linux/fs/ubifs/tnc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
  13 * the UBIFS B-tree.
  14 *
  15 * At the moment the locking rules of the TNC tree are quite simple and
  16 * straightforward. We just have a mutex and lock it when we traverse the
  17 * tree. If a znode is not in memory, we read it from flash while still having
  18 * the mutex locked.
  19 */
  20
  21#include <linux/crc32.h>
  22#include <linux/slab.h>
  23#include "ubifs.h"
  24
  25static int try_read_node(const struct ubifs_info *c, void *buf, int type,
  26                         struct ubifs_zbranch *zbr);
  27static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
  28                              struct ubifs_zbranch *zbr, void *node);
  29
  30/*
  31 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
  32 * @NAME_LESS: name corresponding to the first argument is less than second
  33 * @NAME_MATCHES: names match
  34 * @NAME_GREATER: name corresponding to the second argument is greater than
  35 *                first
  36 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
  37 *
  38 * These constants were introduce to improve readability.
  39 */
  40enum {
  41        NAME_LESS    = 0,
  42        NAME_MATCHES = 1,
  43        NAME_GREATER = 2,
  44        NOT_ON_MEDIA = 3,
  45};
  46
  47/**
  48 * insert_old_idx - record an index node obsoleted since the last commit start.
  49 * @c: UBIFS file-system description object
  50 * @lnum: LEB number of obsoleted index node
  51 * @offs: offset of obsoleted index node
  52 *
  53 * Returns %0 on success, and a negative error code on failure.
  54 *
  55 * For recovery, there must always be a complete intact version of the index on
  56 * flash at all times. That is called the "old index". It is the index as at the
  57 * time of the last successful commit. Many of the index nodes in the old index
  58 * may be dirty, but they must not be erased until the next successful commit
  59 * (at which point that index becomes the old index).
  60 *
  61 * That means that the garbage collection and the in-the-gaps method of
  62 * committing must be able to determine if an index node is in the old index.
  63 * Most of the old index nodes can be found by looking up the TNC using the
  64 * 'lookup_znode()' function. However, some of the old index nodes may have
  65 * been deleted from the current index or may have been changed so much that
  66 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
  67 * That is what this function does. The RB-tree is ordered by LEB number and
  68 * offset because they uniquely identify the old index node.
  69 */
  70static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
  71{
  72        struct ubifs_old_idx *old_idx, *o;
  73        struct rb_node **p, *parent = NULL;
  74
  75        old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
  76        if (unlikely(!old_idx))
  77                return -ENOMEM;
  78        old_idx->lnum = lnum;
  79        old_idx->offs = offs;
  80
  81        p = &c->old_idx.rb_node;
  82        while (*p) {
  83                parent = *p;
  84                o = rb_entry(parent, struct ubifs_old_idx, rb);
  85                if (lnum < o->lnum)
  86                        p = &(*p)->rb_left;
  87                else if (lnum > o->lnum)
  88                        p = &(*p)->rb_right;
  89                else if (offs < o->offs)
  90                        p = &(*p)->rb_left;
  91                else if (offs > o->offs)
  92                        p = &(*p)->rb_right;
  93                else {
  94                        ubifs_err(c, "old idx added twice!");
  95                        kfree(old_idx);
  96                        return 0;
  97                }
  98        }
  99        rb_link_node(&old_idx->rb, parent, p);
 100        rb_insert_color(&old_idx->rb, &c->old_idx);
 101        return 0;
 102}
 103
 104/**
 105 * insert_old_idx_znode - record a znode obsoleted since last commit start.
 106 * @c: UBIFS file-system description object
 107 * @znode: znode of obsoleted index node
 108 *
 109 * Returns %0 on success, and a negative error code on failure.
 110 */
 111int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
 112{
 113        if (znode->parent) {
 114                struct ubifs_zbranch *zbr;
 115
 116                zbr = &znode->parent->zbranch[znode->iip];
 117                if (zbr->len)
 118                        return insert_old_idx(c, zbr->lnum, zbr->offs);
 119        } else
 120                if (c->zroot.len)
 121                        return insert_old_idx(c, c->zroot.lnum,
 122                                              c->zroot.offs);
 123        return 0;
 124}
 125
 126/**
 127 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
 128 * @c: UBIFS file-system description object
 129 * @znode: znode of obsoleted index node
 130 *
 131 * Returns %0 on success, and a negative error code on failure.
 132 */
 133static int ins_clr_old_idx_znode(struct ubifs_info *c,
 134                                 struct ubifs_znode *znode)
 135{
 136        int err;
 137
 138        if (znode->parent) {
 139                struct ubifs_zbranch *zbr;
 140
 141                zbr = &znode->parent->zbranch[znode->iip];
 142                if (zbr->len) {
 143                        err = insert_old_idx(c, zbr->lnum, zbr->offs);
 144                        if (err)
 145                                return err;
 146                        zbr->lnum = 0;
 147                        zbr->offs = 0;
 148                        zbr->len = 0;
 149                }
 150        } else
 151                if (c->zroot.len) {
 152                        err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
 153                        if (err)
 154                                return err;
 155                        c->zroot.lnum = 0;
 156                        c->zroot.offs = 0;
 157                        c->zroot.len = 0;
 158                }
 159        return 0;
 160}
 161
 162/**
 163 * destroy_old_idx - destroy the old_idx RB-tree.
 164 * @c: UBIFS file-system description object
 165 *
 166 * During start commit, the old_idx RB-tree is used to avoid overwriting index
 167 * nodes that were in the index last commit but have since been deleted.  This
 168 * is necessary for recovery i.e. the old index must be kept intact until the
 169 * new index is successfully written.  The old-idx RB-tree is used for the
 170 * in-the-gaps method of writing index nodes and is destroyed every commit.
 171 */
 172void destroy_old_idx(struct ubifs_info *c)
 173{
 174        struct ubifs_old_idx *old_idx, *n;
 175
 176        rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
 177                kfree(old_idx);
 178
 179        c->old_idx = RB_ROOT;
 180}
 181
 182/**
 183 * copy_znode - copy a dirty znode.
 184 * @c: UBIFS file-system description object
 185 * @znode: znode to copy
 186 *
 187 * A dirty znode being committed may not be changed, so it is copied.
 188 */
 189static struct ubifs_znode *copy_znode(struct ubifs_info *c,
 190                                      struct ubifs_znode *znode)
 191{
 192        struct ubifs_znode *zn;
 193
 194        zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
 195        if (unlikely(!zn))
 196                return ERR_PTR(-ENOMEM);
 197
 198        zn->cnext = NULL;
 199        __set_bit(DIRTY_ZNODE, &zn->flags);
 200        __clear_bit(COW_ZNODE, &zn->flags);
 201
 202        ubifs_assert(c, !ubifs_zn_obsolete(znode));
 203        __set_bit(OBSOLETE_ZNODE, &znode->flags);
 204
 205        if (znode->level != 0) {
 206                int i;
 207                const int n = zn->child_cnt;
 208
 209                /* The children now have new parent */
 210                for (i = 0; i < n; i++) {
 211                        struct ubifs_zbranch *zbr = &zn->zbranch[i];
 212
 213                        if (zbr->znode)
 214                                zbr->znode->parent = zn;
 215                }
 216        }
 217
 218        atomic_long_inc(&c->dirty_zn_cnt);
 219        return zn;
 220}
 221
 222/**
 223 * add_idx_dirt - add dirt due to a dirty znode.
 224 * @c: UBIFS file-system description object
 225 * @lnum: LEB number of index node
 226 * @dirt: size of index node
 227 *
 228 * This function updates lprops dirty space and the new size of the index.
 229 */
 230static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
 231{
 232        c->calc_idx_sz -= ALIGN(dirt, 8);
 233        return ubifs_add_dirt(c, lnum, dirt);
 234}
 235
 236/**
 237 * dirty_cow_znode - ensure a znode is not being committed.
 238 * @c: UBIFS file-system description object
 239 * @zbr: branch of znode to check
 240 *
 241 * Returns dirtied znode on success or negative error code on failure.
 242 */
 243static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
 244                                           struct ubifs_zbranch *zbr)
 245{
 246        struct ubifs_znode *znode = zbr->znode;
 247        struct ubifs_znode *zn;
 248        int err;
 249
 250        if (!ubifs_zn_cow(znode)) {
 251                /* znode is not being committed */
 252                if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
 253                        atomic_long_inc(&c->dirty_zn_cnt);
 254                        atomic_long_dec(&c->clean_zn_cnt);
 255                        atomic_long_dec(&ubifs_clean_zn_cnt);
 256                        err = add_idx_dirt(c, zbr->lnum, zbr->len);
 257                        if (unlikely(err))
 258                                return ERR_PTR(err);
 259                }
 260                return znode;
 261        }
 262
 263        zn = copy_znode(c, znode);
 264        if (IS_ERR(zn))
 265                return zn;
 266
 267        if (zbr->len) {
 268                err = insert_old_idx(c, zbr->lnum, zbr->offs);
 269                if (unlikely(err))
 270                        return ERR_PTR(err);
 271                err = add_idx_dirt(c, zbr->lnum, zbr->len);
 272        } else
 273                err = 0;
 274
 275        zbr->znode = zn;
 276        zbr->lnum = 0;
 277        zbr->offs = 0;
 278        zbr->len = 0;
 279
 280        if (unlikely(err))
 281                return ERR_PTR(err);
 282        return zn;
 283}
 284
 285/**
 286 * lnc_add - add a leaf node to the leaf node cache.
 287 * @c: UBIFS file-system description object
 288 * @zbr: zbranch of leaf node
 289 * @node: leaf node
 290 *
 291 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
 292 * purpose of the leaf node cache is to save re-reading the same leaf node over
 293 * and over again. Most things are cached by VFS, however the file system must
 294 * cache directory entries for readdir and for resolving hash collisions. The
 295 * present implementation of the leaf node cache is extremely simple, and
 296 * allows for error returns that are not used but that may be needed if a more
 297 * complex implementation is created.
 298 *
 299 * Note, this function does not add the @node object to LNC directly, but
 300 * allocates a copy of the object and adds the copy to LNC. The reason for this
 301 * is that @node has been allocated outside of the TNC subsystem and will be
 302 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
 303 * may be changed at any time, e.g. freed by the shrinker.
 304 */
 305static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 306                   const void *node)
 307{
 308        int err;
 309        void *lnc_node;
 310        const struct ubifs_dent_node *dent = node;
 311
 312        ubifs_assert(c, !zbr->leaf);
 313        ubifs_assert(c, zbr->len != 0);
 314        ubifs_assert(c, is_hash_key(c, &zbr->key));
 315
 316        err = ubifs_validate_entry(c, dent);
 317        if (err) {
 318                dump_stack();
 319                ubifs_dump_node(c, dent);
 320                return err;
 321        }
 322
 323        lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
 324        if (!lnc_node)
 325                /* We don't have to have the cache, so no error */
 326                return 0;
 327
 328        zbr->leaf = lnc_node;
 329        return 0;
 330}
 331
 332 /**
 333 * lnc_add_directly - add a leaf node to the leaf-node-cache.
 334 * @c: UBIFS file-system description object
 335 * @zbr: zbranch of leaf node
 336 * @node: leaf node
 337 *
 338 * This function is similar to 'lnc_add()', but it does not create a copy of
 339 * @node but inserts @node to TNC directly.
 340 */
 341static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 342                            void *node)
 343{
 344        int err;
 345
 346        ubifs_assert(c, !zbr->leaf);
 347        ubifs_assert(c, zbr->len != 0);
 348
 349        err = ubifs_validate_entry(c, node);
 350        if (err) {
 351                dump_stack();
 352                ubifs_dump_node(c, node);
 353                return err;
 354        }
 355
 356        zbr->leaf = node;
 357        return 0;
 358}
 359
 360/**
 361 * lnc_free - remove a leaf node from the leaf node cache.
 362 * @zbr: zbranch of leaf node
 363 * @node: leaf node
 364 */
 365static void lnc_free(struct ubifs_zbranch *zbr)
 366{
 367        if (!zbr->leaf)
 368                return;
 369        kfree(zbr->leaf);
 370        zbr->leaf = NULL;
 371}
 372
 373/**
 374 * tnc_read_hashed_node - read a "hashed" leaf node.
 375 * @c: UBIFS file-system description object
 376 * @zbr: key and position of the node
 377 * @node: node is returned here
 378 *
 379 * This function reads a "hashed" node defined by @zbr from the leaf node cache
 380 * (in it is there) or from the hash media, in which case the node is also
 381 * added to LNC. Returns zero in case of success or a negative negative error
 382 * code in case of failure.
 383 */
 384static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 385                                void *node)
 386{
 387        int err;
 388
 389        ubifs_assert(c, is_hash_key(c, &zbr->key));
 390
 391        if (zbr->leaf) {
 392                /* Read from the leaf node cache */
 393                ubifs_assert(c, zbr->len != 0);
 394                memcpy(node, zbr->leaf, zbr->len);
 395                return 0;
 396        }
 397
 398        if (c->replaying) {
 399                err = fallible_read_node(c, &zbr->key, zbr, node);
 400                /*
 401                 * When the node was not found, return -ENOENT, 0 otherwise.
 402                 * Negative return codes stay as-is.
 403                 */
 404                if (err == 0)
 405                        err = -ENOENT;
 406                else if (err == 1)
 407                        err = 0;
 408        } else {
 409                err = ubifs_tnc_read_node(c, zbr, node);
 410        }
 411        if (err)
 412                return err;
 413
 414        /* Add the node to the leaf node cache */
 415        err = lnc_add(c, zbr, node);
 416        return err;
 417}
 418
 419/**
 420 * try_read_node - read a node if it is a node.
 421 * @c: UBIFS file-system description object
 422 * @buf: buffer to read to
 423 * @type: node type
 424 * @zbr: the zbranch describing the node to read
 425 *
 426 * This function tries to read a node of known type and length, checks it and
 427 * stores it in @buf. This function returns %1 if a node is present and %0 if
 428 * a node is not present. A negative error code is returned for I/O errors.
 429 * This function performs that same function as ubifs_read_node except that
 430 * it does not require that there is actually a node present and instead
 431 * the return code indicates if a node was read.
