linux/fs/ubifs/tnc_commit.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/* This file implements TNC functions for committing */
  12
  13#include <linux/random.h>
  14#include "ubifs.h"
  15
  16/**
  17 * make_idx_node - make an index node for fill-the-gaps method of TNC commit.
  18 * @c: UBIFS file-system description object
  19 * @idx: buffer in which to place new index node
  20 * @znode: znode from which to make new index node
  21 * @lnum: LEB number where new index node will be written
  22 * @offs: offset where new index node will be written
  23 * @len: length of new index node
  24 */
  25static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx,
  26                         struct ubifs_znode *znode, int lnum, int offs, int len)
  27{
  28        struct ubifs_znode *zp;
  29        u8 hash[UBIFS_HASH_ARR_SZ];
  30        int i, err;
  31
  32        /* Make index node */
  33        idx->ch.node_type = UBIFS_IDX_NODE;
  34        idx->child_cnt = cpu_to_le16(znode->child_cnt);
  35        idx->level = cpu_to_le16(znode->level);
  36        for (i = 0; i < znode->child_cnt; i++) {
  37                struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
  38                struct ubifs_zbranch *zbr = &znode->zbranch[i];
  39
  40                key_write_idx(c, &zbr->key, &br->key);
  41                br->lnum = cpu_to_le32(zbr->lnum);
  42                br->offs = cpu_to_le32(zbr->offs);
  43                br->len = cpu_to_le32(zbr->len);
  44                ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br));
  45                if (!zbr->lnum || !zbr->len) {
  46                        ubifs_err(c, "bad ref in znode");
  47                        ubifs_dump_znode(c, znode);
  48                        if (zbr->znode)
  49                                ubifs_dump_znode(c, zbr->znode);
  50
  51                        return -EINVAL;
  52                }
  53        }
  54        ubifs_prepare_node(c, idx, len, 0);
  55        ubifs_node_calc_hash(c, idx, hash);
  56
  57        znode->lnum = lnum;
  58        znode->offs = offs;
  59        znode->len = len;
  60
  61        err = insert_old_idx_znode(c, znode);
  62
  63        /* Update the parent */
  64        zp = znode->parent;
  65        if (zp) {
  66                struct ubifs_zbranch *zbr;
  67
  68                zbr = &zp->zbranch[znode->iip];
  69                zbr->lnum = lnum;
  70                zbr->offs = offs;
  71                zbr->len = len;
  72                ubifs_copy_hash(c, hash, zbr->hash);
  73        } else {
  74                c->zroot.lnum = lnum;
  75                c->zroot.offs = offs;
  76                c->zroot.len = len;
  77                ubifs_copy_hash(c, hash, c->zroot.hash);
  78        }
  79        c->calc_idx_sz += ALIGN(len, 8);
  80
  81        atomic_long_dec(&c->dirty_zn_cnt);
  82
  83        ubifs_assert(c, ubifs_zn_dirty(znode));
  84        ubifs_assert(c, ubifs_zn_cow(znode));
  85
  86        /*
  87         * Note, unlike 'write_index()' we do not add memory barriers here
  88         * because this function is called with @c->tnc_mutex locked.
  89         */
  90        __clear_bit(DIRTY_ZNODE, &znode->flags);
  91        __clear_bit(COW_ZNODE, &znode->flags);
  92
  93        return err;
  94}
  95
  96/**
  97 * fill_gap - make index nodes in gaps in dirty index LEBs.
  98 * @c: UBIFS file-system description object
  99 * @lnum: LEB number that gap appears in
 100 * @gap_start: offset of start of gap
 101 * @gap_end: offset of end of gap
 102 * @dirt: adds dirty space to this
 103 *
 104 * This function returns the number of index nodes written into the gap.
 105 */
 106static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end,
 107                    int *dirt)
 108{
 109        int len, gap_remains, gap_pos, written, pad_len;
 110
 111        ubifs_assert(c, (gap_start & 7) == 0);
 112        ubifs_assert(c, (gap_end & 7) == 0);
 113        ubifs_assert(c, gap_end >= gap_start);
 114
 115        gap_remains = gap_end - gap_start;
 116        if (!gap_remains)
 117                return 0;
 118        gap_pos = gap_start;
 119        written = 0;
 120        while (c->enext) {
 121                len = ubifs_idx_node_sz(c, c->enext->child_cnt);
 122                if (len < gap_remains) {
 123                        struct ubifs_znode *znode = c->enext;
 124                        const int alen = ALIGN(len, 8);
 125                        int err;
 126
 127                        ubifs_assert(c, alen <= gap_remains);
 128                        err = make_idx_node(c, c->ileb_buf + gap_pos, znode,
 129                                            lnum, gap_pos, len);
 130                        if (err)
 131                                return err;
 132                        gap_remains -= alen;
 133                        gap_pos += alen;
 134                        c->enext = znode->cnext;
 135                        if (c->enext == c->cnext)
 136                                c->enext = NULL;
 137                        written += 1;
 138                } else
 139                        break;
 140        }
 141        if (gap_end == c->leb_size) {
 142                c->ileb_len = ALIGN(gap_pos, c->min_io_size);
 143                /* Pad to end of min_io_size */
 144                pad_len = c->ileb_len - gap_pos;
 145        } else
 146                /* Pad to end of gap */
 147                pad_len = gap_remains;
 148        dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d",
 149               lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len);
 150        ubifs_pad(c, c->ileb_buf + gap_pos, pad_len);
 151        *dirt += pad_len;
 152        return written;
 153}
 154
 155/**
 156 * find_old_idx - find an index node obsoleted since the last commit start.
