linux/fs/xfs/libxfs/xfs_ialloc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_sb.h"
  14#include "xfs_mount.h"
  15#include "xfs_inode.h"
  16#include "xfs_btree.h"
  17#include "xfs_ialloc.h"
  18#include "xfs_ialloc_btree.h"
  19#include "xfs_alloc.h"
  20#include "xfs_errortag.h"
  21#include "xfs_error.h"
  22#include "xfs_bmap.h"
  23#include "xfs_trans.h"
  24#include "xfs_buf_item.h"
  25#include "xfs_icreate_item.h"
  26#include "xfs_icache.h"
  27#include "xfs_trace.h"
  28#include "xfs_log.h"
  29#include "xfs_rmap.h"
  30
  31/*
  32 * Lookup a record by ino in the btree given by cur.
  33 */
  34int                                     /* error */
  35xfs_inobt_lookup(
  36        struct xfs_btree_cur    *cur,   /* btree cursor */
  37        xfs_agino_t             ino,    /* starting inode of chunk */
  38        xfs_lookup_t            dir,    /* <=, >=, == */
  39        int                     *stat)  /* success/failure */
  40{
  41        cur->bc_rec.i.ir_startino = ino;
  42        cur->bc_rec.i.ir_holemask = 0;
  43        cur->bc_rec.i.ir_count = 0;
  44        cur->bc_rec.i.ir_freecount = 0;
  45        cur->bc_rec.i.ir_free = 0;
  46        return xfs_btree_lookup(cur, dir, stat);
  47}
  48
  49/*
  50 * Update the record referred to by cur to the value given.
  51 * This either works (return 0) or gets an EFSCORRUPTED error.
  52 */
  53STATIC int                              /* error */
  54xfs_inobt_update(
  55        struct xfs_btree_cur    *cur,   /* btree cursor */
  56        xfs_inobt_rec_incore_t  *irec)  /* btree record */
  57{
  58        union xfs_btree_rec     rec;
  59
  60        rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
  61        if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
  62                rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
  63                rec.inobt.ir_u.sp.ir_count = irec->ir_count;
  64                rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
  65        } else {
  66                /* ir_holemask/ir_count not supported on-disk */
  67                rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
  68        }
  69        rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
  70        return xfs_btree_update(cur, &rec);
  71}
  72
  73/* Convert on-disk btree record to incore inobt record. */
  74void
  75xfs_inobt_btrec_to_irec(
  76        struct xfs_mount                *mp,
  77        union xfs_btree_rec             *rec,
  78        struct xfs_inobt_rec_incore     *irec)
  79{
  80        irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
  81        if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
  82                irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
  83                irec->ir_count = rec->inobt.ir_u.sp.ir_count;
  84                irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
  85        } else {
  86                /*
  87                 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
  88                 * values for full inode chunks.
  89                 */
  90                irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
  91                irec->ir_count = XFS_INODES_PER_CHUNK;
  92                irec->ir_freecount =
  93                                be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
  94        }
  95        irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
  96}
  97
  98/*
  99 * Get the data from the pointed-to record.
 100 */
 101int
 102xfs_inobt_get_rec(
 103        struct xfs_btree_cur            *cur,
 104        struct xfs_inobt_rec_incore     *irec,
 105        int                             *stat)
 106{
 107        struct xfs_mount                *mp = cur->bc_mp;
 108        xfs_agnumber_t                  agno = cur->bc_private.a.agno;
 109        union xfs_btree_rec             *rec;
 110        int                             error;
 111        uint64_t                        realfree;
 112
 113        error = xfs_btree_get_rec(cur, &rec, stat);
 114        if (error || *stat == 0)
 115                return error;
 116
 117        xfs_inobt_btrec_to_irec(mp, rec, irec);
 118
 119        if (!xfs_verify_agino(mp, agno, irec->ir_startino))
 120                goto out_bad_rec;
 121        if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
 122            irec->ir_count > XFS_INODES_PER_CHUNK)
 123                goto out_bad_rec;
 124        if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
 125                goto out_bad_rec;
 126
 127        /* if there are no holes, return the first available offset */
 128        if (!xfs_inobt_issparse(irec->ir_holemask))
 129                realfree = irec->ir_free;
 130        else
 131                realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
 132        if (hweight64(realfree) != irec->ir_freecount)
 133                goto out_bad_rec;
 134
 135        return 0;
 136
 137out_bad_rec:
 138        xfs_warn(mp,
 139                "%s Inode BTree record corruption in AG %d detected!",
 140                cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno);
 141        xfs_warn(mp,
 142"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
 143                irec->ir_startino, irec->ir_count, irec->ir_freecount,
 144                irec->ir_free, irec->ir_holemask);
 145        return -EFSCORRUPTED;
 146}
 147
 148/*
 149 * Insert a single inobt record. Cursor must already point to desired location.
 150 */
 151int
 152xfs_inobt_insert_rec(
 153        struct xfs_btree_cur    *cur,
 154        uint16_t                holemask,
 155        uint8_t                 count,
 156        int32_t                 freecount,
 157        xfs_inofree_t           free,
 158        int                     *stat)
 159{
 160        cur->bc_rec.i.ir_holemask = holemask;
 161        cur->bc_rec.i.ir_count = count;
 162        cur->bc_rec.i.ir_freecount = freecount;
 163        cur->bc_rec.i.ir_free = free;
 164        return xfs_btree_insert(cur, stat);
 165}
 166
 167/*
 168 * Insert records describing a newly allocated inode chunk into the inobt.
 169 */
 170STATIC int
 171xfs_inobt_insert(
 172        struct xfs_mount        *mp,
 173        struct xfs_trans        *tp,
 174        struct xfs_buf          *agbp,
 175        xfs_agino_t             newino,
 176        xfs_agino_t             newlen,
 177        xfs_btnum_t             btnum)
 178{
 179        struct xfs_btree_cur    *cur;
 180        struct xfs_agi          *agi = XFS_BUF_TO_AGI(agbp);
 181        xfs_agnumber_t          agno = be32_to_cpu(agi->agi_seqno);
 182        xfs_agino_t             thisino;
 183        int                     i;
 184        int                     error;
 185
 186        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
 187
 188        for (thisino = newino;
 189             thisino < newino + newlen;
 190             thisino += XFS_INODES_PER_CHUNK) {
 191                error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
 192                if (error) {
 193                        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 194                        return error;
 195                }
 196                ASSERT(i == 0);
 197
 198                error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
 199                                             XFS_INODES_PER_CHUNK,
 200                                             XFS_INODES_PER_CHUNK,
 201                                             XFS_INOBT_ALL_FREE, &i);
 202                if (error) {
 203                        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 204                        return error;
 205                }
 206                ASSERT(i == 1);
 207        }
 208
 209        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 210
 211        return 0;
 212}
 213
 214/*
 215 * Verify that the number of free inodes in the AGI is correct.
 216 */
 217#ifdef DEBUG
 218STATIC int
 219xfs_check_agi_freecount(
 220        struct xfs_btree_cur    *cur,
 221        struct xfs_agi          *agi)
 222{
 223        if (cur->bc_nlevels == 1) {
 224                xfs_inobt_rec_incore_t rec;
 225                int             freecount = 0;
 226                int             error;
 227                int             i;
 228
 229                error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
 230                if (error)
 231                        return error;
 232
 233                do {
 234                        error = xfs_inobt_get_rec(cur, &rec, &i);
 235                        if (error)
 236                                return error;
 237
 238                        if (i) {
 239                                freecount += rec.ir_freecount;
 240                                error = xfs_btree_increment(cur, 0, &i);
 241                                if (error)
 242                                        return error;
 243                        }
 244                } while (i == 1);
 245
 246                if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
 247                        ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
 248        }
 249        return 0;
 250}
 251#else
 252#define xfs_check_agi_freecount(cur, agi)       0
 253#endif
 254
 255/*
 256 * Initialise a new set of inodes. When called without a transaction context
 257 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
 258 * than logging them (which in a transaction context puts them into the AIL
 259 * for writeback rather than the xfsbufd queue).
 260 */
 261int
 262xfs_ialloc_inode_init(
 263        struct xfs_mount        *mp,
 264        struct xfs_trans        *tp,
 265        struct list_head        *buffer_list,
 266        int                     icount,
 267        xfs_agnumber_t          agno,
 268        xfs_agblock_t           agbno,
 269        xfs_agblock_t           length,
 270        unsigned int            gen)
 271{
 272        struct xfs_buf          *fbuf;
 273        struct xfs_dinode       *free;
 274        int                     nbufs;
 275        int                     version;
 276        int                     i, j;
 277        xfs_daddr_t             d;
 278        xfs_ino_t               ino = 0;
 279
 280        /*
 281         * Loop over the new block(s), filling in the inodes.  For small block
 282         * sizes, manipulate the inodes in buffers  which are multiples of the
 283         * blocks size.
 284         */
 285        nbufs = length / M_IGEO(mp)->blocks_per_cluster;
 286
 287        /*
 288         * Figure out what version number to use in the inodes we create.  If
 289         * the superblock version has caught up to the one that supports the new
 290         * inode format, then use the new inode version.  Otherwise use the old
 291         * version so that old kernels will continue to be able to use the file
 292         * system.
 293         *
 294         * For v3 inodes, we also need to write the inode number into the inode,
 295         * so calculate the first inode number of the chunk here as
 296         * XFS_AGB_TO_AGINO() only works within a filesystem block, not
 297         * across multiple filesystem blocks (such as a cluster) and so cannot
 298         * be used in the cluster buffer loop below.
 299         *
 300         * Further, because we are writing the inode directly into the buffer
 301         * and calculating a CRC on the entire inode, we have ot log the entire
 302         * inode so that the entire range the CRC covers is present in the log.
 303         * That means for v3 inode we log the entire buffer rather than just the
 304         * inode cores.
 305         */
 306        if (xfs_sb_version_hascrc(&mp->m_sb)) {
 307                version = 3;
 308                ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
 309
 310                /*
 311                 * log the initialisation that is about to take place as an
 312                 * logical operation. This means the transaction does not
 313                 * need to log the physical changes to the inode buffers as log
 314                 * recovery will know what initialisation is actually needed.
 315                 * Hence we only need to log the buffers as "ordered" buffers so
 316                 * they track in the AIL as if they were physically logged.
 317                 */
 318                if (tp)
 319                        xfs_icreate_log(tp, agno, agbno, icount,
 320                                        mp->m_sb.sb_inodesize, length, gen);
 321        } else
 322                version = 2;
 323
 324        for (j = 0; j < nbufs; j++) {
 325                /*
 326                 * Get the block.
 327                 */
 328                d = XFS_AGB_TO_DADDR(mp, agno, agbno +
 329                                (j * M_IGEO(mp)->blocks_per_cluster));
 330                fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
 331                                         mp->m_bsize *
 332                                         M_IGEO(mp)->blocks_per_cluster,
 333                                         XBF_UNMAPPED);
 334                if (!fbuf)
 335                        return -ENOMEM;
 336
 337                /* Initialize the inode buffers and log them appropriately. */
 338                fbuf->b_ops = &xfs_inode_buf_ops;
 339                xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
 340                for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
 341                        int     ioffset = i << mp->m_sb.sb_inodelog;
 342                        uint    isize = xfs_dinode_size(version);
 343
 344                        free = xfs_make_iptr(mp, fbuf, i);
 345                        free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
 346                        free->di_version = version;
 347                        free->di_gen = cpu_to_be32(gen);
 348                        free->di_next_unlinked = cpu_to_be32(NULLAGINO);
 349
 350                        if (version == 3) {
 351                                free->di_ino = cpu_to_be64(ino);
 352                                ino++;
 353                                uuid_copy(&free->di_uuid,
 354                                          &mp->m_sb.sb_meta_uuid);
 355                                xfs_dinode_calc_crc(mp, free);
 356                        } else if (tp) {
 357                                /* just log the inode core */
 358                                xfs_trans_log_buf(tp, fbuf, ioffset,
 359                                                  ioffset + isize - 1);
 360                        }
 361                }
 362
 363                if (tp) {
 364                        /*
 365                         * Mark the buffer as an inode allocation buffer so it
 366                         * sticks in AIL at the point of this allocation
 367                         * transaction. This ensures the they are on disk before
 368                         * the tail of the log can be moved past this
 369                         * transaction (i.e. by preventing relogging from moving
 370                         * it forward in the log).
