linux/fs/xfs/xfs_aops.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * Copyright (c) 2016-2018 Christoph Hellwig.
   5 * All Rights Reserved.
   6 */
   7#include "xfs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
  15#include "xfs_iomap.h"
  16#include "xfs_trace.h"
  17#include "xfs_bmap.h"
  18#include "xfs_bmap_util.h"
  19#include "xfs_reflink.h"
  20
  21/*
  22 * structure owned by writepages passed to individual writepage calls
  23 */
  24struct xfs_writepage_ctx {
  25        struct xfs_bmbt_irec    imap;
  26        int                     fork;
  27        unsigned int            data_seq;
  28        unsigned int            cow_seq;
  29        struct xfs_ioend        *ioend;
  30};
  31
  32struct block_device *
  33xfs_find_bdev_for_inode(
  34        struct inode            *inode)
  35{
  36        struct xfs_inode        *ip = XFS_I(inode);
  37        struct xfs_mount        *mp = ip->i_mount;
  38
  39        if (XFS_IS_REALTIME_INODE(ip))
  40                return mp->m_rtdev_targp->bt_bdev;
  41        else
  42                return mp->m_ddev_targp->bt_bdev;
  43}
  44
  45struct dax_device *
  46xfs_find_daxdev_for_inode(
  47        struct inode            *inode)
  48{
  49        struct xfs_inode        *ip = XFS_I(inode);
  50        struct xfs_mount        *mp = ip->i_mount;
  51
  52        if (XFS_IS_REALTIME_INODE(ip))
  53                return mp->m_rtdev_targp->bt_daxdev;
  54        else
  55                return mp->m_ddev_targp->bt_daxdev;
  56}
  57
  58static void
  59xfs_finish_page_writeback(
  60        struct inode            *inode,
  61        struct bio_vec  *bvec,
  62        int                     error)
  63{
  64        struct iomap_page       *iop = to_iomap_page(bvec->bv_page);
  65
  66        if (error) {
  67                SetPageError(bvec->bv_page);
  68                mapping_set_error(inode->i_mapping, -EIO);
  69        }
  70
  71        ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
  72        ASSERT(!iop || atomic_read(&iop->write_count) > 0);
  73
  74        if (!iop || atomic_dec_and_test(&iop->write_count))
  75                end_page_writeback(bvec->bv_page);
  76}
  77
  78/*
  79 * We're now finished for good with this ioend structure.  Update the page
  80 * state, release holds on bios, and finally free up memory.  Do not use the
  81 * ioend after this.
  82 */
  83STATIC void
  84xfs_destroy_ioend(
  85        struct xfs_ioend        *ioend,
  86        int                     error)
  87{
  88        struct inode            *inode = ioend->io_inode;
  89        struct bio              *bio = &ioend->io_inline_bio;
  90        struct bio              *last = ioend->io_bio, *next;
  91        u64                     start = bio->bi_iter.bi_sector;
  92        bool                    quiet = bio_flagged(bio, BIO_QUIET);
  93
  94        for (bio = &ioend->io_inline_bio; bio; bio = next) {
  95                struct bio_vec  *bvec;
  96                struct bvec_iter_all iter_all;
  97
  98                /*
  99                 * For the last bio, bi_private points to the ioend, so we
 100                 * need to explicitly end the iteration here.
 101                 */
 102                if (bio == last)
 103                        next = NULL;
 104                else
 105                        next = bio->bi_private;
 106
 107                /* walk each page on bio, ending page IO on them */
 108                bio_for_each_segment_all(bvec, bio, iter_all)
 109                        xfs_finish_page_writeback(inode, bvec, error);
 110                bio_put(bio);
 111        }
 112
 113        if (unlikely(error && !quiet)) {
 114                xfs_err_ratelimited(XFS_I(inode)->i_mount,
 115                        "writeback error on sector %llu", start);
 116        }
 117}
 118
 119/*
 120 * Fast and loose check if this write could update the on-disk inode size.
 121 */
 122static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
 123{
 124        return ioend->io_offset + ioend->io_size >
 125                XFS_I(ioend->io_inode)->i_d.di_size;
 126}
 127
 128STATIC int
 129xfs_setfilesize_trans_alloc(
 130        struct xfs_ioend        *ioend)
 131{
 132        struct xfs_mount        *mp = XFS_I(ioend->io_inode)->i_mount;
 133        struct xfs_trans        *tp;
 134        int                     error;
 135
 136        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
 137        if (error)
 138                return error;
 139
 140        ioend->io_append_trans = tp;
 141
 142        /*
 143         * We may pass freeze protection with a transaction.  So tell lockdep
 144         * we released it.
 145         */
 146        __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
 147        /*
 148         * We hand off the transaction to the completion thread now, so
 149         * clear the flag here.
 150         */
 151        current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
 152        return 0;
 153}
 154
 155/*
 156 * Update on-disk file size now that data has been written to disk.