 157 * @c: UBIFS file-system description object
 158 * @lnum: LEB number of obsoleted index node
 159 * @offs: offset of obsoleted index node
 160 *
 161 * Returns %1 if found and %0 otherwise.
 162 */
 163static int find_old_idx(struct ubifs_info *c, int lnum, int offs)
 164{
 165        struct ubifs_old_idx *o;
 166        struct rb_node *p;
 167
 168        p = c->old_idx.rb_node;
 169        while (p) {
 170                o = rb_entry(p, struct ubifs_old_idx, rb);
 171                if (lnum < o->lnum)
 172                        p = p->rb_left;
 173                else if (lnum > o->lnum)
 174                        p = p->rb_right;
 175                else if (offs < o->offs)
 176                        p = p->rb_left;
 177                else if (offs > o->offs)
 178                        p = p->rb_right;
 179                else
 180                        return 1;
 181        }
 182        return 0;
 183}
 184
 185/**
 186 * is_idx_node_in_use - determine if an index node can be overwritten.
 187 * @c: UBIFS file-system description object
 188 * @key: key of index node
 189 * @level: index node level
 190 * @lnum: LEB number of index node
 191 * @offs: offset of index node
 192 *
 193 * If @key / @lnum / @offs identify an index node that was not part of the old
 194 * index, then this function returns %0 (obsolete).  Else if the index node was
 195 * part of the old index but is now dirty %1 is returned, else if it is clean %2
 196 * is returned. A negative error code is returned on failure.
 197 */
 198static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key,
 199                              int level, int lnum, int offs)
 200{
 201        int ret;
 202
 203        ret = is_idx_node_in_tnc(c, key, level, lnum, offs);
 204        if (ret < 0)
 205                return ret; /* Error code */
 206        if (ret == 0)
 207                if (find_old_idx(c, lnum, offs))
 208                        return 1;
 209        return ret;
 210}
 211
 212/**
 213 * layout_leb_in_gaps - layout index nodes using in-the-gaps method.
 214 * @c: UBIFS file-system description object
 215 * @p: return LEB number here
 216 *
 217 * This function lays out new index nodes for dirty znodes using in-the-gaps
 218 * method of TNC commit.
 219 * This function merely puts the next znode into the next gap, making no attempt
 220 * to try to maximise the number of znodes that fit.
 221 * This function returns the number of index nodes written into the gaps, or a
 222 * negative error code on failure.
 223 */
 224static int layout_leb_in_gaps(struct ubifs_info *c, int *p)
 225{
 226        struct ubifs_scan_leb *sleb;
 227        struct ubifs_scan_node *snod;
 228        int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written;
 229
 230        tot_written = 0;
 231        /* Get an index LEB with lots of obsolete index nodes */
 232        lnum = ubifs_find_dirty_idx_leb(c);
 233        if (lnum < 0)
 234                /*
 235                 * There also may be dirt in the index head that could be
 236                 * filled, however we do not check there at present.
 237                 */
 238                return lnum; /* Error code */
 239        *p = lnum;
 240        dbg_gc("LEB %d", lnum);
 241        /*
 242         * Scan the index LEB.  We use the generic scan for this even though
 243         * it is more comprehensive and less efficient than is needed for this
 244         * purpose.
