linux/fs/xfs/xfs_log.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_errortag.h"
  14#include "xfs_error.h"
  15#include "xfs_trans.h"
  16#include "xfs_trans_priv.h"
  17#include "xfs_log.h"
  18#include "xfs_log_priv.h"
  19#include "xfs_trace.h"
  20#include "xfs_sysfs.h"
  21#include "xfs_sb.h"
  22#include "xfs_health.h"
  23
  24kmem_zone_t     *xfs_log_ticket_zone;
  25
  26/* Local miscellaneous function prototypes */
  27STATIC int
  28xlog_commit_record(
  29        struct xlog             *log,
  30        struct xlog_ticket      *ticket,
  31        struct xlog_in_core     **iclog,
  32        xfs_lsn_t               *commitlsnp);
  33
  34STATIC struct xlog *
  35xlog_alloc_log(
  36        struct xfs_mount        *mp,
  37        struct xfs_buftarg      *log_target,
  38        xfs_daddr_t             blk_offset,
  39        int                     num_bblks);
  40STATIC int
  41xlog_space_left(
  42        struct xlog             *log,
  43        atomic64_t              *head);
  44STATIC void
  45xlog_dealloc_log(
  46        struct xlog             *log);
  47
  48/* local state machine functions */
  49STATIC void xlog_state_done_syncing(
  50        struct xlog_in_core     *iclog,
  51        bool                    aborted);
  52STATIC int
  53xlog_state_get_iclog_space(
  54        struct xlog             *log,
  55        int                     len,
  56        struct xlog_in_core     **iclog,
  57        struct xlog_ticket      *ticket,
  58        int                     *continued_write,
  59        int                     *logoffsetp);
  60STATIC int
  61xlog_state_release_iclog(
  62        struct xlog             *log,
  63        struct xlog_in_core     *iclog);
  64STATIC void
  65xlog_state_switch_iclogs(
  66        struct xlog             *log,
  67        struct xlog_in_core     *iclog,
  68        int                     eventual_size);
  69STATIC void
  70xlog_state_want_sync(
  71        struct xlog             *log,
  72        struct xlog_in_core     *iclog);
  73
  74STATIC void
  75xlog_grant_push_ail(
  76        struct xlog             *log,
  77        int                     need_bytes);
  78STATIC void
  79xlog_regrant_reserve_log_space(
  80        struct xlog             *log,
  81        struct xlog_ticket      *ticket);
  82STATIC void
  83xlog_ungrant_log_space(
  84        struct xlog             *log,
  85        struct xlog_ticket      *ticket);
  86
  87#if defined(DEBUG)
  88STATIC void
  89xlog_verify_dest_ptr(
  90        struct xlog             *log,
  91        void                    *ptr);
  92STATIC void
  93xlog_verify_grant_tail(
  94        struct xlog *log);
  95STATIC void
  96xlog_verify_iclog(
  97        struct xlog             *log,
  98        struct xlog_in_core     *iclog,
  99        int                     count);
 100STATIC void
 101xlog_verify_tail_lsn(
 102        struct xlog             *log,
 103        struct xlog_in_core     *iclog,
 104        xfs_lsn_t               tail_lsn);
 105#else
 106#define xlog_verify_dest_ptr(a,b)
 107#define xlog_verify_grant_tail(a)
 108#define xlog_verify_iclog(a,b,c)
 109#define xlog_verify_tail_lsn(a,b,c)
 110#endif
 111
 112STATIC int
 113xlog_iclogs_empty(
 114        struct xlog             *log);
 115
 116static void
 117xlog_grant_sub_space(
 118        struct xlog             *log,
 119        atomic64_t              *head,
 120        int                     bytes)
 121{
 122        int64_t head_val = atomic64_read(head);
 123        int64_t new, old;
 124
 125        do {
 126                int     cycle, space;
 127
 128                xlog_crack_grant_head_val(head_val, &cycle, &space);
 129
 130                space -= bytes;
 131                if (space < 0) {
 132                        space += log->l_logsize;
 133                        cycle--;
 134                }
 135
 136                old = head_val;
 137                new = xlog_assign_grant_head_val(cycle, space);
 138                head_val = atomic64_cmpxchg(head, old, new);
 139        } while (head_val != old);
 140}
 141
 142static void
 143xlog_grant_add_space(
 144        struct xlog             *log,
 145        atomic64_t              *head,
 146        int                     bytes)
 147{
 148        int64_t head_val = atomic64_read(head);
 149        int64_t new, old;
 150
 151        do {
 152                int             tmp;
 153                int             cycle, space;
 154
 155                xlog_crack_grant_head_val(head_val, &cycle, &space);
 156
 157                tmp = log->l_logsize - space;
 158                if (tmp > bytes)
 159                        space += bytes;
 160                else {
 161                        space = bytes - tmp;
 162                        cycle++;
 163                }
 164
 165                old = head_val;
 166                new = xlog_assign_grant_head_val(cycle, space);
 167                head_val = atomic64_cmpxchg(head, old, new);
 168        } while (head_val != old);
 169}
 170
 171STATIC void
 172xlog_grant_head_init(
 173        struct xlog_grant_head  *head)
 174{
 175        xlog_assign_grant_head(&head->grant, 1, 0);
 176        INIT_LIST_HEAD(&head->waiters);
 177        spin_lock_init(&head->lock);
 178}
 179
 180STATIC void
 181xlog_grant_head_wake_all(
 182        struct xlog_grant_head  *head)
 183{
 184        struct xlog_ticket      *tic;
 185
 186        spin_lock(&head->lock);
 187        list_for_each_entry(tic, &head->waiters, t_queue)
 188                wake_up_process(tic->t_task);
 189        spin_unlock(&head->lock);
 190}
 191
 192static inline int
 193xlog_ticket_reservation(
 194        struct xlog             *log,
 195        struct xlog_grant_head  *head,
 196        struct xlog_ticket      *tic)
 197{
 198        if (head == &log->l_write_head) {
 199                ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 200                return tic->t_unit_res;
 201        } else {
 202                if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 203                        return tic->t_unit_res * tic->t_cnt;
 204                else
 205                        return tic->t_unit_res;
 206        }
 207}
 208
 209STATIC bool
 210xlog_grant_head_wake(
 211        struct xlog             *log,
 212        struct xlog_grant_head  *head,
 213        int                     *free_bytes)
 214{
 215        struct xlog_ticket      *tic;
 216        int                     need_bytes;
 217
 218        list_for_each_entry(tic, &head->waiters, t_queue) {
 219                need_bytes = xlog_ticket_reservation(log, head, tic);
 220                if (*free_bytes < need_bytes)
 221                        return false;
 222
 223                *free_bytes -= need_bytes;
 224                trace_xfs_log_grant_wake_up(log, tic);
 225                wake_up_process(tic->t_task);
 226        }
 227
 228        return true;
 229}
 230
 231STATIC int
 232xlog_grant_head_wait(
 233        struct xlog             *log,
 234        struct xlog_grant_head  *head,
 235        struct xlog_ticket      *tic,
 236        int                     need_bytes) __releases(&head->lock)
 237                                            __acquires(&head->lock)
 238{
 239        list_add_tail(&tic->t_queue, &head->waiters);
 240
 241        do {
 242                if (XLOG_FORCED_SHUTDOWN(log))
 243                        goto shutdown;
 244                xlog_grant_push_ail(log, need_bytes);
 245
 246                __set_current_state(TASK_UNINTERRUPTIBLE);
 247                spin_unlock(&head->lock);
 248
 249                XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 250
 251                trace_xfs_log_grant_sleep(log, tic);
 252                schedule();
 253                trace_xfs_log_grant_wake(log, tic);
 254
 255                spin_lock(&head->lock);
 256                if (XLOG_FORCED_SHUTDOWN(log))
 257                        goto shutdown;
 258        } while (xlog_space_left(log, &head->grant) < need_bytes);
 259
 260        list_del_init(&tic->t_queue);
 261        return 0;
 262shutdown:
 263        list_del_init(&tic->t_queue);
 264        return -EIO;
 265}
 266
 267/*
 268 * Atomically get the log space required for a log ticket.
 269 *
 270 * Once a ticket gets put onto head->waiters, it will only return after the
 271 * needed reservation is satisfied.
 272 *
 273 * This function is structured so that it has a lock free fast path. This is
 274 * necessary because every new transaction reservation will come through this
 275 * path. Hence any lock will be globally hot if we take it unconditionally on
 276 * every pass.
 277 *
 278 * As tickets are only ever moved on and off head->waiters under head->lock, we
 279 * only need to take that lock if we are going to add the ticket to the queue
 280 * and sleep. We can avoid taking the lock if the ticket was never added to
 281 * head->waiters because the t_queue list head will be empty and we hold the
 282 * only reference to it so it can safely be checked unlocked.
 283 */
 284STATIC int
 285xlog_grant_head_check(
 286        struct xlog             *log,
 287        struct xlog_grant_head  *head,
 288        struct xlog_ticket      *tic,
 289        int                     *need_bytes)
 290{
 291        int                     free_bytes;
 292        int                     error = 0;
 293
 294        ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 295
 296        /*
 297         * If there are other waiters on the queue then give them a chance at
 298         * logspace before us.  Wake up the first waiters, if we do not wake
 299         * up all the waiters then go to sleep waiting for more free space,
 300         * otherwise try to get some space for this transaction.
 301         */
 302        *need_bytes = xlog_ticket_reservation(log, head, tic);
 303        free_bytes = xlog_space_left(log, &head->grant);
 304        if (!list_empty_careful(&head->waiters)) {
 305                spin_lock(&head->lock);
 306                if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 307                    free_bytes < *need_bytes) {
 308                        error = xlog_grant_head_wait(log, head, tic,
 309                                                     *need_bytes);
 310                }
 311                spin_unlock(&head->lock);
 312        } else if (free_bytes < *need_bytes) {
 313                spin_lock(&head->lock);
 314                error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 315                spin_unlock(&head->lock);
 316        }
 317
 318        return error;
 319}
 320
 321static void
 322xlog_tic_reset_res(xlog_ticket_t *tic)
 323{
 324        tic->t_res_num = 0;
 325        tic->t_res_arr_sum = 0;
 326        tic->t_res_num_ophdrs = 0;
 327}
 328
 329static void
 330xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 331{
 332        if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 333                /* add to overflow and start again */
 334                tic->t_res_o_flow += tic->t_res_arr_sum;
 335                tic->t_res_num = 0;
 336                tic->t_res_arr_sum = 0;
 337        }
 338
 339        tic->t_res_arr[tic->t_res_num].r_len = len;
 340        tic->t_res_arr[tic->t_res_num].r_type = type;
 341        tic->t_res_arr_sum += len;
 342        tic->t_res_num++;
 343}
 344
 345/*
 346 * Replenish the byte reservation required by moving the grant write head.
 347 */
 348int
 349xfs_log_regrant(
 350        struct xfs_mount        *mp,
 351        struct xlog_ticket      *tic)
 352{
 353        struct xlog             *log = mp->m_log;
 354        int                     need_bytes;
 355        int                     error = 0;
 356
 357        if (XLOG_FORCED_SHUTDOWN(log))
 358                return -EIO;
 359
 360        XFS_STATS_INC(mp, xs_try_logspace);
 361
 362        /*
 363         * This is a new transaction on the ticket, so we need to change the
 364         * transaction ID so that the next transaction has a different TID in
 365         * the log. Just add one to the existing tid so that we can see chains
 366         * of rolling transactions in the log easily.
 367         */
 368        tic->t_tid++;
 369
 370        xlog_grant_push_ail(log, tic->t_unit_res);
 371
 372        tic->t_curr_res = tic->t_unit_res;
 373        xlog_tic_reset_res(tic);
 374
 375        if (tic->t_cnt > 0)
 376                return 0;
 377
 378        trace_xfs_log_regrant(log, tic);
 379
 380        error = xlog_grant_head_check(log, &log->l_write_head, tic,
 381                                      &need_bytes);
 382        if (error)
 383                goto out_error;
 384
 385        xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 386        trace_xfs_log_regrant_exit(log, tic);
 387        xlog_verify_grant_tail(log);
 388        return 0;
 389
 390out_error:
 391        /*
 392         * If we are failing, make sure the ticket doesn't have any current
 393         * reservations.  We don't want to add this back when the ticket/
 394         * transaction gets cancelled.
 395         */
 396        tic->t_curr_res = 0;
 397        tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
 398        return error;
 399}
 400
 401/*
 402 * Reserve log space and return a ticket corresponding to the reservation.
 403 *
 404 * Each reservation is going to reserve extra space for a log record header.
 405 * When writes happen to the on-disk log, we don't subtract the length of the
 406 * log record header from any reservation.  By wasting space in each
 407 * reservation, we prevent over allocation problems.
 408 */
 409int
 410xfs_log_reserve(
 411        struct xfs_mount        *mp,
 412        int                     unit_bytes,
 413        int                     cnt,
 414        struct xlog_ticket      **ticp,
 415        uint8_t                 client,
 416        bool                    permanent)
 417{
 418        struct xlog             *log = mp->m_log;
 419        struct xlog_ticket      *tic;
 420        int                     need_bytes;
 421        int                     error = 0;
 422
 423        ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 424
 425        if (XLOG_FORCED_SHUTDOWN(log))
 426                return -EIO;
 427
 428        XFS_STATS_INC(mp, xs_try_logspace);
 429
 430        ASSERT(*ticp == NULL);
 431        tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
 432                                KM_SLEEP);
 433        *ticp = tic;
 434
 435        xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
 436                                            : tic->t_unit_res);
 437
 438        trace_xfs_log_reserve(log, tic);
 439
 440        error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 441                                      &need_bytes);
 442        if (error)
 443                goto out_error;
 444
 445        xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 446        xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 447        trace_xfs_log_reserve_exit(log, tic);
 448        xlog_verify_grant_tail(log);
 449        return 0;
 450
 451out_error:
 452        /*
 453         * If we are failing, make sure the ticket doesn't have any current
 454         * reservations.  We don't want to add this back when the ticket/
 455         * transaction gets cancelled.
 456         */
 457        tic->t_curr_res = 0;
 458        tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
 459        return error;
 460}
 461
 462
 463/*
 464 * NOTES:
 465 *
 466 *      1. currblock field gets updated at startup and after in-core logs
 467 *              marked as with WANT_SYNC.
 468 */
 469
 470/*
 471 * This routine is called when a user of a log manager ticket is done with
 472 * the reservation.  If the ticket was ever used, then a commit record for
 473 * the associated transaction is written out as a log operation header with
 474 * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
 475 * a given ticket.  If the ticket was one with a permanent reservation, then
 476 * a few operations are done differently.  Permanent reservation tickets by
 477 * default don't release the reservation.  They just commit the current
 478 * transaction with the belief that the reservation is still needed.  A flag
 479 * must be passed in before permanent reservations are actually released.
 480 * When these type of tickets are not released, they need to be set into
 481 * the inited state again.  By doing this, a start record will be written
 482 * out when the next write occurs.
 483 */
 484xfs_lsn_t
 485xfs_log_done(
 486        struct xfs_mount        *mp,
 487        struct xlog_ticket      *ticket,
 488        struct xlog_in_core     **iclog,
 489        bool                    regrant)
 490{
 491        struct xlog             *log = mp->m_log;
 492        xfs_lsn_t               lsn = 0;
 493
 494        if (XLOG_FORCED_SHUTDOWN(log) ||
 495            /*
 496             * If nothing was ever written, don't write out commit record.
