reserve_mutex);
2088                init_waitqueue_head(&c->cmt_wq);
2089                c->buds = RB_ROOT;
2090                c->old_idx = RB_ROOT;
2091                c->size_tree = RB_ROOT;
2092                c->orph_tree = RB_ROOT;
2093                INIT_LIST_HEAD(&c->infos_list);
2094                INIT_LIST_HEAD(&c->idx_gc);
2095                INIT_LIST_HEAD(&c->replay_list);
2096                INIT_LIST_HEAD(&c->replay_buds);
2097                INIT_LIST_HEAD(&c->uncat_list);
2098                INIT_LIST_HEAD(&c->empty_list);
2099                INIT_LIST_HEAD(&c->freeable_list);
2100                INIT_LIST_HEAD(&c->frdi_idx_list);
2101                INIT_LIST_HEAD(&c->unclean_leb_list);
2102                INIT_LIST_HEAD(&c->old_buds);
2103                INIT_LIST_HEAD(&c->orph_list);
2104                INIT_LIST_HEAD(&c->orph_new);
2105                c->no_chk_data_crc = 1;
2106                c->assert_action = ASSACT_RO;
2107
2108                c->highest_inum = UBIFS_FIRST_INO;
2109                c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2110
2111                ubi_get_volume_info(ubi, &c->vi);
2112                ubi_get_device_info(c->vi.ubi_num, &c->di);
2113        }
2114        return c;
2115}
2116
2117static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2118{
2119        struct ubifs_info *c = sb->s_fs_info;
2120        struct inode *root;
2121        int err;
2122
2123        c->vfs_sb = sb;
2124        /* Re-open the UBI device in read-write mode */
2125        c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2126        if (IS_ERR(c->ubi)) {
2127                err = PTR_ERR(c->ubi);
2128                goto out;
2129        }
2130
2131        err = ubifs_parse_options(c, data, 0);
2132        if (err)
2133                goto out_close;
2134
2135        /*
2136         * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2137         * UBIFS, I/O is not deferred, it is done immediately in readpage,
2138         * which means the user would have to wait not just for their own I/O
2139         * but the read-ahead I/O as well i.e. completely pointless.
2140         *
2141         * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2142         * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2143         * writeback happening.
2144         */
2145        err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2146                                   c->vi.vol_id);
2147        if (err)
2148                goto out_close;
2149
2150        sb->s_fs_info = c;
2151        sb->s_magic = UBIFS_SUPER_MAGIC;
2152        sb->s_blocksize = UBIFS_BLOCK_SIZE;
2153        sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2154        sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2155        if (c->max_inode_sz > MAX_LFS_FILESIZE)
2156                sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2157        sb->s_op = &ubifs_super_operations;
2158#ifdef CONFIG_UBIFS_FS_XATTR
2159        sb->s_xattr = ubifs_xattr_handlers;
2160#endif
2161        fscrypt_set_ops(sb, &ubifs_crypt_operations);
2162
2163        mutex_lock(&c->umount_mutex);
2164        err = mount_ubifs(c);
2165        if (err) {
2166                ubifs_assert(c, err < 0);
2167                goto out_unlock;
2168        }
2169
2170        /* Read the root inode */
2171        root = ubifs_iget(sb, UBIFS_ROOT_INO);
2172        if (IS_ERR(root)) {
2173                err = PTR_ERR(root);
2174                goto out_umount;
2175        }
2176
2177        sb->s_root = d_make_root(root);
2178        if (!sb->s_root) {
2179                err = -ENOMEM;
2180                goto out_umount;
2181        }
2182
2183        mutex_unlock(&c->umount_mutex);
2184        return 0;
2185
2186out_umount:
2187        ubifs_umount(c);
2188out_unlock:
2189        mutex_unlock(&c->umount_mutex);
2190out_close:
2191        ubi_close_volume(c->ubi);
2192out:
2193        return err;
2194}
2195
2196static int sb_test(struct super_block *sb, void *data)
2197{
2198        struct ubifs_info *c1 = data;
2199        struct ubifs_info *c = sb->s_fs_info;
2200
2201        return c->vi.cdev == c1->vi.cdev;
2202}
2203
2204static int sb_set(struct super_block *sb, void *data)
2205{
2206        sb->s_fs_info = data;
2207        return set_anon_super(sb, NULL);
2208}
2209
2210static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2211                        const char *name, void *data)
2212{
2213        struct ubi_volume_desc *ubi;
2214        struct ubifs_info *c;
2215        struct super_block *sb;
2216        int err;
2217
2218        dbg_gen("name %s, flags %#x", name, flags);
2219
2220        /*
2221         * Get UBI device number and volume ID. Mount it read-only so far
2222         * because this might be a new mount point, and UBI allows only one
2223         * read-write user at a time.