 245         */
 246        sleb = ubifs_scan(c, lnum, 0, c->ileb_buf, 0);
 247        c->ileb_len = 0;
 248        if (IS_ERR(sleb))
 249                return PTR_ERR(sleb);
 250        gap_start = 0;
 251        list_for_each_entry(snod, &sleb->nodes, list) {
 252                struct ubifs_idx_node *idx;
 253                int in_use, level;
 254
 255                ubifs_assert(c, snod->type == UBIFS_IDX_NODE);
 256                idx = snod->node;
 257                key_read(c, ubifs_idx_key(c, idx), &snod->key);
 258                level = le16_to_cpu(idx->level);
 259                /* Determine if the index node is in use (not obsolete) */
 260                in_use = is_idx_node_in_use(c, &snod->key, level, lnum,
 261                                            snod->offs);
 262                if (in_use < 0) {
 263                        ubifs_scan_destroy(sleb);
 264                        return in_use; /* Error code */
 265                }
 266                if (in_use) {
 267                        if (in_use == 1)
 268                                dirt += ALIGN(snod->len, 8);
 269                        /*
 270                         * The obsolete index nodes form gaps that can be
 271                         * overwritten.  This gap has ended because we have
 272                         * found an index node that is still in use
 273                         * i.e. not obsolete
 274                         */
 275                        gap_end = snod->offs;
 276                        /* Try to fill gap */
 277                        written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
 278                        if (written < 0) {
 279                                ubifs_scan_destroy(sleb);
 280                                return written; /* Error code */
 281                        }
 282                        tot_written += written;
 283                        gap_start = ALIGN(snod->offs + snod->len, 8);
 284                }
 285        }
 286        ubifs_scan_destroy(sleb);
 287        c->ileb_len = c->leb_size;
 288        gap_end = c->leb_size;
 289        /* Try to fill gap */
 290        written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
 291        if (written < 0)
 292                return written; /* Error code */
 293        tot_written += written;
 294        if (tot_written == 0) {
 295                struct ubifs_lprops lp;
 296
 297                dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
 298                err = ubifs_read_one_lp(c, lnum, &lp);
 299                if (err)
 300                        return err;
 301                if (lp.free == c->leb_size) {
 302                        /*
 303                         * We must have snatched this LEB from the idx_gc list
 304                         * so we need to correct the free and dirty space.
 305                         */
 306                        err = ubifs_change_one_lp(c, lnum,
 307                                                  c->leb_size - c->ileb_len,
 308                                                  dirt, 0, 0, 0);
 309                        if (err)
 310                                return err;
 311                }
 312                return 0;
 313        }
 314        err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt,
 315                                  0, 0, 0);
 316        if (err)
 317                return err;
 318        err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len);
 319        if (err)
 320                return err;
 321        dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
 322        return tot_written;
 323}
 324
 325/**
 326 * get_leb_cnt - calculate the number of empty LEBs needed to commit.
 327 * @c: UBIFS file-system description object
 328 * @cnt: number of znodes to commit
 329 *
 330 * This function returns the number of empty LEBs needed to commit @cnt znodes
 331 * to the current index head.  The number is not exact and may be more than
 332 * needed.
 333 */
 334static int get_leb_cnt(struct ubifs_info *c, int cnt)
 335{
 336        int d;
 337
 338        /* Assume maximum index node size (i.e. overestimate space needed) */
 339        cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz;
 340        if (cnt < 0)
 341                cnt = 0;
 342        d = c->leb_size / c->max_idx_node_sz;
 343        return DIV_ROUND_UP(cnt, d);
 344}
 345
 346/**
 347 * layout_in_gaps - in-the-gaps method of committing TNC.
 348 * @c: UBIFS file-system description object
 349 * @cnt: number of dirty znodes to commit.
 350 *
 351 * This function lays out new index nodes for dirty znodes using in-the-gaps
 352 * method of TNC commit.
 353 *
 354 * This function returns %0 on success and a negative error code on failure.
 355 */
 356static int layout_in_gaps(struct ubifs_info *c, int cnt)
 357{
 358        int err, leb_needed_cnt, written, *p;
 359
 360        dbg_gc("%d znodes to write", cnt);
 361
 362        c->gap_lebs = kmalloc_array(c->lst.idx_lebs + 1, sizeof(int),
 363                                    GFP_NOFS);
 364        if (!c->gap_lebs)
 365                return -ENOMEM;
 366
 367        p = c->gap_lebs;
 368        do {
 369                ubifs_assert(c, p < c->gap_lebs + c->lst.idx_lebs);
 370                written = layout_leb_in_gaps(c, p);
 371                if (written < 0) {
 372                        err = written;
 373                        if (err != -ENOSPC) {
 374                                kfree(c->gap_lebs);
 375                                c->gap_lebs = NULL;
 376                                return err;
 377                        }
 378                        if (!dbg_is_chk_index(c)) {
 379                                /*
 380                                 * Do not print scary warnings if the debugging
 381                                 * option which forces in-the-gaps is enabled.
 382                                 */
 383                                ubifs_warn(c, "out of space");
 384                                ubifs_dump_budg(c, &c->bi);
 385                                ubifs_dump_lprops(c);
 386                        }
 387                        /* Try to commit anyway */
 388                        break;
 389                }
 390                p++;
 391                cnt -= written;
 392                leb_needed_cnt = get_leb_cnt(c, cnt);
 393                dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt,
 394                       leb_needed_cnt, c->ileb_cnt);
 395        } while (leb_needed_cnt > c->ileb_cnt);
 396
 397        *p = -1;
 398        return 0;
 399}
 400
 401/**
 402 * layout_in_empty_space - layout index nodes in empty space.