 157 */
 158STATIC int
 159__xfs_setfilesize(
 160        struct xfs_inode        *ip,
 161        struct xfs_trans        *tp,
 162        xfs_off_t               offset,
 163        size_t                  size)
 164{
 165        xfs_fsize_t             isize;
 166
 167        xfs_ilock(ip, XFS_ILOCK_EXCL);
 168        isize = xfs_new_eof(ip, offset + size);
 169        if (!isize) {
 170                xfs_iunlock(ip, XFS_ILOCK_EXCL);
 171                xfs_trans_cancel(tp);
 172                return 0;
 173        }
 174
 175        trace_xfs_setfilesize(ip, offset, size);
 176
 177        ip->i_d.di_size = isize;
 178        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 179        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 180
 181        return xfs_trans_commit(tp);
 182}
 183
 184int
 185xfs_setfilesize(
 186        struct xfs_inode        *ip,
 187        xfs_off_t               offset,
 188        size_t                  size)
 189{
 190        struct xfs_mount        *mp = ip->i_mount;
 191        struct xfs_trans        *tp;
 192        int                     error;
 193
 194        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
 195        if (error)
 196                return error;
 197
 198        return __xfs_setfilesize(ip, tp, offset, size);
 199}
 200
 201STATIC int
 202xfs_setfilesize_ioend(
 203        struct xfs_ioend        *ioend,
 204        int                     error)
 205{
 206        struct xfs_inode        *ip = XFS_I(ioend->io_inode);
 207        struct xfs_trans        *tp = ioend->io_append_trans;
 208
 209        /*
 210         * The transaction may have been allocated in the I/O submission thread,
 211         * thus we need to mark ourselves as being in a transaction manually.
 212         * Similarly for freeze protection.
 213         */
 214        current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
 215        __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
 216
 217        /* we abort the update if there was an IO error */
 218        if (error) {
 219                xfs_trans_cancel(tp);
 220                return error;
 221        }
 222
 223        return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
 224}
 225
 226/*
 227 * IO write completion.
 228 */
 229STATIC void
 230xfs_end_ioend(
 231        struct xfs_ioend        *ioend)
 232{
 233        struct list_head        ioend_list;
 234        struct xfs_inode        *ip = XFS_I(ioend->io_inode);
 235        xfs_off_t               offset = ioend->io_offset;
 236        size_t                  size = ioend->io_size;
 237        unsigned int            nofs_flag;
 238        int                     error;
 239
 240        /*
 241         * We can allocate memory here while doing writeback on behalf of
 242         * memory reclaim.  To avoid memory allocation deadlocks set the
 243         * task-wide nofs context for the following operations.
 244         */
 245        nofs_flag = memalloc_nofs_save();
 246
 247        /*
 248         * Just clean up the in-memory strutures if the fs has been shut down.
 249         */
 250        if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 251                error = -EIO;
 252                goto done;
 253        }
 254
 255        /*
 256         * Clean up any COW blocks on an I/O error.
 257         */
 258        error = blk_status_to_errno(ioend->io_bio->bi_status);
 259        if (unlikely(error)) {
 260                if (ioend->io_fork == XFS_COW_FORK)
 261                        xfs_reflink_cancel_cow_range(ip, offset, size, true);
 262                goto done;
 263        }
 264
 265        /*
 266         * Success: commit the COW or unwritten blocks if needed.
 267         */
 268        if (ioend->io_fork == XFS_COW_FORK)
 269                error = xfs_reflink_end_cow(ip, offset, size);
 270        else if (ioend->io_state == XFS_EXT_UNWRITTEN)
 271                error = xfs_iomap_write_unwritten(ip, offset, size, false);
 272        else
 273                ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
 274
 275done:
 276        if (ioend->io_append_trans)
 277                error = xfs_setfilesize_ioend(ioend, error);
 278        list_replace_init(&ioend->io_list, &ioend_list);
 279        xfs_destroy_ioend(ioend, error);
 280
 281        while (!list_empty(&ioend_list)) {
 282                ioend = list_first_entry(&ioend_list, struct xfs_ioend,
 283                                io_list);
 284                list_del_init(&ioend->io_list);
 285                xfs_destroy_ioend(ioend, error);
 286        }
 287
 288        memalloc_nofs_restore(nofs_flag);
 289}
 290
 291/*
 292 * We can merge two adjacent ioends if they have the same set of work to do.
 293 */
 294static bool
 295xfs_ioend_can_merge(
 296        struct xfs_ioend        *ioend,
 297        struct xfs_ioend        *next)
 298{
 299        if (ioend->io_bio->bi_status != next->io_bio->bi_status)
 300                return false;
 301        if ((ioend->io_fork == XFS_COW_FORK) ^ (next->io_fork == XFS_COW_FORK))
 302                return false;
 303        if ((ioend->io_state == XFS_EXT_UNWRITTEN) ^
 304            (next->io_state == XFS_EXT_UNWRITTEN))
 305                return false;
 306        if (ioend->io_offset + ioend->io_size != next->io_offset)
 307                return false;
 308        return true;
 309}
 310
 311/*
 312 * If the to be merged ioend has a preallocated transaction for file
 313 * size updates we need to ensure the ioend it is merged into also
 314 * has one.  If it already has one we can simply cancel the transaction
 315 * as it is guaranteed to be clean.