 371                         */
 372                        xfs_trans_inode_alloc_buf(tp, fbuf);
 373                        if (version == 3) {
 374                                /*
 375                                 * Mark the buffer as ordered so that they are
 376                                 * not physically logged in the transaction but
 377                                 * still tracked in the AIL as part of the
 378                                 * transaction and pin the log appropriately.
 379                                 */
 380                                xfs_trans_ordered_buf(tp, fbuf);
 381                        }
 382                } else {
 383                        fbuf->b_flags |= XBF_DONE;
 384                        xfs_buf_delwri_queue(fbuf, buffer_list);
 385                        xfs_buf_relse(fbuf);
 386                }
 387        }
 388        return 0;
 389}
 390
 391/*
 392 * Align startino and allocmask for a recently allocated sparse chunk such that
 393 * they are fit for insertion (or merge) into the on-disk inode btrees.
 394 *
 395 * Background:
 396 *
 397 * When enabled, sparse inode support increases the inode alignment from cluster
 398 * size to inode chunk size. This means that the minimum range between two
 399 * non-adjacent inode records in the inobt is large enough for a full inode
 400 * record. This allows for cluster sized, cluster aligned block allocation
 401 * without need to worry about whether the resulting inode record overlaps with
 402 * another record in the tree. Without this basic rule, we would have to deal
 403 * with the consequences of overlap by potentially undoing recent allocations in
 404 * the inode allocation codepath.
 405 *
 406 * Because of this alignment rule (which is enforced on mount), there are two
 407 * inobt possibilities for newly allocated sparse chunks. One is that the
 408 * aligned inode record for the chunk covers a range of inodes not already
 409 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
 410 * other is that a record already exists at the aligned startino that considers
 411 * the newly allocated range as sparse. In the latter case, record content is
 412 * merged in hope that sparse inode chunks fill to full chunks over time.
 413 */
 414STATIC void
 415xfs_align_sparse_ino(
 416        struct xfs_mount                *mp,
 417        xfs_agino_t                     *startino,
 418        uint16_t                        *allocmask)
 419{
 420        xfs_agblock_t                   agbno;
 421        xfs_agblock_t                   mod;
 422        int                             offset;
 423
 424        agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
 425        mod = agbno % mp->m_sb.sb_inoalignmt;
 426        if (!mod)
 427                return;
 428
 429        /* calculate the inode offset and align startino */
 430        offset = XFS_AGB_TO_AGINO(mp, mod);
 431        *startino -= offset;
 432
 433        /*
 434         * Since startino has been aligned down, left shift allocmask such that
 435         * it continues to represent the same physical inodes relative to the
 436         * new startino.
 437         */
 438        *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
 439}
 440
 441/*
 442 * Determine whether the source inode record can merge into the target. Both
 443 * records must be sparse, the inode ranges must match and there must be no
 444 * allocation overlap between the records.
 445 */
 446STATIC bool
 447__xfs_inobt_can_merge(
 448        struct xfs_inobt_rec_incore     *trec,  /* tgt record */
 449        struct xfs_inobt_rec_incore     *srec)  /* src record */
 450{
 451        uint64_t                        talloc;
 452        uint64_t                        salloc;
 453
 454        /* records must cover the same inode range */
 455        if (trec->ir_startino != srec->ir_startino)
 456                return false;
 457
 458        /* both records must be sparse */
 459        if (!xfs_inobt_issparse(trec->ir_holemask) ||
 460            !xfs_inobt_issparse(srec->ir_holemask))
 461                return false;
 462
 463        /* both records must track some inodes */
 464        if (!trec->ir_count || !srec->ir_count)
 465                return false;
 466
 467        /* can't exceed capacity of a full record */
 468        if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
 469                return false;
 470
 471        /* verify there is no allocation overlap */
 472        talloc = xfs_inobt_irec_to_allocmask(trec);
 473        salloc = xfs_inobt_irec_to_allocmask(srec);
 474        if (talloc & salloc)
 475                return false;
 476
 477        return true;
 478}
 479
 480/*
 481 * Merge the source inode record into the target. The caller must call
 482 * __xfs_inobt_can_merge() to ensure the merge is valid.
 483 */
 484STATIC void
 485__xfs_inobt_rec_merge(
 486        struct xfs_inobt_rec_incore     *trec,  /* target */
 487        struct xfs_inobt_rec_incore     *srec)  /* src */
 488{
 489        ASSERT(trec->ir_startino == srec->ir_startino);
 490
 491        /* combine the counts */
 492        trec->ir_count += srec->ir_count;
 493        trec->ir_freecount += srec->ir_freecount;
 494
 495        /*
 496         * Merge the holemask and free mask. For both fields, 0 bits refer to
 497         * allocated inodes. We combine the allocated ranges with bitwise AND.
 498         */
 499        trec->ir_holemask &= srec->ir_holemask;
 500        trec->ir_free &= srec->ir_free;
 501}
 502
 503/*
 504 * Insert a new sparse inode chunk into the associated inode btree. The inode
 505 * record for the sparse chunk is pre-aligned to a startino that should match
 506 * any pre-existing sparse inode record in the tree. This allows sparse chunks
 507 * to fill over time.
 508 *
 509 * This function supports two modes of handling preexisting records depending on
 510 * the merge flag. If merge is true, the provided record is merged with the
 511 * existing record and updated in place. The merged record is returned in nrec.
 512 * If merge is false, an existing record is replaced with the provided record.
 513 * If no preexisting record exists, the provided record is always inserted.
 514 *
 515 * It is considered corruption if a merge is requested and not possible. Given
 516 * the sparse inode alignment constraints, this should never happen.
 517 */
 518STATIC int
 519xfs_inobt_insert_sprec(
 520        struct xfs_mount                *mp,
 521        struct xfs_trans                *tp,
 522        struct xfs_buf                  *agbp,
 523        int                             btnum,
 524        struct xfs_inobt_rec_incore     *nrec,  /* in/out: new/merged rec. */
 525        bool                            merge)  /* merge or replace */
 526{
 527        struct xfs_btree_cur            *cur;
 528        struct xfs_agi                  *agi = XFS_BUF_TO_AGI(agbp);
 529        xfs_agnumber_t                  agno = be32_to_cpu(agi->agi_seqno);
 530        int                             error;
 531        int                             i;
 532        struct xfs_inobt_rec_incore     rec;
 533
 534        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
 535
 536        /* the new record is pre-aligned so we know where to look */
 537        error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
 538        if (error)
 539                goto error;
 540        /* if nothing there, insert a new record and return */
 541        if (i == 0) {
 542                error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
 543                                             nrec->ir_count, nrec->ir_freecount,
 544                                             nrec->ir_free, &i);
 545                if (error)
 546                        goto error;
 547                XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
 548
 549                goto out;
 550        }
 551
 552        /*
 553         * A record exists at this startino. Merge or replace the record
 554         * depending on what we've been asked to do.
 555         */
 556        if (merge) {
 557                error = xfs_inobt_get_rec(cur, &rec, &i);
 558                if (error)
 559                        goto error;
 560                XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
 561                XFS_WANT_CORRUPTED_GOTO(mp,
 562                                        rec.ir_startino == nrec->ir_startino,
 563                                        error);
 564
 565                /*
 566                 * This should never fail. If we have coexisting records that
 567                 * cannot merge, something is seriously wrong.
 568                 */
 569                XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
 570                                        error);
 571
 572                trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
 573                                         rec.ir_holemask, nrec->ir_startino,
 574                                         nrec->ir_holemask);
 575
 576                /* merge to nrec to output the updated record */
 577                __xfs_inobt_rec_merge(nrec, &rec);
 578
 579                trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
 580                                          nrec->ir_holemask);
 581
 582                error = xfs_inobt_rec_check_count(mp, nrec);
 583                if (error)
 584                        goto error;
 585        }
 586
 587        error = xfs_inobt_update(cur, nrec);
 588        if (error)
 589                goto error;
 590
 591out:
 592        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 593        return 0;
 594error:
 595        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 596        return error;
 597}
 598
 599/*
 600 * Allocate new inodes in the allocation group specified by agbp.
 601 * Return 0 for success, else error code.
 602 */
 603STATIC int
 604xfs_ialloc_ag_alloc(
 605        struct xfs_trans        *tp,
 606        struct xfs_buf          *agbp,
 607        int                     *alloc)
 608{
 609        struct xfs_agi          *agi;
 610        struct xfs_alloc_arg    args;
 611        xfs_agnumber_t          agno;
 612        int                     error;
 613        xfs_agino_t             newino;         /* new first inode's number */
 614        xfs_agino_t             newlen;         /* new number of inodes */
 615        int                     isaligned = 0;  /* inode allocation at stripe */
 616                                                /* unit boundary */
 617        /* init. to full chunk */
 618        uint16_t                allocmask = (uint16_t) -1;
 619        struct xfs_inobt_rec_incore rec;
 620        struct xfs_perag        *pag;
 621        struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
 622        int                     do_sparse = 0;
 623
 624        memset(&args, 0, sizeof(args));
 625        args.tp = tp;
 626        args.mp = tp->t_mountp;
 627        args.fsbno = NULLFSBLOCK;
 628        args.oinfo = XFS_RMAP_OINFO_INODES;
 629
 630#ifdef DEBUG
 631        /* randomly do sparse inode allocations */
 632        if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
 633            igeo->ialloc_min_blks < igeo->ialloc_blks)
 634                do_sparse = prandom_u32() & 1;
 635#endif
 636
 637        /*
 638         * Locking will ensure that we don't have two callers in here
 639         * at one time.
 640         */
 641        newlen = igeo->ialloc_inos;
 642        if (igeo->maxicount &&
 643            percpu_counter_read_positive(&args.mp->m_icount) + newlen >
 644                                                        igeo->maxicount)
 645                return -ENOSPC;
 646        args.minlen = args.maxlen = igeo->ialloc_blks;
 647        /*
 648         * First try to allocate inodes contiguous with the last-allocated
 649         * chunk of inodes.  If the filesystem is striped, this will fill
 650         * an entire stripe unit with inodes.
 651         */
 652        agi = XFS_BUF_TO_AGI(agbp);
 653        newino = be32_to_cpu(agi->agi_newino);
 654        agno = be32_to_cpu(agi->agi_seqno);
 655        args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
 656                     igeo->ialloc_blks;
 657        if (do_sparse)
 658                goto sparse_alloc;
 659        if (likely(newino != NULLAGINO &&
 660                  (args.agbno < be32_to_cpu(agi->agi_length)))) {
 661                args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 662                args.type = XFS_ALLOCTYPE_THIS_BNO;
 663                args.prod = 1;
 664
 665                /*
 666                 * We need to take into account alignment here to ensure that
 667                 * we don't modify the free list if we fail to have an exact
 668                 * block. If we don't have an exact match, and every oher
 669                 * attempt allocation attempt fails, we'll end up cancelling
 670                 * a dirty transaction and shutting down.