 432 *
 433 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
 434 * is true (it is controlled by corresponding mount option). However, if
 435 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
 436 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
 437 * because during mounting or re-mounting from R/O mode to R/W mode we may read
 438 * journal nodes (when replying the journal or doing the recovery) and the
 439 * journal nodes may potentially be corrupted, so checking is required.
 440 */
 441static int try_read_node(const struct ubifs_info *c, void *buf, int type,
 442                         struct ubifs_zbranch *zbr)
 443{
 444        int len = zbr->len;
 445        int lnum = zbr->lnum;
 446        int offs = zbr->offs;
 447        int err, node_len;
 448        struct ubifs_ch *ch = buf;
 449        uint32_t crc, node_crc;
 450
 451        dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
 452
 453        err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
 454        if (err) {
 455                ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
 456                          type, lnum, offs, err);
 457                return err;
 458        }
 459
 460        if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
 461                return 0;
 462
 463        if (ch->node_type != type)
 464                return 0;
 465
 466        node_len = le32_to_cpu(ch->len);
 467        if (node_len != len)
 468                return 0;
 469
 470        if (type != UBIFS_DATA_NODE || !c->no_chk_data_crc || c->mounting ||
 471            c->remounting_rw) {
 472                crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
 473                node_crc = le32_to_cpu(ch->crc);
 474                if (crc != node_crc)
 475                        return 0;
 476        }
 477
 478        err = ubifs_node_check_hash(c, buf, zbr->hash);
 479        if (err) {
 480                ubifs_bad_hash(c, buf, zbr->hash, lnum, offs);
 481                return 0;
 482        }
 483
 484        return 1;
 485}
 486
 487/**
 488 * fallible_read_node - try to read a leaf node.
 489 * @c: UBIFS file-system description object
 490 * @key:  key of node to read
 491 * @zbr:  position of node
 492 * @node: node returned
 493 *
 494 * This function tries to read a node and returns %1 if the node is read, %0
 495 * if the node is not present, and a negative error code in the case of error.
 496 */
 497static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
 498                              struct ubifs_zbranch *zbr, void *node)
 499{
 500        int ret;
 501
 502        dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
 503
 504        ret = try_read_node(c, node, key_type(c, key), zbr);
 505        if (ret == 1) {
 506                union ubifs_key node_key;
 507                struct ubifs_dent_node *dent = node;
 508
 509                /* All nodes have key in the same place */
 510                key_read(c, &dent->key, &node_key);
 511                if (keys_cmp(c, key, &node_key) != 0)
 512                        ret = 0;
 513        }
 514        if (ret == 0 && c->replaying)
 515                dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
 516                        zbr->lnum, zbr->offs, zbr->len);
 517        return ret;
 518}
 519
 520/**
 521 * matches_name - determine if a direntry or xattr entry matches a given name.
 522 * @c: UBIFS file-system description object
 523 * @zbr: zbranch of dent
 524 * @nm: name to match
 525 *
 526 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 527 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
 528 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
 529 * of failure, a negative error code is returned.
 530 */
 531static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 532                        const struct fscrypt_name *nm)
 533{
 534        struct ubifs_dent_node *dent;
 535        int nlen, err;
 536
 537        /* If possible, match against the dent in the leaf node cache */
 538        if (!zbr->leaf) {
 539                dent = kmalloc(zbr->len, GFP_NOFS);
 540                if (!dent)
 541                        return -ENOMEM;
 542
 543                err = ubifs_tnc_read_node(c, zbr, dent);
 544                if (err)
 545                        goto out_free;
 546
 547                /* Add the node to the leaf node cache */
 548                err = lnc_add_directly(c, zbr, dent);
 549                if (err)
 550                        goto out_free;
 551        } else
 552                dent = zbr->leaf;
 553
 554        nlen = le16_to_cpu(dent->nlen);
 555        err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
 556        if (err == 0) {
 557                if (nlen == fname_len(nm))
 558                        return NAME_MATCHES;
 559                else if (nlen < fname_len(nm))
 560                        return NAME_LESS;
 561                else
 562                        return NAME_GREATER;
 563        } else if (err < 0)
 564                return NAME_LESS;
 565        else
 566                return NAME_GREATER;
 567
 568out_free:
 569        kfree(dent);
 570        return err;
 571}
 572
 573/**
 574 * get_znode - get a TNC znode that may not be loaded yet.
 575 * @c: UBIFS file-system description object
 576 * @znode: parent znode
 577 * @n: znode branch slot number
 578 *
 579 * This function returns the znode or a negative error code.
 580 */
 581static struct ubifs_znode *get_znode(struct ubifs_info *c,
 582                                     struct ubifs_znode *znode, int n)
 583{
 584        struct ubifs_zbranch *zbr;
 585
 586        zbr = &znode->zbranch[n];
 587        if (zbr->znode)
 588                znode = zbr->znode;
 589        else
 590                znode = ubifs_load_znode(c, zbr, znode, n);
 591        return znode;
 592}
 593
 594/**
 595 * tnc_next - find next TNC entry.
 596 * @c: UBIFS file-system description object
 597 * @zn: znode is passed and returned here
 598 * @n: znode branch slot number is passed and returned here
 599 *
 600 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
 601 * no next entry, or a negative error code otherwise.
 602 */
 603static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 604{
 605        struct ubifs_znode *znode = *zn;
 606        int nn = *n;
 607
 608        nn += 1;
 609        if (nn < znode->child_cnt) {
 610                *n = nn;
 611                return 0;
 612        }
 613        while (1) {
 614                struct ubifs_znode *zp;
 615
 616                zp = znode->parent;
 617                if (!zp)
 618                        return -ENOENT;
 619                nn = znode->iip + 1;
 620                znode = zp;
 621                if (nn < znode->child_cnt) {
 622                        znode = get_znode(c, znode, nn);
 623                        if (IS_ERR(znode))
 624                                return PTR_ERR(znode);
 625                        while (znode->level != 0) {
 626                                znode = get_znode(c, znode, 0);
 627                                if (IS_ERR(znode))
 628                                        return PTR_ERR(znode);
 629                        }
 630                        nn = 0;
 631                        break;
 632                }
 633        }
 634        *zn = znode;
 635        *n = nn;
 636        return 0;
 637}
 638
 639/**
 640 * tnc_prev - find previous TNC entry.
 641 * @c: UBIFS file-system description object
 642 * @zn: znode is returned here
 643 * @n: znode branch slot number is passed and returned here
 644 *
 645 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
 646 * there is no next entry, or a negative error code otherwise.
 647 */
 648static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 649{
 650        struct ubifs_znode *znode = *zn;
 651        int nn = *n;
 652
 653        if (nn > 0) {
 654                *n = nn - 1;
 655                return 0;
 656        }
 657        while (1) {
 658                struct ubifs_znode *zp;
 659
 660                zp = znode->parent;
 661                if (!zp)
 662                        return -ENOENT;
 663                nn = znode->iip - 1;
 664                znode = zp;
 665                if (nn >= 0) {
 666                        znode = get_znode(c, znode, nn);
 667                        if (IS_ERR(znode))
 668                                return PTR_ERR(znode);
 669                        while (znode->level != 0) {
 670                                nn = znode->child_cnt - 1;
 671                                znode = get_znode(c, znode, nn);
 672                                if (IS_ERR(znode))
 673                                        return PTR_ERR(znode);
 674                        }
 675                        nn = znode->child_cnt - 1;
 676                        break;
 677                }
 678        }
 679        *zn = znode;
 680        *n = nn;
 681        return 0;
 682}
 683
 684/**
 685 * resolve_collision - resolve a collision.
 686 * @c: UBIFS file-system description object
 687 * @key: key of a directory or extended attribute entry
 688 * @zn: znode is returned here
 689 * @n: zbranch number is passed and returned here
 690 * @nm: name of the entry
 691 *
 692 * This function is called for "hashed" keys to make sure that the found key
 693 * really corresponds to the looked up node (directory or extended attribute
 694 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
 695 * %0 is returned if @nm is not found and @zn and @n are set to the previous
 696 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
 697 * This means that @n may be set to %-1 if the leftmost key in @zn is the
 698 * previous one. A negative error code is returned on failures.
 699 */
 700static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
 701                             struct ubifs_znode **zn, int *n,
 702                             const struct fscrypt_name *nm)
 703{
 704        int err;
 705
 706        err = matches_name(c, &(*zn)->zbranch[*n], nm);
 707        if (unlikely(err < 0))
 708                return err;
 709        if (err == NAME_MATCHES)
 710                return 1;
 711
 712        if (err == NAME_GREATER) {
 713                /* Look left */
 714                while (1) {
 715                        err = tnc_prev(c, zn, n);
 716                        if (err == -ENOENT) {
 717                                ubifs_assert(c, *n == 0);
 718                                *n = -1;
 719                                return 0;
 720                        }
 721                        if (err < 0)
 722                                return err;
 723                        if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 724                                /*
 725                                 * We have found the branch after which we would
 726                                 * like to insert, but inserting in this znode
 727                                 * may still be wrong. Consider the following 3
 728                                 * znodes, in the case where we are resolving a
 729                                 * collision with Key2.
 730                                 *
 731                                 *                  znode zp
 732                                 *            ----------------------
 733                                 * level 1     |  Key0  |  Key1  |
 734                                 *            -----------------------
 735                                 *                 |            |
 736                                 *       znode za  |            |  znode zb
 737                                 *          ------------      ------------
 738                                 * level 0  |  Key0  |        |  Key2  |
 739                                 *          ------------      ------------
 740                                 *
 741                                 * The lookup finds Key2 in znode zb. Lets say
 742                                 * there is no match and the name is greater so
 743                                 * we look left. When we find Key0, we end up
 744                                 * here. If we return now, we will insert into
 745                                 * znode za at slot n = 1.  But that is invalid
 746                                 * according to the parent's keys.  Key2 must
 747                                 * be inserted into znode zb.
 748                                 *
 749                                 * Note, this problem is not relevant for the
 750                                 * case when we go right, because
 751                                 * 'tnc_insert()' would correct the parent key.
 752                                 */
 753                                if (*n == (*zn)->child_cnt - 1) {
 754                                        err = tnc_next(c, zn, n);
 755                                        if (err) {
 756                                                /* Should be impossible */
 757                                                ubifs_assert(c, 0);
 758                                                if (err == -ENOENT)
 759                                                        err = -EINVAL;
 760                                                return err;
 761                                        }
 762                                        ubifs_assert(c, *n == 0);
 763                                        *n = -1;
 764                                }
 765                                return 0;
 766                        }
 767                        err = matches_name(c, &(*zn)->zbranch[*n], nm);
 768                        if (err < 0)
 769                                return err;
 770                        if (err == NAME_LESS)
 771                                return 0;
 772                        if (err == NAME_MATCHES)
 773                                return 1;
 774                        ubifs_assert(c, err == NAME_GREATER);
 775                }
 776        } else {
 777                int nn = *n;
 778                struct ubifs_znode *znode = *zn;
 779
 780                /* Look right */
 781                while (1) {
 782                        err = tnc_next(c, &znode, &nn);
 783                        if (err == -ENOENT)
 784                                return 0;
 785                        if (err < 0)
 786                                return err;
 787                        if (keys_cmp(c, &znode->zbranch[nn].key, key))
 788                                return 0;
 789                        err = matches_name(c, &znode->zbranch[nn], nm);
 790                        if (err < 0)
 791                                return err;
 792                        if (err == NAME_GREATER)
 793                                return 0;
 794                        *zn = znode;
 795                        *n = nn;
 796                        if (err == NAME_MATCHES)
 797                                return 1;
 798                        ubifs_assert(c, err == NAME_LESS);
 799                }
 800        }
 801}
 802
 803/**
 804 * fallible_matches_name - determine if a dent matches a given name.
 805 * @c: UBIFS file-system description object
 806 * @zbr: zbranch of dent
 807 * @nm: name to match
 808 *
 809 * This is a "fallible" version of 'matches_name()' function which does not
 810 * panic if the direntry/xentry referred by @zbr does not exist on the media.
 811 *
 812 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 813 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
 814 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
 815 * if xentry/direntry referred by @zbr does not exist on the media. A negative
 816 * error code is returned in case of failure.
 817 */
 818static int fallible_matches_name(struct ubifs_info *c,
 819                                 struct ubifs_zbranch *zbr,
 820                                 const struct fscrypt_name *nm)
 821{
 822        struct ubifs_dent_node *dent;
 823        int nlen, err;
 824
 825        /* If possible, match against the dent in the leaf node cache */
 826        if (!zbr->leaf) {
 827                dent = kmalloc(zbr->len, GFP_NOFS);
 828                if (!dent)
 829                        return -ENOMEM;
 830
 831                err = fallible_read_node(c, &zbr->key, zbr, dent);
 832                if (err < 0)
 833                        goto out_free;
 834                if (err == 0) {
 835                        /* The node was not present */
 836                        err = NOT_ON_MEDIA;
 837                        goto out_free;
 838                }
 839                ubifs_assert(c, err == 1);
 840
 841                err = lnc_add_directly(c, zbr, dent);
 842                if (err)
 843                        goto out_free;
 844        } else
 845                dent = zbr->leaf;
 846
 847        nlen = le16_to_cpu(dent->nlen);
 848        err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
 849        if (err == 0) {
 850                if (nlen == fname_len(nm))
 851                        return NAME_MATCHES;
 852                else if (nlen < fname_len(nm))
 853                        return NAME_LESS;
 854                else
 855                        return NAME_GREATER;
 856        } else if (err < 0)
 857                return NAME_LESS;
 858        else
 859                return NAME_GREATER;
 860
 861out_free:
 862        kfree(dent);
 863        return err;
 864}
 865
 866/**
 867 * fallible_resolve_collision - resolve a collision even if nodes are missing.
 868 * @c: UBIFS file-system description object
 869 * @key: key
 870 * @zn: znode is returned here
 871 * @n: branch number is passed and returned here
 872 * @nm: name of directory entry
 873 * @adding: indicates caller is adding a key to the TNC
 874 *
 875 * This is a "fallible" version of the 'resolve_collision()' function which
 876 * does not panic if one of the nodes referred to by TNC does not exist on the
 877 * media. This may happen when replaying the journal if a deleted node was
 878 * Garbage-collected and the commit was not done. A branch that refers to a node
 879 * that is not present is called a dangling branch. The following are the return
 880 * codes for this function:
 881 *  o if @nm was found, %1 is returned and @zn and @n are set to the found
 882 *    branch;
 883 *  o if we are @adding and @nm was not found, %0 is returned;
 884 *  o if we are not @adding and @nm was not found, but a dangling branch was
 885 *    found, then %1 is returned and @zn and @n are set to the dangling branch;
 886 *  o a negative error code is returned in case of failure.