 497             * If we get an error, just continue and give back the log ticket.
 498             */
 499            (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
 500             (xlog_commit_record(log, ticket, iclog, &lsn)))) {
 501                lsn = (xfs_lsn_t) -1;
 502                regrant = false;
 503        }
 504
 505
 506        if (!regrant) {
 507                trace_xfs_log_done_nonperm(log, ticket);
 508
 509                /*
 510                 * Release ticket if not permanent reservation or a specific
 511                 * request has been made to release a permanent reservation.
 512                 */
 513                xlog_ungrant_log_space(log, ticket);
 514        } else {
 515                trace_xfs_log_done_perm(log, ticket);
 516
 517                xlog_regrant_reserve_log_space(log, ticket);
 518                /* If this ticket was a permanent reservation and we aren't
 519                 * trying to release it, reset the inited flags; so next time
 520                 * we write, a start record will be written out.
 521                 */
 522                ticket->t_flags |= XLOG_TIC_INITED;
 523        }
 524
 525        xfs_log_ticket_put(ticket);
 526        return lsn;
 527}
 528
 529int
 530xfs_log_release_iclog(
 531        struct xfs_mount        *mp,
 532        struct xlog_in_core     *iclog)
 533{
 534        if (xlog_state_release_iclog(mp->m_log, iclog)) {
 535                xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
 536                return -EIO;
 537        }
 538
 539        return 0;
 540}
 541
 542/*
 543 * Mount a log filesystem
 544 *
 545 * mp           - ubiquitous xfs mount point structure
 546 * log_target   - buftarg of on-disk log device
 547 * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
 548 * num_bblocks  - Number of BBSIZE blocks in on-disk log
 549 *
 550 * Return error or zero.
 551 */
 552int
 553xfs_log_mount(
 554        xfs_mount_t     *mp,
 555        xfs_buftarg_t   *log_target,
 556        xfs_daddr_t     blk_offset,
 557        int             num_bblks)
 558{
 559        bool            fatal = xfs_sb_version_hascrc(&mp->m_sb);
 560        int             error = 0;
 561        int             min_logfsbs;
 562
 563        if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 564                xfs_notice(mp, "Mounting V%d Filesystem",
 565                           XFS_SB_VERSION_NUM(&mp->m_sb));
 566        } else {
 567                xfs_notice(mp,
 568"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
 569                           XFS_SB_VERSION_NUM(&mp->m_sb));
 570                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 571        }
 572
 573        mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 574        if (IS_ERR(mp->m_log)) {
 575                error = PTR_ERR(mp->m_log);
 576                goto out;
 577        }
 578
 579        /*
 580         * Validate the given log space and drop a critical message via syslog
 581         * if the log size is too small that would lead to some unexpected
 582         * situations in transaction log space reservation stage.
 583         *
 584         * Note: we can't just reject the mount if the validation fails.  This
 585         * would mean that people would have to downgrade their kernel just to
 586         * remedy the situation as there is no way to grow the log (short of
 587         * black magic surgery with xfs_db).
 588         *
 589         * We can, however, reject mounts for CRC format filesystems, as the
 590         * mkfs binary being used to make the filesystem should never create a
 591         * filesystem with a log that is too small.
 592         */
 593        min_logfsbs = xfs_log_calc_minimum_size(mp);
 594
 595        if (mp->m_sb.sb_logblocks < min_logfsbs) {
 596                xfs_warn(mp,
 597                "Log size %d blocks too small, minimum size is %d blocks",
 598                         mp->m_sb.sb_logblocks, min_logfsbs);
 599                error = -EINVAL;
 600        } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
 601                xfs_warn(mp,
 602                "Log size %d blocks too large, maximum size is %lld blocks",
 603                         mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
 604                error = -EINVAL;
 605        } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
 606                xfs_warn(mp,
 607                "log size %lld bytes too large, maximum size is %lld bytes",
 608                         XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
 609                         XFS_MAX_LOG_BYTES);
 610                error = -EINVAL;
 611        } else if (mp->m_sb.sb_logsunit > 1 &&
 612                   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
 613                xfs_warn(mp,
 614                "log stripe unit %u bytes must be a multiple of block size",
 615                         mp->m_sb.sb_logsunit);
 616                error = -EINVAL;
 617                fatal = true;
 618        }
 619        if (error) {
 620                /*
 621                 * Log check errors are always fatal on v5; or whenever bad
 622                 * metadata leads to a crash.
 623                 */
 624                if (fatal) {
 625                        xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 626                        ASSERT(0);
 627                        goto out_free_log;
 628                }
 629                xfs_crit(mp, "Log size out of supported range.");
 630                xfs_crit(mp,
 631"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 632        }
 633
 634        /*
 635         * Initialize the AIL now we have a log.
 636         */
 637        error = xfs_trans_ail_init(mp);
 638        if (error) {
 639                xfs_warn(mp, "AIL initialisation failed: error %d", error);
 640                goto out_free_log;
 641        }
 642        mp->m_log->l_ailp = mp->m_ail;
 643
 644        /*
 645         * skip log recovery on a norecovery mount.  pretend it all
 646         * just worked.
 647         */
 648        if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 649                int     readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 650
 651                if (readonly)
 652                        mp->m_flags &= ~XFS_MOUNT_RDONLY;
 653
 654                error = xlog_recover(mp->m_log);
 655
 656                if (readonly)
 657                        mp->m_flags |= XFS_MOUNT_RDONLY;
 658                if (error) {
 659                        xfs_warn(mp, "log mount/recovery failed: error %d",
 660                                error);
 661                        xlog_recover_cancel(mp->m_log);
 662                        goto out_destroy_ail;
 663                }
 664        }
 665
 666        error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 667                               "log");
 668        if (error)
 669                goto out_destroy_ail;
 670
 671        /* Normal transactions can now occur */
 672        mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 673
 674        /*
 675         * Now the log has been fully initialised and we know were our
 676         * space grant counters are, we can initialise the permanent ticket
 677         * needed for delayed logging to work.
 678         */
 679        xlog_cil_init_post_recovery(mp->m_log);
 680
 681        return 0;
 682
 683out_destroy_ail:
 684        xfs_trans_ail_destroy(mp);
 685out_free_log:
 686        xlog_dealloc_log(mp->m_log);
 687out:
 688        return error;
 689}
 690
 691/*
 692 * Finish the recovery of the file system.  This is separate from the
 693 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 694 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 695 * here.
 696 *
 697 * If we finish recovery successfully, start the background log work. If we are
 698 * not doing recovery, then we have a RO filesystem and we don't need to start
 699 * it.
 700 */
 701int
 702xfs_log_mount_finish(
 703        struct xfs_mount        *mp)
 704{
 705        int     error = 0;
 706        bool    readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 707        bool    recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
 708
 709        if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
 710                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 711                return 0;
 712        } else if (readonly) {
 713                /* Allow unlinked processing to proceed */
 714                mp->m_flags &= ~XFS_MOUNT_RDONLY;
 715        }
 716
 717        /*
 718         * During the second phase of log recovery, we need iget and
 719         * iput to behave like they do for an active filesystem.
 720         * xfs_fs_drop_inode needs to be able to prevent the deletion
 721         * of inodes before we're done replaying log items on those
 722         * inodes.  Turn it off immediately after recovery finishes
 723         * so that we don't leak the quota inodes if subsequent mount
 724         * activities fail.
 725         *
 726         * We let all inodes involved in redo item processing end up on
 727         * the LRU instead of being evicted immediately so that if we do
 728         * something to an unlinked inode, the irele won't cause
 729         * premature truncation and freeing of the inode, which results
 730         * in log recovery failure.  We have to evict the unreferenced
 731         * lru inodes after clearing SB_ACTIVE because we don't
 732         * otherwise clean up the lru if there's a subsequent failure in
 733         * xfs_mountfs, which leads to us leaking the inodes if nothing
 734         * else (e.g. quotacheck) references the inodes before the
 735         * mount failure occurs.
 736         */
 737        mp->m_super->s_flags |= SB_ACTIVE;
 738        error = xlog_recover_finish(mp->m_log);
 739        if (!error)
 740                xfs_log_work_queue(mp);
 741        mp->m_super->s_flags &= ~SB_ACTIVE;
 742        evict_inodes(mp->m_super);
 743
 744        /*
 745         * Drain the buffer LRU after log recovery. This is required for v4
 746         * filesystems to avoid leaving around buffers with NULL verifier ops,
 747         * but we do it unconditionally to make sure we're always in a clean
 748         * cache state after mount.
 749         *
 750         * Don't push in the error case because the AIL may have pending intents
 751         * that aren't removed until recovery is cancelled.
 752         */
 753        if (!error && recovered) {
 754                xfs_log_force(mp, XFS_LOG_SYNC);
 755                xfs_ail_push_all_sync(mp->m_ail);
 756        }
 757        xfs_wait_buftarg(mp->m_ddev_targp);
 758
 759        if (readonly)
 760                mp->m_flags |= XFS_MOUNT_RDONLY;
 761
 762        return error;
 763}
 764
 765/*
 766 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 767 * the log.
 768 */
 769void
 770xfs_log_mount_cancel(
 771        struct xfs_mount        *mp)
 772{
 773        xlog_recover_cancel(mp->m_log);
 774        xfs_log_unmount(mp);
 775}
 776
 777/*
 778 * Final log writes as part of unmount.
 779 *
 780 * Mark the filesystem clean as unmount happens.  Note that during relocation
 781 * this routine needs to be executed as part of source-bag while the
 782 * deallocation must not be done until source-end.
 783 */
 784
 785/* Actually write the unmount record to disk. */
 786static void
 787xfs_log_write_unmount_record(
 788        struct xfs_mount        *mp)
 789{
 790        /* the data section must be 32 bit size aligned */
 791        struct xfs_unmount_log_format magic = {
 792                .magic = XLOG_UNMOUNT_TYPE,
 793        };
 794        struct xfs_log_iovec reg = {
 795                .i_addr = &magic,
 796                .i_len = sizeof(magic),
 797                .i_type = XLOG_REG_TYPE_UNMOUNT,
 798        };
 799        struct xfs_log_vec vec = {
 800                .lv_niovecs = 1,
 801                .lv_iovecp = &reg,
 802        };
 803        struct xlog             *log = mp->m_log;
 804        struct xlog_in_core     *iclog;
 805        struct xlog_ticket      *tic = NULL;
 806        xfs_lsn_t               lsn;
 807        uint                    flags = XLOG_UNMOUNT_TRANS;
 808        int                     error;
 809
 810        error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
 811        if (error)
 812                goto out_err;
 813
 814        /*
 815         * If we think the summary counters are bad, clear the unmount header
 816         * flag in the unmount record so that the summary counters will be
 817         * recalculated during log recovery at next mount.  Refer to
 818         * xlog_check_unmount_rec for more details.
 819         */
 820        if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
 821                        XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
 822                xfs_alert(mp, "%s: will fix summary counters at next mount",
 823                                __func__);
 824                flags &= ~XLOG_UNMOUNT_TRANS;
 825        }
 826
 827        /* remove inited flag, and account for space used */
 828        tic->t_flags = 0;
 829        tic->t_curr_res -= sizeof(magic);
 830        error = xlog_write(log, &vec, tic, &lsn, NULL, flags);
 831        /*
 832         * At this point, we're umounting anyway, so there's no point in
 833         * transitioning log state to IOERROR. Just continue...
 834         */
 835out_err:
 836        if (error)
 837                xfs_alert(mp, "%s: unmount record failed", __func__);
 838
 839        spin_lock(&log->l_icloglock);
 840        iclog = log->l_iclog;
 841        atomic_inc(&iclog->ic_refcnt);
 842        xlog_state_want_sync(log, iclog);
 843        spin_unlock(&log->l_icloglock);
 844        error = xlog_state_release_iclog(log, iclog);
 845
 846        spin_lock(&log->l_icloglock);
 847        switch (iclog->ic_state) {
 848        default:
 849                if (!XLOG_FORCED_SHUTDOWN(log)) {
 850                        xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
 851                        break;
 852                }
 853                /* fall through */
 854        case XLOG_STATE_ACTIVE:
 855        case XLOG_STATE_DIRTY:
 856                spin_unlock(&log->l_icloglock);
 857                break;
 858        }
 859
 860        if (tic) {
 861                trace_xfs_log_umount_write(log, tic);
 862                xlog_ungrant_log_space(log, tic);
 863                xfs_log_ticket_put(tic);
 864        }
 865}
 866
 867/*
 868 * Unmount record used to have a string "Unmount filesystem--" in the
 869 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 870 * We just write the magic number now since that particular field isn't
 871 * currently architecture converted and "Unmount" is a bit foo.
 872 * As far as I know, there weren't any dependencies on the old behaviour.
 873 */
 874
 875static int
 876xfs_log_unmount_write(xfs_mount_t *mp)
 877{
 878        struct xlog      *log = mp->m_log;
 879        xlog_in_core_t   *iclog;
 880#ifdef DEBUG
 881        xlog_in_core_t   *first_iclog;
 882#endif
 883        int              error;
 884
 885        /*
 886         * Don't write out unmount record on norecovery mounts or ro devices.
 887         * Or, if we are doing a forced umount (typically because of IO errors).
 888         */
 889        if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
 890            xfs_readonly_buftarg(log->l_targ)) {
 891                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 892                return 0;
 893        }
 894
 895        error = xfs_log_force(mp, XFS_LOG_SYNC);
 896        ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
 897
 898#ifdef DEBUG
 899        first_iclog = iclog = log->l_iclog;
 900        do {
 901                if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
 902                        ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
 903                        ASSERT(iclog->ic_offset == 0);
 904                }
 905                iclog = iclog->ic_next;
 906        } while (iclog != first_iclog);
 907#endif
 908        if (! (XLOG_FORCED_SHUTDOWN(log))) {
 909                xfs_log_write_unmount_record(mp);
 910        } else {
 911                /*
 912                 * We're already in forced_shutdown mode, couldn't
 913                 * even attempt to write out the unmount transaction.
 914                 *
 915                 * Go through the motions of sync'ing and releasing
 916                 * the iclog, even though no I/O will actually happen,
 917                 * we need to wait for other log I/Os that may already
 918                 * be in progress.  Do this as a separate section of
 919                 * code so we'll know if we ever get stuck here that
 920                 * we're in this odd situation of trying to unmount
 921                 * a file system that went into forced_shutdown as
 922                 * the result of an unmount..
 923                 */
 924                spin_lock(&log->l_icloglock);
 925                iclog = log->l_iclog;
 926                atomic_inc(&iclog->ic_refcnt);
 927
 928                xlog_state_want_sync(log, iclog);
 929                spin_unlock(&log->l_icloglock);
 930                error =  xlog_state_release_iclog(log, iclog);
 931
 932                spin_lock(&log->l_icloglock);
 933
 934                if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
 935                        || iclog->ic_state == XLOG_STATE_DIRTY
 936                        || iclog->ic_state == XLOG_STATE_IOERROR) ) {
 937
 938                                xlog_wait(&iclog->ic_force_wait,
 939                                                        &log->l_icloglock);
 940                } else {
 941                        spin_unlock(&log->l_icloglock);
 942                }
 943        }
 944
 945        return error;
 946}       /* xfs_log_unmount_write */
 947
 948/*
 949 * Empty the log for unmount/freeze.
 950 *
 951 * To do this, we first need to shut down the background log work so it is not
 952 * trying to cover the log as we clean up. We then need to unpin all objects in
 953 * the log so we can then flush them out. Once they have completed their IO and
 954 * run the callbacks removing themselves from the AIL, we can write the unmount
 955 * record.