 671                 *
 672                 * For an exact allocation, alignment must be 1,
 673                 * however we need to take cluster alignment into account when
 674                 * fixing up the freelist. Use the minalignslop field to
 675                 * indicate that extra blocks might be required for alignment,
 676                 * but not to use them in the actual exact allocation.
 677                 */
 678                args.alignment = 1;
 679                args.minalignslop = igeo->cluster_align - 1;
 680
 681                /* Allow space for the inode btree to split. */
 682                args.minleft = igeo->inobt_maxlevels - 1;
 683                if ((error = xfs_alloc_vextent(&args)))
 684                        return error;
 685
 686                /*
 687                 * This request might have dirtied the transaction if the AG can
 688                 * satisfy the request, but the exact block was not available.
 689                 * If the allocation did fail, subsequent requests will relax
 690                 * the exact agbno requirement and increase the alignment
 691                 * instead. It is critical that the total size of the request
 692                 * (len + alignment + slop) does not increase from this point
 693                 * on, so reset minalignslop to ensure it is not included in
 694                 * subsequent requests.
 695                 */
 696                args.minalignslop = 0;
 697        }
 698
 699        if (unlikely(args.fsbno == NULLFSBLOCK)) {
 700                /*
 701                 * Set the alignment for the allocation.
 702                 * If stripe alignment is turned on then align at stripe unit
 703                 * boundary.
 704                 * If the cluster size is smaller than a filesystem block
 705                 * then we're doing I/O for inodes in filesystem block size
 706                 * pieces, so don't need alignment anyway.
 707                 */
 708                isaligned = 0;
 709                if (igeo->ialloc_align) {
 710                        ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
 711                        args.alignment = args.mp->m_dalign;
 712                        isaligned = 1;
 713                } else
 714                        args.alignment = igeo->cluster_align;
 715                /*
 716                 * Need to figure out where to allocate the inode blocks.
 717                 * Ideally they should be spaced out through the a.g.
 718                 * For now, just allocate blocks up front.
 719                 */
 720                args.agbno = be32_to_cpu(agi->agi_root);
 721                args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 722                /*
 723                 * Allocate a fixed-size extent of inodes.
 724                 */
 725                args.type = XFS_ALLOCTYPE_NEAR_BNO;
 726                args.prod = 1;
 727                /*
 728                 * Allow space for the inode btree to split.
 729                 */
 730                args.minleft = igeo->inobt_maxlevels - 1;
 731                if ((error = xfs_alloc_vextent(&args)))
 732                        return error;
 733        }
 734
 735        /*
 736         * If stripe alignment is turned on, then try again with cluster
 737         * alignment.
 738         */
 739        if (isaligned && args.fsbno == NULLFSBLOCK) {
 740                args.type = XFS_ALLOCTYPE_NEAR_BNO;
 741                args.agbno = be32_to_cpu(agi->agi_root);
 742                args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 743                args.alignment = igeo->cluster_align;
 744                if ((error = xfs_alloc_vextent(&args)))
 745                        return error;
 746        }
 747
 748        /*
 749         * Finally, try a sparse allocation if the filesystem supports it and
 750         * the sparse allocation length is smaller than a full chunk.
 751         */
 752        if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
 753            igeo->ialloc_min_blks < igeo->ialloc_blks &&
 754            args.fsbno == NULLFSBLOCK) {
 755sparse_alloc:
 756                args.type = XFS_ALLOCTYPE_NEAR_BNO;
 757                args.agbno = be32_to_cpu(agi->agi_root);
 758                args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 759                args.alignment = args.mp->m_sb.sb_spino_align;
 760                args.prod = 1;
 761
 762                args.minlen = igeo->ialloc_min_blks;
 763                args.maxlen = args.minlen;
 764
 765                /*
 766                 * The inode record will be aligned to full chunk size. We must
 767                 * prevent sparse allocation from AG boundaries that result in
 768                 * invalid inode records, such as records that start at agbno 0
 769                 * or extend beyond the AG.
 770                 *
 771                 * Set min agbno to the first aligned, non-zero agbno and max to
 772                 * the last aligned agbno that is at least one full chunk from
 773                 * the end of the AG.
 774                 */
 775                args.min_agbno = args.mp->m_sb.sb_inoalignmt;
 776                args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
 777                                            args.mp->m_sb.sb_inoalignmt) -
 778                                 igeo->ialloc_blks;
 779
 780                error = xfs_alloc_vextent(&args);
 781                if (error)
 782                        return error;
 783
 784                newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
 785                ASSERT(newlen <= XFS_INODES_PER_CHUNK);
 786                allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
 787        }
 788
 789        if (args.fsbno == NULLFSBLOCK) {
 790                *alloc = 0;
 791                return 0;
 792        }
 793        ASSERT(args.len == args.minlen);
 794
 795        /*
 796         * Stamp and write the inode buffers.
 797         *
 798         * Seed the new inode cluster with a random generation number. This
 799         * prevents short-term reuse of generation numbers if a chunk is
 800         * freed and then immediately reallocated. We use random numbers
 801         * rather than a linear progression to prevent the next generation
 802         * number from being easily guessable.
 803         */
 804        error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
 805                        args.agbno, args.len, prandom_u32());
 806
 807        if (error)
 808                return error;
 809        /*
 810         * Convert the results.
 811         */
 812        newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
 813
 814        if (xfs_inobt_issparse(~allocmask)) {
 815                /*
 816                 * We've allocated a sparse chunk. Align the startino and mask.
 817                 */
 818                xfs_align_sparse_ino(args.mp, &newino, &allocmask);
 819
 820                rec.ir_startino = newino;
 821                rec.ir_holemask = ~allocmask;
 822                rec.ir_count = newlen;
 823                rec.ir_freecount = newlen;
 824                rec.ir_free = XFS_INOBT_ALL_FREE;
 825
 826                /*
 827                 * Insert the sparse record into the inobt and allow for a merge
 828                 * if necessary. If a merge does occur, rec is updated to the
 829                 * merged record.
 830                 */
 831                error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
 832                                               &rec, true);
 833                if (error == -EFSCORRUPTED) {
 834                        xfs_alert(args.mp,
 835        "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
 836                                  XFS_AGINO_TO_INO(args.mp, agno,
 837                                                   rec.ir_startino),
 838                                  rec.ir_holemask, rec.ir_count);
 839                        xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
 840                }
 841                if (error)
 842                        return error;
 843
 844                /*
 845                 * We can't merge the part we've just allocated as for the inobt
 846                 * due to finobt semantics. The original record may or may not
 847                 * exist independent of whether physical inodes exist in this
 848                 * sparse chunk.
 849                 *
 850                 * We must update the finobt record based on the inobt record.
 851                 * rec contains the fully merged and up to date inobt record
 852                 * from the previous call. Set merge false to replace any
 853                 * existing record with this one.
 854                 */
 855                if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
 856                        error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
 857                                                       XFS_BTNUM_FINO, &rec,
 858                                                       false);
 859                        if (error)
 860                                return error;
 861                }
 862        } else {
 863                /* full chunk - insert new records to both btrees */
 864                error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
 865                                         XFS_BTNUM_INO);
 866                if (error)
 867                        return error;
 868
 869                if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
 870                        error = xfs_inobt_insert(args.mp, tp, agbp, newino,
 871                                                 newlen, XFS_BTNUM_FINO);
 872                        if (error)
 873                                return error;
 874                }
 875        }
 876
 877        /*
 878         * Update AGI counts and newino.
 879         */
 880        be32_add_cpu(&agi->agi_count, newlen);
 881        be32_add_cpu(&agi->agi_freecount, newlen);
 882        pag = xfs_perag_get(args.mp, agno);
 883        pag->pagi_freecount += newlen;
 884        pag->pagi_count += newlen;
 885        xfs_perag_put(pag);
 886        agi->agi_newino = cpu_to_be32(newino);
 887
 888        /*
 889         * Log allocation group header fields
 890         */
 891        xfs_ialloc_log_agi(tp, agbp,
 892                XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
 893        /*
 894         * Modify/log superblock values for inode count and inode free count.
 895         */
 896        xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
 897        xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
 898        *alloc = 1;
 899        return 0;
 900}
 901
 902STATIC xfs_agnumber_t
 903xfs_ialloc_next_ag(
 904        xfs_mount_t     *mp)
 905{
 906        xfs_agnumber_t  agno;
 907
 908        spin_lock(&mp->m_agirotor_lock);
 909        agno = mp->m_agirotor;
 910        if (++mp->m_agirotor >= mp->m_maxagi)
 911                mp->m_agirotor = 0;
 912        spin_unlock(&mp->m_agirotor_lock);
 913
 914        return agno;
 915}
 916
 917/*
 918 * Select an allocation group to look for a free inode in, based on the parent
 919 * inode and the mode.  Return the allocation group buffer.
 920 */
 921STATIC xfs_agnumber_t
 922xfs_ialloc_ag_select(
 923        xfs_trans_t     *tp,            /* transaction pointer */
 924        xfs_ino_t       parent,         /* parent directory inode number */
 925        umode_t         mode)           /* bits set to indicate file type */
 926{
 927        xfs_agnumber_t  agcount;        /* number of ag's in the filesystem */
 928        xfs_agnumber_t  agno;           /* current ag number */
 929        int             flags;          /* alloc buffer locking flags */
 930        xfs_extlen_t    ineed;          /* blocks needed for inode allocation */
 931        xfs_extlen_t    longest = 0;    /* longest extent available */
 932        xfs_mount_t     *mp;            /* mount point structure */
 933        int             needspace;      /* file mode implies space allocated */
 934        xfs_perag_t     *pag;           /* per allocation group data */
 935        xfs_agnumber_t  pagno;          /* parent (starting) ag number */
 936        int             error;
 937
 938        /*
 939         * Files of these types need at least one block if length > 0
 940         * (and they won't fit in the inode, but that's hard to figure out).
 941         */
 942        needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
 943        mp = tp->t_mountp;
 944        agcount = mp->m_maxagi;
 945        if (S_ISDIR(mode))
 946                pagno = xfs_ialloc_next_ag(mp);
 947        else {
 948                pagno = XFS_INO_TO_AGNO(mp, parent);
 949                if (pagno >= agcount)
 950                        pagno = 0;
 951        }
 952
 953        ASSERT(pagno < agcount);
 954
 955        /*
 956         * Loop through allocation groups, looking for one with a little
 957         * free space in it.  Note we don't look for free inodes, exactly.
 958         * Instead, we include whether there is a need to allocate inodes
 959         * to mean that blocks must be allocated for them,
 960         * if none are currently free.
 961         */
 962        agno = pagno;
 963        flags = XFS_ALLOC_FLAG_TRYLOCK;
 964        for (;;) {
 965                pag = xfs_perag_get(mp, agno);
 966                if (!pag->pagi_inodeok) {
 967                        xfs_ialloc_next_ag(mp);
 968                        goto nextag;
 969                }
 970
 971                if (!pag->pagi_init) {
 972                        error = xfs_ialloc_pagi_init(mp, tp, agno);
 973                        if (error)
 974                                goto nextag;
 975                }
 976
 977                if (pag->pagi_freecount) {
 978                        xfs_perag_put(pag);
 979                        return agno;
 980                }
 981
 982                if (!pag->pagf_init) {
 983                        error = xfs_alloc_pagf_init(mp, tp, agno, flags);
 984                        if (error)
 985                                goto nextag;
 986                }
 987
 988                /*
 989                 * Check that there is enough free space for the file plus a
 990                 * chunk of inodes if we need to allocate some. If this is the
 991                 * first pass across the AGs, take into account the potential
 992                 * space needed for alignment of inode chunks when checking the
 993                 * longest contiguous free space in the AG - this prevents us
 994                 * from getting ENOSPC because we have free space larger than
 995                 * ialloc_blks but alignment constraints prevent us from using
 996                 * it.