 887 */
 888static int fallible_resolve_collision(struct ubifs_info *c,
 889                                      const union ubifs_key *key,
 890                                      struct ubifs_znode **zn, int *n,
 891                                      const struct fscrypt_name *nm,
 892                                      int adding)
 893{
 894        struct ubifs_znode *o_znode = NULL, *znode = *zn;
 895        int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
 896
 897        cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
 898        if (unlikely(cmp < 0))
 899                return cmp;
 900        if (cmp == NAME_MATCHES)
 901                return 1;
 902        if (cmp == NOT_ON_MEDIA) {
 903                o_znode = znode;
 904                o_n = nn;
 905                /*
 906                 * We are unlucky and hit a dangling branch straight away.
 907                 * Now we do not really know where to go to find the needed
 908                 * branch - to the left or to the right. Well, let's try left.
 909                 */
 910                unsure = 1;
 911        } else if (!adding)
 912                unsure = 1; /* Remove a dangling branch wherever it is */
 913
 914        if (cmp == NAME_GREATER || unsure) {
 915                /* Look left */
 916                while (1) {
 917                        err = tnc_prev(c, zn, n);
 918                        if (err == -ENOENT) {
 919                                ubifs_assert(c, *n == 0);
 920                                *n = -1;
 921                                break;
 922                        }
 923                        if (err < 0)
 924                                return err;
 925                        if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 926                                /* See comments in 'resolve_collision()' */
 927                                if (*n == (*zn)->child_cnt - 1) {
 928                                        err = tnc_next(c, zn, n);
 929                                        if (err) {
 930                                                /* Should be impossible */
 931                                                ubifs_assert(c, 0);
 932                                                if (err == -ENOENT)
 933                                                        err = -EINVAL;
 934                                                return err;
 935                                        }
 936                                        ubifs_assert(c, *n == 0);
 937                                        *n = -1;
 938                                }
 939                                break;
 940                        }
 941                        err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
 942                        if (err < 0)
 943                                return err;
 944                        if (err == NAME_MATCHES)
 945                                return 1;
 946                        if (err == NOT_ON_MEDIA) {
 947                                o_znode = *zn;
 948                                o_n = *n;
 949                                continue;
 950                        }
 951                        if (!adding)
 952                                continue;
 953                        if (err == NAME_LESS)
 954                                break;
 955                        else
 956                                unsure = 0;
 957                }
 958        }
 959
 960        if (cmp == NAME_LESS || unsure) {
 961                /* Look right */
 962                *zn = znode;
 963                *n = nn;
 964                while (1) {
 965                        err = tnc_next(c, &znode, &nn);
 966                        if (err == -ENOENT)
 967                                break;
 968                        if (err < 0)
 969                                return err;
 970                        if (keys_cmp(c, &znode->zbranch[nn].key, key))
 971                                break;
 972                        err = fallible_matches_name(c, &znode->zbranch[nn], nm);
 973                        if (err < 0)
 974                                return err;
 975                        if (err == NAME_GREATER)
 976                                break;
 977                        *zn = znode;
 978                        *n = nn;
 979                        if (err == NAME_MATCHES)
 980                                return 1;
 981                        if (err == NOT_ON_MEDIA) {
 982                                o_znode = znode;
 983                                o_n = nn;
 984                        }
 985                }
 986        }
 987
 988        /* Never match a dangling branch when adding */
 989        if (adding || !o_znode)
 990                return 0;
 991
 992        dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
 993                o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
 994                o_znode->zbranch[o_n].len);
 995        *zn = o_znode;
 996        *n = o_n;
 997        return 1;
 998}
 999
1000/**
1001 * matches_position - determine if a zbranch matches a given position.
1002 * @zbr: zbranch of dent
1003 * @lnum: LEB number of dent to match
1004 * @offs: offset of dent to match
1005 *
1006 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1007 */
1008static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1009{
1010        if (zbr->lnum == lnum && zbr->offs == offs)
1011                return 1;
1012        else
1013                return 0;
1014}
1015
1016/**
1017 * resolve_collision_directly - resolve a collision directly.
1018 * @c: UBIFS file-system description object
1019 * @key: key of directory entry
1020 * @zn: znode is passed and returned here
1021 * @n: zbranch number is passed and returned here
1022 * @lnum: LEB number of dent node to match
1023 * @offs: offset of dent node to match
1024 *
1025 * This function is used for "hashed" keys to make sure the found directory or
1026 * extended attribute entry node is what was looked for. It is used when the
1027 * flash address of the right node is known (@lnum:@offs) which makes it much
1028 * easier to resolve collisions (no need to read entries and match full
1029 * names). This function returns %1 and sets @zn and @n if the collision is
1030 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1031 * previous directory entry. Otherwise a negative error code is returned.
1032 */
1033static int resolve_collision_directly(struct ubifs_info *c,
1034                                      const union ubifs_key *key,
1035                                      struct ubifs_znode **zn, int *n,
1036                                      int lnum, int offs)
1037{
1038        struct ubifs_znode *znode;
1039        int nn, err;
1040
1041        znode = *zn;
1042        nn = *n;
1043        if (matches_position(&znode->zbranch[nn], lnum, offs))
1044                return 1;
1045
1046        /* Look left */
1047        while (1) {
1048                err = tnc_prev(c, &znode, &nn);
1049                if (err == -ENOENT)
1050                        break;
1051                if (err < 0)
1052                        return err;
1053                if (keys_cmp(c, &znode->zbranch[nn].key, key))
1054                        break;
1055                if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1056                        *zn = znode;
1057                        *n = nn;
1058                        return 1;
1059                }
1060        }
1061
1062        /* Look right */
1063        znode = *zn;
1064        nn = *n;
1065        while (1) {
1066                err = tnc_next(c, &znode, &nn);
1067                if (err == -ENOENT)
1068                        return 0;
1069                if (err < 0)
1070                        return err;
1071                if (keys_cmp(c, &znode->zbranch[nn].key, key))
1072                        return 0;
1073                *zn = znode;
1074                *n = nn;
1075                if (matches_position(&znode->zbranch[nn], lnum, offs))
1076                        return 1;
1077        }
1078}
1079
1080/**
1081 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1082 * @c: UBIFS file-system description object
1083 * @znode: znode to dirty
1084 *
1085 * If we do not have a unique key that resides in a znode, then we cannot
1086 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1087 * This function records the path back to the last dirty ancestor, and then
1088 * dirties the znodes on that path.
1089 */
1090static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1091                                               struct ubifs_znode *znode)
1092{
1093        struct ubifs_znode *zp;
1094        int *path = c->bottom_up_buf, p = 0;
1095
1096        ubifs_assert(c, c->zroot.znode);
1097        ubifs_assert(c, znode);
1098        if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1099                kfree(c->bottom_up_buf);
1100                c->bottom_up_buf = kmalloc_array(c->zroot.znode->level,
1101                                                 sizeof(int),
1102                                                 GFP_NOFS);
1103                if (!c->bottom_up_buf)
1104                        return ERR_PTR(-ENOMEM);
1105                path = c->bottom_up_buf;
1106        }
1107        if (c->zroot.znode->level) {
1108                /* Go up until parent is dirty */
1109                while (1) {
1110                        int n;
1111
1112                        zp = znode->parent;
1113                        if (!zp)
1114                                break;
1115                        n = znode->iip;
1116                        ubifs_assert(c, p < c->zroot.znode->level);
1117                        path[p++] = n;
1118                        if (!zp->cnext && ubifs_zn_dirty(znode))
1119                                break;
1120                        znode = zp;
1121                }
1122        }
1123
1124        /* Come back down, dirtying as we go */
1125        while (1) {
1126                struct ubifs_zbranch *zbr;
1127
1128                zp = znode->parent;
1129                if (zp) {
1130                        ubifs_assert(c, path[p - 1] >= 0);
1131                        ubifs_assert(c, path[p - 1] < zp->child_cnt);
1132                        zbr = &zp->zbranch[path[--p]];
1133                        znode = dirty_cow_znode(c, zbr);
1134                } else {
1135                        ubifs_assert(c, znode == c->zroot.znode);
1136                        znode = dirty_cow_znode(c, &c->zroot);
1137                }
1138                if (IS_ERR(znode) || !p)
1139                        break;
1140                ubifs_assert(c, path[p - 1] >= 0);
1141                ubifs_assert(c, path[p - 1] < znode->child_cnt);
1142                znode = znode->zbranch[path[p - 1]].znode;
1143        }
1144
1145        return znode;
1146}
1147
1148/**
1149 * ubifs_lookup_level0 - search for zero-level znode.
1150 * @c: UBIFS file-system description object
1151 * @key:  key to lookup
1152 * @zn: znode is returned here
1153 * @n: znode branch slot number is returned here
1154 *
1155 * This function looks up the TNC tree and search for zero-level znode which
1156 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1157 * cases:
1158 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1159 *     is returned and slot number of the matched branch is stored in @n;
1160 *   o not exact match, which means that zero-level znode does not contain
1161 *     @key, then %0 is returned and slot number of the closest branch or %-1
1162 *     is stored in @n; In this case calling tnc_next() is mandatory.
1163 *   o @key is so small that it is even less than the lowest key of the
1164 *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1165 *
1166 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1167 * function reads corresponding indexing nodes and inserts them to TNC. In
1168 * case of failure, a negative error code is returned.
1169 */
1170int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1171                        struct ubifs_znode **zn, int *n)
1172{
1173        int err, exact;
1174        struct ubifs_znode *znode;
1175        time64_t time = ktime_get_seconds();
1176
1177        dbg_tnck(key, "search key ");
1178        ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
1179
1180        znode = c->zroot.znode;
1181        if (unlikely(!znode)) {
1182                znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1183                if (IS_ERR(znode))
1184                        return PTR_ERR(znode);
1185        }
1186
1187        znode->time = time;
1188
1189        while (1) {
1190                struct ubifs_zbranch *zbr;
1191
1192                exact = ubifs_search_zbranch(c, znode, key, n);
1193
1194                if (znode->level == 0)
1195                        break;
1196
1197                if (*n < 0)
1198                        *n = 0;
1199                zbr = &znode->zbranch[*n];
1200
1201                if (zbr->znode) {
1202                        znode->time = time;
1203                        znode = zbr->znode;
1204                        continue;
1205                }
1206
1207                /* znode is not in TNC cache, load it from the media */
1208                znode = ubifs_load_znode(c, zbr, znode, *n);
1209                if (IS_ERR(znode))
1210                        return PTR_ERR(znode);
1211        }
1212
1213        *zn = znode;
1214        if (exact || !is_hash_key(c, key) || *n != -1) {
1215                dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1216                return exact;
1217        }
1218
1219        /*
1220         * Here is a tricky place. We have not found the key and this is a
1221         * "hashed" key, which may collide. The rest of the code deals with
1222         * situations like this:
1223         *
1224         *                  | 3 | 5 |
1225         *                  /       \
1226         *          | 3 | 5 |      | 6 | 7 | (x)
1227         *
1228         * Or more a complex example:
1229         *
1230         *                | 1 | 5 |
1231         *                /       \
1232         *       | 1 | 3 |         | 5 | 8 |
1233         *              \           /
1234         *          | 5 | 5 |   | 6 | 7 | (x)
1235         *
1236         * In the examples, if we are looking for key "5", we may reach nodes
1237         * marked with "(x)". In this case what we have do is to look at the
1238         * left and see if there is "5" key there. If there is, we have to
1239         * return it.
1240         *
1241         * Note, this whole situation is possible because we allow to have
1242         * elements which are equivalent to the next key in the parent in the
1243         * children of current znode. For example, this happens if we split a
1244         * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1245         * like this:
1246         *                      | 3 | 5 |
1247         *                       /     \
1248         *                | 3 | 5 |   | 5 | 6 | 7 |
1249         *                              ^
1250         * And this becomes what is at the first "picture" after key "5" marked
1251         * with "^" is removed. What could be done is we could prohibit
1252         * splitting in the middle of the colliding sequence. Also, when
1253         * removing the leftmost key, we would have to correct the key of the
1254         * parent node, which would introduce additional complications. Namely,
1255         * if we changed the leftmost key of the parent znode, the garbage
1256         * collector would be unable to find it (GC is doing this when GC'ing
1257         * indexing LEBs). Although we already have an additional RB-tree where
1258         * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1259         * after the commit. But anyway, this does not look easy to implement
1260         * so we did not try this.
1261         */
1262        err = tnc_prev(c, &znode, n);
1263        if (err == -ENOENT) {
1264                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1265                *n = -1;
1266                return 0;
1267        }
1268        if (unlikely(err < 0))
1269                return err;
1270        if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1271                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1272                *n = -1;
1273                return 0;
1274        }
1275
1276        dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1277        *zn = znode;
1278        return 1;
1279}
1280
1281/**
1282 * lookup_level0_dirty - search for zero-level znode dirtying.
1283 * @c: UBIFS file-system description object
1284 * @key:  key to lookup
1285 * @zn: znode is returned here
1286 * @n: znode branch slot number is returned here
1287 *
1288 * This function looks up the TNC tree and search for zero-level znode which
1289 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1290 * cases:
1291 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1292 *     is returned and slot number of the matched branch is stored in @n;
1293 *   o not exact match, which means that zero-level znode does not contain @key
1294 *     then %0 is returned and slot number of the closed branch is stored in
1295 *     @n;
1296 *   o @key is so small that it is even less than the lowest key of the
1297 *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1298 *
1299 * Additionally all znodes in the path from the root to the located zero-level
1300 * znode are marked as dirty.
1301 *
1302 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1303 * function reads corresponding indexing nodes and inserts them to TNC. In
1304 * case of failure, a negative error code is returned.