 956 */
 957void
 958xfs_log_quiesce(
 959        struct xfs_mount        *mp)
 960{
 961        cancel_delayed_work_sync(&mp->m_log->l_work);
 962        xfs_log_force(mp, XFS_LOG_SYNC);
 963
 964        /*
 965         * The superblock buffer is uncached and while xfs_ail_push_all_sync()
 966         * will push it, xfs_wait_buftarg() will not wait for it. Further,
 967         * xfs_buf_iowait() cannot be used because it was pushed with the
 968         * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
 969         * the IO to complete.
 970         */
 971        xfs_ail_push_all_sync(mp->m_ail);
 972        xfs_wait_buftarg(mp->m_ddev_targp);
 973        xfs_buf_lock(mp->m_sb_bp);
 974        xfs_buf_unlock(mp->m_sb_bp);
 975
 976        xfs_log_unmount_write(mp);
 977}
 978
 979/*
 980 * Shut down and release the AIL and Log.
 981 *
 982 * During unmount, we need to ensure we flush all the dirty metadata objects
 983 * from the AIL so that the log is empty before we write the unmount record to
 984 * the log. Once this is done, we can tear down the AIL and the log.
 985 */
 986void
 987xfs_log_unmount(
 988        struct xfs_mount        *mp)
 989{
 990        xfs_log_quiesce(mp);
 991
 992        xfs_trans_ail_destroy(mp);
 993
 994        xfs_sysfs_del(&mp->m_log->l_kobj);
 995
 996        xlog_dealloc_log(mp->m_log);
 997}
 998
 999void
1000xfs_log_item_init(
1001        struct xfs_mount        *mp,
1002        struct xfs_log_item     *item,
1003        int                     type,
1004        const struct xfs_item_ops *ops)
1005{
1006        item->li_mountp = mp;
1007        item->li_ailp = mp->m_ail;
1008        item->li_type = type;
1009        item->li_ops = ops;
1010        item->li_lv = NULL;
1011
1012        INIT_LIST_HEAD(&item->li_ail);
1013        INIT_LIST_HEAD(&item->li_cil);
1014        INIT_LIST_HEAD(&item->li_bio_list);
1015        INIT_LIST_HEAD(&item->li_trans);
1016}
1017
1018/*
1019 * Wake up processes waiting for log space after we have moved the log tail.
1020 */
1021void
1022xfs_log_space_wake(
1023        struct xfs_mount        *mp)
1024{
1025        struct xlog             *log = mp->m_log;
1026        int                     free_bytes;
1027
1028        if (XLOG_FORCED_SHUTDOWN(log))
1029                return;
1030
1031        if (!list_empty_careful(&log->l_write_head.waiters)) {
1032                ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1033
1034                spin_lock(&log->l_write_head.lock);
1035                free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1036                xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1037                spin_unlock(&log->l_write_head.lock);
1038        }
1039
1040        if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1041                ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1042
1043                spin_lock(&log->l_reserve_head.lock);
1044                free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1045                xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1046                spin_unlock(&log->l_reserve_head.lock);
1047        }
1048}
1049
1050/*
1051 * Determine if we have a transaction that has gone to disk that needs to be
1052 * covered. To begin the transition to the idle state firstly the log needs to
1053 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1054 * we start attempting to cover the log.
1055 *
1056 * Only if we are then in a state where covering is needed, the caller is
1057 * informed that dummy transactions are required to move the log into the idle
1058 * state.
1059 *
1060 * If there are any items in the AIl or CIL, then we do not want to attempt to
1061 * cover the log as we may be in a situation where there isn't log space
1062 * available to run a dummy transaction and this can lead to deadlocks when the
1063 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1064 * there's no point in running a dummy transaction at this point because we
1065 * can't start trying to idle the log until both the CIL and AIL are empty.
1066 */
1067static int
1068xfs_log_need_covered(xfs_mount_t *mp)
1069{
1070        struct xlog     *log = mp->m_log;
1071        int             needed = 0;
1072
1073        if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1074                return 0;
1075
1076        if (!xlog_cil_empty(log))
1077                return 0;
1078
1079        spin_lock(&log->l_icloglock);
1080        switch (log->l_covered_state) {
1081        case XLOG_STATE_COVER_DONE:
1082        case XLOG_STATE_COVER_DONE2:
1083        case XLOG_STATE_COVER_IDLE:
1084                break;
1085        case XLOG_STATE_COVER_NEED:
1086        case XLOG_STATE_COVER_NEED2:
1087                if (xfs_ail_min_lsn(log->l_ailp))
1088                        break;
1089                if (!xlog_iclogs_empty(log))
1090                        break;
1091
1092                needed = 1;
1093                if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1094                        log->l_covered_state = XLOG_STATE_COVER_DONE;
1095                else
1096                        log->l_covered_state = XLOG_STATE_COVER_DONE2;
1097                break;
1098        default:
1099                needed = 1;
1100                break;
1101        }
1102        spin_unlock(&log->l_icloglock);
1103        return needed;
1104}
1105
1106/*
1107 * We may be holding the log iclog lock upon entering this routine.
1108 */
1109xfs_lsn_t
1110xlog_assign_tail_lsn_locked(
1111        struct xfs_mount        *mp)
1112{
1113        struct xlog             *log = mp->m_log;
1114        struct xfs_log_item     *lip;
1115        xfs_lsn_t               tail_lsn;
1116
1117        assert_spin_locked(&mp->m_ail->ail_lock);
1118
1119        /*
1120         * To make sure we always have a valid LSN for the log tail we keep
1121         * track of the last LSN which was committed in log->l_last_sync_lsn,
1122         * and use that when the AIL was empty.
1123         */
1124        lip = xfs_ail_min(mp->m_ail);
1125        if (lip)
1126                tail_lsn = lip->li_lsn;
1127        else
1128                tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1129        trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1130        atomic64_set(&log->l_tail_lsn, tail_lsn);
1131        return tail_lsn;
1132}
1133
1134xfs_lsn_t
1135xlog_assign_tail_lsn(
1136        struct xfs_mount        *mp)
1137{
1138        xfs_lsn_t               tail_lsn;
1139
1140        spin_lock(&mp->m_ail->ail_lock);
1141        tail_lsn = xlog_assign_tail_lsn_locked(mp);
1142        spin_unlock(&mp->m_ail->ail_lock);
1143
1144        return tail_lsn;
1145}
1146
1147/*
1148 * Return the space in the log between the tail and the head.  The head
1149 * is passed in the cycle/bytes formal parms.  In the special case where
1150 * the reserve head has wrapped passed the tail, this calculation is no
1151 * longer valid.  In this case, just return 0 which means there is no space
1152 * in the log.  This works for all places where this function is called
1153 * with the reserve head.  Of course, if the write head were to ever
1154 * wrap the tail, we should blow up.  Rather than catch this case here,
1155 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1156 *
1157 * This code also handles the case where the reservation head is behind
1158 * the tail.  The details of this case are described below, but the end
1159 * result is that we return the size of the log as the amount of space left.
1160 */
1161STATIC int
1162xlog_space_left(
1163        struct xlog     *log,
1164        atomic64_t      *head)
1165{
1166        int             free_bytes;
1167        int             tail_bytes;
1168        int             tail_cycle;
1169        int             head_cycle;
1170        int             head_bytes;
1171
1172        xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1173        xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1174        tail_bytes = BBTOB(tail_bytes);
1175        if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1176                free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1177        else if (tail_cycle + 1 < head_cycle)
1178                return 0;
1179        else if (tail_cycle < head_cycle) {
1180                ASSERT(tail_cycle == (head_cycle - 1));
1181                free_bytes = tail_bytes - head_bytes;
1182        } else {
1183                /*
1184                 * The reservation head is behind the tail.
1185                 * In this case we just want to return the size of the
1186                 * log as the amount of space left.
1187                 */
1188                xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1189                xfs_alert(log->l_mp,
1190                          "  tail_cycle = %d, tail_bytes = %d",
1191                          tail_cycle, tail_bytes);
1192                xfs_alert(log->l_mp,
1193                          "  GH   cycle = %d, GH   bytes = %d",
1194                          head_cycle, head_bytes);
1195                ASSERT(0);
1196                free_bytes = log->l_logsize;
1197        }
1198        return free_bytes;
1199}
1200
1201
1202static void
1203xlog_ioend_work(
1204        struct work_struct      *work)
1205{
1206        struct xlog_in_core     *iclog =
1207                container_of(work, struct xlog_in_core, ic_end_io_work);
1208        struct xlog             *log = iclog->ic_log;
1209        bool                    aborted = false;
1210        int                     error;
1211
1212        error = blk_status_to_errno(iclog->ic_bio.bi_status);
1213#ifdef DEBUG
1214        /* treat writes with injected CRC errors as failed */
1215        if (iclog->ic_fail_crc)
1216                error = -EIO;
1217#endif
1218
1219        /*
1220         * Race to shutdown the filesystem if we see an error.
1221         */
1222        if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1223                xfs_alert(log->l_mp, "log I/O error %d", error);
1224                xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1225                /*
1226                 * This flag will be propagated to the trans-committed
1227                 * callback routines to let them know that the log-commit
1228                 * didn't succeed.
1229                 */
1230                aborted = true;
1231        } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1232                aborted = true;
1233        }
1234
1235        xlog_state_done_syncing(iclog, aborted);
1236        bio_uninit(&iclog->ic_bio);
1237
1238        /*
1239         * Drop the lock to signal that we are done. Nothing references the
1240         * iclog after this, so an unmount waiting on this lock can now tear it
1241         * down safely. As such, it is unsafe to reference the iclog after the
1242         * unlock as we could race with it being freed.
1243         */
1244        up(&iclog->ic_sema);
1245}
1246
1247/*
1248 * Return size of each in-core log record buffer.
1249 *
1250 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1251 *
1252 * If the filesystem blocksize is too large, we may need to choose a
1253 * larger size since the directory code currently logs entire blocks.
1254 */
1255STATIC void
1256xlog_get_iclog_buffer_size(
1257        struct xfs_mount        *mp,
1258        struct xlog             *log)
1259{
1260        if (mp->m_logbufs <= 0)
1261                mp->m_logbufs = XLOG_MAX_ICLOGS;
1262        if (mp->m_logbsize <= 0)
1263                mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1264
1265        log->l_iclog_bufs = mp->m_logbufs;
1266        log->l_iclog_size = mp->m_logbsize;
1267
1268        /*
1269         * # headers = size / 32k - one header holds cycles from 32k of data.
1270         */
1271        log->l_iclog_heads =
1272                DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1273        log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1274}
1275
1276void
1277xfs_log_work_queue(
1278        struct xfs_mount        *mp)
1279{
1280        queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1281                                msecs_to_jiffies(xfs_syncd_centisecs * 10));
1282}
1283
1284/*
1285 * Every sync period we need to unpin all items in the AIL and push them to
1286 * disk. If there is nothing dirty, then we might need to cover the log to
1287 * indicate that the filesystem is idle.
1288 */
1289static void
1290xfs_log_worker(
1291        struct work_struct      *work)
1292{
1293        struct xlog             *log = container_of(to_delayed_work(work),
1294                                                struct xlog, l_work);
1295        struct xfs_mount        *mp = log->l_mp;
1296
1297        /* dgc: errors ignored - not fatal and nowhere to report them */
1298        if (xfs_log_need_covered(mp)) {
1299                /*
1300                 * Dump a transaction into the log that contains no real change.
1301                 * This is needed to stamp the current tail LSN into the log
1302                 * during the covering operation.
1303                 *
1304                 * We cannot use an inode here for this - that will push dirty
1305                 * state back up into the VFS and then periodic inode flushing
1306                 * will prevent log covering from making progress. Hence we
1307                 * synchronously log the superblock instead to ensure the
1308                 * superblock is immediately unpinned and can be written back.
1309                 */
1310                xfs_sync_sb(mp, true);
1311        } else
1312                xfs_log_force(mp, 0);
1313
1314        /* start pushing all the metadata that is currently dirty */
1315        xfs_ail_push_all(mp->m_ail);
1316
1317        /* queue us up again */
1318        xfs_log_work_queue(mp);
1319}
1320
1321/*
1322 * This routine initializes some of the log structure for a given mount point.
1323 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1324 * some other stuff may be filled in too.
1325 */
1326STATIC struct xlog *
1327xlog_alloc_log(
1328        struct xfs_mount        *mp,
1329        struct xfs_buftarg      *log_target,
1330        xfs_daddr_t             blk_offset,
1331        int                     num_bblks)
1332{
1333        struct xlog             *log;
1334        xlog_rec_header_t       *head;
1335        xlog_in_core_t          **iclogp;
1336        xlog_in_core_t          *iclog, *prev_iclog=NULL;
1337        int                     i;
1338        int                     error = -ENOMEM;
1339        uint                    log2_size = 0;
1340
1341        log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1342        if (!log) {
1343                xfs_warn(mp, "Log allocation failed: No memory!");
1344                goto out;
1345        }
1346
1347        log->l_mp          = mp;
1348        log->l_targ        = log_target;
1349        log->l_logsize     = BBTOB(num_bblks);
1350        log->l_logBBstart  = blk_offset;
1351        log->l_logBBsize   = num_bblks;
1352        log->l_covered_state = XLOG_STATE_COVER_IDLE;
1353        log->l_flags       |= XLOG_ACTIVE_RECOVERY;
1354        INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1355
1356        log->l_prev_block  = -1;
1357        /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1358        xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1359        xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1360        log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1361
1362        xlog_grant_head_init(&log->l_reserve_head);
1363        xlog_grant_head_init(&log->l_write_head);
1364
1365        error = -EFSCORRUPTED;
1366        if (xfs_sb_version_hassector(&mp->m_sb)) {
1367                log2_size = mp->m_sb.sb_logsectlog;
1368                if (log2_size < BBSHIFT) {
1369                        xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1370                                log2_size, BBSHIFT);
1371                        goto out_free_log;
1372                }
1373
1374                log2_size -= BBSHIFT;
1375                if (log2_size > mp->m_sectbb_log) {
1376                        xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1377                                log2_size, mp->m_sectbb_log);
1378                        goto out_free_log;
1379                }
1380
1381                /* for larger sector sizes, must have v2 or external log */
1382                if (log2_size && log->l_logBBstart > 0 &&
1383                            !xfs_sb_version_haslogv2(&mp->m_sb)) {
1384                        xfs_warn(mp,
1385                "log sector size (0x%x) invalid for configuration.",
1386                                log2_size);
1387                        goto out_free_log;
1388                }
1389        }
1390        log->l_sectBBsize = 1 << log2_size;
1391
1392        xlog_get_iclog_buffer_size(mp, log);
1393
1394        spin_lock_init(&log->l_icloglock);
1395        init_waitqueue_head(&log->l_flush_wait);
1396
1397        iclogp = &log->l_iclog;
1398        /*
1399         * The amount of memory to allocate for the iclog structure is
1400         * rather funky due to the way the structure is defined.  It is
1401         * done this way so that we can use different sizes for machines
1402         * with different amounts of memory.  See the definition of
1403         * xlog_in_core_t in xfs_log_priv.h for details.