 997                 *
 998                 * If we can't find an AG with space for full alignment slack to
 999                 * be taken into account, we must be near ENOSPC in all AGs.
1000                 * Hence we don't include alignment for the second pass and so
1001                 * if we fail allocation due to alignment issues then it is most
1002                 * likely a real ENOSPC condition.
1003                 */
1004                ineed = M_IGEO(mp)->ialloc_min_blks;
1005                if (flags && ineed > 1)
1006                        ineed += M_IGEO(mp)->cluster_align;
1007                longest = pag->pagf_longest;
1008                if (!longest)
1009                        longest = pag->pagf_flcount > 0;
1010
1011                if (pag->pagf_freeblks >= needspace + ineed &&
1012                    longest >= ineed) {
1013                        xfs_perag_put(pag);
1014                        return agno;
1015                }
1016nextag:
1017                xfs_perag_put(pag);
1018                /*
1019                 * No point in iterating over the rest, if we're shutting
1020                 * down.
1021                 */
1022                if (XFS_FORCED_SHUTDOWN(mp))
1023                        return NULLAGNUMBER;
1024                agno++;
1025                if (agno >= agcount)
1026                        agno = 0;
1027                if (agno == pagno) {
1028                        if (flags == 0)
1029                                return NULLAGNUMBER;
1030                        flags = 0;
1031                }
1032        }
1033}
1034
1035/*
1036 * Try to retrieve the next record to the left/right from the current one.
1037 */
1038STATIC int
1039xfs_ialloc_next_rec(
1040        struct xfs_btree_cur    *cur,
1041        xfs_inobt_rec_incore_t  *rec,
1042        int                     *done,
1043        int                     left)
1044{
1045        int                     error;
1046        int                     i;
1047
1048        if (left)
1049                error = xfs_btree_decrement(cur, 0, &i);
1050        else
1051                error = xfs_btree_increment(cur, 0, &i);
1052
1053        if (error)
1054                return error;
1055        *done = !i;
1056        if (i) {
1057                error = xfs_inobt_get_rec(cur, rec, &i);
1058                if (error)
1059                        return error;
1060                XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1061        }
1062
1063        return 0;
1064}
1065
1066STATIC int
1067xfs_ialloc_get_rec(
1068        struct xfs_btree_cur    *cur,
1069        xfs_agino_t             agino,
1070        xfs_inobt_rec_incore_t  *rec,
1071        int                     *done)
1072{
1073        int                     error;
1074        int                     i;
1075
1076        error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1077        if (error)
1078                return error;
1079        *done = !i;
1080        if (i) {
1081                error = xfs_inobt_get_rec(cur, rec, &i);
1082                if (error)
1083                        return error;
1084                XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1085        }
1086
1087        return 0;
1088}
1089
1090/*
1091 * Return the offset of the first free inode in the record. If the inode chunk
1092 * is sparsely allocated, we convert the record holemask to inode granularity
1093 * and mask off the unallocated regions from the inode free mask.
1094 */
1095STATIC int
1096xfs_inobt_first_free_inode(
1097        struct xfs_inobt_rec_incore     *rec)
1098{
1099        xfs_inofree_t                   realfree;
1100
1101        /* if there are no holes, return the first available offset */
1102        if (!xfs_inobt_issparse(rec->ir_holemask))
1103                return xfs_lowbit64(rec->ir_free);
1104
1105        realfree = xfs_inobt_irec_to_allocmask(rec);
1106        realfree &= rec->ir_free;
1107
1108        return xfs_lowbit64(realfree);
1109}
1110
1111/*
1112 * Allocate an inode using the inobt-only algorithm.
1113 */
1114STATIC int
1115xfs_dialloc_ag_inobt(
1116        struct xfs_trans        *tp,
1117        struct xfs_buf          *agbp,
1118        xfs_ino_t               parent,
1119        xfs_ino_t               *inop)
1120{
1121        struct xfs_mount        *mp = tp->t_mountp;
1122        struct xfs_agi          *agi = XFS_BUF_TO_AGI(agbp);
1123        xfs_agnumber_t          agno = be32_to_cpu(agi->agi_seqno);
1124        xfs_agnumber_t          pagno = XFS_INO_TO_AGNO(mp, parent);
1125        xfs_agino_t             pagino = XFS_INO_TO_AGINO(mp, parent);
1126        struct xfs_perag        *pag;
1127        struct xfs_btree_cur    *cur, *tcur;
1128        struct xfs_inobt_rec_incore rec, trec;
1129        xfs_ino_t               ino;
1130        int                     error;
1131        int                     offset;
1132        int                     i, j;
1133        int                     searchdistance = 10;
1134
1135        pag = xfs_perag_get(mp, agno);
1136
1137        ASSERT(pag->pagi_init);
1138        ASSERT(pag->pagi_inodeok);
1139        ASSERT(pag->pagi_freecount > 0);
1140
1141 restart_pagno:
1142        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1143        /*
1144         * If pagino is 0 (this is the root inode allocation) use newino.
1145         * This must work because we've just allocated some.
1146         */
1147        if (!pagino)
1148                pagino = be32_to_cpu(agi->agi_newino);
1149
1150        error = xfs_check_agi_freecount(cur, agi);
1151        if (error)
1152                goto error0;
1153
1154        /*
1155         * If in the same AG as the parent, try to get near the parent.
1156         */
1157        if (pagno == agno) {
1158                int             doneleft;       /* done, to the left */
1159                int             doneright;      /* done, to the right */
1160
1161                error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1162                if (error)
1163                        goto error0;
1164                XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1165
1166                error = xfs_inobt_get_rec(cur, &rec, &j);
1167                if (error)
1168                        goto error0;
1169                XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1170
1171                if (rec.ir_freecount > 0) {
1172                        /*
1173                         * Found a free inode in the same chunk
1174                         * as the parent, done.
1175                         */
1176                        goto alloc_inode;
1177                }
1178
1179
1180                /*
1181                 * In the same AG as parent, but parent's chunk is full.
1182                 */
1183
1184                /* duplicate the cursor, search left & right simultaneously */
1185                error = xfs_btree_dup_cursor(cur, &tcur);
1186                if (error)
1187                        goto error0;
1188
1189                /*
1190                 * Skip to last blocks looked up if same parent inode.
1191                 */
1192                if (pagino != NULLAGINO &&
1193                    pag->pagl_pagino == pagino &&
1194                    pag->pagl_leftrec != NULLAGINO &&
1195                    pag->pagl_rightrec != NULLAGINO) {
1196                        error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1197                                                   &trec, &doneleft);
1198                        if (error)
1199                                goto error1;
1200
1201                        error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1202                                                   &rec, &doneright);
1203                        if (error)
1204                                goto error1;
1205                } else {
1206                        /* search left with tcur, back up 1 record */
1207                        error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1208                        if (error)
1209                                goto error1;
1210
1211                        /* search right with cur, go forward 1 record. */
1212                        error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1213                        if (error)
1214                                goto error1;
1215                }
1216
1217                /*
1218                 * Loop until we find an inode chunk with a free inode.
1219                 */
1220                while (--searchdistance > 0 && (!doneleft || !doneright)) {
1221                        int     useleft;  /* using left inode chunk this time */
1222
1223                        /* figure out the closer block if both are valid. */
1224                        if (!doneleft && !doneright) {
1225                                useleft = pagino -
1226                                 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1227                                  rec.ir_startino - pagino;
1228                        } else {
1229                                useleft = !doneleft;
1230                        }
1231
1232                        /* free inodes to the left? */
1233                        if (useleft && trec.ir_freecount) {
1234                                xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1235                                cur = tcur;
1236
1237                                pag->pagl_leftrec = trec.ir_startino;
1238                                pag->pagl_rightrec = rec.ir_startino;
1239                                pag->pagl_pagino = pagino;
1240                                rec = trec;
1241                                goto alloc_inode;
1242                        }
1243
1244                        /* free inodes to the right? */
1245                        if (!useleft && rec.ir_freecount) {
1246                                xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1247
1248                                pag->pagl_leftrec = trec.ir_startino;
1249                                pag->pagl_rightrec = rec.ir_startino;
1250                                pag->pagl_pagino = pagino;
1251                                goto alloc_inode;
1252                        }
1253
1254                        /* get next record to check */
1255                        if (useleft) {
1256                                error = xfs_ialloc_next_rec(tcur, &trec,
1257                                                                 &doneleft, 1);
1258                        } else {
1259                                error = xfs_ialloc_next_rec(cur, &rec,
1260                                                                 &doneright, 0);
1261                        }
1262                        if (error)
1263                                goto error1;
1264                }
1265
1266                if (searchdistance <= 0) {
1267                        /*
1268                         * Not in range - save last search
1269                         * location and allocate a new inode
1270                         */
1271                        xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1272                        pag->pagl_leftrec = trec.ir_startino;
1273                        pag->pagl_rightrec = rec.ir_startino;
1274                        pag->pagl_pagino = pagino;
1275
1276                } else {
1277                        /*
1278                         * We've reached the end of the btree. because
1279                         * we are only searching a small chunk of the
1280                         * btree each search, there is obviously free
1281                         * inodes closer to the parent inode than we
1282                         * are now. restart the search again.
1283                         */
1284                        pag->pagl_pagino = NULLAGINO;
1285                        pag->pagl_leftrec = NULLAGINO;
1286                        pag->pagl_rightrec = NULLAGINO;
1287                        xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1288                        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1289                        goto restart_pagno;
1290                }
1291        }
1292
1293        /*
1294         * In a different AG from the parent.
1295         * See if the most recently allocated block has any free.
1296         */
1297        if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1298                error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1299                                         XFS_LOOKUP_EQ, &i);
1300                if (error)
1301                        goto error0;
1302
1303                if (i == 1) {
1304                        error = xfs_inobt_get_rec(cur, &rec, &j);
1305                        if (error)
1306                                goto error0;
1307
1308                        if (j == 1 && rec.ir_freecount > 0) {
1309                                /*
1310                                 * The last chunk allocated in the group
1311                                 * still has a free inode.
1312                                 */
1313                                goto alloc_inode;
1314                        }
1315                }
1316        }
1317
1318        /*
1319         * None left in the last group, search the whole AG
1320         */
1321        error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1322        if (error)
1323                goto error0;
1324        XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1325
1326        for (;;) {
1327                error = xfs_inobt_get_rec(cur, &rec, &i);
1328                if (error)
1329                        goto error0;
1330                XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1331                if (rec.ir_freecount > 0)
1332                        break;
1333                error = xfs_btree_increment(cur, 0, &i);
1334                if (error)
1335                        goto error0;
1336                XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1337        }
1338
1339alloc_inode:
1340        offset = xfs_inobt_first_free_inode(&rec);
1341        ASSERT(offset >= 0);
1342        ASSERT(offset < XFS_INODES_PER_CHUNK);
1343        ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1344                                   XFS_INODES_PER_CHUNK) == 0);
1345        ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1346        rec.ir_free &= ~XFS_INOBT_MASK(offset);
1347        rec.ir_freecount--;
1348        error = xfs_inobt_update(cur, &rec);
1349        if (error)
1350                goto error0;
1351        be32_add_cpu(&agi->agi_freecount, -1);
1352        xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1353        pag->pagi_freecount--;
1354
1355        error = xfs_check_agi_freecount(cur, agi);
1356        if (error)
1357                goto error0;
1358
1359        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1360        xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1361        xfs_perag_put(pag);
1362        *inop = ino;
1363        return 0;
1364error1:
1365        xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1366error0:
1367        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1368        xfs_perag_put(pag);
1369        return error;
1370}
1371
1372/*
1373 * Use the free inode btree to allocate an inode based on distance from the
1374 * parent. Note that the provided cursor may be deleted and replaced.