1305 */
1306static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1307                               struct ubifs_znode **zn, int *n)
1308{
1309        int err, exact;
1310        struct ubifs_znode *znode;
1311        time64_t time = ktime_get_seconds();
1312
1313        dbg_tnck(key, "search and dirty key ");
1314
1315        znode = c->zroot.znode;
1316        if (unlikely(!znode)) {
1317                znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1318                if (IS_ERR(znode))
1319                        return PTR_ERR(znode);
1320        }
1321
1322        znode = dirty_cow_znode(c, &c->zroot);
1323        if (IS_ERR(znode))
1324                return PTR_ERR(znode);
1325
1326        znode->time = time;
1327
1328        while (1) {
1329                struct ubifs_zbranch *zbr;
1330
1331                exact = ubifs_search_zbranch(c, znode, key, n);
1332
1333                if (znode->level == 0)
1334                        break;
1335
1336                if (*n < 0)
1337                        *n = 0;
1338                zbr = &znode->zbranch[*n];
1339
1340                if (zbr->znode) {
1341                        znode->time = time;
1342                        znode = dirty_cow_znode(c, zbr);
1343                        if (IS_ERR(znode))
1344                                return PTR_ERR(znode);
1345                        continue;
1346                }
1347
1348                /* znode is not in TNC cache, load it from the media */
1349                znode = ubifs_load_znode(c, zbr, znode, *n);
1350                if (IS_ERR(znode))
1351                        return PTR_ERR(znode);
1352                znode = dirty_cow_znode(c, zbr);
1353                if (IS_ERR(znode))
1354                        return PTR_ERR(znode);
1355        }
1356
1357        *zn = znode;
1358        if (exact || !is_hash_key(c, key) || *n != -1) {
1359                dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1360                return exact;
1361        }
1362
1363        /*
1364         * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1365         * code.
1366         */
1367        err = tnc_prev(c, &znode, n);
1368        if (err == -ENOENT) {
1369                *n = -1;
1370                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1371                return 0;
1372        }
1373        if (unlikely(err < 0))
1374                return err;
1375        if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1376                *n = -1;
1377                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1378                return 0;
1379        }
1380
1381        if (znode->cnext || !ubifs_zn_dirty(znode)) {
1382                znode = dirty_cow_bottom_up(c, znode);
1383                if (IS_ERR(znode))
1384                        return PTR_ERR(znode);
1385        }
1386
1387        dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1388        *zn = znode;
1389        return 1;
1390}
1391
1392/**
1393 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1394 * @c: UBIFS file-system description object
1395 * @lnum: LEB number
1396 * @gc_seq1: garbage collection sequence number
1397 *
1398 * This function determines if @lnum may have been garbage collected since
1399 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1400 * %0 is returned.
1401 */
1402static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1403{
1404        int gc_seq2, gced_lnum;
1405
1406        gced_lnum = c->gced_lnum;
1407        smp_rmb();
1408        gc_seq2 = c->gc_seq;
1409        /* Same seq means no GC */
1410        if (gc_seq1 == gc_seq2)
1411                return 0;
1412        /* Different by more than 1 means we don't know */
1413        if (gc_seq1 + 1 != gc_seq2)
1414                return 1;
1415        /*
1416         * We have seen the sequence number has increased by 1. Now we need to
1417         * be sure we read the right LEB number, so read it again.
1418         */
1419        smp_rmb();
1420        if (gced_lnum != c->gced_lnum)
1421                return 1;
1422        /* Finally we can check lnum */
1423        if (gced_lnum == lnum)
1424                return 1;
1425        return 0;
1426}
1427
1428/**
1429 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1430 * @c: UBIFS file-system description object
1431 * @key: node key to lookup
1432 * @node: the node is returned here
1433 * @lnum: LEB number is returned here
1434 * @offs: offset is returned here
1435 *
1436 * This function looks up and reads node with key @key. The caller has to make
1437 * sure the @node buffer is large enough to fit the node. Returns zero in case
1438 * of success, %-ENOENT if the node was not found, and a negative error code in
1439 * case of failure. The node location can be returned in @lnum and @offs.
1440 */
1441int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1442                     void *node, int *lnum, int *offs)
1443{
1444        int found, n, err, safely = 0, gc_seq1;
1445        struct ubifs_znode *znode;
1446        struct ubifs_zbranch zbr, *zt;
1447
1448again:
1449        mutex_lock(&c->tnc_mutex);
1450        found = ubifs_lookup_level0(c, key, &znode, &n);
1451        if (!found) {
1452                err = -ENOENT;
1453                goto out;
1454        } else if (found < 0) {
1455                err = found;
1456                goto out;
1457        }
1458        zt = &znode->zbranch[n];
1459        if (lnum) {
1460                *lnum = zt->lnum;
1461                *offs = zt->offs;
1462        }
1463        if (is_hash_key(c, key)) {
1464                /*
1465                 * In this case the leaf node cache gets used, so we pass the
1466                 * address of the zbranch and keep the mutex locked
1467                 */
1468                err = tnc_read_hashed_node(c, zt, node);
1469                goto out;
1470        }
1471        if (safely) {
1472                err = ubifs_tnc_read_node(c, zt, node);
1473                goto out;
1474        }
1475        /* Drop the TNC mutex prematurely and race with garbage collection */
1476        zbr = znode->zbranch[n];
1477        gc_seq1 = c->gc_seq;
1478        mutex_unlock(&c->tnc_mutex);
1479
1480        if (ubifs_get_wbuf(c, zbr.lnum)) {
1481                /* We do not GC journal heads */
1482                err = ubifs_tnc_read_node(c, &zbr, node);
1483                return err;
1484        }
1485
1486        err = fallible_read_node(c, key, &zbr, node);
1487        if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1488                /*
1489                 * The node may have been GC'ed out from under us so try again
1490                 * while keeping the TNC mutex locked.
1491                 */
1492                safely = 1;
1493                goto again;
1494        }
1495        return 0;
1496
1497out:
1498        mutex_unlock(&c->tnc_mutex);
1499        return err;
1500}
1501
1502/**
1503 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1504 * @c: UBIFS file-system description object
1505 * @bu: bulk-read parameters and results
1506 *
1507 * Lookup consecutive data node keys for the same inode that reside
1508 * consecutively in the same LEB. This function returns zero in case of success
1509 * and a negative error code in case of failure.
1510 *
1511 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1512 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1513 * maximum possible amount of nodes for bulk-read.
1514 */
1515int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1516{
1517        int n, err = 0, lnum = -1, uninitialized_var(offs);
1518        int uninitialized_var(len);
1519        unsigned int block = key_block(c, &bu->key);
1520        struct ubifs_znode *znode;
1521
1522        bu->cnt = 0;
1523        bu->blk_cnt = 0;
1524        bu->eof = 0;
1525
1526        mutex_lock(&c->tnc_mutex);
1527        /* Find first key */
1528        err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1529        if (err < 0)
1530                goto out;
1531        if (err) {
1532                /* Key found */
1533                len = znode->zbranch[n].len;
1534                /* The buffer must be big enough for at least 1 node */
1535                if (len > bu->buf_len) {
1536                        err = -EINVAL;
1537                        goto out;
1538                }
1539                /* Add this key */
1540                bu->zbranch[bu->cnt++] = znode->zbranch[n];
1541                bu->blk_cnt += 1;
1542                lnum = znode->zbranch[n].lnum;
1543                offs = ALIGN(znode->zbranch[n].offs + len, 8);
1544        }
1545        while (1) {
1546                struct ubifs_zbranch *zbr;
1547                union ubifs_key *key;
1548                unsigned int next_block;
1549
1550                /* Find next key */
1551                err = tnc_next(c, &znode, &n);
1552                if (err)
1553                        goto out;
1554                zbr = &znode->zbranch[n];
1555                key = &zbr->key;
1556                /* See if there is another data key for this file */
1557                if (key_inum(c, key) != key_inum(c, &bu->key) ||
1558                    key_type(c, key) != UBIFS_DATA_KEY) {
1559                        err = -ENOENT;
1560                        goto out;
1561                }
1562                if (lnum < 0) {
1563                        /* First key found */
1564                        lnum = zbr->lnum;
1565                        offs = ALIGN(zbr->offs + zbr->len, 8);
1566                        len = zbr->len;
1567                        if (len > bu->buf_len) {
1568                                err = -EINVAL;
1569                                goto out;
1570                        }
1571                } else {
1572                        /*
1573                         * The data nodes must be in consecutive positions in
1574                         * the same LEB.
1575                         */
1576                        if (zbr->lnum != lnum || zbr->offs != offs)
1577                                goto out;
1578                        offs += ALIGN(zbr->len, 8);
1579                        len = ALIGN(len, 8) + zbr->len;
1580                        /* Must not exceed buffer length */
1581                        if (len > bu->buf_len)
1582                                goto out;
1583                }
1584                /* Allow for holes */
1585                next_block = key_block(c, key);
1586                bu->blk_cnt += (next_block - block - 1);
1587                if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1588                        goto out;
1589                block = next_block;
1590                /* Add this key */
1591                bu->zbranch[bu->cnt++] = *zbr;
1592                bu->blk_cnt += 1;
1593                /* See if we have room for more */
1594                if (bu->cnt >= UBIFS_MAX_BULK_READ)
1595                        goto out;
1596                if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1597                        goto out;
1598        }
1599out:
1600        if (err == -ENOENT) {
1601                bu->eof = 1;
1602                err = 0;
1603        }
1604        bu->gc_seq = c->gc_seq;
1605        mutex_unlock(&c->tnc_mutex);
1606        if (err)
1607                return err;
1608        /*
1609         * An enormous hole could cause bulk-read to encompass too many
1610         * page cache pages, so limit the number here.
1611         */
1612        if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1613                bu->blk_cnt = UBIFS_MAX_BULK_READ;
1614        /*
1615         * Ensure that bulk-read covers a whole number of page cache
1616         * pages.
1617         */
1618        if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1619            !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1620                return 0;
1621        if (bu->eof) {
1622                /* At the end of file we can round up */
1623                bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1624                return 0;
1625        }
1626        /* Exclude data nodes that do not make up a whole page cache page */
1627        block = key_block(c, &bu->key) + bu->blk_cnt;
1628        block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1629        while (bu->cnt) {
1630                if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1631                        break;
1632                bu->cnt -= 1;
1633        }
1634        return 0;
1635}
1636
1637/**
1638 * read_wbuf - bulk-read from a LEB with a wbuf.
1639 * @wbuf: wbuf that may overlap the read
1640 * @buf: buffer into which to read
1641 * @len: read length
1642 * @lnum: LEB number from which to read
1643 * @offs: offset from which to read
1644 *
1645 * This functions returns %0 on success or a negative error code on failure.
1646 */
1647static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1648                     int offs)
1649{
1650        const struct ubifs_info *c = wbuf->c;
1651        int rlen, overlap;
1652
1653        dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1654        ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1655        ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1656        ubifs_assert(c, offs + len <= c->leb_size);
1657
1658        spin_lock(&wbuf->lock);
1659        overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1660        if (!overlap) {
1661                /* We may safely unlock the write-buffer and read the data */
1662                spin_unlock(&wbuf->lock);
1663                return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1664        }
1665
1666        /* Don't read under wbuf */
1667        rlen = wbuf->offs - offs;
1668        if (rlen < 0)
1669                rlen = 0;
1670
1671        /* Copy the rest from the write-buffer */
1672        memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1673        spin_unlock(&wbuf->lock);
1674
1675        if (rlen > 0)
1676                /* Read everything that goes before write-buffer */
1677                return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1678
1679        return 0;
1680}
1681
1682/**
1683 * validate_data_node - validate data nodes for bulk-read.
1684 * @c: UBIFS file-system description object
1685 * @buf: buffer containing data node to validate
1686 * @zbr: zbranch of data node to validate
1687 *
1688 * This functions returns %0 on success or a negative error code on failure.
1689 */
1690static int validate_data_node(struct ubifs_info *c, void *buf,
1691                              struct ubifs_zbranch *zbr)
1692{
1693        union ubifs_key key1;
1694        struct ubifs_ch *ch = buf;
1695        int err, len;
1696
1697        if (ch->node_type != UBIFS_DATA_NODE) {
1698                ubifs_err(c, "bad node type (%d but expected %d)",
1699                          ch->node_type, UBIFS_DATA_NODE);
1700                goto out_err;
1701        }
1702
1703        err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1704        if (err) {
1705                ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1706                goto out;
1707        }
1708
1709        err = ubifs_node_check_hash(c, buf, zbr->hash);
1710        if (err) {
1711                ubifs_bad_hash(c, buf, zbr->hash, zbr->lnum, zbr->offs);
1712                return err;
1713        }
1714
1715        len = le32_to_cpu(ch->len);
1716        if (len != zbr->len) {
1717                ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1718                goto out_err;
1719        }
1720
1721        /* Make sure the key of the read node is correct */
1722        key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1723        if (!keys_eq(c, &zbr->key, &key1)) {
1724                ubifs_err(c, "bad key in node at LEB %d:%d",
1725                          zbr->lnum, zbr->offs);
1726                dbg_tnck(&zbr->key, "looked for key ");
1727                dbg_tnck(&key1, "found node's key ");
1728                goto out_err;
1729        }
1730
1731        return 0;
1732
1733out_err:
1734        err = -EINVAL;
1735out:
1736        ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1737        ubifs_dump_node(c, buf);
1738        dump_stack();
1739        return err;
1740}
1741
1742/**
1743 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1744 * @c: UBIFS file-system description object
1745 * @bu: bulk-read parameters and results
1746 *
1747 * This functions reads and validates the data nodes that were identified by the
1748 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1749 * -EAGAIN to indicate a race with GC, or another negative error code on
1750 * failure.