 403 * @c: UBIFS file-system description object
 404 *
 405 * This function lays out new index nodes for dirty znodes using empty LEBs.
 406 *
 407 * This function returns %0 on success and a negative error code on failure.
 408 */
 409static int layout_in_empty_space(struct ubifs_info *c)
 410{
 411        struct ubifs_znode *znode, *cnext, *zp;
 412        int lnum, offs, len, next_len, buf_len, buf_offs, used, avail;
 413        int wlen, blen, err;
 414
 415        cnext = c->enext;
 416        if (!cnext)
 417                return 0;
 418
 419        lnum = c->ihead_lnum;
 420        buf_offs = c->ihead_offs;
 421
 422        buf_len = ubifs_idx_node_sz(c, c->fanout);
 423        buf_len = ALIGN(buf_len, c->min_io_size);
 424        used = 0;
 425        avail = buf_len;
 426
 427        /* Ensure there is enough room for first write */
 428        next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
 429        if (buf_offs + next_len > c->leb_size)
 430                lnum = -1;
 431
 432        while (1) {
 433                znode = cnext;
 434
 435                len = ubifs_idx_node_sz(c, znode->child_cnt);
 436
 437                /* Determine the index node position */
 438                if (lnum == -1) {
 439                        if (c->ileb_nxt >= c->ileb_cnt) {
 440                                ubifs_err(c, "out of space");
 441                                return -ENOSPC;
 442                        }
 443                        lnum = c->ilebs[c->ileb_nxt++];
 444                        buf_offs = 0;
 445                        used = 0;
 446                        avail = buf_len;
 447                }
 448
 449                offs = buf_offs + used;
 450
 451                znode->lnum = lnum;
 452                znode->offs = offs;
 453                znode->len = len;
 454
 455                /* Update the parent */
 456                zp = znode->parent;
 457                if (zp) {
 458                        struct ubifs_zbranch *zbr;
 459                        int i;
 460
 461                        i = znode->iip;
 462                        zbr = &zp->zbranch[i];
 463                        zbr->lnum = lnum;
 464                        zbr->offs = offs;
 465                        zbr->len = len;
 466                } else {
 467                        c->zroot.lnum = lnum;
 468                        c->zroot.offs = offs;
 469                        c->zroot.len = len;
 470                }
 471                c->calc_idx_sz += ALIGN(len, 8);
 472
 473                /*
 474                 * Once lprops is updated, we can decrease the dirty znode count
 475                 * but it is easier to just do it here.
 476                 */
 477                atomic_long_dec(&c->dirty_zn_cnt);
 478
 479                /*
 480                 * Calculate the next index node length to see if there is
 481                 * enough room for it
 482                 */
 483                cnext = znode->cnext;
 484                if (cnext == c->cnext)
 485                        next_len = 0;
 486                else
 487                        next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
 488
 489                /* Update buffer positions */
 490                wlen = used + len;
 491                used += ALIGN(len, 8);
 492                avail -= ALIGN(len, 8);
 493
 494                if (next_len != 0 &&
 495                    buf_offs + used + next_len <= c->leb_size &&
 496                    avail > 0)
 497                        continue;
 498
 499                if (avail <= 0 && next_len &&
 500                    buf_offs + used + next_len <= c->leb_size)
 501                        blen = buf_len;
 502                else
 503                        blen = ALIGN(wlen, c->min_io_size);
 504
 505                /* The buffer is full or there are no more znodes to do */
 506                buf_offs += blen;
 507                if (next_len) {
 508                        if (buf_offs + next_len > c->leb_size) {
 509                                err = ubifs_update_one_lp(c, lnum,
 510                                        c->leb_size - buf_offs, blen - used,
 511                                        0, 0);
 512                                if (err)
 513                                        return err;
 514                                lnum = -1;
 515                        }
 516                        used -= blen;
 517                        if (used < 0)
 518                                used = 0;
 519                        avail = buf_len - used;
 520                        continue;
 521                }
 522                err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs,
 523                                          blen - used, 0, 0);
 524                if (err)
 525                        return err;
 526                break;
 527        }
 528
 529        c->dbg->new_ihead_lnum = lnum;
 530        c->dbg->new_ihead_offs = buf_offs;
 531
 532        return 0;
 533}
 534
 535/**
 536 * layout_commit - determine positions of index nodes to commit.