1375 */
1376STATIC int
1377xfs_dialloc_ag_finobt_near(
1378        xfs_agino_t                     pagino,
1379        struct xfs_btree_cur            **ocur,
1380        struct xfs_inobt_rec_incore     *rec)
1381{
1382        struct xfs_btree_cur            *lcur = *ocur;  /* left search cursor */
1383        struct xfs_btree_cur            *rcur;  /* right search cursor */
1384        struct xfs_inobt_rec_incore     rrec;
1385        int                             error;
1386        int                             i, j;
1387
1388        error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1389        if (error)
1390                return error;
1391
1392        if (i == 1) {
1393                error = xfs_inobt_get_rec(lcur, rec, &i);
1394                if (error)
1395                        return error;
1396                XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1397
1398                /*
1399                 * See if we've landed in the parent inode record. The finobt
1400                 * only tracks chunks with at least one free inode, so record
1401                 * existence is enough.
1402                 */
1403                if (pagino >= rec->ir_startino &&
1404                    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1405                        return 0;
1406        }
1407
1408        error = xfs_btree_dup_cursor(lcur, &rcur);
1409        if (error)
1410                return error;
1411
1412        error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1413        if (error)
1414                goto error_rcur;
1415        if (j == 1) {
1416                error = xfs_inobt_get_rec(rcur, &rrec, &j);
1417                if (error)
1418                        goto error_rcur;
1419                XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1420        }
1421
1422        XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1423        if (i == 1 && j == 1) {
1424                /*
1425                 * Both the left and right records are valid. Choose the closer
1426                 * inode chunk to the target.
1427                 */
1428                if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1429                    (rrec.ir_startino - pagino)) {
1430                        *rec = rrec;
1431                        xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1432                        *ocur = rcur;
1433                } else {
1434                        xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1435                }
1436        } else if (j == 1) {
1437                /* only the right record is valid */
1438                *rec = rrec;
1439                xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1440                *ocur = rcur;
1441        } else if (i == 1) {
1442                /* only the left record is valid */
1443                xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1444        }
1445
1446        return 0;
1447
1448error_rcur:
1449        xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1450        return error;
1451}
1452
1453/*
1454 * Use the free inode btree to find a free inode based on a newino hint. If
1455 * the hint is NULL, find the first free inode in the AG.
1456 */
1457STATIC int
1458xfs_dialloc_ag_finobt_newino(
1459        struct xfs_agi                  *agi,
1460        struct xfs_btree_cur            *cur,
1461        struct xfs_inobt_rec_incore     *rec)
1462{
1463        int error;
1464        int i;
1465
1466        if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1467                error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1468                                         XFS_LOOKUP_EQ, &i);
1469                if (error)
1470                        return error;
1471                if (i == 1) {
1472                        error = xfs_inobt_get_rec(cur, rec, &i);
1473                        if (error)
1474                                return error;
1475                        XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1476                        return 0;
1477                }
1478        }
1479
1480        /*
1481         * Find the first inode available in the AG.
1482         */
1483        error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1484        if (error)
1485                return error;
1486        XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1487
1488        error = xfs_inobt_get_rec(cur, rec, &i);
1489        if (error)
1490                return error;
1491        XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1492
1493        return 0;
1494}
1495
1496/*
1497 * Update the inobt based on a modification made to the finobt. Also ensure that
1498 * the records from both trees are equivalent post-modification.
1499 */
1500STATIC int
1501xfs_dialloc_ag_update_inobt(
1502        struct xfs_btree_cur            *cur,   /* inobt cursor */
1503        struct xfs_inobt_rec_incore     *frec,  /* finobt record */
1504        int                             offset) /* inode offset */
1505{
1506        struct xfs_inobt_rec_incore     rec;
1507        int                             error;
1508        int                             i;
1509
1510        error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1511        if (error)
1512                return error;
1513        XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1514
1515        error = xfs_inobt_get_rec(cur, &rec, &i);
1516        if (error)
1517                return error;
1518        XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1519        ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1520                                   XFS_INODES_PER_CHUNK) == 0);
1521
1522        rec.ir_free &= ~XFS_INOBT_MASK(offset);
1523        rec.ir_freecount--;
1524
1525        XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1526                                  (rec.ir_freecount == frec->ir_freecount));
1527
1528        return xfs_inobt_update(cur, &rec);
1529}
1530
1531/*
1532 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1533 * back to the inobt search algorithm.
1534 *
1535 * The caller selected an AG for us, and made sure that free inodes are
1536 * available.
1537 */
1538STATIC int
1539xfs_dialloc_ag(
1540        struct xfs_trans        *tp,
1541        struct xfs_buf          *agbp,
1542        xfs_ino_t               parent,
1543        xfs_ino_t               *inop)
1544{
1545        struct xfs_mount                *mp = tp->t_mountp;
1546        struct xfs_agi                  *agi = XFS_BUF_TO_AGI(agbp);
1547        xfs_agnumber_t                  agno = be32_to_cpu(agi->agi_seqno);
1548        xfs_agnumber_t                  pagno = XFS_INO_TO_AGNO(mp, parent);
1549        xfs_agino_t                     pagino = XFS_INO_TO_AGINO(mp, parent);
1550        struct xfs_perag                *pag;
1551        struct xfs_btree_cur            *cur;   /* finobt cursor */
1552        struct xfs_btree_cur            *icur;  /* inobt cursor */
1553        struct xfs_inobt_rec_incore     rec;
1554        xfs_ino_t                       ino;
1555        int                             error;
1556        int                             offset;
1557        int                             i;
1558
1559        if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1560                return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1561
1562        pag = xfs_perag_get(mp, agno);
1563
1564        /*
1565         * If pagino is 0 (this is the root inode allocation) use newino.
1566         * This must work because we've just allocated some.
1567         */
1568        if (!pagino)
1569                pagino = be32_to_cpu(agi->agi_newino);
1570
1571        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1572
1573        error = xfs_check_agi_freecount(cur, agi);
1574        if (error)
1575                goto error_cur;
1576
1577        /*
1578         * The search algorithm depends on whether we're in the same AG as the
1579         * parent. If so, find the closest available inode to the parent. If
1580         * not, consider the agi hint or find the first free inode in the AG.
1581         */
1582        if (agno == pagno)
1583                error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1584        else
1585                error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1586        if (error)
1587                goto error_cur;
1588
1589        offset = xfs_inobt_first_free_inode(&rec);
1590        ASSERT(offset >= 0);
1591        ASSERT(offset < XFS_INODES_PER_CHUNK);
1592        ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1593                                   XFS_INODES_PER_CHUNK) == 0);
1594        ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1595
1596        /*
1597         * Modify or remove the finobt record.
1598         */
1599        rec.ir_free &= ~XFS_INOBT_MASK(offset);
1600        rec.ir_freecount--;
1601        if (rec.ir_freecount)
1602                error = xfs_inobt_update(cur, &rec);
1603        else
1604                error = xfs_btree_delete(cur, &i);
1605        if (error)
1606                goto error_cur;
1607
1608        /*
1609         * The finobt has now been updated appropriately. We haven't updated the
1610         * agi and superblock yet, so we can create an inobt cursor and validate
1611         * the original freecount. If all is well, make the equivalent update to
1612         * the inobt using the finobt record and offset information.
1613         */
1614        icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1615
1616        error = xfs_check_agi_freecount(icur, agi);
1617        if (error)
1618                goto error_icur;
1619
1620        error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1621        if (error)
1622                goto error_icur;
1623
1624        /*
1625         * Both trees have now been updated. We must update the perag and
1626         * superblock before we can check the freecount for each btree.
1627         */
1628        be32_add_cpu(&agi->agi_freecount, -1);
1629        xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1630        pag->pagi_freecount--;
1631
1632        xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1633
1634        error = xfs_check_agi_freecount(icur, agi);
1635        if (error)
1636                goto error_icur;
1637        error = xfs_check_agi_freecount(cur, agi);
1638        if (error)
1639                goto error_icur;
1640
1641        xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1642        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1643        xfs_perag_put(pag);
1644        *inop = ino;
1645        return 0;
1646
1647error_icur:
1648        xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1649error_cur:
1650        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1651        xfs_perag_put(pag);
1652        return error;
1653}
1654
1655/*
1656 * Allocate an inode on disk.
1657 *
1658 * Mode is used to tell whether the new inode will need space, and whether it
1659 * is a directory.
1660 *
1661 * This function is designed to be called twice if it has to do an allocation
1662 * to make more free inodes.  On the first call, *IO_agbp should be set to NULL.
1663 * If an inode is available without having to performn an allocation, an inode
1664 * number is returned.  In this case, *IO_agbp is set to NULL.  If an allocation
1665 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1666 * The caller should then commit the current transaction, allocate a
1667 * new transaction, and call xfs_dialloc() again, passing in the previous value
1668 * of *IO_agbp.  IO_agbp should be held across the transactions. Since the AGI
1669 * buffer is locked across the two calls, the second call is guaranteed to have
1670 * a free inode available.
1671 *
1672 * Once we successfully pick an inode its number is returned and the on-disk
1673 * data structures are updated.  The inode itself is not read in, since doing so
1674 * would break ordering constraints with xfs_reclaim.
1675 */
1676int
1677xfs_dialloc(
1678        struct xfs_trans        *tp,
1679        xfs_ino_t               parent,
1680        umode_t                 mode,
1681        struct xfs_buf          **IO_agbp,
1682        xfs_ino_t               *inop)
1683{
1684        struct xfs_mount        *mp = tp->t_mountp;
1685        struct xfs_buf          *agbp;
1686        xfs_agnumber_t          agno;
1687        int                     error;
1688        int                     ialloced;
1689        int                     noroom = 0;
1690        xfs_agnumber_t          start_agno;
1691        struct xfs_perag        *pag;
1692        struct xfs_ino_geometry *igeo = M_IGEO(mp);
1693        int                     okalloc = 1;
1694
1695        if (*IO_agbp) {
1696                /*
1697                 * If the caller passes in a pointer to the AGI buffer,
1698                 * continue where we left off before.  In this case, we
1699                 * know that the allocation group has free inodes.
1700                 */
1701                agbp = *IO_agbp;
1702                goto out_alloc;
1703        }
1704
1705        /*
1706         * We do not have an agbp, so select an initial allocation
1707         * group for inode allocation.
1708         */
1709        start_agno = xfs_ialloc_ag_select(tp, parent, mode);
1710        if (start_agno == NULLAGNUMBER) {
1711                *inop = NULLFSINO;
1712                return 0;
1713        }
1714
1715        /*
1716         * If we have already hit the ceiling of inode blocks then clear
1717         * okalloc so we scan all available agi structures for a free
1718         * inode.
1719         *
1720         * Read rough value of mp->m_icount by percpu_counter_read_positive,
1721         * which will sacrifice the preciseness but improve the performance.
1722         */
1723        if (igeo->maxicount &&
1724            percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1725                                                        > igeo->maxicount) {
1726                noroom = 1;
1727                okalloc = 0;
1728        }
1729
1730        /*
1731         * Loop until we find an allocation group that either has free inodes
1732         * or in which we can allocate some inodes.  Iterate through the
1733         * allocation groups upward, wrapping at the end.