1404         */
1405        ASSERT(log->l_iclog_size >= 4096);
1406        for (i = 0; i < log->l_iclog_bufs; i++) {
1407                size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1408                                sizeof(struct bio_vec);
1409
1410                iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1411                if (!iclog)
1412                        goto out_free_iclog;
1413
1414                *iclogp = iclog;
1415                iclog->ic_prev = prev_iclog;
1416                prev_iclog = iclog;
1417
1418                iclog->ic_data = kmem_alloc_large(log->l_iclog_size,
1419                                KM_MAYFAIL);
1420                if (!iclog->ic_data)
1421                        goto out_free_iclog;
1422#ifdef DEBUG
1423                log->l_iclog_bak[i] = &iclog->ic_header;
1424#endif
1425                head = &iclog->ic_header;
1426                memset(head, 0, sizeof(xlog_rec_header_t));
1427                head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1428                head->h_version = cpu_to_be32(
1429                        xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1430                head->h_size = cpu_to_be32(log->l_iclog_size);
1431                /* new fields */
1432                head->h_fmt = cpu_to_be32(XLOG_FMT);
1433                memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1434
1435                iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1436                iclog->ic_state = XLOG_STATE_ACTIVE;
1437                iclog->ic_log = log;
1438                atomic_set(&iclog->ic_refcnt, 0);
1439                spin_lock_init(&iclog->ic_callback_lock);
1440                INIT_LIST_HEAD(&iclog->ic_callbacks);
1441                iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1442
1443                init_waitqueue_head(&iclog->ic_force_wait);
1444                init_waitqueue_head(&iclog->ic_write_wait);
1445                INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1446                sema_init(&iclog->ic_sema, 1);
1447
1448                iclogp = &iclog->ic_next;
1449        }
1450        *iclogp = log->l_iclog;                 /* complete ring */
1451        log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1452
1453        log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1454                        WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1455                        mp->m_fsname);
1456        if (!log->l_ioend_workqueue)
1457                goto out_free_iclog;
1458
1459        error = xlog_cil_init(log);
1460        if (error)
1461                goto out_destroy_workqueue;
1462        return log;
1463
1464out_destroy_workqueue:
1465        destroy_workqueue(log->l_ioend_workqueue);
1466out_free_iclog:
1467        for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1468                prev_iclog = iclog->ic_next;
1469                kmem_free(iclog->ic_data);
1470                kmem_free(iclog);
1471        }
1472out_free_log:
1473        kmem_free(log);
1474out:
1475        return ERR_PTR(error);
1476}       /* xlog_alloc_log */
1477
1478
1479/*
1480 * Write out the commit record of a transaction associated with the given
1481 * ticket.  Return the lsn of the commit record.
1482 */
1483STATIC int
1484xlog_commit_record(
1485        struct xlog             *log,
1486        struct xlog_ticket      *ticket,
1487        struct xlog_in_core     **iclog,
1488        xfs_lsn_t               *commitlsnp)
1489{
1490        struct xfs_mount *mp = log->l_mp;
1491        int     error;
1492        struct xfs_log_iovec reg = {
1493                .i_addr = NULL,
1494                .i_len = 0,
1495                .i_type = XLOG_REG_TYPE_COMMIT,
1496        };
1497        struct xfs_log_vec vec = {
1498                .lv_niovecs = 1,
1499                .lv_iovecp = &reg,
1500        };
1501
1502        ASSERT_ALWAYS(iclog);
1503        error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1504                                        XLOG_COMMIT_TRANS);
1505        if (error)
1506                xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1507        return error;
1508}
1509
1510/*
1511 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1512 * log space.  This code pushes on the lsn which would supposedly free up
1513 * the 25% which we want to leave free.  We may need to adopt a policy which
1514 * pushes on an lsn which is further along in the log once we reach the high
1515 * water mark.  In this manner, we would be creating a low water mark.
1516 */
1517STATIC void
1518xlog_grant_push_ail(
1519        struct xlog     *log,
1520        int             need_bytes)
1521{
1522        xfs_lsn_t       threshold_lsn = 0;
1523        xfs_lsn_t       last_sync_lsn;
1524        int             free_blocks;
1525        int             free_bytes;
1526        int             threshold_block;
1527        int             threshold_cycle;
1528        int             free_threshold;
1529
1530        ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1531
1532        free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1533        free_blocks = BTOBBT(free_bytes);
1534
1535        /*
1536         * Set the threshold for the minimum number of free blocks in the
1537         * log to the maximum of what the caller needs, one quarter of the
1538         * log, and 256 blocks.
1539         */
1540        free_threshold = BTOBB(need_bytes);
1541        free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1542        free_threshold = max(free_threshold, 256);
1543        if (free_blocks >= free_threshold)
1544                return;
1545
1546        xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1547                                                &threshold_block);
1548        threshold_block += free_threshold;
1549        if (threshold_block >= log->l_logBBsize) {
1550                threshold_block -= log->l_logBBsize;
1551                threshold_cycle += 1;
1552        }
1553        threshold_lsn = xlog_assign_lsn(threshold_cycle,
1554                                        threshold_block);
1555        /*
1556         * Don't pass in an lsn greater than the lsn of the last
1557         * log record known to be on disk. Use a snapshot of the last sync lsn
1558         * so that it doesn't change between the compare and the set.
1559         */
1560        last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1561        if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1562                threshold_lsn = last_sync_lsn;
1563
1564        /*
1565         * Get the transaction layer to kick the dirty buffers out to
1566         * disk asynchronously. No point in trying to do this if
1567         * the filesystem is shutting down.
1568         */
1569        if (!XLOG_FORCED_SHUTDOWN(log))
1570                xfs_ail_push(log->l_ailp, threshold_lsn);
1571}
1572
1573/*
1574 * Stamp cycle number in every block
1575 */
1576STATIC void
1577xlog_pack_data(
1578        struct xlog             *log,
1579        struct xlog_in_core     *iclog,
1580        int                     roundoff)
1581{
1582        int                     i, j, k;
1583        int                     size = iclog->ic_offset + roundoff;
1584        __be32                  cycle_lsn;
1585        char                    *dp;
1586
1587        cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1588
1589        dp = iclog->ic_datap;
1590        for (i = 0; i < BTOBB(size); i++) {
1591                if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1592                        break;
1593                iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1594                *(__be32 *)dp = cycle_lsn;
1595                dp += BBSIZE;
1596        }
1597
1598        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1599                xlog_in_core_2_t *xhdr = iclog->ic_data;
1600
1601                for ( ; i < BTOBB(size); i++) {
1602                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1603                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1604                        xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1605                        *(__be32 *)dp = cycle_lsn;
1606                        dp += BBSIZE;
1607                }
1608
1609                for (i = 1; i < log->l_iclog_heads; i++)
1610                        xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1611        }
1612}
1613
1614/*
1615 * Calculate the checksum for a log buffer.
1616 *
1617 * This is a little more complicated than it should be because the various
1618 * headers and the actual data are non-contiguous.
1619 */
1620__le32
1621xlog_cksum(
1622        struct xlog             *log,
1623        struct xlog_rec_header  *rhead,
1624        char                    *dp,
1625        int                     size)
1626{
1627        uint32_t                crc;
1628
1629        /* first generate the crc for the record header ... */
1630        crc = xfs_start_cksum_update((char *)rhead,
1631                              sizeof(struct xlog_rec_header),
1632                              offsetof(struct xlog_rec_header, h_crc));
1633
1634        /* ... then for additional cycle data for v2 logs ... */
1635        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1636                union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1637                int             i;
1638                int             xheads;
1639
1640                xheads = size / XLOG_HEADER_CYCLE_SIZE;
1641                if (size % XLOG_HEADER_CYCLE_SIZE)
1642                        xheads++;
1643
1644                for (i = 1; i < xheads; i++) {
1645                        crc = crc32c(crc, &xhdr[i].hic_xheader,
1646                                     sizeof(struct xlog_rec_ext_header));
1647                }
1648        }
1649
1650        /* ... and finally for the payload */
1651        crc = crc32c(crc, dp, size);
1652
1653        return xfs_end_cksum(crc);
1654}
1655
1656static void
1657xlog_bio_end_io(
1658        struct bio              *bio)
1659{
1660        struct xlog_in_core     *iclog = bio->bi_private;
1661
1662        queue_work(iclog->ic_log->l_ioend_workqueue,
1663                   &iclog->ic_end_io_work);
1664}
1665
1666static void
1667xlog_map_iclog_data(
1668        struct bio              *bio,
1669        void                    *data,
1670        size_t                  count)
1671{
1672        do {
1673                struct page     *page = kmem_to_page(data);
1674                unsigned int    off = offset_in_page(data);
1675                size_t          len = min_t(size_t, count, PAGE_SIZE - off);
1676
1677                WARN_ON_ONCE(bio_add_page(bio, page, len, off) != len);
1678
1679                data += len;
1680                count -= len;
1681        } while (count);
1682}
1683
1684STATIC void
1685xlog_write_iclog(
1686        struct xlog             *log,
1687        struct xlog_in_core     *iclog,
1688        uint64_t                bno,
1689        unsigned int            count,
1690        bool                    need_flush)
1691{
1692        ASSERT(bno < log->l_logBBsize);
1693
1694        /*
1695         * We lock the iclogbufs here so that we can serialise against I/O
1696         * completion during unmount.  We might be processing a shutdown
1697         * triggered during unmount, and that can occur asynchronously to the
1698         * unmount thread, and hence we need to ensure that completes before
1699         * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1700         * across the log IO to archieve that.
1701         */
1702        down(&iclog->ic_sema);
1703        if (unlikely(iclog->ic_state & XLOG_STATE_IOERROR)) {
1704                /*
1705                 * It would seem logical to return EIO here, but we rely on
1706                 * the log state machine to propagate I/O errors instead of
1707                 * doing it here.  We kick of the state machine and unlock
1708                 * the buffer manually, the code needs to be kept in sync
1709                 * with the I/O completion path.
1710                 */
1711                xlog_state_done_syncing(iclog, XFS_LI_ABORTED);
1712                up(&iclog->ic_sema);
1713                return;
1714        }
1715
1716        iclog->ic_io_size = count;
1717
1718        bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1719        bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1720        iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1721        iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1722        iclog->ic_bio.bi_private = iclog;
1723        iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_FUA;
1724        if (need_flush)
1725                iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1726
1727        xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, iclog->ic_io_size);
1728        if (is_vmalloc_addr(iclog->ic_data))
1729                flush_kernel_vmap_range(iclog->ic_data, iclog->ic_io_size);
1730
1731        /*
1732         * If this log buffer would straddle the end of the log we will have
1733         * to split it up into two bios, so that we can continue at the start.
1734         */
1735        if (bno + BTOBB(count) > log->l_logBBsize) {
1736                struct bio *split;
1737
1738                split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1739                                  GFP_NOIO, &fs_bio_set);
1740                bio_chain(split, &iclog->ic_bio);
1741                submit_bio(split);
1742
1743                /* restart at logical offset zero for the remainder */
1744                iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1745        }
1746
1747        submit_bio(&iclog->ic_bio);
1748}
1749
1750/*
1751 * We need to bump cycle number for the part of the iclog that is
1752 * written to the start of the log. Watch out for the header magic
1753 * number case, though.
1754 */
1755static void
1756xlog_split_iclog(
1757        struct xlog             *log,
1758        void                    *data,
1759        uint64_t                bno,
1760        unsigned int            count)
1761{
1762        unsigned int            split_offset = BBTOB(log->l_logBBsize - bno);
1763        unsigned int            i;
1764
1765        for (i = split_offset; i < count; i += BBSIZE) {
1766                uint32_t cycle = get_unaligned_be32(data + i);
1767
1768                if (++cycle == XLOG_HEADER_MAGIC_NUM)
1769                        cycle++;
1770                put_unaligned_be32(cycle, data + i);
1771        }
1772}
1773
1774static int
1775xlog_calc_iclog_size(
1776        struct xlog             *log,
1777        struct xlog_in_core     *iclog,
1778        uint32_t                *roundoff)
1779{
1780        uint32_t                count_init, count;
1781        bool                    use_lsunit;
1782
1783        use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1784                        log->l_mp->m_sb.sb_logsunit > 1;
1785
1786        /* Add for LR header */
1787        count_init = log->l_iclog_hsize + iclog->ic_offset;
1788
1789        /* Round out the log write size */
1790        if (use_lsunit) {
1791                /* we have a v2 stripe unit to use */
1792                count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1793        } else {
1794                count = BBTOB(BTOBB(count_init));
1795        }
1796
1797        ASSERT(count >= count_init);
1798        *roundoff = count - count_init;
1799
1800        if (use_lsunit)
1801                ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1802        else
1803                ASSERT(*roundoff < BBTOB(1));
1804        return count;
1805}
1806
1807/*
1808 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1809 * fashion.  Previously, we should have moved the current iclog
1810 * ptr in the log to point to the next available iclog.  This allows further
1811 * write to continue while this code syncs out an iclog ready to go.
1812 * Before an in-core log can be written out, the data section must be scanned
1813 * to save away the 1st word of each BBSIZE block into the header.  We replace
1814 * it with the current cycle count.  Each BBSIZE block is tagged with the
1815 * cycle count because there in an implicit assumption that drives will
1816 * guarantee that entire 512 byte blocks get written at once.  In other words,
1817 * we can't have part of a 512 byte block written and part not written.  By
1818 * tagging each block, we will know which blocks are valid when recovering
1819 * after an unclean shutdown.
1820 *
1821 * This routine is single threaded on the iclog.  No other thread can be in
1822 * this routine with the same iclog.  Changing contents of iclog can there-
1823 * fore be done without grabbing the state machine lock.  Updating the global
1824 * log will require grabbing the lock though.
1825 *
1826 * The entire log manager uses a logical block numbering scheme.  Only
1827 * xlog_write_iclog knows about the fact that the log may not start with
1828 * block zero on a given device.
1829 */
1830STATIC void
1831xlog_sync(
1832        struct xlog             *log,
1833        struct xlog_in_core     *iclog)
1834{
1835        unsigned int            count;          /* byte count of bwrite */
1836        unsigned int            roundoff;       /* roundoff to BB or stripe */
1837        uint64_t                bno;
1838        unsigned int            size;
1839        bool                    need_flush = true, split = false;
1840
1841        ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1842
1843        count = xlog_calc_iclog_size(log, iclog, &roundoff);
1844
1845        /* move grant heads by roundoff in sync */
1846        xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1847        xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1848
1849        /* put cycle number in every block */
1850        xlog_pack_data(log, iclog, roundoff); 
1851
1852        /* real byte length */
1853        size = iclog->ic_offset;
1854        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1855                size += roundoff;
1856        iclog->ic_header.h_len = cpu_to_be32(size);
1857
1858        XFS_STATS_INC(log->l_mp, xs_log_writes);
1859        XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1860
1861        bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1862
1863        /* Do we need to split this write into 2 parts? */
1864        if (bno + BTOBB(count) > log->l_logBBsize) {
1865                xlog_split_iclog(log, &iclog->ic_header, bno, count);
1866                split = true;
1867        }
1868
1869        /* calculcate the checksum */
1870        iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1871                                            iclog->ic_datap, size);
1872        /*
1873         * Intentionally corrupt the log record CRC based on the error injection
1874         * frequency, if defined. This facilitates testing log recovery in the
1875         * event of torn writes. Hence, set the IOABORT state to abort the log
1876         * write on I/O completion and shutdown the fs. The subsequent mount
1877         * detects the bad CRC and attempts to recover.