 537 * @c: UBIFS file-system description object
 538 * @no_space: indicates that insufficient empty LEBs were allocated
 539 * @cnt: number of znodes to commit
 540 *
 541 * Calculate and update the positions of index nodes to commit.  If there were
 542 * an insufficient number of empty LEBs allocated, then index nodes are placed
 543 * into the gaps created by obsolete index nodes in non-empty index LEBs.  For
 544 * this purpose, an obsolete index node is one that was not in the index as at
 545 * the end of the last commit.  To write "in-the-gaps" requires that those index
 546 * LEBs are updated atomically in-place.
 547 */
 548static int layout_commit(struct ubifs_info *c, int no_space, int cnt)
 549{
 550        int err;
 551
 552        if (no_space) {
 553                err = layout_in_gaps(c, cnt);
 554                if (err)
 555                        return err;
 556        }
 557        err = layout_in_empty_space(c);
 558        return err;
 559}
 560
 561/**
 562 * find_first_dirty - find first dirty znode.
 563 * @znode: znode to begin searching from
 564 */
 565static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode)
 566{
 567        int i, cont;
 568
 569        if (!znode)
 570                return NULL;
 571
 572        while (1) {
 573                if (znode->level == 0) {
 574                        if (ubifs_zn_dirty(znode))
 575                                return znode;
 576                        return NULL;
 577                }
 578                cont = 0;
 579                for (i = 0; i < znode->child_cnt; i++) {
 580                        struct ubifs_zbranch *zbr = &znode->zbranch[i];
 581
 582                        if (zbr->znode && ubifs_zn_dirty(zbr->znode)) {
 583                                znode = zbr->znode;
 584                                cont = 1;
 585                                break;
 586                        }
 587                }
 588                if (!cont) {
 589                        if (ubifs_zn_dirty(znode))
 590                                return znode;
 591                        return NULL;
 592                }
 593        }
 594}
 595
 596/**
 597 * find_next_dirty - find next dirty znode.
 598 * @znode: znode to begin searching from
 599 */
 600static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode)
 601{
 602        int n = znode->iip + 1;
 603
 604        znode = znode->parent;
 605        if (!znode)
 606                return NULL;
 607        for (; n < znode->child_cnt; n++) {
 608                struct ubifs_zbranch *zbr = &znode->zbranch[n];
 609
 610                if (zbr->znode && ubifs_zn_dirty(zbr->znode))
 611                        return find_first_dirty(zbr->znode);
 612        }
 613        return znode;
 614}
 615
 616/**
 617 * get_znodes_to_commit - create list of dirty znodes to commit.
 618 * @c: UBIFS file-system description object
 619 *
 620 * This function returns the number of znodes to commit.
 621 */
 622static int get_znodes_to_commit(struct ubifs_info *c)
 623{
 624        struct ubifs_znode *znode, *cnext;
 625        int cnt = 0;
 626
 627        c->cnext = find_first_dirty(c->zroot.znode);
 628        znode = c->enext = c->cnext;
 629        if (!znode) {
 630                dbg_cmt("no znodes to commit");
 631                return 0;
 632        }
 633        cnt += 1;
 634        while (1) {
 635                ubifs_assert(c, !ubifs_zn_cow(znode));
 636                __set_bit(COW_ZNODE, &znode->flags);
 637                znode->alt = 0;
 638                cnext = find_next_dirty(znode);
 639                if (!cnext) {
 640                        znode->cnext = c->cnext;
 641                        break;
 642                }
 643                znode->cparent = znode->parent;
 644                znode->ciip = znode->iip;
 645                znode->cnext = cnext;
 646                znode = cnext;
 647                cnt += 1;
 648        }
 649        dbg_cmt("committing %d znodes", cnt);
 650        ubifs_assert(c, cnt == atomic_long_read(&c->dirty_zn_cnt));
 651        return cnt;
 652}
 653
 654/**
 655 * alloc_idx_lebs - allocate empty LEBs to be used to commit.
 656 * @c: UBIFS file-system description object
 657 * @cnt: number of znodes to commit
 658 *
 659 * This function returns %-ENOSPC if it cannot allocate a sufficient number of
 660 * empty LEBs.  %0 is returned on success, otherwise a negative error code
 661 * is returned.
 662 */
 663static int alloc_idx_lebs(struct ubifs_info *c, int cnt)
 664{
 665        int i, leb_cnt, lnum;
 666
 667        c->ileb_cnt = 0;
 668        c->ileb_nxt = 0;
 669        leb_cnt = get_leb_cnt(c, cnt);
 670        dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt);
 671        if (!leb_cnt)
 672                return 0;
 673        c->ilebs = kmalloc_array(leb_cnt, sizeof(int), GFP_NOFS);
 674        if (!c->ilebs)
 675                return -ENOMEM;
 676        for (i = 0; i < leb_cnt; i++) {
 677                lnum = ubifs_find_free_leb_for_idx(c);
 678                if (lnum < 0)
 679                        return lnum;
 680                c->ilebs[c->ileb_cnt++] = lnum;
 681                dbg_cmt("LEB %d", lnum);
 682        }
 683        if (dbg_is_chk_index(c) && !(prandom_u32() & 7))
 684                return -ENOSPC;
 685        return 0;
 686}
 687
 688/**
 689 * free_unused_idx_lebs - free unused LEBs that were allocated for the commit.