1734         */
1735        agno = start_agno;
1736        for (;;) {
1737                pag = xfs_perag_get(mp, agno);
1738                if (!pag->pagi_inodeok) {
1739                        xfs_ialloc_next_ag(mp);
1740                        goto nextag;
1741                }
1742
1743                if (!pag->pagi_init) {
1744                        error = xfs_ialloc_pagi_init(mp, tp, agno);
1745                        if (error)
1746                                goto out_error;
1747                }
1748
1749                /*
1750                 * Do a first racy fast path check if this AG is usable.
1751                 */
1752                if (!pag->pagi_freecount && !okalloc)
1753                        goto nextag;
1754
1755                /*
1756                 * Then read in the AGI buffer and recheck with the AGI buffer
1757                 * lock held.
1758                 */
1759                error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1760                if (error)
1761                        goto out_error;
1762
1763                if (pag->pagi_freecount) {
1764                        xfs_perag_put(pag);
1765                        goto out_alloc;
1766                }
1767
1768                if (!okalloc)
1769                        goto nextag_relse_buffer;
1770
1771
1772                error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1773                if (error) {
1774                        xfs_trans_brelse(tp, agbp);
1775
1776                        if (error != -ENOSPC)
1777                                goto out_error;
1778
1779                        xfs_perag_put(pag);
1780                        *inop = NULLFSINO;
1781                        return 0;
1782                }
1783
1784                if (ialloced) {
1785                        /*
1786                         * We successfully allocated some inodes, return
1787                         * the current context to the caller so that it
1788                         * can commit the current transaction and call
1789                         * us again where we left off.
1790                         */
1791                        ASSERT(pag->pagi_freecount > 0);
1792                        xfs_perag_put(pag);
1793
1794                        *IO_agbp = agbp;
1795                        *inop = NULLFSINO;
1796                        return 0;
1797                }
1798
1799nextag_relse_buffer:
1800                xfs_trans_brelse(tp, agbp);
1801nextag:
1802                xfs_perag_put(pag);
1803                if (++agno == mp->m_sb.sb_agcount)
1804                        agno = 0;
1805                if (agno == start_agno) {
1806                        *inop = NULLFSINO;
1807                        return noroom ? -ENOSPC : 0;
1808                }
1809        }
1810
1811out_alloc:
1812        *IO_agbp = NULL;
1813        return xfs_dialloc_ag(tp, agbp, parent, inop);
1814out_error:
1815        xfs_perag_put(pag);
1816        return error;
1817}
1818
1819/*
1820 * Free the blocks of an inode chunk. We must consider that the inode chunk
1821 * might be sparse and only free the regions that are allocated as part of the
1822 * chunk.
1823 */
1824STATIC void
1825xfs_difree_inode_chunk(
1826        struct xfs_trans                *tp,
1827        xfs_agnumber_t                  agno,
1828        struct xfs_inobt_rec_incore     *rec)
1829{
1830        struct xfs_mount                *mp = tp->t_mountp;
1831        xfs_agblock_t                   sagbno = XFS_AGINO_TO_AGBNO(mp,
1832                                                        rec->ir_startino);
1833        int                             startidx, endidx;
1834        int                             nextbit;
1835        xfs_agblock_t                   agbno;
1836        int                             contigblk;
1837        DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1838
1839        if (!xfs_inobt_issparse(rec->ir_holemask)) {
1840                /* not sparse, calculate extent info directly */
1841                xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
1842                                  M_IGEO(mp)->ialloc_blks,
1843                                  &XFS_RMAP_OINFO_INODES);
1844                return;
1845        }
1846
1847        /* holemask is only 16-bits (fits in an unsigned long) */
1848        ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1849        holemask[0] = rec->ir_holemask;
1850
1851        /*
1852         * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1853         * holemask and convert the start/end index of each range to an extent.
1854         * We start with the start and end index both pointing at the first 0 in
1855         * the mask.
1856         */
1857        startidx = endidx = find_first_zero_bit(holemask,
1858                                                XFS_INOBT_HOLEMASK_BITS);
1859        nextbit = startidx + 1;
1860        while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1861                nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1862                                             nextbit);
1863                /*
1864                 * If the next zero bit is contiguous, update the end index of
1865                 * the current range and continue.
1866                 */
1867                if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1868                    nextbit == endidx + 1) {
1869                        endidx = nextbit;
1870                        goto next;
1871                }
1872
1873                /*
1874                 * nextbit is not contiguous with the current end index. Convert
1875                 * the current start/end to an extent and add it to the free
1876                 * list.
1877                 */
1878                agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1879                                  mp->m_sb.sb_inopblock;
1880                contigblk = ((endidx - startidx + 1) *
1881                             XFS_INODES_PER_HOLEMASK_BIT) /
1882                            mp->m_sb.sb_inopblock;
1883
1884                ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1885                ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1886                xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
1887                                  contigblk, &XFS_RMAP_OINFO_INODES);
1888
1889                /* reset range to current bit and carry on... */
1890                startidx = endidx = nextbit;
1891
1892next:
1893                nextbit++;
1894        }
1895}
1896
1897STATIC int
1898xfs_difree_inobt(
1899        struct xfs_mount                *mp,
1900        struct xfs_trans                *tp,
1901        struct xfs_buf                  *agbp,
1902        xfs_agino_t                     agino,
1903        struct xfs_icluster             *xic,
1904        struct xfs_inobt_rec_incore     *orec)
1905{
1906        struct xfs_agi                  *agi = XFS_BUF_TO_AGI(agbp);
1907        xfs_agnumber_t                  agno = be32_to_cpu(agi->agi_seqno);
1908        struct xfs_perag                *pag;
1909        struct xfs_btree_cur            *cur;
1910        struct xfs_inobt_rec_incore     rec;
1911        int                             ilen;
1912        int                             error;
1913        int                             i;
1914        int                             off;
1915
1916        ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1917        ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1918
1919        /*
1920         * Initialize the cursor.
1921         */
1922        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1923
1924        error = xfs_check_agi_freecount(cur, agi);
1925        if (error)
1926                goto error0;
1927
1928        /*
1929         * Look for the entry describing this inode.
1930         */
1931        if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1932                xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1933                        __func__, error);
1934                goto error0;
1935        }
1936        XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1937        error = xfs_inobt_get_rec(cur, &rec, &i);
1938        if (error) {
1939                xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1940                        __func__, error);
1941                goto error0;
1942        }
1943        XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1944        /*
1945         * Get the offset in the inode chunk.
1946         */
1947        off = agino - rec.ir_startino;
1948        ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1949        ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1950        /*
1951         * Mark the inode free & increment the count.
1952         */
1953        rec.ir_free |= XFS_INOBT_MASK(off);
1954        rec.ir_freecount++;
1955
1956        /*
1957         * When an inode chunk is free, it becomes eligible for removal. Don't
1958         * remove the chunk if the block size is large enough for multiple inode
1959         * chunks (that might not be free).
1960         */
1961        if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1962            rec.ir_free == XFS_INOBT_ALL_FREE &&
1963            mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1964                xic->deleted = true;
1965                xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1966                xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1967
1968                /*
1969                 * Remove the inode cluster from the AGI B+Tree, adjust the
1970                 * AGI and Superblock inode counts, and mark the disk space
1971                 * to be freed when the transaction is committed.
1972                 */
1973                ilen = rec.ir_freecount;
1974                be32_add_cpu(&agi->agi_count, -ilen);
1975                be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1976                xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1977                pag = xfs_perag_get(mp, agno);
1978                pag->pagi_freecount -= ilen - 1;
1979                pag->pagi_count -= ilen;
1980                xfs_perag_put(pag);
1981                xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1982                xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1983
1984                if ((error = xfs_btree_delete(cur, &i))) {
1985                        xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1986                                __func__, error);
1987                        goto error0;
1988                }
1989
1990                xfs_difree_inode_chunk(tp, agno, &rec);
1991        } else {
1992                xic->deleted = false;
1993
1994                error = xfs_inobt_update(cur, &rec);
1995                if (error) {
1996                        xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1997                                __func__, error);
1998                        goto error0;
1999                }
2000
2001                /* 
2002                 * Change the inode free counts and log the ag/sb changes.
2003                 */
2004                be32_add_cpu(&agi->agi_freecount, 1);
2005                xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2006                pag = xfs_perag_get(mp, agno);
2007                pag->pagi_freecount++;
2008                xfs_perag_put(pag);
2009                xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2010        }
2011
2012        error = xfs_check_agi_freecount(cur, agi);
2013        if (error)
2014                goto error0;
2015
2016        *orec = rec;
2017        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2018        return 0;
2019
2020error0:
2021        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2022        return error;
2023}
2024
2025/*
2026 * Free an inode in the free inode btree.
2027 */
2028STATIC int
2029xfs_difree_finobt(
2030        struct xfs_mount                *mp,
2031        struct xfs_trans                *tp,
2032        struct xfs_buf                  *agbp,
2033        xfs_agino_t                     agino,
2034        struct xfs_inobt_rec_incore     *ibtrec) /* inobt record */
2035{
2036        struct xfs_agi                  *agi = XFS_BUF_TO_AGI(agbp);
2037        xfs_agnumber_t                  agno = be32_to_cpu(agi->agi_seqno);
2038        struct xfs_btree_cur            *cur;
2039        struct xfs_inobt_rec_incore     rec;
2040        int                             offset = agino - ibtrec->ir_startino;
2041        int                             error;
2042        int                             i;
2043
2044        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2045
2046        error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2047        if (error)
2048                goto error;
2049        if (i == 0) {
2050                /*
2051                 * If the record does not exist in the finobt, we must have just
2052                 * freed an inode in a previously fully allocated chunk. If not,
2053                 * something is out of sync.
2054                 */
2055                XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2056
2057                error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2058                                             ibtrec->ir_count,
2059                                             ibtrec->ir_freecount,
2060                                             ibtrec->ir_free, &i);
2061                if (error)
2062                        goto error;
2063                ASSERT(i == 1);
2064
2065                goto out;
2066        }
2067
2068        /*
2069         * Read and update the existing record. We could just copy the ibtrec
2070         * across here, but that would defeat the purpose of having redundant
2071         * metadata. By making the modifications independently, we can catch
2072         * corruptions that we wouldn't see if we just copied from one record
2073         * to another.
2074         */
2075        error = xfs_inobt_get_rec(cur, &rec, &i);
2076        if (error)
2077                goto error;
2078        XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2079
2080        rec.ir_free |= XFS_INOBT_MASK(offset);
2081        rec.ir_freecount++;
2082
2083        XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2084                                (rec.ir_freecount == ibtrec->ir_freecount),
2085                                error);
2086
2087        /*
2088         * The content of inobt records should always match between the inobt
2089         * and finobt. The lifecycle of records in the finobt is different from
2090         * the inobt in that the finobt only tracks records with at least one
2091         * free inode. Hence, if all of the inodes are free and we aren't
2092         * keeping inode chunks permanently on disk, remove the record.
2093         * Otherwise, update the record with the new information.
2094         *
2095         * Note that we currently can't free chunks when the block size is large
2096         * enough for multiple chunks. Leave the finobt record to remain in sync
2097         * with the inobt.
2098         */
2099        if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2100            mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2101            !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2102                error = xfs_btree_delete(cur, &i);
2103                if (error)
2104                        goto error;
2105                ASSERT(i == 1);
2106        } else {
2107                error = xfs_inobt_update(cur, &rec);
2108                if (error)
2109                        goto error;
2110        }
2111
2112out:
2113        error = xfs_check_agi_freecount(cur, agi);
2114        if (error)
2115                goto error;
2116
2117        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2118        return 0;
2119
2120error:
2121        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2122        return error;
2123}
2124
2125/*
2126 * Free disk inode.  Carefully avoids touching the incore inode, all
2127 * manipulations incore are the caller's responsibility.
2128 * The on-disk inode is not changed by this operation, only the
2129 * btree (free inode mask) is changed.