1878         */
1879#ifdef DEBUG
1880        if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1881                iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1882                iclog->ic_fail_crc = true;
1883                xfs_warn(log->l_mp,
1884        "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1885                         be64_to_cpu(iclog->ic_header.h_lsn));
1886        }
1887#endif
1888
1889        /*
1890         * Flush the data device before flushing the log to make sure all meta
1891         * data written back from the AIL actually made it to disk before
1892         * stamping the new log tail LSN into the log buffer.  For an external
1893         * log we need to issue the flush explicitly, and unfortunately
1894         * synchronously here; for an internal log we can simply use the block
1895         * layer state machine for preflushes.
1896         */
1897        if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1898                xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1899                need_flush = false;
1900        }
1901
1902        xlog_verify_iclog(log, iclog, count);
1903        xlog_write_iclog(log, iclog, bno, count, need_flush);
1904}
1905
1906/*
1907 * Deallocate a log structure
1908 */
1909STATIC void
1910xlog_dealloc_log(
1911        struct xlog     *log)
1912{
1913        xlog_in_core_t  *iclog, *next_iclog;
1914        int             i;
1915
1916        xlog_cil_destroy(log);
1917
1918        /*
1919         * Cycle all the iclogbuf locks to make sure all log IO completion
1920         * is done before we tear down these buffers.
1921         */
1922        iclog = log->l_iclog;
1923        for (i = 0; i < log->l_iclog_bufs; i++) {
1924                down(&iclog->ic_sema);
1925                up(&iclog->ic_sema);
1926                iclog = iclog->ic_next;
1927        }
1928
1929        iclog = log->l_iclog;
1930        for (i = 0; i < log->l_iclog_bufs; i++) {
1931                next_iclog = iclog->ic_next;
1932                kmem_free(iclog->ic_data);
1933                kmem_free(iclog);
1934                iclog = next_iclog;
1935        }
1936
1937        log->l_mp->m_log = NULL;
1938        destroy_workqueue(log->l_ioend_workqueue);
1939        kmem_free(log);
1940}       /* xlog_dealloc_log */
1941
1942/*
1943 * Update counters atomically now that memcpy is done.
1944 */
1945/* ARGSUSED */
1946static inline void
1947xlog_state_finish_copy(
1948        struct xlog             *log,
1949        struct xlog_in_core     *iclog,
1950        int                     record_cnt,
1951        int                     copy_bytes)
1952{
1953        spin_lock(&log->l_icloglock);
1954
1955        be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1956        iclog->ic_offset += copy_bytes;
1957
1958        spin_unlock(&log->l_icloglock);
1959}       /* xlog_state_finish_copy */
1960
1961
1962
1963
1964/*
1965 * print out info relating to regions written which consume
1966 * the reservation
1967 */
1968void
1969xlog_print_tic_res(
1970        struct xfs_mount        *mp,
1971        struct xlog_ticket      *ticket)
1972{
1973        uint i;
1974        uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1975
1976        /* match with XLOG_REG_TYPE_* in xfs_log.h */
1977#define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
1978        static char *res_type_str[] = {
1979            REG_TYPE_STR(BFORMAT, "bformat"),
1980            REG_TYPE_STR(BCHUNK, "bchunk"),
1981            REG_TYPE_STR(EFI_FORMAT, "efi_format"),
1982            REG_TYPE_STR(EFD_FORMAT, "efd_format"),
1983            REG_TYPE_STR(IFORMAT, "iformat"),
1984            REG_TYPE_STR(ICORE, "icore"),
1985            REG_TYPE_STR(IEXT, "iext"),
1986            REG_TYPE_STR(IBROOT, "ibroot"),
1987            REG_TYPE_STR(ILOCAL, "ilocal"),
1988            REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
1989            REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
1990            REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
1991            REG_TYPE_STR(QFORMAT, "qformat"),
1992            REG_TYPE_STR(DQUOT, "dquot"),
1993            REG_TYPE_STR(QUOTAOFF, "quotaoff"),
1994            REG_TYPE_STR(LRHEADER, "LR header"),
1995            REG_TYPE_STR(UNMOUNT, "unmount"),
1996            REG_TYPE_STR(COMMIT, "commit"),
1997            REG_TYPE_STR(TRANSHDR, "trans header"),
1998            REG_TYPE_STR(ICREATE, "inode create"),
1999            REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2000            REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2001            REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2002            REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2003            REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2004            REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2005        };
2006        BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2007#undef REG_TYPE_STR
2008
2009        xfs_warn(mp, "ticket reservation summary:");
2010        xfs_warn(mp, "  unit res    = %d bytes",
2011                 ticket->t_unit_res);
2012        xfs_warn(mp, "  current res = %d bytes",
2013                 ticket->t_curr_res);
2014        xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2015                 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2016        xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2017                 ticket->t_res_num_ophdrs, ophdr_spc);
2018        xfs_warn(mp, "  ophdr + reg = %u bytes",
2019                 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2020        xfs_warn(mp, "  num regions = %u",
2021                 ticket->t_res_num);
2022
2023        for (i = 0; i < ticket->t_res_num; i++) {
2024                uint r_type = ticket->t_res_arr[i].r_type;
2025                xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2026                            ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2027                            "bad-rtype" : res_type_str[r_type]),
2028                            ticket->t_res_arr[i].r_len);
2029        }
2030}
2031
2032/*
2033 * Print a summary of the transaction.
2034 */
2035void
2036xlog_print_trans(
2037        struct xfs_trans        *tp)
2038{
2039        struct xfs_mount        *mp = tp->t_mountp;
2040        struct xfs_log_item     *lip;
2041
2042        /* dump core transaction and ticket info */
2043        xfs_warn(mp, "transaction summary:");
2044        xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2045        xfs_warn(mp, "  log count = %d", tp->t_log_count);
2046        xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2047
2048        xlog_print_tic_res(mp, tp->t_ticket);
2049
2050        /* dump each log item */
2051        list_for_each_entry(lip, &tp->t_items, li_trans) {
2052                struct xfs_log_vec      *lv = lip->li_lv;
2053                struct xfs_log_iovec    *vec;
2054                int                     i;
2055
2056                xfs_warn(mp, "log item: ");
2057                xfs_warn(mp, "  type    = 0x%x", lip->li_type);
2058                xfs_warn(mp, "  flags   = 0x%lx", lip->li_flags);
2059                if (!lv)
2060                        continue;
2061                xfs_warn(mp, "  niovecs = %d", lv->lv_niovecs);
2062                xfs_warn(mp, "  size    = %d", lv->lv_size);
2063                xfs_warn(mp, "  bytes   = %d", lv->lv_bytes);
2064                xfs_warn(mp, "  buf len = %d", lv->lv_buf_len);
2065
2066                /* dump each iovec for the log item */
2067                vec = lv->lv_iovecp;
2068                for (i = 0; i < lv->lv_niovecs; i++) {
2069                        int dumplen = min(vec->i_len, 32);
2070
2071                        xfs_warn(mp, "  iovec[%d]", i);
2072                        xfs_warn(mp, "    type  = 0x%x", vec->i_type);
2073                        xfs_warn(mp, "    len   = %d", vec->i_len);
2074                        xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2075                        xfs_hex_dump(vec->i_addr, dumplen);
2076
2077                        vec++;
2078                }
2079        }
2080}
2081
2082/*
2083 * Calculate the potential space needed by the log vector.  Each region gets
2084 * its own xlog_op_header_t and may need to be double word aligned.
2085 */
2086static int
2087xlog_write_calc_vec_length(
2088        struct xlog_ticket      *ticket,
2089        struct xfs_log_vec      *log_vector)
2090{
2091        struct xfs_log_vec      *lv;
2092        int                     headers = 0;
2093        int                     len = 0;
2094        int                     i;
2095
2096        /* acct for start rec of xact */
2097        if (ticket->t_flags & XLOG_TIC_INITED)
2098                headers++;
2099
2100        for (lv = log_vector; lv; lv = lv->lv_next) {
2101                /* we don't write ordered log vectors */
2102                if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2103                        continue;
2104
2105                headers += lv->lv_niovecs;
2106
2107                for (i = 0; i < lv->lv_niovecs; i++) {
2108                        struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2109
2110                        len += vecp->i_len;
2111                        xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2112                }
2113        }
2114
2115        ticket->t_res_num_ophdrs += headers;
2116        len += headers * sizeof(struct xlog_op_header);
2117
2118        return len;
2119}
2120
2121/*
2122 * If first write for transaction, insert start record  We can't be trying to
2123 * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2124 */
2125static int
2126xlog_write_start_rec(
2127        struct xlog_op_header   *ophdr,
2128        struct xlog_ticket      *ticket)
2129{
2130        if (!(ticket->t_flags & XLOG_TIC_INITED))
2131                return 0;
2132
2133        ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2134        ophdr->oh_clientid = ticket->t_clientid;
2135        ophdr->oh_len = 0;
2136        ophdr->oh_flags = XLOG_START_TRANS;
2137        ophdr->oh_res2 = 0;
2138
2139        ticket->t_flags &= ~XLOG_TIC_INITED;
2140
2141        return sizeof(struct xlog_op_header);
2142}
2143
2144static xlog_op_header_t *
2145xlog_write_setup_ophdr(
2146        struct xlog             *log,
2147        struct xlog_op_header   *ophdr,
2148        struct xlog_ticket      *ticket,
2149        uint                    flags)
2150{
2151        ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2152        ophdr->oh_clientid = ticket->t_clientid;
2153        ophdr->oh_res2 = 0;
2154
2155        /* are we copying a commit or unmount record? */
2156        ophdr->oh_flags = flags;
2157
2158        /*
2159         * We've seen logs corrupted with bad transaction client ids.  This
2160         * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2161         * and shut down the filesystem.
2162         */
2163        switch (ophdr->oh_clientid)  {
2164        case XFS_TRANSACTION:
2165        case XFS_VOLUME:
2166        case XFS_LOG:
2167                break;
2168        default:
2169                xfs_warn(log->l_mp,
2170                        "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2171                        ophdr->oh_clientid, ticket);
2172                return NULL;
2173        }
2174
2175        return ophdr;
2176}
2177
2178/*
2179 * Set up the parameters of the region copy into the log. This has
2180 * to handle region write split across multiple log buffers - this
2181 * state is kept external to this function so that this code can
2182 * be written in an obvious, self documenting manner.
2183 */
2184static int
2185xlog_write_setup_copy(
2186        struct xlog_ticket      *ticket,
2187        struct xlog_op_header   *ophdr,
2188        int                     space_available,
2189        int                     space_required,
2190        int                     *copy_off,
2191        int                     *copy_len,
2192        int                     *last_was_partial_copy,
2193        int                     *bytes_consumed)
2194{
2195        int                     still_to_copy;
2196
2197        still_to_copy = space_required - *bytes_consumed;
2198        *copy_off = *bytes_consumed;
2199
2200        if (still_to_copy <= space_available) {
2201                /* write of region completes here */
2202                *copy_len = still_to_copy;
2203                ophdr->oh_len = cpu_to_be32(*copy_len);
2204                if (*last_was_partial_copy)
2205                        ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2206                *last_was_partial_copy = 0;
2207                *bytes_consumed = 0;
2208                return 0;
2209        }
2210
2211        /* partial write of region, needs extra log op header reservation */
2212        *copy_len = space_available;
2213        ophdr->oh_len = cpu_to_be32(*copy_len);
2214        ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2215        if (*last_was_partial_copy)
2216                ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2217        *bytes_consumed += *copy_len;
2218        (*last_was_partial_copy)++;
2219
2220        /* account for new log op header */
2221        ticket->t_curr_res -= sizeof(struct xlog_op_header);
2222        ticket->t_res_num_ophdrs++;
2223
2224        return sizeof(struct xlog_op_header);
2225}
2226
2227static int
2228xlog_write_copy_finish(
2229        struct xlog             *log,
2230        struct xlog_in_core     *iclog,
2231        uint                    flags,
2232        int                     *record_cnt,
2233        int                     *data_cnt,
2234        int                     *partial_copy,
2235        int                     *partial_copy_len,
2236        int                     log_offset,
2237        struct xlog_in_core     **commit_iclog)
2238{
2239        if (*partial_copy) {
2240                /*
2241                 * This iclog has already been marked WANT_SYNC by
2242                 * xlog_state_get_iclog_space.
2243                 */
2244                xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2245                *record_cnt = 0;
2246                *data_cnt = 0;
2247                return xlog_state_release_iclog(log, iclog);
2248        }
2249
2250        *partial_copy = 0;
2251        *partial_copy_len = 0;
2252
2253        if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2254                /* no more space in this iclog - push it. */
2255                xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2256                *record_cnt = 0;
2257                *data_cnt = 0;
2258
2259                spin_lock(&log->l_icloglock);
2260                xlog_state_want_sync(log, iclog);
2261                spin_unlock(&log->l_icloglock);
2262
2263                if (!commit_iclog)
2264                        return xlog_state_release_iclog(log, iclog);
2265                ASSERT(flags & XLOG_COMMIT_TRANS);
2266                *commit_iclog = iclog;
2267        }
2268
2269        return 0;
2270}
2271
2272/*
2273 * Write some region out to in-core log
2274 *
2275 * This will be called when writing externally provided regions or when
2276 * writing out a commit record for a given transaction.
2277 *
2278 * General algorithm:
2279 *      1. Find total length of this write.  This may include adding to the
2280 *              lengths passed in.
2281 *      2. Check whether we violate the tickets reservation.
2282 *      3. While writing to this iclog
2283 *          A. Reserve as much space in this iclog as can get
2284 *          B. If this is first write, save away start lsn
2285 *          C. While writing this region:
2286 *              1. If first write of transaction, write start record
2287 *              2. Write log operation header (header per region)
2288 *              3. Find out if we can fit entire region into this iclog
2289 *              4. Potentially, verify destination memcpy ptr
2290 *              5. Memcpy (partial) region
2291 *              6. If partial copy, release iclog; otherwise, continue
2292 *                      copying more regions into current iclog
2293 *      4. Mark want sync bit (in simulation mode)
2294 *      5. Release iclog for potential flush to on-disk log.
2295 *
2296 * ERRORS:
2297 * 1.   Panic if reservation is overrun.  This should never happen since
2298 *      reservation amounts are generated internal to the filesystem.
2299 * NOTES:
2300 * 1. Tickets are single threaded data structures.
2301 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2302 *      syncing routine.  When a single log_write region needs to span
2303 *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2304 *      on all log operation writes which don't contain the end of the
2305 *      region.  The XLOG_END_TRANS bit is used for the in-core log
2306 *      operation which contains the end of the continued log_write region.
2307 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2308 *      we don't really know exactly how much space will be used.  As a result,
2309 *      we don't update ic_offset until the end when we know exactly how many
2310 *      bytes have been written out.
2311 */
2312int
2313xlog_write(
2314        struct xlog             *log,
2315        struct xfs_log_vec      *log_vector,
2316        struct xlog_ticket      *ticket,
2317        xfs_lsn_t               *start_lsn,
2318        struct xlog_in_core     **commit_iclog,
2319        uint                    flags)
2320{
2321        struct xlog_in_core     *iclog = NULL;
2322        struct xfs_log_iovec    *vecp;
2323        struct xfs_log_vec      *lv;
2324        int                     len;
2325        int                     index;
2326        int                     partial_copy = 0;
2327        int                     partial_copy_len = 0;
2328        int                     contwr = 0;
2329        int                     record_cnt = 0;
2330        int                     data_cnt = 0;
2331        int                     error;
2332
2333        *start_lsn = 0;
2334
2335        len = xlog_write_calc_vec_length(ticket, log_vector);
2336
2337        /*
2338         * Region headers and bytes are already accounted for.