1751 */
1752int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1753{
1754        int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1755        struct ubifs_wbuf *wbuf;
1756        void *buf;
1757
1758        len = bu->zbranch[bu->cnt - 1].offs;
1759        len += bu->zbranch[bu->cnt - 1].len - offs;
1760        if (len > bu->buf_len) {
1761                ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1762                return -EINVAL;
1763        }
1764
1765        /* Do the read */
1766        wbuf = ubifs_get_wbuf(c, lnum);
1767        if (wbuf)
1768                err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1769        else
1770                err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1771
1772        /* Check for a race with GC */
1773        if (maybe_leb_gced(c, lnum, bu->gc_seq))
1774                return -EAGAIN;
1775
1776        if (err && err != -EBADMSG) {
1777                ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1778                          lnum, offs, err);
1779                dump_stack();
1780                dbg_tnck(&bu->key, "key ");
1781                return err;
1782        }
1783
1784        /* Validate the nodes read */
1785        buf = bu->buf;
1786        for (i = 0; i < bu->cnt; i++) {
1787                err = validate_data_node(c, buf, &bu->zbranch[i]);
1788                if (err)
1789                        return err;
1790                buf = buf + ALIGN(bu->zbranch[i].len, 8);
1791        }
1792
1793        return 0;
1794}
1795
1796/**
1797 * do_lookup_nm- look up a "hashed" node.
1798 * @c: UBIFS file-system description object
1799 * @key: node key to lookup
1800 * @node: the node is returned here
1801 * @nm: node name
1802 *
1803 * This function looks up and reads a node which contains name hash in the key.
1804 * Since the hash may have collisions, there may be many nodes with the same
1805 * key, so we have to sequentially look to all of them until the needed one is
1806 * found. This function returns zero in case of success, %-ENOENT if the node
1807 * was not found, and a negative error code in case of failure.
1808 */
1809static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1810                        void *node, const struct fscrypt_name *nm)
1811{
1812        int found, n, err;
1813        struct ubifs_znode *znode;
1814
1815        dbg_tnck(key, "key ");
1816        mutex_lock(&c->tnc_mutex);
1817        found = ubifs_lookup_level0(c, key, &znode, &n);
1818        if (!found) {
1819                err = -ENOENT;
1820                goto out_unlock;
1821        } else if (found < 0) {
1822                err = found;
1823                goto out_unlock;
1824        }
1825
1826        ubifs_assert(c, n >= 0);
1827
1828        err = resolve_collision(c, key, &znode, &n, nm);
1829        dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1830        if (unlikely(err < 0))
1831                goto out_unlock;
1832        if (err == 0) {
1833                err = -ENOENT;
1834                goto out_unlock;
1835        }
1836
1837        err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1838
1839out_unlock:
1840        mutex_unlock(&c->tnc_mutex);
1841        return err;
1842}
1843
1844/**
1845 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1846 * @c: UBIFS file-system description object
1847 * @key: node key to lookup
1848 * @node: the node is returned here
1849 * @nm: node name
1850 *
1851 * This function looks up and reads a node which contains name hash in the key.
1852 * Since the hash may have collisions, there may be many nodes with the same
1853 * key, so we have to sequentially look to all of them until the needed one is
1854 * found. This function returns zero in case of success, %-ENOENT if the node
1855 * was not found, and a negative error code in case of failure.
1856 */
1857int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1858                        void *node, const struct fscrypt_name *nm)
1859{
1860        int err, len;
1861        const struct ubifs_dent_node *dent = node;
1862
1863        /*
1864         * We assume that in most of the cases there are no name collisions and
1865         * 'ubifs_tnc_lookup()' returns us the right direntry.
1866         */
1867        err = ubifs_tnc_lookup(c, key, node);
1868        if (err)
1869                return err;
1870
1871        len = le16_to_cpu(dent->nlen);
1872        if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1873                return 0;
1874
1875        /*
1876         * Unluckily, there are hash collisions and we have to iterate over
1877         * them look at each direntry with colliding name hash sequentially.
1878         */
1879
1880        return do_lookup_nm(c, key, node, nm);
1881}
1882
1883static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
1884                            struct ubifs_dent_node *dent, uint32_t cookie,
1885                            struct ubifs_znode **zn, int *n, int exact)
1886{
1887        int err;
1888        struct ubifs_znode *znode = *zn;
1889        struct ubifs_zbranch *zbr;
1890        union ubifs_key *dkey;
1891
1892        if (!exact) {
1893                err = tnc_next(c, &znode, n);
1894                if (err)
1895                        return err;
1896        }
1897
1898        for (;;) {
1899                zbr = &znode->zbranch[*n];
1900                dkey = &zbr->key;
1901
1902                if (key_inum(c, dkey) != key_inum(c, key) ||
1903                    key_type(c, dkey) != key_type(c, key)) {
1904                        return -ENOENT;
1905                }
1906
1907                err = tnc_read_hashed_node(c, zbr, dent);
1908                if (err)
1909                        return err;
1910
1911                if (key_hash(c, key) == key_hash(c, dkey) &&
1912                    le32_to_cpu(dent->cookie) == cookie) {
1913                        *zn = znode;
1914                        return 0;
1915                }
1916
1917                err = tnc_next(c, &znode, n);
1918                if (err)
1919                        return err;
1920        }
1921}
1922
1923static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1924                        struct ubifs_dent_node *dent, uint32_t cookie)
1925{
1926        int n, err;
1927        struct ubifs_znode *znode;
1928        union ubifs_key start_key;
1929
1930        ubifs_assert(c, is_hash_key(c, key));
1931
1932        lowest_dent_key(c, &start_key, key_inum(c, key));
1933
1934        mutex_lock(&c->tnc_mutex);
1935        err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1936        if (unlikely(err < 0))
1937                goto out_unlock;
1938
1939        err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
1940
1941out_unlock:
1942        mutex_unlock(&c->tnc_mutex);
1943        return err;
1944}
1945
1946/**
1947 * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1948 * @c: UBIFS file-system description object
1949 * @key: node key to lookup
1950 * @node: the node is returned here
1951 * @cookie: node cookie for collision resolution
1952 *
1953 * This function looks up and reads a node which contains name hash in the key.
1954 * Since the hash may have collisions, there may be many nodes with the same
1955 * key, so we have to sequentially look to all of them until the needed one
1956 * with the same cookie value is found.
1957 * This function returns zero in case of success, %-ENOENT if the node
1958 * was not found, and a negative error code in case of failure.
1959 */
1960int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1961                        void *node, uint32_t cookie)
1962{
1963        int err;
1964        const struct ubifs_dent_node *dent = node;
1965
1966        if (!c->double_hash)
1967                return -EOPNOTSUPP;
1968
1969        /*
1970         * We assume that in most of the cases there are no name collisions and
1971         * 'ubifs_tnc_lookup()' returns us the right direntry.
1972         */
1973        err = ubifs_tnc_lookup(c, key, node);
1974        if (err)
1975                return err;
1976
1977        if (le32_to_cpu(dent->cookie) == cookie)
1978                return 0;
1979
1980        /*
1981         * Unluckily, there are hash collisions and we have to iterate over
1982         * them look at each direntry with colliding name hash sequentially.
1983         */
1984        return do_lookup_dh(c, key, node, cookie);
1985}
1986
1987/**
1988 * correct_parent_keys - correct parent znodes' keys.
1989 * @c: UBIFS file-system description object
1990 * @znode: znode to correct parent znodes for
1991 *
1992 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1993 * zbranch changes, keys of parent znodes have to be corrected. This helper
1994 * function is called in such situations and corrects the keys if needed.
1995 */
1996static void correct_parent_keys(const struct ubifs_info *c,
1997                                struct ubifs_znode *znode)
1998{
1999        union ubifs_key *key, *key1;
2000
2001        ubifs_assert(c, znode->parent);
2002        ubifs_assert(c, znode->iip == 0);
2003
2004        key = &znode->zbranch[0].key;
2005        key1 = &znode->parent->zbranch[0].key;
2006
2007        while (keys_cmp(c, key, key1) < 0) {
2008                key_copy(c, key, key1);
2009                znode = znode->parent;
2010                znode->alt = 1;
2011                if (!znode->parent || znode->iip)
2012                        break;
2013                key1 = &znode->parent->zbranch[0].key;
2014        }
2015}
2016
2017/**
2018 * insert_zbranch - insert a zbranch into a znode.
2019 * @c: UBIFS file-system description object
2020 * @znode: znode into which to insert
2021 * @zbr: zbranch to insert
2022 * @n: slot number to insert to
2023 *
2024 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2025 * znode's array of zbranches and keeps zbranches consolidated, so when a new
2026 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2027 * slot, zbranches starting from @n have to be moved right.
2028 */
2029static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode,
2030                           const struct ubifs_zbranch *zbr, int n)
2031{
2032        int i;
2033
2034        ubifs_assert(c, ubifs_zn_dirty(znode));
2035
2036        if (znode->level) {
2037                for (i = znode->child_cnt; i > n; i--) {
2038                        znode->zbranch[i] = znode->zbranch[i - 1];
2039                        if (znode->zbranch[i].znode)
2040                                znode->zbranch[i].znode->iip = i;
2041                }
2042                if (zbr->znode)
2043                        zbr->znode->iip = n;
2044        } else
2045                for (i = znode->child_cnt; i > n; i--)
2046                        znode->zbranch[i] = znode->zbranch[i - 1];
2047
2048        znode->zbranch[n] = *zbr;
2049        znode->child_cnt += 1;
2050
2051        /*
2052         * After inserting at slot zero, the lower bound of the key range of
2053         * this znode may have changed. If this znode is subsequently split
2054         * then the upper bound of the key range may change, and furthermore
2055         * it could change to be lower than the original lower bound. If that
2056         * happens, then it will no longer be possible to find this znode in the
2057         * TNC using the key from the index node on flash. That is bad because
2058         * if it is not found, we will assume it is obsolete and may overwrite
2059         * it. Then if there is an unclean unmount, we will start using the
2060         * old index which will be broken.
2061         *
2062         * So we first mark znodes that have insertions at slot zero, and then
2063         * if they are split we add their lnum/offs to the old_idx tree.
2064         */
2065        if (n == 0)
2066                znode->alt = 1;
2067}
2068
2069/**
2070 * tnc_insert - insert a node into TNC.
2071 * @c: UBIFS file-system description object
2072 * @znode: znode to insert into
2073 * @zbr: branch to insert
2074 * @n: slot number to insert new zbranch to
2075 *
2076 * This function inserts a new node described by @zbr into znode @znode. If
2077 * znode does not have a free slot for new zbranch, it is split. Parent znodes
2078 * are splat as well if needed. Returns zero in case of success or a negative
2079 * error code in case of failure.
2080 */
2081static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2082                      struct ubifs_zbranch *zbr, int n)
2083{
2084        struct ubifs_znode *zn, *zi, *zp;
2085        int i, keep, move, appending = 0;
2086        union ubifs_key *key = &zbr->key, *key1;
2087
2088        ubifs_assert(c, n >= 0 && n <= c->fanout);
2089
2090        /* Implement naive insert for now */
2091again:
2092        zp = znode->parent;
2093        if (znode->child_cnt < c->fanout) {
2094                ubifs_assert(c, n != c->fanout);
2095                dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
2096
2097                insert_zbranch(c, znode, zbr, n);
2098
2099                /* Ensure parent's key is correct */
2100                if (n == 0 && zp && znode->iip == 0)
2101                        correct_parent_keys(c, znode);
2102
2103                return 0;
2104        }
2105
2106        /*
2107         * Unfortunately, @znode does not have more empty slots and we have to
2108         * split it.
2109         */
2110        dbg_tnck(key, "splitting level %d, key ", znode->level);
2111
2112        if (znode->alt)
2113                /*
2114                 * We can no longer be sure of finding this znode by key, so we
2115                 * record it in the old_idx tree.
2116                 */
2117                ins_clr_old_idx_znode(c, znode);
2118
2119        zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2120        if (!zn)
2121                return -ENOMEM;
2122        zn->parent = zp;
2123        zn->level = znode->level;
2124
2125        /* Decide where to split */
2126        if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2127                /* Try not to split consecutive data keys */
2128                if (n == c->fanout) {
2129                        key1 = &znode->zbranch[n - 1].key;
2130                        if (key_inum(c, key1) == key_inum(c, key) &&
2131                            key_type(c, key1) == UBIFS_DATA_KEY)
2132                                appending = 1;
2133                } else
2134                        goto check_split;
2135        } else if (appending && n != c->fanout) {
2136                /* Try not to split consecutive data keys */
2137                appending = 0;
2138check_split:
2139                if (n >= (c->fanout + 1) / 2) {
2140                        key1 = &znode->zbranch[0].key;
2141                        if (key_inum(c, key1) == key_inum(c, key) &&
2142                            key_type(c, key1) == UBIFS_DATA_KEY) {
2143                                key1 = &znode->zbranch[n].key;
2144                                if (key_inum(c, key1) != key_inum(c, key) ||
2145                                    key_type(c, key1) != UBIFS_DATA_KEY) {
2146                                        keep = n;
2147                                        move = c->fanout - keep;
2148                                        zi = znode;
2149                                        goto do_split;
2150                                }
2151                        }
2152                }
2153        }
2154
2155        if (appending) {
2156                keep = c->fanout;
2157                move = 0;
2158        } else {
2159                keep = (c->fanout + 1) / 2;
2160                move = c->fanout - keep;
2161        }
2162
2163        /*
2164         * Although we don't at present, we could look at the neighbors and see
2165         * if we can move some zbranches there.