 690 * @c: UBIFS file-system description object
 691 *
 692 * It is possible that we allocate more empty LEBs for the commit than we need.
 693 * This functions frees the surplus.
 694 *
 695 * This function returns %0 on success and a negative error code on failure.
 696 */
 697static int free_unused_idx_lebs(struct ubifs_info *c)
 698{
 699        int i, err = 0, lnum, er;
 700
 701        for (i = c->ileb_nxt; i < c->ileb_cnt; i++) {
 702                lnum = c->ilebs[i];
 703                dbg_cmt("LEB %d", lnum);
 704                er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
 705                                         LPROPS_INDEX | LPROPS_TAKEN, 0);
 706                if (!err)
 707                        err = er;
 708        }
 709        return err;
 710}
 711
 712/**
 713 * free_idx_lebs - free unused LEBs after commit end.
 714 * @c: UBIFS file-system description object
 715 *
 716 * This function returns %0 on success and a negative error code on failure.
 717 */
 718static int free_idx_lebs(struct ubifs_info *c)
 719{
 720        int err;
 721
 722        err = free_unused_idx_lebs(c);
 723        kfree(c->ilebs);
 724        c->ilebs = NULL;
 725        return err;
 726}
 727
 728/**
 729 * ubifs_tnc_start_commit - start TNC commit.
 730 * @c: UBIFS file-system description object
 731 * @zroot: new index root position is returned here
 732 *
 733 * This function prepares the list of indexing nodes to commit and lays out
 734 * their positions on flash. If there is not enough free space it uses the
 735 * in-gap commit method. Returns zero in case of success and a negative error
 736 * code in case of failure.
 737 */
 738int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot)
 739{
 740        int err = 0, cnt;
 741
 742        mutex_lock(&c->tnc_mutex);
 743        err = dbg_check_tnc(c, 1);
 744        if (err)
 745                goto out;
 746        cnt = get_znodes_to_commit(c);
 747        if (cnt != 0) {
 748                int no_space = 0;
 749
 750                err = alloc_idx_lebs(c, cnt);
 751                if (err == -ENOSPC)
 752                        no_space = 1;
 753                else if (err)
 754                        goto out_free;
 755                err = layout_commit(c, no_space, cnt);
 756                if (err)
 757                        goto out_free;
 758                ubifs_assert(c, atomic_long_read(&c->dirty_zn_cnt) == 0);
 759                err = free_unused_idx_lebs(c);
 760                if (err)
 761                        goto out;
 762        }
 763        destroy_old_idx(c);
 764        memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch));
 765
 766        err = ubifs_save_dirty_idx_lnums(c);
 767        if (err)
 768                goto out;
 769
 770        spin_lock(&c->space_lock);
 771        /*
 772         * Although we have not finished committing yet, update size of the
 773         * committed index ('c->bi.old_idx_sz') and zero out the index growth
 774         * budget. It is OK to do this now, because we've reserved all the
 775         * space which is needed to commit the index, and it is save for the
 776         * budgeting subsystem to assume the index is already committed,
 777         * even though it is not.
 778         */
 779        ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
 780        c->bi.old_idx_sz = c->calc_idx_sz;
 781        c->bi.uncommitted_idx = 0;
 782        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 783        spin_unlock(&c->space_lock);
 784        mutex_unlock(&c->tnc_mutex);
 785
 786        dbg_cmt("number of index LEBs %d", c->lst.idx_lebs);
 787        dbg_cmt("size of index %llu", c->calc_idx_sz);
 788        return err;
 789
 790out_free:
 791        free_idx_lebs(c);
 792out:
 793        mutex_unlock(&c->tnc_mutex);
 794        return err;
 795}
 796
 797/**
 798 * write_index - write index nodes.
 799 * @c: UBIFS file-system description object
 800 *
 801 * This function writes the index nodes whose positions were laid out in the
 802 * layout_in_empty_space function.
 803 */
 804static int write_index(struct ubifs_info *c)
 805{
 806        struct ubifs_idx_node *idx;
 807        struct ubifs_znode *znode, *cnext;
 808        int i, lnum, offs, len, next_len, buf_len, buf_offs, used;
 809        int avail, wlen, err, lnum_pos = 0, blen, nxt_offs;
 810
 811        cnext = c->enext;
 812        if (!cnext)
 813                return 0;
 814
 815        /*
 816         * Always write index nodes to the index head so that index nodes and
 817         * other types of nodes are never mixed in the same erase block.