 316 */
 317static void
 318xfs_ioend_merge_append_transactions(
 319        struct xfs_ioend        *ioend,
 320        struct xfs_ioend        *next)
 321{
 322        if (!ioend->io_append_trans) {
 323                ioend->io_append_trans = next->io_append_trans;
 324                next->io_append_trans = NULL;
 325        } else {
 326                xfs_setfilesize_ioend(next, -ECANCELED);
 327        }
 328}
 329
 330/* Try to merge adjacent completions. */
 331STATIC void
 332xfs_ioend_try_merge(
 333        struct xfs_ioend        *ioend,
 334        struct list_head        *more_ioends)
 335{
 336        struct xfs_ioend        *next_ioend;
 337
 338        while (!list_empty(more_ioends)) {
 339                next_ioend = list_first_entry(more_ioends, struct xfs_ioend,
 340                                io_list);
 341                if (!xfs_ioend_can_merge(ioend, next_ioend))
 342                        break;
 343                list_move_tail(&next_ioend->io_list, &ioend->io_list);
 344                ioend->io_size += next_ioend->io_size;
 345                if (next_ioend->io_append_trans)
 346                        xfs_ioend_merge_append_transactions(ioend, next_ioend);
 347        }
 348}
 349
 350/* list_sort compare function for ioends */
 351static int
 352xfs_ioend_compare(
 353        void                    *priv,
 354        struct list_head        *a,
 355        struct list_head        *b)
 356{
 357        struct xfs_ioend        *ia;
 358        struct xfs_ioend        *ib;
 359
 360        ia = container_of(a, struct xfs_ioend, io_list);
 361        ib = container_of(b, struct xfs_ioend, io_list);
 362        if (ia->io_offset < ib->io_offset)
 363                return -1;
 364        else if (ia->io_offset > ib->io_offset)
 365                return 1;
 366        return 0;
 367}
 368
 369/* Finish all pending io completions. */
 370void
 371xfs_end_io(
 372        struct work_struct      *work)
 373{
 374        struct xfs_inode        *ip;
 375        struct xfs_ioend        *ioend;
 376        struct list_head        completion_list;
 377        unsigned long           flags;
 378
 379        ip = container_of(work, struct xfs_inode, i_ioend_work);
 380
 381        spin_lock_irqsave(&ip->i_ioend_lock, flags);
 382        list_replace_init(&ip->i_ioend_list, &completion_list);
 383        spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
 384
 385        list_sort(NULL, &completion_list, xfs_ioend_compare);
 386
 387        while (!list_empty(&completion_list)) {
 388                ioend = list_first_entry(&completion_list, struct xfs_ioend,
 389                                io_list);
 390                list_del_init(&ioend->io_list);
 391                xfs_ioend_try_merge(ioend, &completion_list);
 392                xfs_end_ioend(ioend);
 393        }
 394}
 395
 396STATIC void
 397xfs_end_bio(
 398        struct bio              *bio)
 399{
 400        struct xfs_ioend        *ioend = bio->bi_private;
 401        struct xfs_inode        *ip = XFS_I(ioend->io_inode);
 402        struct xfs_mount        *mp = ip->i_mount;
 403        unsigned long           flags;
 404
 405        if (ioend->io_fork == XFS_COW_FORK ||
 406            ioend->io_state == XFS_EXT_UNWRITTEN ||
 407            ioend->io_append_trans != NULL) {
 408                spin_lock_irqsave(&ip->i_ioend_lock, flags);
 409                if (list_empty(&ip->i_ioend_list))
 410                        WARN_ON_ONCE(!queue_work(mp->m_unwritten_workqueue,
 411                                                 &ip->i_ioend_work));
 412                list_add_tail(&ioend->io_list, &ip->i_ioend_list);
 413                spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
 414        } else
 415                xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
 416}
 417
 418/*
 419 * Fast revalidation of the cached writeback mapping. Return true if the current
 420 * mapping is valid, false otherwise.
 421 */
 422static bool
 423xfs_imap_valid(
 424        struct xfs_writepage_ctx        *wpc,
 425        struct xfs_inode                *ip,
 426        xfs_fileoff_t                   offset_fsb)
 427{
 428        if (offset_fsb < wpc->imap.br_startoff ||
 429            offset_fsb >= wpc->imap.br_startoff + wpc->imap.br_blockcount)
 430                return false;
 431        /*
 432         * If this is a COW mapping, it is sufficient to check that the mapping
 433         * covers the offset. Be careful to check this first because the caller
 434         * can revalidate a COW mapping without updating the data seqno.
 435         */
 436        if (wpc->fork == XFS_COW_FORK)
 437                return true;
 438
 439        /*
 440         * This is not a COW mapping. Check the sequence number of the data fork
 441         * because concurrent changes could have invalidated the extent. Check
 442         * the COW fork because concurrent changes since the last time we
 443         * checked (and found nothing at this offset) could have added
 444         * overlapping blocks.
 445         */
 446        if (wpc->data_seq != READ_ONCE(ip->i_df.if_seq))
 447                return false;
 448        if (xfs_inode_has_cow_data(ip) &&
 449            wpc->cow_seq != READ_ONCE(ip->i_cowfp->if_seq))
 450                return false;
 451        return true;
 452}
 453
 454/*
 455 * Pass in a dellalloc extent and convert it to real extents, return the real
 456 * extent that maps offset_fsb in wpc->imap.
 457 *
 458 * The current page is held locked so nothing could have removed the block
 459 * backing offset_fsb, although it could have moved from the COW to the data
 460 * fork by another thread.
 461 */
 462static int
 463xfs_convert_blocks(
 464        struct xfs_writepage_ctx *wpc,
 465        struct xfs_inode        *ip,
 466        xfs_fileoff_t           offset_fsb)
 467{
 468        int                     error;
 469
 470        /*
 471         * Attempt to allocate whatever delalloc extent currently backs
 472         * offset_fsb and put the result into wpc->imap.  Allocate in a loop
 473         * because it may take several attempts to allocate real blocks for a
 474         * contiguous delalloc extent if free space is sufficiently fragmented.
 475         */
 476        do {
 477                error = xfs_bmapi_convert_delalloc(ip, wpc->fork, offset_fsb,
 478                                &wpc->imap, wpc->fork == XFS_COW_FORK ?