2339         * We only need to take into account start records and
2340         * split regions in this function.
2341         */
2342        if (ticket->t_flags & XLOG_TIC_INITED)
2343                ticket->t_curr_res -= sizeof(xlog_op_header_t);
2344
2345        /*
2346         * Commit record headers need to be accounted for. These
2347         * come in as separate writes so are easy to detect.
2348         */
2349        if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2350                ticket->t_curr_res -= sizeof(xlog_op_header_t);
2351
2352        if (ticket->t_curr_res < 0) {
2353                xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2354                     "ctx ticket reservation ran out. Need to up reservation");
2355                xlog_print_tic_res(log->l_mp, ticket);
2356                xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2357        }
2358
2359        index = 0;
2360        lv = log_vector;
2361        vecp = lv->lv_iovecp;
2362        while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2363                void            *ptr;
2364                int             log_offset;
2365
2366                error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2367                                                   &contwr, &log_offset);
2368                if (error)
2369                        return error;
2370
2371                ASSERT(log_offset <= iclog->ic_size - 1);
2372                ptr = iclog->ic_datap + log_offset;
2373
2374                /* start_lsn is the first lsn written to. That's all we need. */
2375                if (!*start_lsn)
2376                        *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2377
2378                /*
2379                 * This loop writes out as many regions as can fit in the amount
2380                 * of space which was allocated by xlog_state_get_iclog_space().
2381                 */
2382                while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2383                        struct xfs_log_iovec    *reg;
2384                        struct xlog_op_header   *ophdr;
2385                        int                     start_rec_copy;
2386                        int                     copy_len;
2387                        int                     copy_off;
2388                        bool                    ordered = false;
2389
2390                        /* ordered log vectors have no regions to write */
2391                        if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2392                                ASSERT(lv->lv_niovecs == 0);
2393                                ordered = true;
2394                                goto next_lv;
2395                        }
2396
2397                        reg = &vecp[index];
2398                        ASSERT(reg->i_len % sizeof(int32_t) == 0);
2399                        ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2400
2401                        start_rec_copy = xlog_write_start_rec(ptr, ticket);
2402                        if (start_rec_copy) {
2403                                record_cnt++;
2404                                xlog_write_adv_cnt(&ptr, &len, &log_offset,
2405                                                   start_rec_copy);
2406                        }
2407
2408                        ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2409                        if (!ophdr)
2410                                return -EIO;
2411
2412                        xlog_write_adv_cnt(&ptr, &len, &log_offset,
2413                                           sizeof(struct xlog_op_header));
2414
2415                        len += xlog_write_setup_copy(ticket, ophdr,
2416                                                     iclog->ic_size-log_offset,
2417                                                     reg->i_len,
2418                                                     &copy_off, &copy_len,
2419                                                     &partial_copy,
2420                                                     &partial_copy_len);
2421                        xlog_verify_dest_ptr(log, ptr);
2422
2423                        /*
2424                         * Copy region.
2425                         *
2426                         * Unmount records just log an opheader, so can have
2427                         * empty payloads with no data region to copy. Hence we
2428                         * only copy the payload if the vector says it has data
2429                         * to copy.
2430                         */
2431                        ASSERT(copy_len >= 0);
2432                        if (copy_len > 0) {
2433                                memcpy(ptr, reg->i_addr + copy_off, copy_len);
2434                                xlog_write_adv_cnt(&ptr, &len, &log_offset,
2435                                                   copy_len);
2436                        }
2437                        copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2438                        record_cnt++;
2439                        data_cnt += contwr ? copy_len : 0;
2440
2441                        error = xlog_write_copy_finish(log, iclog, flags,
2442                                                       &record_cnt, &data_cnt,
2443                                                       &partial_copy,
2444                                                       &partial_copy_len,
2445                                                       log_offset,
2446                                                       commit_iclog);
2447                        if (error)
2448                                return error;
2449
2450                        /*
2451                         * if we had a partial copy, we need to get more iclog
2452                         * space but we don't want to increment the region
2453                         * index because there is still more is this region to
2454                         * write.
2455                         *
2456                         * If we completed writing this region, and we flushed
2457                         * the iclog (indicated by resetting of the record
2458                         * count), then we also need to get more log space. If
2459                         * this was the last record, though, we are done and
2460                         * can just return.
2461                         */
2462                        if (partial_copy)
2463                                break;
2464
2465                        if (++index == lv->lv_niovecs) {
2466next_lv:
2467                                lv = lv->lv_next;
2468                                index = 0;
2469                                if (lv)
2470                                        vecp = lv->lv_iovecp;
2471                        }
2472                        if (record_cnt == 0 && !ordered) {
2473                                if (!lv)
2474                                        return 0;
2475                                break;
2476                        }
2477                }
2478        }
2479
2480        ASSERT(len == 0);
2481
2482        xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2483        if (!commit_iclog)
2484                return xlog_state_release_iclog(log, iclog);
2485
2486        ASSERT(flags & XLOG_COMMIT_TRANS);
2487        *commit_iclog = iclog;
2488        return 0;
2489}
2490
2491
2492/*****************************************************************************
2493 *
2494 *              State Machine functions
2495 *
2496 *****************************************************************************
2497 */
2498
2499/* Clean iclogs starting from the head.  This ordering must be
2500 * maintained, so an iclog doesn't become ACTIVE beyond one that
2501 * is SYNCING.  This is also required to maintain the notion that we use
2502 * a ordered wait queue to hold off would be writers to the log when every
2503 * iclog is trying to sync to disk.
2504 *
2505 * State Change: DIRTY -> ACTIVE
2506 */
2507STATIC void
2508xlog_state_clean_log(
2509        struct xlog *log)
2510{
2511        xlog_in_core_t  *iclog;
2512        int changed = 0;
2513
2514        iclog = log->l_iclog;
2515        do {
2516                if (iclog->ic_state == XLOG_STATE_DIRTY) {
2517                        iclog->ic_state = XLOG_STATE_ACTIVE;
2518                        iclog->ic_offset       = 0;
2519                        ASSERT(list_empty_careful(&iclog->ic_callbacks));
2520                        /*
2521                         * If the number of ops in this iclog indicate it just
2522                         * contains the dummy transaction, we can
2523                         * change state into IDLE (the second time around).
2524                         * Otherwise we should change the state into
2525                         * NEED a dummy.
2526                         * We don't need to cover the dummy.
2527                         */
2528                        if (!changed &&
2529                           (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2530                                        XLOG_COVER_OPS)) {
2531                                changed = 1;
2532                        } else {
2533                                /*
2534                                 * We have two dirty iclogs so start over
2535                                 * This could also be num of ops indicates
2536                                 * this is not the dummy going out.
2537                                 */
2538                                changed = 2;
2539                        }
2540                        iclog->ic_header.h_num_logops = 0;
2541                        memset(iclog->ic_header.h_cycle_data, 0,
2542                              sizeof(iclog->ic_header.h_cycle_data));
2543                        iclog->ic_header.h_lsn = 0;
2544                } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2545                        /* do nothing */;
2546                else
2547                        break;  /* stop cleaning */
2548                iclog = iclog->ic_next;
2549        } while (iclog != log->l_iclog);
2550
2551        /* log is locked when we are called */
2552        /*
2553         * Change state for the dummy log recording.
2554         * We usually go to NEED. But we go to NEED2 if the changed indicates
2555         * we are done writing the dummy record.
2556         * If we are done with the second dummy recored (DONE2), then
2557         * we go to IDLE.
2558         */
2559        if (changed) {
2560                switch (log->l_covered_state) {
2561                case XLOG_STATE_COVER_IDLE:
2562                case XLOG_STATE_COVER_NEED:
2563                case XLOG_STATE_COVER_NEED2:
2564                        log->l_covered_state = XLOG_STATE_COVER_NEED;
2565                        break;
2566
2567                case XLOG_STATE_COVER_DONE:
2568                        if (changed == 1)
2569                                log->l_covered_state = XLOG_STATE_COVER_NEED2;
2570                        else
2571                                log->l_covered_state = XLOG_STATE_COVER_NEED;
2572                        break;
2573
2574                case XLOG_STATE_COVER_DONE2:
2575                        if (changed == 1)
2576                                log->l_covered_state = XLOG_STATE_COVER_IDLE;
2577                        else
2578                                log->l_covered_state = XLOG_STATE_COVER_NEED;
2579                        break;
2580
2581                default:
2582                        ASSERT(0);
2583                }
2584        }
2585}       /* xlog_state_clean_log */
2586
2587STATIC xfs_lsn_t
2588xlog_get_lowest_lsn(
2589        struct xlog             *log)
2590{
2591        struct xlog_in_core     *iclog = log->l_iclog;
2592        xfs_lsn_t               lowest_lsn = 0, lsn;
2593
2594        do {
2595                if (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))
2596                        continue;
2597
2598                lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2599                if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2600                        lowest_lsn = lsn;
2601        } while ((iclog = iclog->ic_next) != log->l_iclog);
2602
2603        return lowest_lsn;
2604}
2605
2606STATIC void
2607xlog_state_do_callback(
2608        struct xlog             *log,
2609        bool                    aborted,
2610        struct xlog_in_core     *ciclog)
2611{
2612        xlog_in_core_t     *iclog;
2613        xlog_in_core_t     *first_iclog;        /* used to know when we've
2614                                                 * processed all iclogs once */
2615        int                flushcnt = 0;
2616        xfs_lsn_t          lowest_lsn;
2617        int                ioerrors;    /* counter: iclogs with errors */
2618        int                loopdidcallbacks; /* flag: inner loop did callbacks*/
2619        int                funcdidcallbacks; /* flag: function did callbacks */
2620        int                repeats;     /* for issuing console warnings if
2621                                         * looping too many times */
2622        int                wake = 0;
2623
2624        spin_lock(&log->l_icloglock);
2625        first_iclog = iclog = log->l_iclog;
2626        ioerrors = 0;
2627        funcdidcallbacks = 0;
2628        repeats = 0;
2629
2630        do {
2631                /*
2632                 * Scan all iclogs starting with the one pointed to by the
2633                 * log.  Reset this starting point each time the log is
2634                 * unlocked (during callbacks).
2635                 *
2636                 * Keep looping through iclogs until one full pass is made
2637                 * without running any callbacks.
2638                 */
2639                first_iclog = log->l_iclog;
2640                iclog = log->l_iclog;
2641                loopdidcallbacks = 0;
2642                repeats++;
2643
2644                do {
2645
2646                        /* skip all iclogs in the ACTIVE & DIRTY states */
2647                        if (iclog->ic_state &
2648                            (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2649                                iclog = iclog->ic_next;
2650                                continue;
2651                        }
2652
2653                        /*
2654                         * Between marking a filesystem SHUTDOWN and stopping
2655                         * the log, we do flush all iclogs to disk (if there
2656                         * wasn't a log I/O error). So, we do want things to
2657                         * go smoothly in case of just a SHUTDOWN  w/o a
2658                         * LOG_IO_ERROR.
2659                         */
2660                        if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2661                                /*
2662                                 * Can only perform callbacks in order.  Since
2663                                 * this iclog is not in the DONE_SYNC/
2664                                 * DO_CALLBACK state, we skip the rest and
2665                                 * just try to clean up.  If we set our iclog
2666                                 * to DO_CALLBACK, we will not process it when
2667                                 * we retry since a previous iclog is in the
2668                                 * CALLBACK and the state cannot change since
2669                                 * we are holding the l_icloglock.
2670                                 */
2671                                if (!(iclog->ic_state &
2672                                        (XLOG_STATE_DONE_SYNC |
2673                                                 XLOG_STATE_DO_CALLBACK))) {
2674                                        if (ciclog && (ciclog->ic_state ==
2675                                                        XLOG_STATE_DONE_SYNC)) {
2676                                                ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2677                                        }
2678                                        break;
2679                                }
2680                                /*
2681                                 * We now have an iclog that is in either the
2682                                 * DO_CALLBACK or DONE_SYNC states. The other
2683                                 * states (WANT_SYNC, SYNCING, or CALLBACK were
2684                                 * caught by the above if and are going to
2685                                 * clean (i.e. we aren't doing their callbacks)
2686                                 * see the above if.
2687                                 */
2688
2689                                /*
2690                                 * We will do one more check here to see if we
2691                                 * have chased our tail around.
2692                                 */
2693
2694                                lowest_lsn = xlog_get_lowest_lsn(log);
2695                                if (lowest_lsn &&
2696                                    XFS_LSN_CMP(lowest_lsn,
2697                                                be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2698                                        iclog = iclog->ic_next;
2699                                        continue; /* Leave this iclog for
2700                                                   * another thread */
2701                                }
2702
2703                                iclog->ic_state = XLOG_STATE_CALLBACK;
2704
2705
2706                                /*
2707                                 * Completion of a iclog IO does not imply that
2708                                 * a transaction has completed, as transactions
2709                                 * can be large enough to span many iclogs. We
2710                                 * cannot change the tail of the log half way
2711                                 * through a transaction as this may be the only
2712                                 * transaction in the log and moving th etail to
2713                                 * point to the middle of it will prevent
2714                                 * recovery from finding the start of the
2715                                 * transaction. Hence we should only update the
2716                                 * last_sync_lsn if this iclog contains
2717                                 * transaction completion callbacks on it.
2718                                 *
2719                                 * We have to do this before we drop the
2720                                 * icloglock to ensure we are the only one that
2721                                 * can update it.
2722                                 */
2723                                ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2724                                        be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2725                                if (!list_empty_careful(&iclog->ic_callbacks))
2726                                        atomic64_set(&log->l_last_sync_lsn,
2727                                                be64_to_cpu(iclog->ic_header.h_lsn));
2728
2729                        } else
2730                                ioerrors++;
2731
2732                        spin_unlock(&log->l_icloglock);
2733
2734                        /*
2735                         * Keep processing entries in the callback list until
2736                         * we come around and it is empty.  We need to
2737                         * atomically see that the list is empty and change the
2738                         * state to DIRTY so that we don't miss any more
2739                         * callbacks being added.
2740                         */
2741                        spin_lock(&iclog->ic_callback_lock);
2742                        while (!list_empty(&iclog->ic_callbacks)) {
2743                                LIST_HEAD(tmp);
2744
2745                                list_splice_init(&iclog->ic_callbacks, &tmp);
2746
2747                                spin_unlock(&iclog->ic_callback_lock);
2748                                xlog_cil_process_committed(&tmp, aborted);
2749                                spin_lock(&iclog->ic_callback_lock);
2750                        }
2751
2752                        loopdidcallbacks++;
2753                        funcdidcallbacks++;
2754
2755                        spin_lock(&log->l_icloglock);
2756                        spin_unlock(&iclog->ic_callback_lock);
2757                        if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2758                                iclog->ic_state = XLOG_STATE_DIRTY;
2759
2760                        /*
2761                         * Transition from DIRTY to ACTIVE if applicable.
2762                         * NOP if STATE_IOERROR.
2763                         */
2764                        xlog_state_clean_log(log);
2765
2766                        /* wake up threads waiting in xfs_log_force() */
2767                        wake_up_all(&iclog->ic_force_wait);
2768
2769                        iclog = iclog->ic_next;
2770                } while (first_iclog != iclog);
2771
2772                if (repeats > 5000) {
2773                        flushcnt += repeats;
2774                        repeats = 0;
2775                        xfs_warn(log->l_mp,
2776                                "%s: possible infinite loop (%d iterations)",
2777                                __func__, flushcnt);
2778                }
2779        } while (!ioerrors && loopdidcallbacks);
2780
2781#ifdef DEBUG
2782        /*
2783         * Make one last gasp attempt to see if iclogs are being left in limbo.