 818         */
 819        lnum = c->ihead_lnum;
 820        buf_offs = c->ihead_offs;
 821
 822        /* Allocate commit buffer */
 823        buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size);
 824        used = 0;
 825        avail = buf_len;
 826
 827        /* Ensure there is enough room for first write */
 828        next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
 829        if (buf_offs + next_len > c->leb_size) {
 830                err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0,
 831                                          LPROPS_TAKEN);
 832                if (err)
 833                        return err;
 834                lnum = -1;
 835        }
 836
 837        while (1) {
 838                u8 hash[UBIFS_HASH_ARR_SZ];
 839
 840                cond_resched();
 841
 842                znode = cnext;
 843                idx = c->cbuf + used;
 844
 845                /* Make index node */
 846                idx->ch.node_type = UBIFS_IDX_NODE;
 847                idx->child_cnt = cpu_to_le16(znode->child_cnt);
 848                idx->level = cpu_to_le16(znode->level);
 849                for (i = 0; i < znode->child_cnt; i++) {
 850                        struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
 851                        struct ubifs_zbranch *zbr = &znode->zbranch[i];
 852
 853                        key_write_idx(c, &zbr->key, &br->key);
 854                        br->lnum = cpu_to_le32(zbr->lnum);
 855                        br->offs = cpu_to_le32(zbr->offs);
 856                        br->len = cpu_to_le32(zbr->len);
 857                        ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br));
 858                        if (!zbr->lnum || !zbr->len) {
 859                                ubifs_err(c, "bad ref in znode");
 860                                ubifs_dump_znode(c, znode);
 861                                if (zbr->znode)
 862                                        ubifs_dump_znode(c, zbr->znode);
 863
 864                                return -EINVAL;
 865                        }
 866                }
 867                len = ubifs_idx_node_sz(c, znode->child_cnt);
 868                ubifs_prepare_node(c, idx, len, 0);
 869                ubifs_node_calc_hash(c, idx, hash);
 870
 871                mutex_lock(&c->tnc_mutex);
 872
 873                if (znode->cparent)
 874                        ubifs_copy_hash(c, hash,
 875                                        znode->cparent->zbranch[znode->ciip].hash);
 876
 877                if (znode->parent) {
 878                        if (!ubifs_zn_obsolete(znode))
 879                                ubifs_copy_hash(c, hash,
 880                                        znode->parent->zbranch[znode->iip].hash);
 881                } else {
 882                        ubifs_copy_hash(c, hash, c->zroot.hash);
 883                }
 884
 885                mutex_unlock(&c->tnc_mutex);
 886
 887                /* Determine the index node position */
 888                if (lnum == -1) {
 889                        lnum = c->ilebs[lnum_pos++];
 890                        buf_offs = 0;
 891                        used = 0;
 892                        avail = buf_len;
 893                }
 894                offs = buf_offs + used;
 895
 896                if (lnum != znode->lnum || offs != znode->offs ||
 897                    len != znode->len) {
 898                        ubifs_err(c, "inconsistent znode posn");
 899                        return -EINVAL;
 900                }
 901
 902                /* Grab some stuff from znode while we still can */
 903                cnext = znode->cnext;
 904
 905                ubifs_assert(c, ubifs_zn_dirty(znode));
 906                ubifs_assert(c, ubifs_zn_cow(znode));
 907
 908                /*
 909                 * It is important that other threads should see %DIRTY_ZNODE
 910                 * flag cleared before %COW_ZNODE. Specifically, it matters in
 911                 * the 'dirty_cow_znode()' function. This is the reason for the
 912                 * first barrier. Also, we want the bit changes to be seen to
 913                 * other threads ASAP, to avoid unnecesarry copying, which is
 914                 * the reason for the second barrier.
 915                 */
 916                clear_bit(DIRTY_ZNODE, &znode->flags);
 917                smp_mb__before_atomic();
 918                clear_bit(COW_ZNODE, &znode->flags);
 919                smp_mb__after_atomic();
 920
 921                /*
 922                 * We have marked the znode as clean but have not updated the
 923                 * @c->clean_zn_cnt counter. If this znode becomes dirty again
 924                 * before 'free_obsolete_znodes()' is called, then
 925                 * @c->clean_zn_cnt will be decremented before it gets
 926                 * incremented (resulting in 2 decrements for the same znode).
 927                 * This means that @c->clean_zn_cnt may become negative for a
 928                 * while.
 929                 *
 930                 * Q: why we cannot increment @c->clean_zn_cnt?
 931                 * A: because we do not have the @c->tnc_mutex locked, and the
 932                 *    following code would be racy and buggy:
 933                 *
 934                 *    if (!ubifs_zn_obsolete(znode)) {
 935                 *            atomic_long_inc(&c->clean_zn_cnt);
 936                 *            atomic_long_inc(&ubifs_clean_zn_cnt);
 937                 *    }
 938                 *
 939                 *    Thus, we just delay the @c->clean_zn_cnt update until we
 940                 *    have the mutex locked.