 479                                        &wpc->cow_seq : &wpc->data_seq);
 480                if (error)
 481                        return error;
 482        } while (wpc->imap.br_startoff + wpc->imap.br_blockcount <= offset_fsb);
 483
 484        return 0;
 485}
 486
 487STATIC int
 488xfs_map_blocks(
 489        struct xfs_writepage_ctx *wpc,
 490        struct inode            *inode,
 491        loff_t                  offset)
 492{
 493        struct xfs_inode        *ip = XFS_I(inode);
 494        struct xfs_mount        *mp = ip->i_mount;
 495        ssize_t                 count = i_blocksize(inode);
 496        xfs_fileoff_t           offset_fsb = XFS_B_TO_FSBT(mp, offset);
 497        xfs_fileoff_t           end_fsb = XFS_B_TO_FSB(mp, offset + count);
 498        xfs_fileoff_t           cow_fsb = NULLFILEOFF;
 499        struct xfs_bmbt_irec    imap;
 500        struct xfs_iext_cursor  icur;
 501        int                     retries = 0;
 502        int                     error = 0;
 503
 504        if (XFS_FORCED_SHUTDOWN(mp))
 505                return -EIO;
 506
 507        /*
 508         * COW fork blocks can overlap data fork blocks even if the blocks
 509         * aren't shared.  COW I/O always takes precedent, so we must always
 510         * check for overlap on reflink inodes unless the mapping is already a
 511         * COW one, or the COW fork hasn't changed from the last time we looked
 512         * at it.
 513         *
 514         * It's safe to check the COW fork if_seq here without the ILOCK because
 515         * we've indirectly protected against concurrent updates: writeback has
 516         * the page locked, which prevents concurrent invalidations by reflink
 517         * and directio and prevents concurrent buffered writes to the same
 518         * page.  Changes to if_seq always happen under i_lock, which protects
 519         * against concurrent updates and provides a memory barrier on the way
 520         * out that ensures that we always see the current value.
 521         */
 522        if (xfs_imap_valid(wpc, ip, offset_fsb))
 523                return 0;
 524
 525        /*
 526         * If we don't have a valid map, now it's time to get a new one for this
 527         * offset.  This will convert delayed allocations (including COW ones)
 528         * into real extents.  If we return without a valid map, it means we
 529         * landed in a hole and we skip the block.
 530         */
 531retry:
 532        xfs_ilock(ip, XFS_ILOCK_SHARED);
 533        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
 534               (ip->i_df.if_flags & XFS_IFEXTENTS));
 535
 536        /*
 537         * Check if this is offset is covered by a COW extents, and if yes use
 538         * it directly instead of looking up anything in the data fork.
 539         */
 540        if (xfs_inode_has_cow_data(ip) &&
 541            xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
 542                cow_fsb = imap.br_startoff;
 543        if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
 544                wpc->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
 545                xfs_iunlock(ip, XFS_ILOCK_SHARED);
 546
 547                wpc->fork = XFS_COW_FORK;
 548                goto allocate_blocks;
 549        }
 550
 551        /*
 552         * No COW extent overlap. Revalidate now that we may have updated
 553         * ->cow_seq. If the data mapping is still valid, we're done.
 554         */
 555        if (xfs_imap_valid(wpc, ip, offset_fsb)) {
 556                xfs_iunlock(ip, XFS_ILOCK_SHARED);
 557                return 0;
 558        }
 559
 560        /*
 561         * If we don't have a valid map, now it's time to get a new one for this
 562         * offset.  This will convert delayed allocations (including COW ones)
 563         * into real extents.
 564         */
 565        if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
 566                imap.br_startoff = end_fsb;     /* fake a hole past EOF */
 567        wpc->data_seq = READ_ONCE(ip->i_df.if_seq);
 568        xfs_iunlock(ip, XFS_ILOCK_SHARED);
 569
 570        wpc->fork = XFS_DATA_FORK;
 571
 572        /* landed in a hole or beyond EOF? */
 573        if (imap.br_startoff > offset_fsb) {
 574                imap.br_blockcount = imap.br_startoff - offset_fsb;
 575                imap.br_startoff = offset_fsb;
 576                imap.br_startblock = HOLESTARTBLOCK;
 577                imap.br_state = XFS_EXT_NORM;
 578        }
 579
 580        /*
 581         * Truncate to the next COW extent if there is one.  This is the only
 582         * opportunity to do this because we can skip COW fork lookups for the
 583         * subsequent blocks in the mapping; however, the requirement to treat
 584         * the COW range separately remains.
 585         */
 586        if (cow_fsb != NULLFILEOFF &&
 587            cow_fsb < imap.br_startoff + imap.br_blockcount)
 588                imap.br_blockcount = cow_fsb - imap.br_startoff;
 589
 590        /* got a delalloc extent? */
 591        if (imap.br_startblock != HOLESTARTBLOCK &&
 592            isnullstartblock(imap.br_startblock))
 593                goto allocate_blocks;
 594
 595        wpc->imap = imap;
 596        trace_xfs_map_blocks_found(ip, offset, count, wpc->fork, &imap);
 597        return 0;
 598allocate_blocks:
 599        error = xfs_convert_blocks(wpc, ip, offset_fsb);
 600        if (error) {
 601                /*
 602                 * If we failed to find the extent in the COW fork we might have
 603                 * raced with a COW to data fork conversion or truncate.
 604                 * Restart the lookup to catch the extent in the data fork for
 605                 * the former case, but prevent additional retries to avoid
 606                 * looping forever for the latter case.