2224         */
2225        ubi = open_ubi(name, UBI_READONLY);
2226        if (IS_ERR(ubi)) {
2227                if (!(flags & SB_SILENT))
2228                        pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2229                               current->pid, name, (int)PTR_ERR(ubi));
2230                return ERR_CAST(ubi);
2231        }
2232
2233        c = alloc_ubifs_info(ubi);
2234        if (!c) {
2235                err = -ENOMEM;
2236                goto out_close;
2237        }
2238
2239        dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2240
2241        sb = sget(fs_type, sb_test, sb_set, flags, c);
2242        if (IS_ERR(sb)) {
2243                err = PTR_ERR(sb);
2244                kfree(c);
2245                goto out_close;
2246        }
2247
2248        if (sb->s_root) {
2249                struct ubifs_info *c1 = sb->s_fs_info;
2250                kfree(c);
2251                /* A new mount point for already mounted UBIFS */
2252                dbg_gen("this ubi volume is already mounted");
2253                if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2254                        err = -EBUSY;
2255                        goto out_deact;
2256                }
2257        } else {
2258                err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2259                if (err)
2260                        goto out_deact;
2261                /* We do not support atime */
2262                sb->s_flags |= SB_ACTIVE;
2263                if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2264                        ubifs_msg(c, "full atime support is enabled.");
2265                else
2266                        sb->s_flags |= SB_NOATIME;
2267        }
2268
2269        /* 'fill_super()' opens ubi again so we must close it here */
2270        ubi_close_volume(ubi);
2271
2272        return dget(sb->s_root);
2273
2274out_deact:
2275        deactivate_locked_super(sb);
2276out_close:
2277        ubi_close_volume(ubi);
2278        return ERR_PTR(err);
2279}
2280
2281static void kill_ubifs_super(struct super_block *s)
2282{
2283        struct ubifs_info *c = s->s_fs_info;
2284        kill_anon_super(s);
2285        kfree(c);
2286}
2287
2288static struct file_system_type ubifs_fs_type = {
2289        .name    = "ubifs",
2290        .owner   = THIS_MODULE,
2291        .mount   = ubifs_mount,
2292        .kill_sb = kill_ubifs_super,
2293};
2294MODULE_ALIAS_FS("ubifs");
2295
2296/*
2297 * Inode slab cache constructor.
2298 */
2299static void inode_slab_ctor(void *obj)
2300{
2301        struct ubifs_inode *ui = obj;
2302        inode_init_once(&ui->vfs_inode);
2303}
2304
2305static int __init ubifs_init(void)
2306{
2307        int err;
2308
2309        BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2310
2311        /* Make sure node sizes are 8-byte aligned */
2312        BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2313        BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2314        BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2315        BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2316        BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2317        BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2318        BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2319        BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2320        BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2321        BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2322        BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2323
2324        BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2325        BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2326        BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2327        BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2328        BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2329        BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2330
2331        /* Check min. node size */
2332        BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2333        BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2334        BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2335        BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2336
2337        BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2338        BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2339        BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2340        BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2341
2342        /* Defined node sizes */
2343        BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2344        BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2345        BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2346        BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2347
2348        /*
2349         * We use 2 bit wide bit-fields to store compression type, which should
2350         * be amended if more compressors are added. The bit-fields are:
2351         * @compr_type in 'struct ubifs_inode', @default_compr in
2352         * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2353         */
2354        BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2355
2356        /*
2357         * We require that PAGE_SIZE is greater-than-or-equal-to
2358         * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2359         */
2360        if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2361                pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2362                       current->pid, (unsigned int)PAGE_SIZE);
2363                return -EINVAL;
2364        }
2365
2366        ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2367                                sizeof(struct ubifs_inode), 0,
2368                                SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2369                                SLAB_ACCOUNT, &inode_slab_ctor);
2370        if (!ubifs_inode_slab)
2371                return -ENOMEM;
2372
2373        err = register_shrinker(&ubifs_shrinker_info);
2374        if (err)
2375                goto out_slab;
2376
2377        err = ubifs_compressors_init();
2378        if (err)
2379                goto out_shrinker;
2380
2381        dbg_debugfs_init();
2382
2383        err = register_filesystem(&ubifs_fs_type);
2384        if (err) {
2385                pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2386                       current->pid, err);
2387                goto out_dbg;
2388        }
2389        return 0;
2390
2391out_dbg:
2392        dbg_debugfs_exit();
2393        ubifs_compressors_exit();
2394out_shrinker:
2395        unregister_shrinker(&ubifs_shrinker_info);
2396out_slab:
2397        kmem_cache_destroy(ubifs_inode_slab);
2398        return err;
2399}
2400/* late_initcall to let compressors initialize first */
2401late_initcall(ubifs_init);
2402
2403static void __exit ubifs_exit(void)
2404{
2405        WARN_ON(!list_empty(&ubifs_infos));
2406        WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2407
2408        dbg_debugfs_exit();
2409        ubifs_compressors_exit();
2410        unregister_shrinker(&ubifs_shrinker_info);
2411
2412        /*
2413         * Make sure all delayed rcu free inodes are flushed before we
2414         * destroy cache.
2415         */
2416        rcu_barrier();
2417        kmem_cache_destroy(ubifs_inode_slab);
2418        unregister_filesystem(&ubifs_fs_type);
2419}
2420module_exit(ubifs_exit);
2421
2422MODULE_LICENSE("GPL");
2423MODULE_VERSION(__stringify(UBIFS_VERSION));
2424MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2425MODULE_DESCRIPTION("UBIFS - UBI File System");
2426