 941                 */
 942
 943                /* Do not access znode from this point on */
 944
 945                /* Update buffer positions */
 946                wlen = used + len;
 947                used += ALIGN(len, 8);
 948                avail -= ALIGN(len, 8);
 949
 950                /*
 951                 * Calculate the next index node length to see if there is
 952                 * enough room for it
 953                 */
 954                if (cnext == c->cnext)
 955                        next_len = 0;
 956                else
 957                        next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
 958
 959                nxt_offs = buf_offs + used + next_len;
 960                if (next_len && nxt_offs <= c->leb_size) {
 961                        if (avail > 0)
 962                                continue;
 963                        else
 964                                blen = buf_len;
 965                } else {
 966                        wlen = ALIGN(wlen, 8);
 967                        blen = ALIGN(wlen, c->min_io_size);
 968                        ubifs_pad(c, c->cbuf + wlen, blen - wlen);
 969                }
 970
 971                /* The buffer is full or there are no more znodes to do */
 972                err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen);
 973                if (err)
 974                        return err;
 975                buf_offs += blen;
 976                if (next_len) {
 977                        if (nxt_offs > c->leb_size) {
 978                                err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0,
 979                                                          0, LPROPS_TAKEN);
 980                                if (err)
 981                                        return err;
 982                                lnum = -1;
 983                        }
 984                        used -= blen;
 985                        if (used < 0)
 986                                used = 0;
 987                        avail = buf_len - used;
 988                        memmove(c->cbuf, c->cbuf + blen, used);
 989                        continue;
 990                }
 991                break;
 992        }
 993
 994        if (lnum != c->dbg->new_ihead_lnum ||
 995            buf_offs != c->dbg->new_ihead_offs) {
 996                ubifs_err(c, "inconsistent ihead");
 997                return -EINVAL;
 998        }
 999
1000        c->ihead_lnum = lnum;
1001        c->ihead_offs = buf_offs;
1002
1003        return 0;
1004}
1005
1006/**
1007 * free_obsolete_znodes - free obsolete znodes.
1008 * @c: UBIFS file-system description object
1009 *
1010 * At the end of commit end, obsolete znodes are freed.
1011 */
1012static void free_obsolete_znodes(struct ubifs_info *c)
1013{
1014        struct ubifs_znode *znode, *cnext;
1015
1016        cnext = c->cnext;
1017        do {
1018                znode = cnext;
1019                cnext = znode->cnext;
1020                if (ubifs_zn_obsolete(znode))
1021                        kfree(znode);
1022                else {
1023                        znode->cnext = NULL;
1024                        atomic_long_inc(&c->clean_zn_cnt);
1025                        atomic_long_inc(&ubifs_clean_zn_cnt);
1026                }
1027        } while (cnext != c->cnext);
1028}
1029
1030/**
1031 * return_gap_lebs - return LEBs used by the in-gap commit method.
1032 * @c: UBIFS file-system description object
1033 *
1034 * This function clears the "taken" flag for the LEBs which were used by the
1035 * "commit in-the-gaps" method.
1036 */
1037static int return_gap_lebs(struct ubifs_info *c)
1038{
1039        int *p, err;
1040
1041        if (!c->gap_lebs)
1042                return 0;
1043
1044        dbg_cmt("");
1045        for (p = c->gap_lebs; *p != -1; p++) {
1046                err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0,
1047                                          LPROPS_TAKEN, 0);
1048                if (err)
1049                        return err;
1050        }
1051
1052        kfree(c->gap_lebs);
1053        c->gap_lebs = NULL;
1054        return 0;
1055}
1056
1057/**
1058 * ubifs_tnc_end_commit - update the TNC for commit end.
1059 * @c: UBIFS file-system description object
1060 *
1061 * Write the dirty znodes.
1062 */
1063int ubifs_tnc_end_commit(struct ubifs_info *c)
1064{
1065        int err;
1066
1067        if (!c->cnext)
1068                return 0;
1069
1070        err = return_gap_lebs(c);
1071        if (err)
1072                return err;
1073
1074        err = write_index(c);
1075        if (err)
1076                return err;
1077
1078        mutex_lock(&c->tnc_mutex);
1079
1080        dbg_cmt("TNC height is %d", c->zroot.znode->level + 1);
1081
1082        free_obsolete_znodes(c);
1083
1084        c->cnext = NULL;
1085        kfree(c->ilebs);
1086        c->ilebs = NULL;
1087
1088        mutex_unlock(&c->tnc_mutex);
1089
1090        return 0;
1091}
1092