 607                 */
 608                if (error == -EAGAIN && wpc->fork == XFS_COW_FORK && !retries++)
 609                        goto retry;
 610                ASSERT(error != -EAGAIN);
 611                return error;
 612        }
 613
 614        /*
 615         * Due to merging the return real extent might be larger than the
 616         * original delalloc one.  Trim the return extent to the next COW
 617         * boundary again to force a re-lookup.
 618         */
 619        if (wpc->fork != XFS_COW_FORK && cow_fsb != NULLFILEOFF &&
 620            cow_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount)
 621                wpc->imap.br_blockcount = cow_fsb - wpc->imap.br_startoff;
 622
 623        ASSERT(wpc->imap.br_startoff <= offset_fsb);
 624        ASSERT(wpc->imap.br_startoff + wpc->imap.br_blockcount > offset_fsb);
 625        trace_xfs_map_blocks_alloc(ip, offset, count, wpc->fork, &imap);
 626        return 0;
 627}
 628
 629/*
 630 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
 631 * it, and we submit that bio. The ioend may be used for multiple bio
 632 * submissions, so we only want to allocate an append transaction for the ioend
 633 * once. In the case of multiple bio submission, each bio will take an IO
 634 * reference to the ioend to ensure that the ioend completion is only done once
 635 * all bios have been submitted and the ioend is really done.
 636 *
 637 * If @status is non-zero, it means that we have a situation where some part of
 638 * the submission process has failed after we have marked paged for writeback
 639 * and unlocked them. In this situation, we need to fail the bio and ioend
 640 * rather than submit it to IO. This typically only happens on a filesystem
 641 * shutdown.
 642 */
 643STATIC int
 644xfs_submit_ioend(
 645        struct writeback_control *wbc,
 646        struct xfs_ioend        *ioend,
 647        int                     status)
 648{
 649        unsigned int            nofs_flag;
 650
 651        /*
 652         * We can allocate memory here while doing writeback on behalf of
 653         * memory reclaim.  To avoid memory allocation deadlocks set the
 654         * task-wide nofs context for the following operations.
 655         */
 656        nofs_flag = memalloc_nofs_save();
 657
 658        /* Convert CoW extents to regular */
 659        if (!status && ioend->io_fork == XFS_COW_FORK) {
 660                status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
 661                                ioend->io_offset, ioend->io_size);
 662        }
 663
 664        /* Reserve log space if we might write beyond the on-disk inode size. */
 665        if (!status &&
 666            (ioend->io_fork == XFS_COW_FORK ||
 667             ioend->io_state != XFS_EXT_UNWRITTEN) &&
 668            xfs_ioend_is_append(ioend) &&
 669            !ioend->io_append_trans)
 670                status = xfs_setfilesize_trans_alloc(ioend);
 671
 672        memalloc_nofs_restore(nofs_flag);
 673
 674        ioend->io_bio->bi_private = ioend;
 675        ioend->io_bio->bi_end_io = xfs_end_bio;
 676
 677        /*
 678         * If we are failing the IO now, just mark the ioend with an
 679         * error and finish it. This will run IO completion immediately
 680         * as there is only one reference to the ioend at this point in
 681         * time.
 682         */
 683        if (status) {
 684                ioend->io_bio->bi_status = errno_to_blk_status(status);
 685                bio_endio(ioend->io_bio);
 686                return status;
 687        }
 688
 689        submit_bio(ioend->io_bio);
 690        return 0;
 691}
 692
 693static struct xfs_ioend *
 694xfs_alloc_ioend(
 695        struct inode            *inode,
 696        int                     fork,
 697        xfs_exntst_t            state,
 698        xfs_off_t               offset,
 699        struct block_device     *bdev,
 700        sector_t                sector,
 701        struct writeback_control *wbc)
 702{
 703        struct xfs_ioend        *ioend;
 704        struct bio              *bio;
 705
 706        bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset);
 707        bio_set_dev(bio, bdev);
 708        bio->bi_iter.bi_sector = sector;
 709        bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
 710        bio->bi_write_hint = inode->i_write_hint;
 711        wbc_init_bio(wbc, bio);
 712
 713        ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
 714        INIT_LIST_HEAD(&ioend->io_list);
 715        ioend->io_fork = fork;
 716        ioend->io_state = state;
 717        ioend->io_inode = inode;
 718        ioend->io_size = 0;
 719        ioend->io_offset = offset;
 720        ioend->io_append_trans = NULL;
 721        ioend->io_bio = bio;
 722        return ioend;
 723}
 724
 725/*
 726 * Allocate a new bio, and chain the old bio to the new one.
 727 *
 728 * Note that we have to do perform the chaining in this unintuitive order
 729 * so that the bi_private linkage is set up in the right direction for the
 730 * traversal in xfs_destroy_ioend().
 731 */
 732static struct bio *
 733xfs_chain_bio(
 734        struct bio              *prev)
 735{
 736        struct bio *new;
 737
 738        new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
 739        bio_copy_dev(new, prev);/* also copies over blkcg information */
 740        new->bi_iter.bi_sector = bio_end_sector(prev);
 741        new->bi_opf = prev->bi_opf;
 742        new->bi_write_hint = prev->bi_write_hint;
 743
 744        bio_chain(prev, new);
 745        bio_get(prev);          /* for xfs_destroy_ioend */
 746        submit_bio(prev);
 747        return new;
 748}
 749
 750/*
 751 * Test to see if we have an existing ioend structure that we could append to
 752 * first, otherwise finish off the current ioend and start another.