2166         */
2167
2168        if (n < keep) {
2169                /* Insert into existing znode */
2170                zi = znode;
2171                move += 1;
2172                keep -= 1;
2173        } else {
2174                /* Insert into new znode */
2175                zi = zn;
2176                n -= keep;
2177                /* Re-parent */
2178                if (zn->level != 0)
2179                        zbr->znode->parent = zn;
2180        }
2181
2182do_split:
2183
2184        __set_bit(DIRTY_ZNODE, &zn->flags);
2185        atomic_long_inc(&c->dirty_zn_cnt);
2186
2187        zn->child_cnt = move;
2188        znode->child_cnt = keep;
2189
2190        dbg_tnc("moving %d, keeping %d", move, keep);
2191
2192        /* Move zbranch */
2193        for (i = 0; i < move; i++) {
2194                zn->zbranch[i] = znode->zbranch[keep + i];
2195                /* Re-parent */
2196                if (zn->level != 0)
2197                        if (zn->zbranch[i].znode) {
2198                                zn->zbranch[i].znode->parent = zn;
2199                                zn->zbranch[i].znode->iip = i;
2200                        }
2201        }
2202
2203        /* Insert new key and branch */
2204        dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2205
2206        insert_zbranch(c, zi, zbr, n);
2207
2208        /* Insert new znode (produced by spitting) into the parent */
2209        if (zp) {
2210                if (n == 0 && zi == znode && znode->iip == 0)
2211                        correct_parent_keys(c, znode);
2212
2213                /* Locate insertion point */
2214                n = znode->iip + 1;
2215
2216                /* Tail recursion */
2217                zbr->key = zn->zbranch[0].key;
2218                zbr->znode = zn;
2219                zbr->lnum = 0;
2220                zbr->offs = 0;
2221                zbr->len = 0;
2222                znode = zp;
2223
2224                goto again;
2225        }
2226
2227        /* We have to split root znode */
2228        dbg_tnc("creating new zroot at level %d", znode->level + 1);
2229
2230        zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2231        if (!zi)
2232                return -ENOMEM;
2233
2234        zi->child_cnt = 2;
2235        zi->level = znode->level + 1;
2236
2237        __set_bit(DIRTY_ZNODE, &zi->flags);
2238        atomic_long_inc(&c->dirty_zn_cnt);
2239
2240        zi->zbranch[0].key = znode->zbranch[0].key;
2241        zi->zbranch[0].znode = znode;
2242        zi->zbranch[0].lnum = c->zroot.lnum;
2243        zi->zbranch[0].offs = c->zroot.offs;
2244        zi->zbranch[0].len = c->zroot.len;
2245        zi->zbranch[1].key = zn->zbranch[0].key;
2246        zi->zbranch[1].znode = zn;
2247
2248        c->zroot.lnum = 0;
2249        c->zroot.offs = 0;
2250        c->zroot.len = 0;
2251        c->zroot.znode = zi;
2252
2253        zn->parent = zi;
2254        zn->iip = 1;
2255        znode->parent = zi;
2256        znode->iip = 0;
2257
2258        return 0;
2259}
2260
2261/**
2262 * ubifs_tnc_add - add a node to TNC.
2263 * @c: UBIFS file-system description object
2264 * @key: key to add
2265 * @lnum: LEB number of node
2266 * @offs: node offset
2267 * @len: node length
2268 * @hash: The hash over the node
2269 *
2270 * This function adds a node with key @key to TNC. The node may be new or it may
2271 * obsolete some existing one. Returns %0 on success or negative error code on
2272 * failure.
2273 */
2274int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2275                  int offs, int len, const u8 *hash)
2276{
2277        int found, n, err = 0;
2278        struct ubifs_znode *znode;
2279
2280        mutex_lock(&c->tnc_mutex);
2281        dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2282        found = lookup_level0_dirty(c, key, &znode, &n);
2283        if (!found) {
2284                struct ubifs_zbranch zbr;
2285
2286                zbr.znode = NULL;
2287                zbr.lnum = lnum;
2288                zbr.offs = offs;
2289                zbr.len = len;
2290                ubifs_copy_hash(c, hash, zbr.hash);
2291                key_copy(c, key, &zbr.key);
2292                err = tnc_insert(c, znode, &zbr, n + 1);
2293        } else if (found == 1) {
2294                struct ubifs_zbranch *zbr = &znode->zbranch[n];
2295
2296                lnc_free(zbr);
2297                err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2298                zbr->lnum = lnum;
2299                zbr->offs = offs;
2300                zbr->len = len;
2301                ubifs_copy_hash(c, hash, zbr->hash);
2302        } else
2303                err = found;
2304        if (!err)
2305                err = dbg_check_tnc(c, 0);
2306        mutex_unlock(&c->tnc_mutex);
2307
2308        return err;
2309}
2310
2311/**
2312 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2313 * @c: UBIFS file-system description object
2314 * @key: key to add
2315 * @old_lnum: LEB number of old node
2316 * @old_offs: old node offset
2317 * @lnum: LEB number of node
2318 * @offs: node offset
2319 * @len: node length
2320 *
2321 * This function replaces a node with key @key in the TNC only if the old node
2322 * is found.  This function is called by garbage collection when node are moved.
2323 * Returns %0 on success or negative error code on failure.
2324 */
2325int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2326                      int old_lnum, int old_offs, int lnum, int offs, int len)
2327{
2328        int found, n, err = 0;
2329        struct ubifs_znode *znode;
2330
2331        mutex_lock(&c->tnc_mutex);
2332        dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2333                 old_offs, lnum, offs, len);
2334        found = lookup_level0_dirty(c, key, &znode, &n);
2335        if (found < 0) {
2336                err = found;
2337                goto out_unlock;
2338        }
2339
2340        if (found == 1) {
2341                struct ubifs_zbranch *zbr = &znode->zbranch[n];
2342
2343                found = 0;
2344                if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2345                        lnc_free(zbr);
2346                        err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2347                        if (err)
2348                                goto out_unlock;
2349                        zbr->lnum = lnum;
2350                        zbr->offs = offs;
2351                        zbr->len = len;
2352                        found = 1;
2353                } else if (is_hash_key(c, key)) {
2354                        found = resolve_collision_directly(c, key, &znode, &n,
2355                                                           old_lnum, old_offs);
2356                        dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2357                                found, znode, n, old_lnum, old_offs);
2358                        if (found < 0) {
2359                                err = found;
2360                                goto out_unlock;
2361                        }
2362
2363                        if (found) {
2364                                /* Ensure the znode is dirtied */
2365                                if (znode->cnext || !ubifs_zn_dirty(znode)) {
2366                                        znode = dirty_cow_bottom_up(c, znode);
2367                                        if (IS_ERR(znode)) {
2368                                                err = PTR_ERR(znode);
2369                                                goto out_unlock;
2370                                        }
2371                                }
2372                                zbr = &znode->zbranch[n];
2373                                lnc_free(zbr);
2374                                err = ubifs_add_dirt(c, zbr->lnum,
2375                                                     zbr->len);
2376                                if (err)
2377                                        goto out_unlock;
2378                                zbr->lnum = lnum;
2379                                zbr->offs = offs;
2380                                zbr->len = len;
2381                        }
2382                }
2383        }
2384
2385        if (!found)
2386                err = ubifs_add_dirt(c, lnum, len);
2387
2388        if (!err)
2389                err = dbg_check_tnc(c, 0);
2390
2391out_unlock:
2392        mutex_unlock(&c->tnc_mutex);
2393        return err;
2394}
2395
2396/**
2397 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2398 * @c: UBIFS file-system description object
2399 * @key: key to add
2400 * @lnum: LEB number of node
2401 * @offs: node offset
2402 * @len: node length
2403 * @hash: The hash over the node
2404 * @nm: node name
2405 *
2406 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2407 * may have collisions, like directory entry keys.
2408 */
2409int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2410                     int lnum, int offs, int len, const u8 *hash,
2411                     const struct fscrypt_name *nm)
2412{
2413        int found, n, err = 0;
2414        struct ubifs_znode *znode;
2415
2416        mutex_lock(&c->tnc_mutex);
2417        dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
2418        found = lookup_level0_dirty(c, key, &znode, &n);
2419        if (found < 0) {
2420                err = found;
2421                goto out_unlock;
2422        }
2423
2424        if (found == 1) {
2425                if (c->replaying)
2426                        found = fallible_resolve_collision(c, key, &znode, &n,
2427                                                           nm, 1);
2428                else
2429                        found = resolve_collision(c, key, &znode, &n, nm);
2430                dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2431                if (found < 0) {
2432                        err = found;
2433                        goto out_unlock;
2434                }
2435
2436                /* Ensure the znode is dirtied */
2437                if (znode->cnext || !ubifs_zn_dirty(znode)) {
2438                        znode = dirty_cow_bottom_up(c, znode);
2439                        if (IS_ERR(znode)) {
2440                                err = PTR_ERR(znode);
2441                                goto out_unlock;
2442                        }
2443                }
2444
2445                if (found == 1) {
2446                        struct ubifs_zbranch *zbr = &znode->zbranch[n];
2447
2448                        lnc_free(zbr);
2449                        err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2450                        zbr->lnum = lnum;
2451                        zbr->offs = offs;
2452                        zbr->len = len;
2453                        ubifs_copy_hash(c, hash, zbr->hash);
2454                        goto out_unlock;
2455                }
2456        }
2457
2458        if (!found) {
2459                struct ubifs_zbranch zbr;
2460
2461                zbr.znode = NULL;
2462                zbr.lnum = lnum;
2463                zbr.offs = offs;
2464                zbr.len = len;
2465                ubifs_copy_hash(c, hash, zbr.hash);
2466                key_copy(c, key, &zbr.key);
2467                err = tnc_insert(c, znode, &zbr, n + 1);
2468                if (err)
2469                        goto out_unlock;
2470                if (c->replaying) {
2471                        /*
2472                         * We did not find it in the index so there may be a
2473                         * dangling branch still in the index. So we remove it
2474                         * by passing 'ubifs_tnc_remove_nm()' the same key but
2475                         * an unmatchable name.
2476                         */
2477                        struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
2478
2479                        err = dbg_check_tnc(c, 0);
2480                        mutex_unlock(&c->tnc_mutex);
2481                        if (err)
2482                                return err;
2483                        return ubifs_tnc_remove_nm(c, key, &noname);
2484                }
2485        }
2486
2487out_unlock:
2488        if (!err)
2489                err = dbg_check_tnc(c, 0);
2490        mutex_unlock(&c->tnc_mutex);
2491        return err;
2492}
2493
2494/**
2495 * tnc_delete - delete a znode form TNC.
2496 * @c: UBIFS file-system description object
2497 * @znode: znode to delete from
2498 * @n: zbranch slot number to delete
2499 *
2500 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2501 * case of success and a negative error code in case of failure.
2502 */
2503static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2504{
2505        struct ubifs_zbranch *zbr;
2506        struct ubifs_znode *zp;
2507        int i, err;
2508
2509        /* Delete without merge for now */
2510        ubifs_assert(c, znode->level == 0);
2511        ubifs_assert(c, n >= 0 && n < c->fanout);
2512        dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2513
2514        zbr = &znode->zbranch[n];
2515        lnc_free(zbr);
2516
2517        err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2518        if (err) {
2519                ubifs_dump_znode(c, znode);
2520                return err;
2521        }
2522
2523        /* We do not "gap" zbranch slots */
2524        for (i = n; i < znode->child_cnt - 1; i++)
2525                znode->zbranch[i] = znode->zbranch[i + 1];
2526        znode->child_cnt -= 1;
2527
2528        if (znode->child_cnt > 0)
2529                return 0;
2530
2531        /*
2532         * This was the last zbranch, we have to delete this znode from the
2533         * parent.
2534         */
2535
2536        do {
2537                ubifs_assert(c, !ubifs_zn_obsolete(znode));
2538                ubifs_assert(c, ubifs_zn_dirty(znode));
2539
2540                zp = znode->parent;
2541                n = znode->iip;
2542
2543                atomic_long_dec(&c->dirty_zn_cnt);
2544
2545                err = insert_old_idx_znode(c, znode);
2546                if (err)
2547                        return err;
2548
2549                if (znode->cnext) {
2550                        __set_bit(OBSOLETE_ZNODE, &znode->flags);
2551                        atomic_long_inc(&c->clean_zn_cnt);
2552                        atomic_long_inc(&ubifs_clean_zn_cnt);
2553                } else
2554                        kfree(znode);
2555                znode = zp;
2556        } while (znode->child_cnt == 1); /* while removing last child */
2557
2558        /* Remove from znode, entry n - 1 */
2559        znode->child_cnt -= 1;
2560        ubifs_assert(c, znode->level != 0);
2561        for (i = n; i < znode->child_cnt; i++) {
2562                znode->zbranch[i] = znode->zbranch[i + 1];
2563                if (znode->zbranch[i].znode)
2564                        znode->zbranch[i].znode->iip = i;
2565        }
2566
2567        /*
2568         * If this is the root and it has only 1 child then
2569         * collapse the tree.
2570         */
2571        if (!znode->parent) {
2572                while (znode->child_cnt == 1 && znode->level != 0) {
2573                        zp = znode;
2574                        zbr = &znode->zbranch[0];
2575                        znode = get_znode(c, znode, 0);
2576                        if (IS_ERR(znode))
2577                                return PTR_ERR(znode);
2578                        znode = dirty_cow_znode(c, zbr);
2579                        if (IS_ERR(znode))
2580                                return PTR_ERR(znode);
2581                        znode->parent = NULL;
2582                        znode->iip = 0;
2583                        if (c->zroot.len) {
2584                                err = insert_old_idx(c, c->zroot.lnum,
2585                                                     c->zroot.offs);
2586                                if (err)
2587                                        return err;
2588                        }
2589                        c->zroot.lnum = zbr->lnum;
2590                        c->zroot.offs = zbr->offs;
2591                        c->zroot.len = zbr->len;
2592                        c->zroot.znode = znode;
2593                        ubifs_assert(c, !ubifs_zn_obsolete(zp));
2594                        ubifs_assert(c, ubifs_zn_dirty(zp));
2595                        atomic_long_dec(&c->dirty_zn_cnt);
2596
2597                        if (zp->cnext) {
2598                                __set_bit(OBSOLETE_ZNODE, &zp->flags);
2599                                atomic_long_inc(&c->clean_zn_cnt);
2600                                atomic_long_inc(&ubifs_clean_zn_cnt);
2601                        } else
2602                                kfree(zp);
2603                }
2604        }
2605
2606        return 0;
2607}
2608
2609/**
2610 * ubifs_tnc_remove - remove an index entry of a node.
2611 * @c: UBIFS file-system description object
2612 * @key: key of node
2613 *
2614 * Returns %0 on success or negative error code on failure.
2615 */
2616int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2617{
2618        int found, n, err = 0;
2619        struct ubifs_znode *znode;
2620
2621        mutex_lock(&c->tnc_mutex);
2622        dbg_tnck(key, "key ");
2623        found = lookup_level0_dirty(c, key, &znode, &n);
2624        if (found < 0) {
2625                err = found;
2626                goto out_unlock;
2627        }
2628        if (found == 1)
2629                err = tnc_delete(c, znode, n);
2630        if (!err)
2631                err = dbg_check_tnc(c, 0);
2632
2633out_unlock:
2634        mutex_unlock(&c->tnc_mutex);
2635        return err;
2636}
2637
2638/**
2639 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2640 * @c: UBIFS file-system description object
2641 * @key: key of node
2642 * @nm: directory entry name
2643 *
2644 * Returns %0 on success or negative error code on failure.