2130 */
2131int
2132xfs_difree(
2133        struct xfs_trans        *tp,            /* transaction pointer */
2134        xfs_ino_t               inode,          /* inode to be freed */
2135        struct xfs_icluster     *xic)   /* cluster info if deleted */
2136{
2137        /* REFERENCED */
2138        xfs_agblock_t           agbno;  /* block number containing inode */
2139        struct xfs_buf          *agbp;  /* buffer for allocation group header */
2140        xfs_agino_t             agino;  /* allocation group inode number */
2141        xfs_agnumber_t          agno;   /* allocation group number */
2142        int                     error;  /* error return value */
2143        struct xfs_mount        *mp;    /* mount structure for filesystem */
2144        struct xfs_inobt_rec_incore rec;/* btree record */
2145
2146        mp = tp->t_mountp;
2147
2148        /*
2149         * Break up inode number into its components.
2150         */
2151        agno = XFS_INO_TO_AGNO(mp, inode);
2152        if (agno >= mp->m_sb.sb_agcount)  {
2153                xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2154                        __func__, agno, mp->m_sb.sb_agcount);
2155                ASSERT(0);
2156                return -EINVAL;
2157        }
2158        agino = XFS_INO_TO_AGINO(mp, inode);
2159        if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
2160                xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2161                        __func__, (unsigned long long)inode,
2162                        (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2163                ASSERT(0);
2164                return -EINVAL;
2165        }
2166        agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2167        if (agbno >= mp->m_sb.sb_agblocks)  {
2168                xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2169                        __func__, agbno, mp->m_sb.sb_agblocks);
2170                ASSERT(0);
2171                return -EINVAL;
2172        }
2173        /*
2174         * Get the allocation group header.
2175         */
2176        error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2177        if (error) {
2178                xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2179                        __func__, error);
2180                return error;
2181        }
2182
2183        /*
2184         * Fix up the inode allocation btree.
2185         */
2186        error = xfs_difree_inobt(mp, tp, agbp, agino, xic, &rec);
2187        if (error)
2188                goto error0;
2189
2190        /*
2191         * Fix up the free inode btree.
2192         */
2193        if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2194                error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2195                if (error)
2196                        goto error0;
2197        }
2198
2199        return 0;
2200
2201error0:
2202        return error;
2203}
2204
2205STATIC int
2206xfs_imap_lookup(
2207        struct xfs_mount        *mp,
2208        struct xfs_trans        *tp,
2209        xfs_agnumber_t          agno,
2210        xfs_agino_t             agino,
2211        xfs_agblock_t           agbno,
2212        xfs_agblock_t           *chunk_agbno,
2213        xfs_agblock_t           *offset_agbno,
2214        int                     flags)
2215{
2216        struct xfs_inobt_rec_incore rec;
2217        struct xfs_btree_cur    *cur;
2218        struct xfs_buf          *agbp;
2219        int                     error;
2220        int                     i;
2221
2222        error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2223        if (error) {
2224                xfs_alert(mp,
2225                        "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2226                        __func__, error, agno);
2227                return error;
2228        }
2229
2230        /*
2231         * Lookup the inode record for the given agino. If the record cannot be
2232         * found, then it's an invalid inode number and we should abort. Once
2233         * we have a record, we need to ensure it contains the inode number
2234         * we are looking up.
2235         */
2236        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2237        error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2238        if (!error) {
2239                if (i)
2240                        error = xfs_inobt_get_rec(cur, &rec, &i);
2241                if (!error && i == 0)
2242                        error = -EINVAL;
2243        }
2244
2245        xfs_trans_brelse(tp, agbp);
2246        xfs_btree_del_cursor(cur, error);
2247        if (error)
2248                return error;
2249
2250        /* check that the returned record contains the required inode */
2251        if (rec.ir_startino > agino ||
2252            rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2253                return -EINVAL;
2254
2255        /* for untrusted inodes check it is allocated first */
2256        if ((flags & XFS_IGET_UNTRUSTED) &&
2257            (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2258                return -EINVAL;
2259
2260        *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2261        *offset_agbno = agbno - *chunk_agbno;
2262        return 0;
2263}
2264
2265/*
2266 * Return the location of the inode in imap, for mapping it into a buffer.
2267 */
2268int
2269xfs_imap(
2270        xfs_mount_t      *mp,   /* file system mount structure */
2271        xfs_trans_t      *tp,   /* transaction pointer */
2272        xfs_ino_t       ino,    /* inode to locate */
2273        struct xfs_imap *imap,  /* location map structure */
2274        uint            flags)  /* flags for inode btree lookup */
2275{
2276        xfs_agblock_t   agbno;  /* block number of inode in the alloc group */
2277        xfs_agino_t     agino;  /* inode number within alloc group */
2278        xfs_agnumber_t  agno;   /* allocation group number */
2279        xfs_agblock_t   chunk_agbno;    /* first block in inode chunk */
2280        xfs_agblock_t   cluster_agbno;  /* first block in inode cluster */
2281        int             error;  /* error code */
2282        int             offset; /* index of inode in its buffer */
2283        xfs_agblock_t   offset_agbno;   /* blks from chunk start to inode */
2284
2285        ASSERT(ino != NULLFSINO);
2286
2287        /*
2288         * Split up the inode number into its parts.
2289         */
2290        agno = XFS_INO_TO_AGNO(mp, ino);
2291        agino = XFS_INO_TO_AGINO(mp, ino);
2292        agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2293        if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2294            ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2295#ifdef DEBUG
2296                /*
2297                 * Don't output diagnostic information for untrusted inodes
2298                 * as they can be invalid without implying corruption.
2299                 */
2300                if (flags & XFS_IGET_UNTRUSTED)
2301                        return -EINVAL;
2302                if (agno >= mp->m_sb.sb_agcount) {
2303                        xfs_alert(mp,
2304                                "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2305                                __func__, agno, mp->m_sb.sb_agcount);
2306                }
2307                if (agbno >= mp->m_sb.sb_agblocks) {
2308                        xfs_alert(mp,
2309                "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2310                                __func__, (unsigned long long)agbno,
2311                                (unsigned long)mp->m_sb.sb_agblocks);
2312                }
2313                if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2314                        xfs_alert(mp,
2315                "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2316                                __func__, ino,
2317                                XFS_AGINO_TO_INO(mp, agno, agino));
2318                }
2319                xfs_stack_trace();
2320#endif /* DEBUG */
2321                return -EINVAL;
2322        }
2323
2324        /*
2325         * For bulkstat and handle lookups, we have an untrusted inode number
2326         * that we have to verify is valid. We cannot do this just by reading
2327         * the inode buffer as it may have been unlinked and removed leaving
2328         * inodes in stale state on disk. Hence we have to do a btree lookup
2329         * in all cases where an untrusted inode number is passed.
2330         */
2331        if (flags & XFS_IGET_UNTRUSTED) {
2332                error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2333                                        &chunk_agbno, &offset_agbno, flags);
2334                if (error)
2335                        return error;
2336                goto out_map;
2337        }
2338
2339        /*
2340         * If the inode cluster size is the same as the blocksize or
2341         * smaller we get to the buffer by simple arithmetics.
2342         */
2343        if (M_IGEO(mp)->blocks_per_cluster == 1) {
2344                offset = XFS_INO_TO_OFFSET(mp, ino);
2345                ASSERT(offset < mp->m_sb.sb_inopblock);
2346
2347                imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2348                imap->im_len = XFS_FSB_TO_BB(mp, 1);
2349                imap->im_boffset = (unsigned short)(offset <<
2350                                                        mp->m_sb.sb_inodelog);
2351                return 0;
2352        }
2353
2354        /*
2355         * If the inode chunks are aligned then use simple maths to
2356         * find the location. Otherwise we have to do a btree
2357         * lookup to find the location.
2358         */
2359        if (M_IGEO(mp)->inoalign_mask) {
2360                offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2361                chunk_agbno = agbno - offset_agbno;
2362        } else {
2363                error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2364                                        &chunk_agbno, &offset_agbno, flags);
2365                if (error)
2366                        return error;
2367        }
2368
2369out_map:
2370        ASSERT(agbno >= chunk_agbno);
2371        cluster_agbno = chunk_agbno +
2372                ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2373                 M_IGEO(mp)->blocks_per_cluster);
2374        offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2375                XFS_INO_TO_OFFSET(mp, ino);
2376
2377        imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2378        imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2379        imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2380
2381        /*
2382         * If the inode number maps to a block outside the bounds
2383         * of the file system then return NULL rather than calling
2384         * read_buf and panicing when we get an error from the
2385         * driver.
2386         */
2387        if ((imap->im_blkno + imap->im_len) >
2388            XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2389                xfs_alert(mp,
2390        "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2391                        __func__, (unsigned long long) imap->im_blkno,
2392                        (unsigned long long) imap->im_len,
2393                        XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2394                return -EINVAL;
2395        }
2396        return 0;
2397}
2398
2399/*
2400 * Log specified fields for the ag hdr (inode section). The growth of the agi
2401 * structure over time requires that we interpret the buffer as two logical
2402 * regions delineated by the end of the unlinked list. This is due to the size
2403 * of the hash table and its location in the middle of the agi.
2404 *
2405 * For example, a request to log a field before agi_unlinked and a field after
2406 * agi_unlinked could cause us to log the entire hash table and use an excessive
2407 * amount of log space. To avoid this behavior, log the region up through
2408 * agi_unlinked in one call and the region after agi_unlinked through the end of
2409 * the structure in another.
2410 */
2411void
2412xfs_ialloc_log_agi(
2413        xfs_trans_t     *tp,            /* transaction pointer */
2414        xfs_buf_t       *bp,            /* allocation group header buffer */
2415        int             fields)         /* bitmask of fields to log */
2416{
2417        int                     first;          /* first byte number */
2418        int                     last;           /* last byte number */
2419        static const short      offsets[] = {   /* field starting offsets */
2420                                        /* keep in sync with bit definitions */
2421                offsetof(xfs_agi_t, agi_magicnum),
2422                offsetof(xfs_agi_t, agi_versionnum),
2423                offsetof(xfs_agi_t, agi_seqno),
2424                offsetof(xfs_agi_t, agi_length),
2425                offsetof(xfs_agi_t, agi_count),
2426                offsetof(xfs_agi_t, agi_root),
2427                offsetof(xfs_agi_t, agi_level),
2428                offsetof(xfs_agi_t, agi_freecount),
2429                offsetof(xfs_agi_t, agi_newino),
2430                offsetof(xfs_agi_t, agi_dirino),
2431                offsetof(xfs_agi_t, agi_unlinked),
2432                offsetof(xfs_agi_t, agi_free_root),
2433                offsetof(xfs_agi_t, agi_free_level),
2434                sizeof(xfs_agi_t)
2435        };
2436#ifdef DEBUG
2437        xfs_agi_t               *agi;   /* allocation group header */
2438
2439        agi = XFS_BUF_TO_AGI(bp);
2440        ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2441#endif
2442
2443        /*
2444         * Compute byte offsets for the first and last fields in the first
2445         * region and log the agi buffer. This only logs up through
2446         * agi_unlinked.
2447         */
2448        if (fields & XFS_AGI_ALL_BITS_R1) {
2449                xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2450                                  &first, &last);
2451                xfs_trans_log_buf(tp, bp, first, last);
2452        }
2453
2454        /*
2455         * Mask off the bits in the first region and calculate the first and
2456         * last field offsets for any bits in the second region.