 753 */
 754STATIC void
 755xfs_add_to_ioend(
 756        struct inode            *inode,
 757        xfs_off_t               offset,
 758        struct page             *page,
 759        struct iomap_page       *iop,
 760        struct xfs_writepage_ctx *wpc,
 761        struct writeback_control *wbc,
 762        struct list_head        *iolist)
 763{
 764        struct xfs_inode        *ip = XFS_I(inode);
 765        struct xfs_mount        *mp = ip->i_mount;
 766        struct block_device     *bdev = xfs_find_bdev_for_inode(inode);
 767        unsigned                len = i_blocksize(inode);
 768        unsigned                poff = offset & (PAGE_SIZE - 1);
 769        bool                    merged, same_page = false;
 770        sector_t                sector;
 771
 772        sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) +
 773                ((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9);
 774
 775        if (!wpc->ioend ||
 776            wpc->fork != wpc->ioend->io_fork ||
 777            wpc->imap.br_state != wpc->ioend->io_state ||
 778            sector != bio_end_sector(wpc->ioend->io_bio) ||
 779            offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
 780                if (wpc->ioend)
 781                        list_add(&wpc->ioend->io_list, iolist);
 782                wpc->ioend = xfs_alloc_ioend(inode, wpc->fork,
 783                                wpc->imap.br_state, offset, bdev, sector, wbc);
 784        }
 785
 786        merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff,
 787                        &same_page);
 788
 789        if (iop && !same_page)
 790                atomic_inc(&iop->write_count);
 791
 792        if (!merged) {
 793                if (bio_full(wpc->ioend->io_bio, len))
 794                        wpc->ioend->io_bio = xfs_chain_bio(wpc->ioend->io_bio);
 795                bio_add_page(wpc->ioend->io_bio, page, len, poff);
 796        }
 797
 798        wpc->ioend->io_size += len;
 799        wbc_account_cgroup_owner(wbc, page, len);
 800}
 801
 802STATIC void
 803xfs_vm_invalidatepage(
 804        struct page             *page,
 805        unsigned int            offset,
 806        unsigned int            length)
 807{
 808        trace_xfs_invalidatepage(page->mapping->host, page, offset, length);
 809        iomap_invalidatepage(page, offset, length);
 810}
 811
 812/*
 813 * If the page has delalloc blocks on it, we need to punch them out before we
 814 * invalidate the page.  If we don't, we leave a stale delalloc mapping on the
 815 * inode that can trip up a later direct I/O read operation on the same region.
 816 *
 817 * We prevent this by truncating away the delalloc regions on the page.  Because
 818 * they are delalloc, we can do this without needing a transaction. Indeed - if
 819 * we get ENOSPC errors, we have to be able to do this truncation without a
 820 * transaction as there is no space left for block reservation (typically why we
 821 * see a ENOSPC in writeback).
 822 */
 823STATIC void
 824xfs_aops_discard_page(
 825        struct page             *page)
 826{
 827        struct inode            *inode = page->mapping->host;
 828        struct xfs_inode        *ip = XFS_I(inode);
 829        struct xfs_mount        *mp = ip->i_mount;
 830        loff_t                  offset = page_offset(page);
 831        xfs_fileoff_t           start_fsb = XFS_B_TO_FSBT(mp, offset);
 832        int                     error;
 833
 834        if (XFS_FORCED_SHUTDOWN(mp))
 835                goto out_invalidate;
 836
 837        xfs_alert(mp,
 838                "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
 839                        page, ip->i_ino, offset);
 840
 841        error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
 842                        PAGE_SIZE / i_blocksize(inode));
 843        if (error && !XFS_FORCED_SHUTDOWN(mp))
 844                xfs_alert(mp, "page discard unable to remove delalloc mapping.");
 845out_invalidate:
 846        xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
 847}
 848
 849/*
 850 * We implement an immediate ioend submission policy here to avoid needing to
 851 * chain multiple ioends and hence nest mempool allocations which can violate
 852 * forward progress guarantees we need to provide. The current ioend we are
 853 * adding blocks to is cached on the writepage context, and if the new block
 854 * does not append to the cached ioend it will create a new ioend and cache that
 855 * instead.
 856 *
 857 * If a new ioend is created and cached, the old ioend is returned and queued
 858 * locally for submission once the entire page is processed or an error has been
 859 * detected.  While ioends are submitted immediately after they are completed,
 860 * batching optimisations are provided by higher level block plugging.
 861 *
 862 * At the end of a writeback pass, there will be a cached ioend remaining on the
 863 * writepage context that the caller will need to submit.
 864 */
 865static int
 866xfs_writepage_map(
 867        struct xfs_writepage_ctx *wpc,
 868        struct writeback_control *wbc,
 869        struct inode            *inode,
 870        struct page             *page,
 871        uint64_t                end_offset)
 872{
 873        LIST_HEAD(submit_list);
 874        struct iomap_page       *iop = to_iomap_page(page);
 875        unsigned                len = i_blocksize(inode);
 876        struct xfs_ioend        *ioend, *next;
 877        uint64_t                file_offset;    /* file offset of page */
 878        int                     error = 0, count = 0, i;
 879
 880        ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
 881        ASSERT(!iop || atomic_read(&iop->write_count) == 0);
 882
 883        /*
 884         * Walk through the page to find areas to write back. If we run off the
 885         * end of the current map or find the current map invalid, grab a new
 886         * one.