2784         * If the above loop finds an iclog earlier than the current iclog and
2785         * in one of the syncing states, the current iclog is put into
2786         * DO_CALLBACK and the callbacks are deferred to the completion of the
2787         * earlier iclog. Walk the iclogs in order and make sure that no iclog
2788         * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2789         * states.
2790         *
2791         * Note that SYNCING|IOABORT is a valid state so we cannot just check
2792         * for ic_state == SYNCING.
2793         */
2794        if (funcdidcallbacks) {
2795                first_iclog = iclog = log->l_iclog;
2796                do {
2797                        ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2798                        /*
2799                         * Terminate the loop if iclogs are found in states
2800                         * which will cause other threads to clean up iclogs.
2801                         *
2802                         * SYNCING - i/o completion will go through logs
2803                         * DONE_SYNC - interrupt thread should be waiting for
2804                         *              l_icloglock
2805                         * IOERROR - give up hope all ye who enter here
2806                         */
2807                        if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2808                            iclog->ic_state & XLOG_STATE_SYNCING ||
2809                            iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2810                            iclog->ic_state == XLOG_STATE_IOERROR )
2811                                break;
2812                        iclog = iclog->ic_next;
2813                } while (first_iclog != iclog);
2814        }
2815#endif
2816
2817        if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2818                wake = 1;
2819        spin_unlock(&log->l_icloglock);
2820
2821        if (wake)
2822                wake_up_all(&log->l_flush_wait);
2823}
2824
2825
2826/*
2827 * Finish transitioning this iclog to the dirty state.
2828 *
2829 * Make sure that we completely execute this routine only when this is
2830 * the last call to the iclog.  There is a good chance that iclog flushes,
2831 * when we reach the end of the physical log, get turned into 2 separate
2832 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2833 * routine.  By using the reference count bwritecnt, we guarantee that only
2834 * the second completion goes through.
2835 *
2836 * Callbacks could take time, so they are done outside the scope of the
2837 * global state machine log lock.
2838 */
2839STATIC void
2840xlog_state_done_syncing(
2841        struct xlog_in_core     *iclog,
2842        bool                    aborted)
2843{
2844        struct xlog             *log = iclog->ic_log;
2845
2846        spin_lock(&log->l_icloglock);
2847
2848        ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2849               iclog->ic_state == XLOG_STATE_IOERROR);
2850        ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2851
2852        /*
2853         * If we got an error, either on the first buffer, or in the case of
2854         * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2855         * and none should ever be attempted to be written to disk
2856         * again.
2857         */
2858        if (iclog->ic_state != XLOG_STATE_IOERROR)
2859                iclog->ic_state = XLOG_STATE_DONE_SYNC;
2860
2861        /*
2862         * Someone could be sleeping prior to writing out the next
2863         * iclog buffer, we wake them all, one will get to do the
2864         * I/O, the others get to wait for the result.
2865         */
2866        wake_up_all(&iclog->ic_write_wait);
2867        spin_unlock(&log->l_icloglock);
2868        xlog_state_do_callback(log, aborted, iclog);    /* also cleans log */
2869}       /* xlog_state_done_syncing */
2870
2871
2872/*
2873 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2874 * sleep.  We wait on the flush queue on the head iclog as that should be
2875 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2876 * we will wait here and all new writes will sleep until a sync completes.
2877 *
2878 * The in-core logs are used in a circular fashion. They are not used
2879 * out-of-order even when an iclog past the head is free.
2880 *
2881 * return:
2882 *      * log_offset where xlog_write() can start writing into the in-core
2883 *              log's data space.
2884 *      * in-core log pointer to which xlog_write() should write.
2885 *      * boolean indicating this is a continued write to an in-core log.
2886 *              If this is the last write, then the in-core log's offset field
2887 *              needs to be incremented, depending on the amount of data which
2888 *              is copied.
2889 */
2890STATIC int
2891xlog_state_get_iclog_space(
2892        struct xlog             *log,
2893        int                     len,
2894        struct xlog_in_core     **iclogp,
2895        struct xlog_ticket      *ticket,
2896        int                     *continued_write,
2897        int                     *logoffsetp)
2898{
2899        int               log_offset;
2900        xlog_rec_header_t *head;
2901        xlog_in_core_t    *iclog;
2902        int               error;
2903
2904restart:
2905        spin_lock(&log->l_icloglock);
2906        if (XLOG_FORCED_SHUTDOWN(log)) {
2907                spin_unlock(&log->l_icloglock);
2908                return -EIO;
2909        }
2910
2911        iclog = log->l_iclog;
2912        if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2913                XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2914
2915                /* Wait for log writes to have flushed */
2916                xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2917                goto restart;
2918        }
2919
2920        head = &iclog->ic_header;
2921
2922        atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
2923        log_offset = iclog->ic_offset;
2924
2925        /* On the 1st write to an iclog, figure out lsn.  This works
2926         * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2927         * committing to.  If the offset is set, that's how many blocks
2928         * must be written.
2929         */
2930        if (log_offset == 0) {
2931                ticket->t_curr_res -= log->l_iclog_hsize;
2932                xlog_tic_add_region(ticket,
2933                                    log->l_iclog_hsize,
2934                                    XLOG_REG_TYPE_LRHEADER);
2935                head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2936                head->h_lsn = cpu_to_be64(
2937                        xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2938                ASSERT(log->l_curr_block >= 0);
2939        }
2940
2941        /* If there is enough room to write everything, then do it.  Otherwise,
2942         * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2943         * bit is on, so this will get flushed out.  Don't update ic_offset
2944         * until you know exactly how many bytes get copied.  Therefore, wait
2945         * until later to update ic_offset.
2946         *
2947         * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2948         * can fit into remaining data section.
2949         */
2950        if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2951                xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2952
2953                /*
2954                 * If I'm the only one writing to this iclog, sync it to disk.
2955                 * We need to do an atomic compare and decrement here to avoid
2956                 * racing with concurrent atomic_dec_and_lock() calls in
2957                 * xlog_state_release_iclog() when there is more than one
2958                 * reference to the iclog.
2959                 */
2960                if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2961                        /* we are the only one */
2962                        spin_unlock(&log->l_icloglock);
2963                        error = xlog_state_release_iclog(log, iclog);
2964                        if (error)
2965                                return error;
2966                } else {
2967                        spin_unlock(&log->l_icloglock);
2968                }
2969                goto restart;
2970        }
2971
2972        /* Do we have enough room to write the full amount in the remainder
2973         * of this iclog?  Or must we continue a write on the next iclog and
2974         * mark this iclog as completely taken?  In the case where we switch
2975         * iclogs (to mark it taken), this particular iclog will release/sync
2976         * to disk in xlog_write().
2977         */
2978        if (len <= iclog->ic_size - iclog->ic_offset) {
2979                *continued_write = 0;
2980                iclog->ic_offset += len;
2981        } else {
2982                *continued_write = 1;
2983                xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2984        }
2985        *iclogp = iclog;
2986
2987        ASSERT(iclog->ic_offset <= iclog->ic_size);
2988        spin_unlock(&log->l_icloglock);
2989
2990        *logoffsetp = log_offset;
2991        return 0;
2992}       /* xlog_state_get_iclog_space */
2993
2994/* The first cnt-1 times through here we don't need to
2995 * move the grant write head because the permanent
2996 * reservation has reserved cnt times the unit amount.
2997 * Release part of current permanent unit reservation and
2998 * reset current reservation to be one units worth.  Also
2999 * move grant reservation head forward.
3000 */
3001STATIC void
3002xlog_regrant_reserve_log_space(
3003        struct xlog             *log,
3004        struct xlog_ticket      *ticket)
3005{
3006        trace_xfs_log_regrant_reserve_enter(log, ticket);
3007
3008        if (ticket->t_cnt > 0)
3009                ticket->t_cnt--;
3010
3011        xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3012                                        ticket->t_curr_res);
3013        xlog_grant_sub_space(log, &log->l_write_head.grant,
3014                                        ticket->t_curr_res);
3015        ticket->t_curr_res = ticket->t_unit_res;
3016        xlog_tic_reset_res(ticket);
3017
3018        trace_xfs_log_regrant_reserve_sub(log, ticket);
3019
3020        /* just return if we still have some of the pre-reserved space */
3021        if (ticket->t_cnt > 0)
3022                return;
3023
3024        xlog_grant_add_space(log, &log->l_reserve_head.grant,
3025                                        ticket->t_unit_res);
3026
3027        trace_xfs_log_regrant_reserve_exit(log, ticket);
3028
3029        ticket->t_curr_res = ticket->t_unit_res;
3030        xlog_tic_reset_res(ticket);
3031}       /* xlog_regrant_reserve_log_space */
3032
3033
3034/*
3035 * Give back the space left from a reservation.
3036 *
3037 * All the information we need to make a correct determination of space left
3038 * is present.  For non-permanent reservations, things are quite easy.  The
3039 * count should have been decremented to zero.  We only need to deal with the
3040 * space remaining in the current reservation part of the ticket.  If the
3041 * ticket contains a permanent reservation, there may be left over space which
3042 * needs to be released.  A count of N means that N-1 refills of the current
3043 * reservation can be done before we need to ask for more space.  The first
3044 * one goes to fill up the first current reservation.  Once we run out of
3045 * space, the count will stay at zero and the only space remaining will be
3046 * in the current reservation field.
3047 */
3048STATIC void
3049xlog_ungrant_log_space(
3050        struct xlog             *log,
3051        struct xlog_ticket      *ticket)
3052{
3053        int     bytes;
3054
3055        if (ticket->t_cnt > 0)
3056                ticket->t_cnt--;
3057
3058        trace_xfs_log_ungrant_enter(log, ticket);
3059        trace_xfs_log_ungrant_sub(log, ticket);
3060
3061        /*
3062         * If this is a permanent reservation ticket, we may be able to free
3063         * up more space based on the remaining count.
3064         */
3065        bytes = ticket->t_curr_res;
3066        if (ticket->t_cnt > 0) {
3067                ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3068                bytes += ticket->t_unit_res*ticket->t_cnt;
3069        }
3070
3071        xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3072        xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3073
3074        trace_xfs_log_ungrant_exit(log, ticket);
3075
3076        xfs_log_space_wake(log->l_mp);
3077}
3078
3079/*
3080 * Flush iclog to disk if this is the last reference to the given iclog and
3081 * the WANT_SYNC bit is set.
3082 *
3083 * When this function is entered, the iclog is not necessarily in the
3084 * WANT_SYNC state.  It may be sitting around waiting to get filled.
3085 *
3086 *
3087 */
3088STATIC int
3089xlog_state_release_iclog(
3090        struct xlog             *log,
3091        struct xlog_in_core     *iclog)
3092{
3093        int             sync = 0;       /* do we sync? */
3094
3095        if (iclog->ic_state & XLOG_STATE_IOERROR)
3096                return -EIO;
3097
3098        ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3099        if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3100                return 0;
3101
3102        if (iclog->ic_state & XLOG_STATE_IOERROR) {
3103                spin_unlock(&log->l_icloglock);
3104                return -EIO;
3105        }
3106        ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3107               iclog->ic_state == XLOG_STATE_WANT_SYNC);
3108
3109        if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3110                /* update tail before writing to iclog */
3111                xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3112                sync++;
3113                iclog->ic_state = XLOG_STATE_SYNCING;
3114                iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3115                xlog_verify_tail_lsn(log, iclog, tail_lsn);
3116                /* cycle incremented when incrementing curr_block */
3117        }
3118        spin_unlock(&log->l_icloglock);
3119
3120        /*
3121         * We let the log lock go, so it's possible that we hit a log I/O
3122         * error or some other SHUTDOWN condition that marks the iclog
3123         * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3124         * this iclog has consistent data, so we ignore IOERROR
3125         * flags after this point.
3126         */
3127        if (sync)
3128                xlog_sync(log, iclog);
3129        return 0;
3130}       /* xlog_state_release_iclog */
3131
3132
3133/*
3134 * This routine will mark the current iclog in the ring as WANT_SYNC
3135 * and move the current iclog pointer to the next iclog in the ring.
3136 * When this routine is called from xlog_state_get_iclog_space(), the
3137 * exact size of the iclog has not yet been determined.  All we know is
3138 * that every data block.  We have run out of space in this log record.
3139 */
3140STATIC void
3141xlog_state_switch_iclogs(
3142        struct xlog             *log,
3143        struct xlog_in_core     *iclog,
3144        int                     eventual_size)
3145{
3146        ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3147        if (!eventual_size)
3148                eventual_size = iclog->ic_offset;
3149        iclog->ic_state = XLOG_STATE_WANT_SYNC;
3150        iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3151        log->l_prev_block = log->l_curr_block;
3152        log->l_prev_cycle = log->l_curr_cycle;
3153
3154        /* roll log?: ic_offset changed later */
3155        log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3156
3157        /* Round up to next log-sunit */
3158        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3159            log->l_mp->m_sb.sb_logsunit > 1) {
3160                uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3161                log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3162        }
3163
3164        if (log->l_curr_block >= log->l_logBBsize) {
3165                /*
3166                 * Rewind the current block before the cycle is bumped to make
3167                 * sure that the combined LSN never transiently moves forward
3168                 * when the log wraps to the next cycle. This is to support the
3169                 * unlocked sample of these fields from xlog_valid_lsn(). Most
3170                 * other cases should acquire l_icloglock.
3171                 */
3172                log->l_curr_block -= log->l_logBBsize;
3173                ASSERT(log->l_curr_block >= 0);
3174                smp_wmb();
3175                log->l_curr_cycle++;
3176                if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3177                        log->l_curr_cycle++;
3178        }
3179        ASSERT(iclog == log->l_iclog);
3180        log->l_iclog = iclog->ic_next;
3181}       /* xlog_state_switch_iclogs */
3182
3183/*
3184 * Write out all data in the in-core log as of this exact moment in time.
3185 *
3186 * Data may be written to the in-core log during this call.  However,
3187 * we don't guarantee this data will be written out.  A change from past
3188 * implementation means this routine will *not* write out zero length LRs.
3189 *
3190 * Basically, we try and perform an intelligent scan of the in-core logs.
3191 * If we determine there is no flushable data, we just return.  There is no
3192 * flushable data if:
3193 *
3194 *      1. the current iclog is active and has no data; the previous iclog
3195 *              is in the active or dirty state.
3196 *      2. the current iclog is drity, and the previous iclog is in the
3197 *              active or dirty state.
3198 *
3199 * We may sleep if:
3200 *
3201 *      1. the current iclog is not in the active nor dirty state.
3202 *      2. the current iclog dirty, and the previous iclog is not in the
3203 *              active nor dirty state.
3204 *      3. the current iclog is active, and there is another thread writing
3205 *              to this particular iclog.
3206 *      4. a) the current iclog is active and has no other writers
3207 *         b) when we return from flushing out this iclog, it is still
3208 *              not in the active nor dirty state.