2457         */
2458        fields &= ~XFS_AGI_ALL_BITS_R1;
2459        if (fields) {
2460                xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2461                                  &first, &last);
2462                xfs_trans_log_buf(tp, bp, first, last);
2463        }
2464}
2465
2466static xfs_failaddr_t
2467xfs_agi_verify(
2468        struct xfs_buf  *bp)
2469{
2470        struct xfs_mount *mp = bp->b_mount;
2471        struct xfs_agi  *agi = XFS_BUF_TO_AGI(bp);
2472        int             i;
2473
2474        if (xfs_sb_version_hascrc(&mp->m_sb)) {
2475                if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2476                        return __this_address;
2477                if (!xfs_log_check_lsn(mp,
2478                                be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2479                        return __this_address;
2480        }
2481
2482        /*
2483         * Validate the magic number of the agi block.
2484         */
2485        if (!xfs_verify_magic(bp, agi->agi_magicnum))
2486                return __this_address;
2487        if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2488                return __this_address;
2489
2490        if (be32_to_cpu(agi->agi_level) < 1 ||
2491            be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2492                return __this_address;
2493
2494        if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2495            (be32_to_cpu(agi->agi_free_level) < 1 ||
2496             be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2497                return __this_address;
2498
2499        /*
2500         * during growfs operations, the perag is not fully initialised,
2501         * so we can't use it for any useful checking. growfs ensures we can't
2502         * use it by using uncached buffers that don't have the perag attached
2503         * so we can detect and avoid this problem.
2504         */
2505        if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2506                return __this_address;
2507
2508        for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2509                if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2510                        continue;
2511                if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2512                        return __this_address;
2513        }
2514
2515        return NULL;
2516}
2517
2518static void
2519xfs_agi_read_verify(
2520        struct xfs_buf  *bp)
2521{
2522        struct xfs_mount *mp = bp->b_mount;
2523        xfs_failaddr_t  fa;
2524
2525        if (xfs_sb_version_hascrc(&mp->m_sb) &&
2526            !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2527                xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2528        else {
2529                fa = xfs_agi_verify(bp);
2530                if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2531                        xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2532        }
2533}
2534
2535static void
2536xfs_agi_write_verify(
2537        struct xfs_buf  *bp)
2538{
2539        struct xfs_mount        *mp = bp->b_mount;
2540        struct xfs_buf_log_item *bip = bp->b_log_item;
2541        xfs_failaddr_t          fa;
2542
2543        fa = xfs_agi_verify(bp);
2544        if (fa) {
2545                xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2546                return;
2547        }
2548
2549        if (!xfs_sb_version_hascrc(&mp->m_sb))
2550                return;
2551
2552        if (bip)
2553                XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2554        xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2555}
2556
2557const struct xfs_buf_ops xfs_agi_buf_ops = {
2558        .name = "xfs_agi",
2559        .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2560        .verify_read = xfs_agi_read_verify,
2561        .verify_write = xfs_agi_write_verify,
2562        .verify_struct = xfs_agi_verify,
2563};
2564
2565/*
2566 * Read in the allocation group header (inode allocation section)
2567 */
2568int
2569xfs_read_agi(
2570        struct xfs_mount        *mp,    /* file system mount structure */
2571        struct xfs_trans        *tp,    /* transaction pointer */
2572        xfs_agnumber_t          agno,   /* allocation group number */
2573        struct xfs_buf          **bpp)  /* allocation group hdr buf */
2574{
2575        int                     error;
2576
2577        trace_xfs_read_agi(mp, agno);
2578
2579        ASSERT(agno != NULLAGNUMBER);
2580        error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2581                        XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2582                        XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2583        if (error)
2584                return error;
2585        if (tp)
2586                xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2587
2588        xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2589        return 0;
2590}
2591
2592int
2593xfs_ialloc_read_agi(
2594        struct xfs_mount        *mp,    /* file system mount structure */
2595        struct xfs_trans        *tp,    /* transaction pointer */
2596        xfs_agnumber_t          agno,   /* allocation group number */
2597        struct xfs_buf          **bpp)  /* allocation group hdr buf */
2598{
2599        struct xfs_agi          *agi;   /* allocation group header */
2600        struct xfs_perag        *pag;   /* per allocation group data */
2601        int                     error;
2602
2603        trace_xfs_ialloc_read_agi(mp, agno);
2604
2605        error = xfs_read_agi(mp, tp, agno, bpp);
2606        if (error)
2607                return error;
2608
2609        agi = XFS_BUF_TO_AGI(*bpp);
2610        pag = xfs_perag_get(mp, agno);
2611        if (!pag->pagi_init) {
2612                pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2613                pag->pagi_count = be32_to_cpu(agi->agi_count);
2614                pag->pagi_init = 1;
2615        }
2616
2617        /*
2618         * It's possible for these to be out of sync if
2619         * we are in the middle of a forced shutdown.
2620         */
2621        ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2622                XFS_FORCED_SHUTDOWN(mp));
2623        xfs_perag_put(pag);
2624        return 0;
2625}
2626
2627/*
2628 * Read in the agi to initialise the per-ag data in the mount structure
2629 */
2630int
2631xfs_ialloc_pagi_init(
2632        xfs_mount_t     *mp,            /* file system mount structure */
2633        xfs_trans_t     *tp,            /* transaction pointer */
2634        xfs_agnumber_t  agno)           /* allocation group number */
2635{
2636        xfs_buf_t       *bp = NULL;
2637        int             error;
2638
2639        error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2640        if (error)
2641                return error;
2642        if (bp)
2643                xfs_trans_brelse(tp, bp);
2644        return 0;
2645}
2646
2647/* Is there an inode record covering a given range of inode numbers? */
2648int
2649xfs_ialloc_has_inode_record(
2650        struct xfs_btree_cur    *cur,
2651        xfs_agino_t             low,
2652        xfs_agino_t             high,
2653        bool                    *exists)
2654{
2655        struct xfs_inobt_rec_incore     irec;
2656        xfs_agino_t             agino;
2657        uint16_t                holemask;
2658        int                     has_record;
2659        int                     i;
2660        int                     error;
2661
2662        *exists = false;
2663        error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2664        while (error == 0 && has_record) {
2665                error = xfs_inobt_get_rec(cur, &irec, &has_record);
2666                if (error || irec.ir_startino > high)
2667                        break;
2668
2669                agino = irec.ir_startino;
2670                holemask = irec.ir_holemask;
2671                for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2672                                i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2673                        if (holemask & 1)
2674                                continue;
2675                        if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2676                                        agino <= high) {
2677                                *exists = true;
2678                                return 0;
2679                        }
2680                }
2681
2682                error = xfs_btree_increment(cur, 0, &has_record);
2683        }
2684        return error;
2685}
2686
2687/* Is there an inode record covering a given extent? */
2688int
2689xfs_ialloc_has_inodes_at_extent(
2690        struct xfs_btree_cur    *cur,
2691        xfs_agblock_t           bno,
2692        xfs_extlen_t            len,
2693        bool                    *exists)
2694{
2695        xfs_agino_t             low;
2696        xfs_agino_t             high;
2697
2698        low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2699        high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2700
2701        return xfs_ialloc_has_inode_record(cur, low, high, exists);
2702}
2703
2704struct xfs_ialloc_count_inodes {
2705        xfs_agino_t                     count;
2706        xfs_agino_t                     freecount;
2707};
2708
2709/* Record inode counts across all inobt records. */
2710STATIC int
2711xfs_ialloc_count_inodes_rec(
2712        struct xfs_btree_cur            *cur,
2713        union xfs_btree_rec             *rec,
2714        void                            *priv)
2715{
2716        struct xfs_inobt_rec_incore     irec;
2717        struct xfs_ialloc_count_inodes  *ci = priv;
2718
2719        xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2720        ci->count += irec.ir_count;
2721        ci->freecount += irec.ir_freecount;
2722
2723        return 0;
2724}
2725
2726/* Count allocated and free inodes under an inobt. */
2727int
2728xfs_ialloc_count_inodes(
2729        struct xfs_btree_cur            *cur,
2730        xfs_agino_t                     *count,
2731        xfs_agino_t                     *freecount)
2732{
2733        struct xfs_ialloc_count_inodes  ci = {0};
2734        int                             error;
2735
2736        ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2737        error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2738        if (error)
2739                return error;
2740
2741        *count = ci.count;
2742        *freecount = ci.freecount;
2743        return 0;
2744}
2745
2746/*
2747 * Initialize inode-related geometry information.
2748 *
2749 * Compute the inode btree min and max levels and set maxicount.
2750 *
2751 * Set the inode cluster size.  This may still be overridden by the file
2752 * system block size if it is larger than the chosen cluster size.
2753 *
2754 * For v5 filesystems, scale the cluster size with the inode size to keep a
2755 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2756 * inode alignment value appropriately for larger cluster sizes.
2757 *
2758 * Then compute the inode cluster alignment information.
2759 */
2760void
2761xfs_ialloc_setup_geometry(
2762        struct xfs_mount        *mp)
2763{
2764        struct xfs_sb           *sbp = &mp->m_sb;
2765        struct xfs_ino_geometry *igeo = M_IGEO(mp);
2766        uint64_t                icount;
2767        uint                    inodes;
2768
2769        /* Compute inode btree geometry. */
2770        igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2771        igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2772        igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2773        igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2774        igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2775
2776        igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2777                        sbp->sb_inopblock);
2778        igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2779
2780        if (sbp->sb_spino_align)
2781                igeo->ialloc_min_blks = sbp->sb_spino_align;
2782        else
2783                igeo->ialloc_min_blks = igeo->ialloc_blks;
2784
2785        /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2786        inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2787        igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2788                        inodes);
2789
2790        /* Set the maximum inode count for this filesystem. */
2791        if (sbp->sb_imax_pct) {
2792                /*
2793                 * Make sure the maximum inode count is a multiple
2794                 * of the units we allocate inodes in.
2795                 */
2796                icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2797                do_div(icount, 100);
2798                do_div(icount, igeo->ialloc_blks);
2799                igeo->maxicount = XFS_FSB_TO_INO(mp,
2800                                icount * igeo->ialloc_blks);
2801        } else {
2802                igeo->maxicount = 0;
2803        }
2804
2805        /*
2806         * Compute the desired size of an inode cluster buffer size, which
2807         * starts at 8K and (on v5 filesystems) scales up with larger inode
2808         * sizes.
2809         *
2810         * Preserve the desired inode cluster size because the sparse inodes
2811         * feature uses that desired size (not the actual size) to compute the
2812         * sparse inode alignment.  The mount code validates this value, so we
2813         * cannot change the behavior.
2814         */
2815        igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2816        if (xfs_sb_version_hascrc(&mp->m_sb)) {
2817                int     new_size = igeo->inode_cluster_size_raw;
2818
2819                new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2820                if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2821                        igeo->inode_cluster_size_raw = new_size;
2822        }
2823
2824        /* Calculate inode cluster ratios. */
2825        if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2826                igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2827                                igeo->inode_cluster_size_raw);
2828        else
2829                igeo->blocks_per_cluster = 1;
2830        igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2831        igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2832
2833        /* Calculate inode cluster alignment. */
2834        if (xfs_sb_version_hasalign(&mp->m_sb) &&
2835            mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2836                igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2837        else
2838                igeo->cluster_align = 1;
2839        igeo->inoalign_mask = igeo->cluster_align - 1;
2840        igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2841
2842        /*
2843         * If we are using stripe alignment, check whether
2844         * the stripe unit is a multiple of the inode alignment
2845         */
2846        if (mp->m_dalign && igeo->inoalign_mask &&
2847            !(mp->m_dalign & igeo->inoalign_mask))
2848                igeo->ialloc_align = mp->m_dalign;
2849        else
2850                igeo->ialloc_align = 0;
2851}
2852