 887         */
 888        for (i = 0, file_offset = page_offset(page);
 889             i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
 890             i++, file_offset += len) {
 891                if (iop && !test_bit(i, iop->uptodate))
 892                        continue;
 893
 894                error = xfs_map_blocks(wpc, inode, file_offset);
 895                if (error)
 896                        break;
 897                if (wpc->imap.br_startblock == HOLESTARTBLOCK)
 898                        continue;
 899                xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
 900                                 &submit_list);
 901                count++;
 902        }
 903
 904        ASSERT(wpc->ioend || list_empty(&submit_list));
 905        ASSERT(PageLocked(page));
 906        ASSERT(!PageWriteback(page));
 907
 908        /*
 909         * On error, we have to fail the ioend here because we may have set
 910         * pages under writeback, we have to make sure we run IO completion to
 911         * mark the error state of the IO appropriately, so we can't cancel the
 912         * ioend directly here.  That means we have to mark this page as under
 913         * writeback if we included any blocks from it in the ioend chain so
 914         * that completion treats it correctly.
 915         *
 916         * If we didn't include the page in the ioend, the on error we can
 917         * simply discard and unlock it as there are no other users of the page
 918         * now.  The caller will still need to trigger submission of outstanding
 919         * ioends on the writepage context so they are treated correctly on
 920         * error.
 921         */
 922        if (unlikely(error)) {
 923                if (!count) {
 924                        xfs_aops_discard_page(page);
 925                        ClearPageUptodate(page);
 926                        unlock_page(page);
 927                        goto done;
 928                }
 929
 930                /*
 931                 * If the page was not fully cleaned, we need to ensure that the
 932                 * higher layers come back to it correctly.  That means we need
 933                 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
 934                 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
 935                 * so another attempt to write this page in this writeback sweep
 936                 * will be made.
 937                 */
 938                set_page_writeback_keepwrite(page);
 939        } else {
 940                clear_page_dirty_for_io(page);
 941                set_page_writeback(page);
 942        }
 943
 944        unlock_page(page);
 945
 946        /*
 947         * Preserve the original error if there was one, otherwise catch
 948         * submission errors here and propagate into subsequent ioend
 949         * submissions.
 950         */
 951        list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
 952                int error2;
 953
 954                list_del_init(&ioend->io_list);
 955                error2 = xfs_submit_ioend(wbc, ioend, error);
 956                if (error2 && !error)
 957                        error = error2;
 958        }
 959
 960        /*
 961         * We can end up here with no error and nothing to write only if we race
 962         * with a partial page truncate on a sub-page block sized filesystem.
 963         */
 964        if (!count)
 965                end_page_writeback(page);
 966done:
 967        mapping_set_error(page->mapping, error);
 968        return error;
 969}
 970
 971/*
 972 * Write out a dirty page.
 973 *
 974 * For delalloc space on the page we need to allocate space and flush it.
 975 * For unwritten space on the page we need to start the conversion to
 976 * regular allocated space.
 977 */
 978STATIC int
 979xfs_do_writepage(
 980        struct page             *page,
 981        struct writeback_control *wbc,
 982        void                    *data)
 983{
 984        struct xfs_writepage_ctx *wpc = data;
 985        struct inode            *inode = page->mapping->host;
 986        loff_t                  offset;
 987        uint64_t              end_offset;
 988        pgoff_t                 end_index;
 989
 990        trace_xfs_writepage(inode, page, 0, 0);
 991
 992        /*
 993         * Refuse to write the page out if we are called from reclaim context.
 994         *
 995         * This avoids stack overflows when called from deeply used stacks in
 996         * random callers for direct reclaim or memcg reclaim.  We explicitly
 997         * allow reclaim from kswapd as the stack usage there is relatively low.
 998         *
 999         * This should never happen except in the case of a VM regression so
1000         * warn about it.
1001         */
1002        if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1003                        PF_MEMALLOC))
1004                goto redirty;
1005
1006        /*
1007         * Given that we do not allow direct reclaim to call us, we should
1008         * never be called while in a filesystem transaction.
1009         */
1010        if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1011                goto redirty;
1012
1013        /*
1014         * Is this page beyond the end of the file?
1015         *
1016         * The page index is less than the end_index, adjust the end_offset
1017         * to the highest offset that this page should represent.
1018         * -----------------------------------------------------
1019         * |                    file mapping           | <EOF> |
1020         * -----------------------------------------------------
1021         * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1022         * ^--------------------------------^----------|--------
1023         * |     desired writeback range    |      see else    |
1024         * ---------------------------------^------------------|
1025         */
1026        offset = i_size_read(inode);
1027        end_index = offset >> PAGE_SHIFT;
1028        if (page->index < end_index)
1029                end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1030        else {
1031                /*
1032                 * Check whether the page to write out is beyond or straddles
1033                 * i_size or not.
1034                 * -------------------------------------------------------
1035                 * |            file mapping                    | <EOF>  |
1036                 * -------------------------------------------------------
1037                 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1038                 * ^--------------------------------^-----------|---------
1039                 * |                                |      Straddles     |
1040                 * ---------------------------------^-----------|--------|
1041                 */
1042                unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1043
1044                /*
1045                 * Skip the page if it is fully outside i_size, e.g. due to a
1046                 * truncate operation that is in progress. We must redirty the
1047                 * page so that reclaim stops reclaiming it. Otherwise
1048                 * xfs_vm_releasepage() is called on it and gets confused.