2645 */
2646int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2647                        const struct fscrypt_name *nm)
2648{
2649        int n, err;
2650        struct ubifs_znode *znode;
2651
2652        mutex_lock(&c->tnc_mutex);
2653        dbg_tnck(key, "key ");
2654        err = lookup_level0_dirty(c, key, &znode, &n);
2655        if (err < 0)
2656                goto out_unlock;
2657
2658        if (err) {
2659                if (c->replaying)
2660                        err = fallible_resolve_collision(c, key, &znode, &n,
2661                                                         nm, 0);
2662                else
2663                        err = resolve_collision(c, key, &znode, &n, nm);
2664                dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2665                if (err < 0)
2666                        goto out_unlock;
2667                if (err) {
2668                        /* Ensure the znode is dirtied */
2669                        if (znode->cnext || !ubifs_zn_dirty(znode)) {
2670                                znode = dirty_cow_bottom_up(c, znode);
2671                                if (IS_ERR(znode)) {
2672                                        err = PTR_ERR(znode);
2673                                        goto out_unlock;
2674                                }
2675                        }
2676                        err = tnc_delete(c, znode, n);
2677                }
2678        }
2679
2680out_unlock:
2681        if (!err)
2682                err = dbg_check_tnc(c, 0);
2683        mutex_unlock(&c->tnc_mutex);
2684        return err;
2685}
2686
2687/**
2688 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2689 * @c: UBIFS file-system description object
2690 * @key: key of node
2691 * @cookie: node cookie for collision resolution
2692 *
2693 * Returns %0 on success or negative error code on failure.
2694 */
2695int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
2696                        uint32_t cookie)
2697{
2698        int n, err;
2699        struct ubifs_znode *znode;
2700        struct ubifs_dent_node *dent;
2701        struct ubifs_zbranch *zbr;
2702
2703        if (!c->double_hash)
2704                return -EOPNOTSUPP;
2705
2706        mutex_lock(&c->tnc_mutex);
2707        err = lookup_level0_dirty(c, key, &znode, &n);
2708        if (err <= 0)
2709                goto out_unlock;
2710
2711        zbr = &znode->zbranch[n];
2712        dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
2713        if (!dent) {
2714                err = -ENOMEM;
2715                goto out_unlock;
2716        }
2717
2718        err = tnc_read_hashed_node(c, zbr, dent);
2719        if (err)
2720                goto out_free;
2721
2722        /* If the cookie does not match, we're facing a hash collision. */
2723        if (le32_to_cpu(dent->cookie) != cookie) {
2724                union ubifs_key start_key;
2725
2726                lowest_dent_key(c, &start_key, key_inum(c, key));
2727
2728                err = ubifs_lookup_level0(c, &start_key, &znode, &n);
2729                if (unlikely(err < 0))
2730                        goto out_free;
2731
2732                err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
2733                if (err)
2734                        goto out_free;
2735        }
2736
2737        if (znode->cnext || !ubifs_zn_dirty(znode)) {
2738                znode = dirty_cow_bottom_up(c, znode);
2739                if (IS_ERR(znode)) {
2740                        err = PTR_ERR(znode);
2741                        goto out_free;
2742                }
2743        }
2744        err = tnc_delete(c, znode, n);
2745
2746out_free:
2747        kfree(dent);
2748out_unlock:
2749        if (!err)
2750                err = dbg_check_tnc(c, 0);
2751        mutex_unlock(&c->tnc_mutex);
2752        return err;
2753}
2754
2755/**
2756 * key_in_range - determine if a key falls within a range of keys.
2757 * @c: UBIFS file-system description object
2758 * @key: key to check
2759 * @from_key: lowest key in range
2760 * @to_key: highest key in range
2761 *
2762 * This function returns %1 if the key is in range and %0 otherwise.
2763 */
2764static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2765                        union ubifs_key *from_key, union ubifs_key *to_key)
2766{
2767        if (keys_cmp(c, key, from_key) < 0)
2768                return 0;
2769        if (keys_cmp(c, key, to_key) > 0)
2770                return 0;
2771        return 1;
2772}
2773
2774/**
2775 * ubifs_tnc_remove_range - remove index entries in range.
2776 * @c: UBIFS file-system description object
2777 * @from_key: lowest key to remove
2778 * @to_key: highest key to remove
2779 *
2780 * This function removes index entries starting at @from_key and ending at
2781 * @to_key.  This function returns zero in case of success and a negative error
2782 * code in case of failure.
2783 */
2784int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2785                           union ubifs_key *to_key)
2786{
2787        int i, n, k, err = 0;
2788        struct ubifs_znode *znode;
2789        union ubifs_key *key;
2790
2791        mutex_lock(&c->tnc_mutex);
2792        while (1) {
2793                /* Find first level 0 znode that contains keys to remove */
2794                err = ubifs_lookup_level0(c, from_key, &znode, &n);
2795                if (err < 0)
2796                        goto out_unlock;
2797
2798                if (err)
2799                        key = from_key;
2800                else {
2801                        err = tnc_next(c, &znode, &n);
2802                        if (err == -ENOENT) {
2803                                err = 0;
2804                                goto out_unlock;
2805                        }
2806                        if (err < 0)
2807                                goto out_unlock;
2808                        key = &znode->zbranch[n].key;
2809                        if (!key_in_range(c, key, from_key, to_key)) {
2810                                err = 0;
2811                                goto out_unlock;
2812                        }
2813                }
2814
2815                /* Ensure the znode is dirtied */
2816                if (znode->cnext || !ubifs_zn_dirty(znode)) {
2817                        znode = dirty_cow_bottom_up(c, znode);
2818                        if (IS_ERR(znode)) {
2819                                err = PTR_ERR(znode);
2820                                goto out_unlock;
2821                        }
2822                }
2823
2824                /* Remove all keys in range except the first */
2825                for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2826                        key = &znode->zbranch[i].key;
2827                        if (!key_in_range(c, key, from_key, to_key))
2828                                break;
2829                        lnc_free(&znode->zbranch[i]);
2830                        err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2831                                             znode->zbranch[i].len);
2832                        if (err) {
2833                                ubifs_dump_znode(c, znode);
2834                                goto out_unlock;
2835                        }
2836                        dbg_tnck(key, "removing key ");
2837                }
2838                if (k) {
2839                        for (i = n + 1 + k; i < znode->child_cnt; i++)
2840                                znode->zbranch[i - k] = znode->zbranch[i];
2841                        znode->child_cnt -= k;
2842                }
2843
2844                /* Now delete the first */
2845                err = tnc_delete(c, znode, n);
2846                if (err)
2847                        goto out_unlock;
2848        }
2849
2850out_unlock:
2851        if (!err)
2852                err = dbg_check_tnc(c, 0);
2853        mutex_unlock(&c->tnc_mutex);
2854        return err;
2855}
2856
2857/**
2858 * ubifs_tnc_remove_ino - remove an inode from TNC.
2859 * @c: UBIFS file-system description object
2860 * @inum: inode number to remove
2861 *
2862 * This function remove inode @inum and all the extended attributes associated
2863 * with the anode from TNC and returns zero in case of success or a negative
2864 * error code in case of failure.
2865 */
2866int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2867{
2868        union ubifs_key key1, key2;
2869        struct ubifs_dent_node *xent, *pxent = NULL;
2870        struct fscrypt_name nm = {0};
2871
2872        dbg_tnc("ino %lu", (unsigned long)inum);
2873
2874        /*
2875         * Walk all extended attribute entries and remove them together with
2876         * corresponding extended attribute inodes.
2877         */
2878        lowest_xent_key(c, &key1, inum);
2879        while (1) {
2880                ino_t xattr_inum;
2881                int err;
2882
2883                xent = ubifs_tnc_next_ent(c, &key1, &nm);
2884                if (IS_ERR(xent)) {
2885                        err = PTR_ERR(xent);
2886                        if (err == -ENOENT)
2887                                break;
2888                        return err;
2889                }
2890
2891                xattr_inum = le64_to_cpu(xent->inum);
2892                dbg_tnc("xent '%s', ino %lu", xent->name,
2893                        (unsigned long)xattr_inum);
2894
2895                ubifs_evict_xattr_inode(c, xattr_inum);
2896
2897                fname_name(&nm) = xent->name;
2898                fname_len(&nm) = le16_to_cpu(xent->nlen);
2899                err = ubifs_tnc_remove_nm(c, &key1, &nm);
2900                if (err) {
2901                        kfree(xent);
2902                        return err;
2903                }
2904
2905                lowest_ino_key(c, &key1, xattr_inum);
2906                highest_ino_key(c, &key2, xattr_inum);
2907                err = ubifs_tnc_remove_range(c, &key1, &key2);
2908                if (err) {
2909                        kfree(xent);
2910                        return err;
2911                }
2912
2913                kfree(pxent);
2914                pxent = xent;
2915                key_read(c, &xent->key, &key1);
2916        }
2917
2918        kfree(pxent);
2919        lowest_ino_key(c, &key1, inum);
2920        highest_ino_key(c, &key2, inum);
2921
2922        return ubifs_tnc_remove_range(c, &key1, &key2);
2923}
2924
2925/**
2926 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2927 * @c: UBIFS file-system description object
2928 * @key: key of last entry
2929 * @nm: name of last entry found or %NULL
2930 *
2931 * This function finds and reads the next directory or extended attribute entry
2932 * after the given key (@key) if there is one. @nm is used to resolve
2933 * collisions.
2934 *
2935 * If the name of the current entry is not known and only the key is known,
2936 * @nm->name has to be %NULL. In this case the semantics of this function is a
2937 * little bit different and it returns the entry corresponding to this key, not
2938 * the next one. If the key was not found, the closest "right" entry is
2939 * returned.
2940 *
2941 * If the fist entry has to be found, @key has to contain the lowest possible
2942 * key value for this inode and @name has to be %NULL.
2943 *
2944 * This function returns the found directory or extended attribute entry node
2945 * in case of success, %-ENOENT is returned if no entry was found, and a
2946 * negative error code is returned in case of failure.
2947 */
2948struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2949                                           union ubifs_key *key,
2950                                           const struct fscrypt_name *nm)
2951{
2952        int n, err, type = key_type(c, key);
2953        struct ubifs_znode *znode;
2954        struct ubifs_dent_node *dent;
2955        struct ubifs_zbranch *zbr;
2956        union ubifs_key *dkey;
2957
2958        dbg_tnck(key, "key ");
2959        ubifs_assert(c, is_hash_key(c, key));
2960
2961        mutex_lock(&c->tnc_mutex);
2962        err = ubifs_lookup_level0(c, key, &znode, &n);
2963        if (unlikely(err < 0))
2964                goto out_unlock;
2965
2966        if (fname_len(nm) > 0) {
2967                if (err) {
2968                        /* Handle collisions */
2969                        if (c->replaying)
2970                                err = fallible_resolve_collision(c, key, &znode, &n,
2971                                                         nm, 0);
2972                        else
2973                                err = resolve_collision(c, key, &znode, &n, nm);
2974                        dbg_tnc("rc returned %d, znode %p, n %d",
2975                                err, znode, n);
2976                        if (unlikely(err < 0))
2977                                goto out_unlock;
2978                }
2979
2980                /* Now find next entry */
2981                err = tnc_next(c, &znode, &n);
2982                if (unlikely(err))
2983                        goto out_unlock;
2984        } else {
2985                /*
2986                 * The full name of the entry was not given, in which case the
2987                 * behavior of this function is a little different and it
2988                 * returns current entry, not the next one.
2989                 */
2990                if (!err) {
2991                        /*
2992                         * However, the given key does not exist in the TNC
2993                         * tree and @znode/@n variables contain the closest
2994                         * "preceding" element. Switch to the next one.
2995                         */
2996                        err = tnc_next(c, &znode, &n);
2997                        if (err)
2998                                goto out_unlock;
2999                }
3000        }
3001
3002        zbr = &znode->zbranch[n];
3003        dent = kmalloc(zbr->len, GFP_NOFS);
3004        if (unlikely(!dent)) {
3005                err = -ENOMEM;
3006                goto out_unlock;
3007        }
3008
3009        /*
3010         * The above 'tnc_next()' call could lead us to the next inode, check
3011         * this.
3012         */
3013        dkey = &zbr->key;
3014        if (key_inum(c, dkey) != key_inum(c, key) ||
3015            key_type(c, dkey) != type) {
3016                err = -ENOENT;
3017                goto out_free;
3018        }
3019
3020        err = tnc_read_hashed_node(c, zbr, dent);
3021        if (unlikely(err))
3022                goto out_free;
3023
3024        mutex_unlock(&c->tnc_mutex);
3025        return dent;
3026
3027out_free:
3028        kfree(dent);
3029out_unlock:
3030        mutex_unlock(&c->tnc_mutex);
3031        return ERR_PTR(err);
3032}
3033
3034/**
3035 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3036 * @c: UBIFS file-system description object
3037 *
3038 * Destroy left-over obsolete znodes from a failed commit.
3039 */
3040static void tnc_destroy_cnext(struct ubifs_info *c)
3041{
3042        struct ubifs_znode *cnext;
3043
3044        if (!c->cnext)
3045                return;
3046        ubifs_assert(c, c->cmt_state == COMMIT_BROKEN);
3047        cnext = c->cnext;
3048        do {
3049                struct ubifs_znode *znode = cnext;
3050
3051                cnext = cnext->cnext;
3052                if (ubifs_zn_obsolete(znode))
3053                        kfree(znode);
3054        } while (cnext && cnext != c->cnext);
3055}
3056
3057/**
3058 * ubifs_tnc_close - close TNC subsystem and free all related resources.
3059 * @c: UBIFS file-system description object
3060 */
3061void ubifs_tnc_close(struct ubifs_info *c)
3062{
3063        tnc_destroy_cnext(c);
3064        if (c->zroot.znode) {
3065                long n, freed;
3066
3067                n = atomic_long_read(&c->clean_zn_cnt);
3068                freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode);
3069                ubifs_assert(c, freed == n);
3070                atomic_long_sub(n, &ubifs_clean_zn_cnt);
3071        }
3072        kfree(c->gap_lebs);
3073        kfree(c->ilebs);
3074        destroy_old_idx(c);
3075}
3076
3077/**
3078 * left_znode - get the znode to the left.
3079 * @c: UBIFS file-system description object
3080 * @znode: znode
3081 *
3082 * This function returns a pointer to the znode to the left of @znode or NULL if
3083 * there is not one. A negative error code is returned on failure.
3084 */
3085static struct ubifs_znode *left_znode(struct ubifs_info *c,
3086                                      struct ubifs_znode *znode)
3087{
3088        int level = znode->level;
3089
3090        while (1) {
3091                int n = znode->iip - 1;
3092
3093                /* Go up until we can go left */
3094                znode = znode->parent;
3095                if (!znode)
3096                        return NULL;
3097                if (n >= 0) {
3098                        /* Now go down the rightmost branch to 'level' */
3099                        znode = get_znode(c, znode, n);
3100                        if (IS_ERR(znode))
3101                                return znode;
3102                        while (znode->level != level) {
3103                                n = znode->child_cnt - 1;
3104                                znode = get_znode(c, znode, n);
3105                                if (IS_ERR(znode))
3106                                        return znode;
3107                        }
3108                        break;
3109                }
3110        }
3111        return znode;
3112}
3113
3114/**
3115 * right_znode - get the znode to the right.
3116 * @c: UBIFS file-system description object
3117 * @znode: znode
3118 *
3119 * This function returns a pointer to the znode to the right of @znode or NULL
3120 * if there is not one. A negative error code is returned on failure.
3121 */
3122static struct ubifs_znode *right_znode(struct ubifs_info *c,
3123                                       struct ubifs_znode *znode)
3124{
3125        int level = znode->level;
3126
3127        while (1) {
3128                int n = znode->iip + 1;
3129
3130                /* Go up until we can go right */
3131                znode = znode->parent;
3132                if (!znode)
3133                        return NULL;
3134                if (n < znode->child_cnt) {
3135                        /* Now go down the leftmost branch to 'level' */
3136                        znode = get_znode(c, znode, n);
3137                        if (IS_ERR(znode))
3138                                return znode;
3139                        while (znode->level != level) {
3140                                znode = get_znode(c, znode, 0);
3141                                if (IS_ERR(znode))
3142                                        return znode;
3143                        }
3144                        break;
3145                }
3146        }
3147        return znode;
3148}
3149
3150/**
3151 * lookup_znode - find a particular indexing node from TNC.
3152 * @c: UBIFS file-system description object
3153 * @key: index node key to lookup
3154 * @level: index node level
3155 * @lnum: index node LEB number
3156 * @offs: index node offset
3157 *
3158 * This function searches an indexing node by its first key @key and its
3159 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3160 * nodes it traverses to TNC. This function is called for indexing nodes which
3161 * were found on the media by scanning, for example when garbage-collecting or
3162 * when doing in-the-gaps commit. This means that the indexing node which is
3163 * looked for does not have to have exactly the same leftmost key @key, because
3164 * the leftmost key may have been changed, in which case TNC will contain a
3165 * dirty znode which still refers the same @lnum:@offs. This function is clever
3166 * enough to recognize such indexing nodes.
3167 *
3168 * Note, if a znode was deleted or changed too much, then this function will
3169 * not find it. For situations like this UBIFS has the old index RB-tree
3170 * (indexed by @lnum:@offs).
3171 *
3172 * This function returns a pointer to the znode found or %NULL if it is not
3173 * found. A negative error code is returned on failure.
3174 */
3175static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3176                                        union ubifs_key *key, int level,
3177                                        int lnum, int offs)
3178{
3179        struct ubifs_znode *znode, *zn;
3180        int n, nn;
3181
3182        ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
3183
3184        /*
3185         * The arguments have probably been read off flash, so don't assume
3186         * they are valid.
3187         */
3188        if (level < 0)
3189                return ERR_PTR(-EINVAL);
3190
3191        /* Get the root znode */
3192        znode = c->zroot.znode;
3193        if (!znode) {
3194                znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3195                if (IS_ERR(znode))
3196                        return znode;
3197        }
3198        /* Check if it is the one we are looking for */
3199        if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3200                return znode;
3201        /* Descend to the parent level i.e. (level + 1) */
3202        if (level >= znode->level)
3203                return NULL;
3204        while (1) {
3205                ubifs_search_zbranch(c, znode, key, &n);
3206                if (n < 0) {
3207                        /*
3208                         * We reached a znode where the leftmost key is greater
3209                         * than the key we are searching for. This is the same
3210                         * situation as the one described in a huge comment at
3211                         * the end of the 'ubifs_lookup_level0()' function. And
3212                         * for exactly the same reasons we have to try to look
3213                         * left before giving up.
3214                         */
3215                        znode = left_znode(c, znode);
3216                        if (!znode)
3217                                return NULL;
3218                        if (IS_ERR(znode))
3219                                return znode;
3220                        ubifs_search_zbranch(c, znode, key, &n);
3221                        ubifs_assert(c, n >= 0);
3222                }
3223                if (znode->level == level + 1)
3224                        break;
3225                znode = get_znode(c, znode, n);
3226                if (IS_ERR(znode))
3227                        return znode;
3228        }
3229        /* Check if the child is the one we are looking for */
3230        if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3231                return get_znode(c, znode, n);
3232        /* If the key is unique, there is nowhere else to look */
3233        if (!is_hash_key(c, key))
3234                return NULL;
3235        /*
3236         * The key is not unique and so may be also in the znodes to either
3237         * side.
3238         */
3239        zn = znode;
3240        nn = n;
3241        /* Look left */
3242        while (1) {
3243                /* Move one branch to the left */
3244                if (n)
3245                        n -= 1;
3246                else {
3247                        znode = left_znode(c, znode);
3248                        if (!znode)
3249                                break;
3250                        if (IS_ERR(znode))
3251                                return znode;
3252                        n = znode->child_cnt - 1;
3253                }
3254                /* Check it */
3255                if (znode->zbranch[n].lnum == lnum &&
3256                    znode->zbranch[n].offs == offs)
3257                        return get_znode(c, znode, n);
3258                /* Stop if the key is less than the one we are looking for */
3259                if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3260                        break;
3261        }
3262        /* Back to the middle */
3263        znode = zn;
3264        n = nn;
3265        /* Look right */
3266        while (1) {
3267                /* Move one branch to the right */
3268                if (++n >= znode->child_cnt) {
3269                        znode = right_znode(c, znode);
3270                        if (!znode)
3271                                break;
3272                        if (IS_ERR(znode))
3273                                return znode;
3274                        n = 0;
3275                }
3276                /* Check it */
3277                if (znode->zbranch[n].lnum == lnum &&
3278                    znode->zbranch[n].offs == offs)
3279                        return get_znode(c, znode, n);
3280                /* Stop if the key is greater than the one we are looking for */
3281                if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3282                        break;
3283        }
3284        return NULL;
3285}
3286
3287/**
3288 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3289 * @c: UBIFS file-system description object
3290 * @key: key of index node
3291 * @level: index node level
3292 * @lnum: LEB number of index node
3293 * @offs: offset of index node
3294 *
3295 * This function returns %0 if the index node is not referred to in the TNC, %1
3296 * if the index node is referred to in the TNC and the corresponding znode is
3297 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3298 * znode is clean, and a negative error code in case of failure.
3299 *
3300 * Note, the @key argument has to be the key of the first child. Also note,
3301 * this function relies on the fact that 0:0 is never a valid LEB number and
3302 * offset for a main-area node.
3303 */
3304int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3305                       int lnum, int offs)
3306{
3307        struct ubifs_znode *znode;
3308
3309        znode = lookup_znode(c, key, level, lnum, offs);
3310        if (!znode)
3311                return 0;
3312        if (IS_ERR(znode))
3313                return PTR_ERR(znode);
3314
3315        return ubifs_zn_dirty(znode) ? 1 : 2;
3316}
3317
3318/**
3319 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3320 * @c: UBIFS file-system description object
3321 * @key: node key
3322 * @lnum: node LEB number
3323 * @offs: node offset
3324 *
3325 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3326 * not, and a negative error code in case of failure.
3327 *
3328 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3329 * and offset for a main-area node.
3330 */
3331static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3332                               int lnum, int offs)
3333{
3334        struct ubifs_zbranch *zbr;
3335        struct ubifs_znode *znode, *zn;
3336        int n, found, err, nn;
3337        const int unique = !is_hash_key(c, key);
3338
3339        found = ubifs_lookup_level0(c, key, &znode, &n);
3340        if (found < 0)
3341                return found; /* Error code */
3342        if (!found)
3343                return 0;
3344        zbr = &znode->zbranch[n];
3345        if (lnum == zbr->lnum && offs == zbr->offs)
3346                return 1; /* Found it */
3347        if (unique)
3348                return 0;
3349        /*
3350         * Because the key is not unique, we have to look left
3351         * and right as well
3352         */
3353        zn = znode;
3354        nn = n;
3355        /* Look left */
3356        while (1) {
3357                err = tnc_prev(c, &znode, &n);
3358                if (err == -ENOENT)
3359                        break;
3360                if (err)
3361                        return err;
3362                if (keys_cmp(c, key, &znode->zbranch[n].key))
3363                        break;
3364                zbr = &znode->zbranch[n];
3365                if (lnum == zbr->lnum && offs == zbr->offs)
3366                        return 1; /* Found it */
3367        }
3368        /* Look right */
3369        znode = zn;
3370        n = nn;
3371        while (1) {
3372                err = tnc_next(c, &znode, &n);
3373                if (err) {
3374                        if (err == -ENOENT)
3375                                return 0;
3376                        return err;
3377                }
3378                if (keys_cmp(c, key, &znode->zbranch[n].key))
3379                        break;
3380                zbr = &znode->zbranch[n];
3381                if (lnum == zbr->lnum && offs == zbr->offs)
3382                        return 1; /* Found it */
3383        }
3384        return 0;
3385}
3386
3387/**
3388 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3389 * @c: UBIFS file-system description object
3390 * @key: node key
3391 * @level: index node level (if it is an index node)
3392 * @lnum: node LEB number
3393 * @offs: node offset
3394 * @is_idx: non-zero if the node is an index node
3395 *
3396 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3397 * negative error code in case of failure. For index nodes, @key has to be the
3398 * key of the first child. An index node is considered to be in the TNC only if
3399 * the corresponding znode is clean or has not been loaded.
3400 */
3401int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3402                       int lnum, int offs, int is_idx)
3403{
3404        int err;
3405
3406        mutex_lock(&c->tnc_mutex);
3407        if (is_idx) {
3408                err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3409                if (err < 0)
3410                        goto out_unlock;
3411                if (err == 1)
3412                        /* The index node was found but it was dirty */
3413                        err = 0;
3414                else if (err == 2)
3415                        /* The index node was found and it was clean */
3416                        err = 1;
3417                else
3418                        BUG_ON(err != 0);
3419        } else
3420                err = is_leaf_node_in_tnc(c, key, lnum, offs);
3421
3422out_unlock:
3423        mutex_unlock(&c->tnc_mutex);
3424        return err;
3425}
3426
3427/**
3428 * ubifs_dirty_idx_node - dirty an index node.
3429 * @c: UBIFS file-system description object
3430 * @key: index node key
3431 * @level: index node level
3432 * @lnum: index node LEB number
3433 * @offs: index node offset
3434 *
3435 * This function loads and dirties an index node so that it can be garbage
3436 * collected. The @key argument has to be the key of the first child. This
3437 * function relies on the fact that 0:0 is never a valid LEB number and offset
3438 * for a main-area node. Returns %0 on success and a negative error code on
3439 * failure.
3440 */
3441int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3442                         int lnum, int offs)
3443{
3444        struct ubifs_znode *znode;
3445        int err = 0;
3446
3447        mutex_lock(&c->tnc_mutex);
3448        znode = lookup_znode(c, key, level, lnum, offs);
3449        if (!znode)
3450                goto out_unlock;
3451        if (IS_ERR(znode)) {
3452                err = PTR_ERR(znode);
3453                goto out_unlock;
3454        }
3455        znode = dirty_cow_bottom_up(c, znode);
3456        if (IS_ERR(znode)) {
3457                err = PTR_ERR(znode);
3458                goto out_unlock;
3459        }
3460
3461out_unlock:
3462        mutex_unlock(&c->tnc_mutex);
3463        return err;
3464}
3465
3466/**
3467 * dbg_check_inode_size - check if inode size is correct.
3468 * @c: UBIFS file-system description object
3469 * @inum: inode number
3470 * @size: inode size
3471 *
3472 * This function makes sure that the inode size (@size) is correct and it does
3473 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3474 * if it has a data page beyond @size, and other negative error code in case of
3475 * other errors.
3476 */
3477int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3478                         loff_t size)
3479{
3480        int err, n;
3481        union ubifs_key from_key, to_key, *key;
3482        struct ubifs_znode *znode;
3483        unsigned int block;
3484
3485        if (!S_ISREG(inode->i_mode))
3486                return 0;
3487        if (!dbg_is_chk_gen(c))
3488                return 0;
3489
3490        block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3491        data_key_init(c, &from_key, inode->i_ino, block);
3492        highest_data_key(c, &to_key, inode->i_ino);
3493
3494        mutex_lock(&c->tnc_mutex);
3495        err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3496        if (err < 0)
3497                goto out_unlock;
3498
3499        if (err) {
3500                key = &from_key;
3501                goto out_dump;
3502        }
3503
3504        err = tnc_next(c, &znode, &n);
3505        if (err == -ENOENT) {
3506                err = 0;
3507                goto out_unlock;
3508        }
3509        if (err < 0)
3510                goto out_unlock;
3511
3512        ubifs_assert(c, err == 0);
3513        key = &znode->zbranch[n].key;
3514        if (!key_in_range(c, key, &from_key, &to_key))
3515                goto out_unlock;
3516
3517out_dump:
3518        block = key_block(c, key);
3519        ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3520                  (unsigned long)inode->i_ino, size,
3521                  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3522        mutex_unlock(&c->tnc_mutex);
3523        ubifs_dump_inode(c, inode);
3524        dump_stack();
3525        return -EINVAL;
3526
3527out_unlock:
3528        mutex_unlock(&c->tnc_mutex);
3529        return err;
3530}
3531