1049                 *
1050                 * Note that the end_index is unsigned long, it would overflow
1051                 * if the given offset is greater than 16TB on 32-bit system
1052                 * and if we do check the page is fully outside i_size or not
1053                 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1054                 * will be evaluated to 0.  Hence this page will be redirtied
1055                 * and be written out repeatedly which would result in an
1056                 * infinite loop, the user program that perform this operation
1057                 * will hang.  Instead, we can verify this situation by checking
1058                 * if the page to write is totally beyond the i_size or if it's
1059                 * offset is just equal to the EOF.
1060                 */
1061                if (page->index > end_index ||
1062                    (page->index == end_index && offset_into_page == 0))
1063                        goto redirty;
1064
1065                /*
1066                 * The page straddles i_size.  It must be zeroed out on each
1067                 * and every writepage invocation because it may be mmapped.
1068                 * "A file is mapped in multiples of the page size.  For a file
1069                 * that is not a multiple of the page size, the remaining
1070                 * memory is zeroed when mapped, and writes to that region are
1071                 * not written out to the file."
1072                 */
1073                zero_user_segment(page, offset_into_page, PAGE_SIZE);
1074
1075                /* Adjust the end_offset to the end of file */
1076                end_offset = offset;
1077        }
1078
1079        return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
1080
1081redirty:
1082        redirty_page_for_writepage(wbc, page);
1083        unlock_page(page);
1084        return 0;
1085}
1086
1087STATIC int
1088xfs_vm_writepage(
1089        struct page             *page,
1090        struct writeback_control *wbc)
1091{
1092        struct xfs_writepage_ctx wpc = { };
1093        int                     ret;
1094
1095        ret = xfs_do_writepage(page, wbc, &wpc);
1096        if (wpc.ioend)
1097                ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1098        return ret;
1099}
1100
1101STATIC int
1102xfs_vm_writepages(
1103        struct address_space    *mapping,
1104        struct writeback_control *wbc)
1105{
1106        struct xfs_writepage_ctx wpc = { };
1107        int                     ret;
1108
1109        xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1110        ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1111        if (wpc.ioend)
1112                ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1113        return ret;
1114}
1115
1116STATIC int
1117xfs_dax_writepages(
1118        struct address_space    *mapping,
1119        struct writeback_control *wbc)
1120{
1121        xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1122        return dax_writeback_mapping_range(mapping,
1123                        xfs_find_bdev_for_inode(mapping->host), wbc);
1124}
1125
1126STATIC int
1127xfs_vm_releasepage(
1128        struct page             *page,
1129        gfp_t                   gfp_mask)
1130{
1131        trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1132        return iomap_releasepage(page, gfp_mask);
1133}
1134
1135STATIC sector_t
1136xfs_vm_bmap(
1137        struct address_space    *mapping,
1138        sector_t                block)
1139{
1140        struct xfs_inode        *ip = XFS_I(mapping->host);
1141
1142        trace_xfs_vm_bmap(ip);
1143
1144        /*
1145         * The swap code (ab-)uses ->bmap to get a block mapping and then
1146         * bypasses the file system for actual I/O.  We really can't allow
1147         * that on reflinks inodes, so we have to skip out here.  And yes,
1148         * 0 is the magic code for a bmap error.
1149         *
1150         * Since we don't pass back blockdev info, we can't return bmap
1151         * information for rt files either.
1152         */
1153        if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1154                return 0;
1155        return iomap_bmap(mapping, block, &xfs_iomap_ops);
1156}
1157
1158STATIC int
1159xfs_vm_readpage(
1160        struct file             *unused,
1161        struct page             *page)
1162{
1163        trace_xfs_vm_readpage(page->mapping->host, 1);
1164        return iomap_readpage(page, &xfs_iomap_ops);
1165}
1166
1167STATIC int
1168xfs_vm_readpages(
1169        struct file             *unused,
1170        struct address_space    *mapping,
1171        struct list_head        *pages,
1172        unsigned                nr_pages)
1173{
1174        trace_xfs_vm_readpages(mapping->host, nr_pages);
1175        return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops);
1176}
1177
1178static int
1179xfs_iomap_swapfile_activate(
1180        struct swap_info_struct         *sis,
1181        struct file                     *swap_file,
1182        sector_t                        *span)
1183{
1184        sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file));
1185        return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops);
1186}
1187
1188const struct address_space_operations xfs_address_space_operations = {
1189        .readpage               = xfs_vm_readpage,
1190        .readpages              = xfs_vm_readpages,
1191        .writepage              = xfs_vm_writepage,
1192        .writepages             = xfs_vm_writepages,
1193        .set_page_dirty         = iomap_set_page_dirty,
1194        .releasepage            = xfs_vm_releasepage,
1195        .invalidatepage         = xfs_vm_invalidatepage,
1196        .bmap                   = xfs_vm_bmap,
1197        .direct_IO              = noop_direct_IO,
1198        .migratepage            = iomap_migrate_page,
1199        .is_partially_uptodate  = iomap_is_partially_uptodate,
1200        .error_remove_page      = generic_error_remove_page,
1201        .swap_activate          = xfs_iomap_swapfile_activate,
1202};
1203
1204const struct address_space_operations xfs_dax_aops = {
1205        .writepages             = xfs_dax_writepages,
1206        .direct_IO              = noop_direct_IO,
1207        .set_page_dirty         = noop_set_page_dirty,
1208        .invalidatepage         = noop_invalidatepage,
1209        .swap_activate          = xfs_iomap_swapfile_activate,
1210};
1211