3209 */
3210int
3211xfs_log_force(
3212        struct xfs_mount        *mp,
3213        uint                    flags)
3214{
3215        struct xlog             *log = mp->m_log;
3216        struct xlog_in_core     *iclog;
3217        xfs_lsn_t               lsn;
3218
3219        XFS_STATS_INC(mp, xs_log_force);
3220        trace_xfs_log_force(mp, 0, _RET_IP_);
3221
3222        xlog_cil_force(log);
3223
3224        spin_lock(&log->l_icloglock);
3225        iclog = log->l_iclog;
3226        if (iclog->ic_state & XLOG_STATE_IOERROR)
3227                goto out_error;
3228
3229        if (iclog->ic_state == XLOG_STATE_DIRTY ||
3230            (iclog->ic_state == XLOG_STATE_ACTIVE &&
3231             atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3232                /*
3233                 * If the head is dirty or (active and empty), then we need to
3234                 * look at the previous iclog.
3235                 *
3236                 * If the previous iclog is active or dirty we are done.  There
3237                 * is nothing to sync out. Otherwise, we attach ourselves to the
3238                 * previous iclog and go to sleep.
3239                 */
3240                iclog = iclog->ic_prev;
3241                if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3242                    iclog->ic_state == XLOG_STATE_DIRTY)
3243                        goto out_unlock;
3244        } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3245                if (atomic_read(&iclog->ic_refcnt) == 0) {
3246                        /*
3247                         * We are the only one with access to this iclog.
3248                         *
3249                         * Flush it out now.  There should be a roundoff of zero
3250                         * to show that someone has already taken care of the
3251                         * roundoff from the previous sync.
3252                         */
3253                        atomic_inc(&iclog->ic_refcnt);
3254                        lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3255                        xlog_state_switch_iclogs(log, iclog, 0);
3256                        spin_unlock(&log->l_icloglock);
3257
3258                        if (xlog_state_release_iclog(log, iclog))
3259                                return -EIO;
3260
3261                        spin_lock(&log->l_icloglock);
3262                        if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
3263                            iclog->ic_state == XLOG_STATE_DIRTY)
3264                                goto out_unlock;
3265                } else {
3266                        /*
3267                         * Someone else is writing to this iclog.
3268                         *
3269                         * Use its call to flush out the data.  However, the
3270                         * other thread may not force out this LR, so we mark
3271                         * it WANT_SYNC.
3272                         */
3273                        xlog_state_switch_iclogs(log, iclog, 0);
3274                }
3275        } else {
3276                /*
3277                 * If the head iclog is not active nor dirty, we just attach
3278                 * ourselves to the head and go to sleep if necessary.
3279                 */
3280                ;
3281        }
3282
3283        if (!(flags & XFS_LOG_SYNC))
3284                goto out_unlock;
3285
3286        if (iclog->ic_state & XLOG_STATE_IOERROR)
3287                goto out_error;
3288        XFS_STATS_INC(mp, xs_log_force_sleep);
3289        xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3290        if (iclog->ic_state & XLOG_STATE_IOERROR)
3291                return -EIO;
3292        return 0;
3293
3294out_unlock:
3295        spin_unlock(&log->l_icloglock);
3296        return 0;
3297out_error:
3298        spin_unlock(&log->l_icloglock);
3299        return -EIO;
3300}
3301
3302static int
3303__xfs_log_force_lsn(
3304        struct xfs_mount        *mp,
3305        xfs_lsn_t               lsn,
3306        uint                    flags,
3307        int                     *log_flushed,
3308        bool                    already_slept)
3309{
3310        struct xlog             *log = mp->m_log;
3311        struct xlog_in_core     *iclog;
3312
3313        spin_lock(&log->l_icloglock);
3314        iclog = log->l_iclog;
3315        if (iclog->ic_state & XLOG_STATE_IOERROR)
3316                goto out_error;
3317
3318        while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3319                iclog = iclog->ic_next;
3320                if (iclog == log->l_iclog)
3321                        goto out_unlock;
3322        }
3323
3324        if (iclog->ic_state == XLOG_STATE_DIRTY)
3325                goto out_unlock;
3326
3327        if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3328                /*
3329                 * We sleep here if we haven't already slept (e.g. this is the
3330                 * first time we've looked at the correct iclog buf) and the
3331                 * buffer before us is going to be sync'ed.  The reason for this
3332                 * is that if we are doing sync transactions here, by waiting
3333                 * for the previous I/O to complete, we can allow a few more
3334                 * transactions into this iclog before we close it down.
3335                 *
3336                 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3337                 * refcnt so we can release the log (which drops the ref count).
3338                 * The state switch keeps new transaction commits from using
3339                 * this buffer.  When the current commits finish writing into
3340                 * the buffer, the refcount will drop to zero and the buffer
3341                 * will go out then.
3342                 */
3343                if (!already_slept &&
3344                    (iclog->ic_prev->ic_state &
3345                     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3346                        ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3347
3348                        XFS_STATS_INC(mp, xs_log_force_sleep);
3349
3350                        xlog_wait(&iclog->ic_prev->ic_write_wait,
3351                                        &log->l_icloglock);
3352                        return -EAGAIN;
3353                }
3354                atomic_inc(&iclog->ic_refcnt);
3355                xlog_state_switch_iclogs(log, iclog, 0);
3356                spin_unlock(&log->l_icloglock);
3357                if (xlog_state_release_iclog(log, iclog))
3358                        return -EIO;
3359                if (log_flushed)
3360                        *log_flushed = 1;
3361                spin_lock(&log->l_icloglock);
3362        }
3363
3364        if (!(flags & XFS_LOG_SYNC) ||
3365            (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY)))
3366                goto out_unlock;
3367
3368        if (iclog->ic_state & XLOG_STATE_IOERROR)
3369                goto out_error;
3370
3371        XFS_STATS_INC(mp, xs_log_force_sleep);
3372        xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3373        if (iclog->ic_state & XLOG_STATE_IOERROR)
3374                return -EIO;
3375        return 0;
3376
3377out_unlock:
3378        spin_unlock(&log->l_icloglock);
3379        return 0;
3380out_error:
3381        spin_unlock(&log->l_icloglock);
3382        return -EIO;
3383}
3384
3385/*
3386 * Force the in-core log to disk for a specific LSN.
3387 *
3388 * Find in-core log with lsn.
3389 *      If it is in the DIRTY state, just return.
3390 *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3391 *              state and go to sleep or return.
3392 *      If it is in any other state, go to sleep or return.
3393 *
3394 * Synchronous forces are implemented with a wait queue.  All callers trying
3395 * to force a given lsn to disk must wait on the queue attached to the
3396 * specific in-core log.  When given in-core log finally completes its write
3397 * to disk, that thread will wake up all threads waiting on the queue.
3398 */
3399int
3400xfs_log_force_lsn(
3401        struct xfs_mount        *mp,
3402        xfs_lsn_t               lsn,
3403        uint                    flags,
3404        int                     *log_flushed)
3405{
3406        int                     ret;
3407        ASSERT(lsn != 0);
3408
3409        XFS_STATS_INC(mp, xs_log_force);
3410        trace_xfs_log_force(mp, lsn, _RET_IP_);
3411
3412        lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3413        if (lsn == NULLCOMMITLSN)
3414                return 0;
3415
3416        ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3417        if (ret == -EAGAIN)
3418                ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3419        return ret;
3420}
3421
3422/*
3423 * Called when we want to mark the current iclog as being ready to sync to
3424 * disk.
3425 */
3426STATIC void
3427xlog_state_want_sync(
3428        struct xlog             *log,
3429        struct xlog_in_core     *iclog)
3430{
3431        assert_spin_locked(&log->l_icloglock);
3432
3433        if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3434                xlog_state_switch_iclogs(log, iclog, 0);
3435        } else {
3436                ASSERT(iclog->ic_state &
3437                        (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3438        }
3439}
3440
3441
3442/*****************************************************************************
3443 *
3444 *              TICKET functions
3445 *
3446 *****************************************************************************
3447 */
3448
3449/*
3450 * Free a used ticket when its refcount falls to zero.
3451 */
3452void
3453xfs_log_ticket_put(
3454        xlog_ticket_t   *ticket)
3455{
3456        ASSERT(atomic_read(&ticket->t_ref) > 0);
3457        if (atomic_dec_and_test(&ticket->t_ref))
3458                kmem_zone_free(xfs_log_ticket_zone, ticket);
3459}
3460
3461xlog_ticket_t *
3462xfs_log_ticket_get(
3463        xlog_ticket_t   *ticket)
3464{
3465        ASSERT(atomic_read(&ticket->t_ref) > 0);
3466        atomic_inc(&ticket->t_ref);
3467        return ticket;
3468}
3469
3470/*
3471 * Figure out the total log space unit (in bytes) that would be
3472 * required for a log ticket.
3473 */
3474int
3475xfs_log_calc_unit_res(
3476        struct xfs_mount        *mp,
3477        int                     unit_bytes)
3478{
3479        struct xlog             *log = mp->m_log;
3480        int                     iclog_space;
3481        uint                    num_headers;
3482
3483        /*
3484         * Permanent reservations have up to 'cnt'-1 active log operations
3485         * in the log.  A unit in this case is the amount of space for one
3486         * of these log operations.  Normal reservations have a cnt of 1
3487         * and their unit amount is the total amount of space required.
3488         *
3489         * The following lines of code account for non-transaction data
3490         * which occupy space in the on-disk log.
3491         *
3492         * Normal form of a transaction is:
3493         * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3494         * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3495         *
3496         * We need to account for all the leadup data and trailer data
3497         * around the transaction data.
3498         * And then we need to account for the worst case in terms of using
3499         * more space.
3500         * The worst case will happen if:
3501         * - the placement of the transaction happens to be such that the
3502         *   roundoff is at its maximum
3503         * - the transaction data is synced before the commit record is synced
3504         *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3505         *   Therefore the commit record is in its own Log Record.
3506         *   This can happen as the commit record is called with its
3507         *   own region to xlog_write().
3508         *   This then means that in the worst case, roundoff can happen for
3509         *   the commit-rec as well.
3510         *   The commit-rec is smaller than padding in this scenario and so it is
3511         *   not added separately.
3512         */
3513
3514        /* for trans header */
3515        unit_bytes += sizeof(xlog_op_header_t);
3516        unit_bytes += sizeof(xfs_trans_header_t);
3517
3518        /* for start-rec */
3519        unit_bytes += sizeof(xlog_op_header_t);
3520
3521        /*
3522         * for LR headers - the space for data in an iclog is the size minus
3523         * the space used for the headers. If we use the iclog size, then we
3524         * undercalculate the number of headers required.
3525         *
3526         * Furthermore - the addition of op headers for split-recs might
3527         * increase the space required enough to require more log and op
3528         * headers, so take that into account too.
3529         *
3530         * IMPORTANT: This reservation makes the assumption that if this
3531         * transaction is the first in an iclog and hence has the LR headers
3532         * accounted to it, then the remaining space in the iclog is
3533         * exclusively for this transaction.  i.e. if the transaction is larger
3534         * than the iclog, it will be the only thing in that iclog.
3535         * Fundamentally, this means we must pass the entire log vector to
3536         * xlog_write to guarantee this.
3537         */
3538        iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3539        num_headers = howmany(unit_bytes, iclog_space);
3540
3541        /* for split-recs - ophdrs added when data split over LRs */
3542        unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3543
3544        /* add extra header reservations if we overrun */
3545        while (!num_headers ||
3546               howmany(unit_bytes, iclog_space) > num_headers) {
3547                unit_bytes += sizeof(xlog_op_header_t);
3548                num_headers++;
3549        }
3550        unit_bytes += log->l_iclog_hsize * num_headers;
3551
3552        /* for commit-rec LR header - note: padding will subsume the ophdr */
3553        unit_bytes += log->l_iclog_hsize;
3554
3555        /* for roundoff padding for transaction data and one for commit record */
3556        if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3557                /* log su roundoff */
3558                unit_bytes += 2 * mp->m_sb.sb_logsunit;
3559        } else {
3560                /* BB roundoff */
3561                unit_bytes += 2 * BBSIZE;
3562        }
3563
3564        return unit_bytes;
3565}
3566
3567/*
3568 * Allocate and initialise a new log ticket.
3569 */
3570struct xlog_ticket *
3571xlog_ticket_alloc(
3572        struct xlog             *log,
3573        int                     unit_bytes,
3574        int                     cnt,
3575        char                    client,
3576        bool                    permanent,
3577        xfs_km_flags_t          alloc_flags)
3578{
3579        struct xlog_ticket      *tic;
3580        int                     unit_res;
3581
3582        tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3583        if (!tic)
3584                return NULL;
3585
3586        unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3587
3588        atomic_set(&tic->t_ref, 1);
3589        tic->t_task             = current;
3590        INIT_LIST_HEAD(&tic->t_queue);
3591        tic->t_unit_res         = unit_res;
3592        tic->t_curr_res         = unit_res;
3593        tic->t_cnt              = cnt;
3594        tic->t_ocnt             = cnt;
3595        tic->t_tid              = prandom_u32();
3596        tic->t_clientid         = client;
3597        tic->t_flags            = XLOG_TIC_INITED;
3598        if (permanent)
3599                tic->t_flags |= XLOG_TIC_PERM_RESERV;
3600
3601        xlog_tic_reset_res(tic);
3602
3603        return tic;
3604}
3605
3606
3607/******************************************************************************
3608 *
3609 *              Log debug routines
3610 *
3611 ******************************************************************************
3612 */
3613#if defined(DEBUG)
3614/*
3615 * Make sure that the destination ptr is within the valid data region of
3616 * one of the iclogs.  This uses backup pointers stored in a different
3617 * part of the log in case we trash the log structure.
3618 */
3619STATIC void
3620xlog_verify_dest_ptr(
3621        struct xlog     *log,
3622        void            *ptr)
3623{
3624        int i;
3625        int good_ptr = 0;
3626
3627        for (i = 0; i < log->l_iclog_bufs; i++) {
3628                if (ptr >= log->l_iclog_bak[i] &&
3629                    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3630                        good_ptr++;
3631        }
3632
3633        if (!good_ptr)
3634                xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3635}
3636
3637/*
3638 * Check to make sure the grant write head didn't just over lap the tail.  If
3639 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3640 * the cycles differ by exactly one and check the byte count.
3641 *
3642 * This check is run unlocked, so can give false positives. Rather than assert
3643 * on failures, use a warn-once flag and a panic tag to allow the admin to
3644 * determine if they want to panic the machine when such an error occurs. For
3645 * debug kernels this will have the same effect as using an assert but, unlinke
3646 * an assert, it can be turned off at runtime.
3647 */
3648STATIC void
3649xlog_verify_grant_tail(
3650        struct xlog     *log)
3651{
3652        int             tail_cycle, tail_blocks;
3653        int             cycle, space;
3654
3655        xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3656        xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3657        if (tail_cycle != cycle) {
3658                if (cycle - 1 != tail_cycle &&
3659                    !(log->l_flags & XLOG_TAIL_WARN)) {
3660                        xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3661                                "%s: cycle - 1 != tail_cycle", __func__);
3662                        log->l_flags |= XLOG_TAIL_WARN;
3663                }
3664
3665                if (space > BBTOB(tail_blocks) &&
3666                    !(log->l_flags & XLOG_TAIL_WARN)) {
3667                        xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3668                                "%s: space > BBTOB(tail_blocks)", __func__);
3669                        log->l_flags |= XLOG_TAIL_WARN;
3670                }
3671        }
3672}
3673
3674/* check if it will fit */
3675STATIC void
3676xlog_verify_tail_lsn(
3677        struct xlog             *log,
3678        struct xlog_in_core     *iclog,
3679        xfs_lsn_t               tail_lsn)
3680{
3681    int blocks;
3682
3683    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3684        blocks =
3685            log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3686        if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3687                xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3688    } else {
3689        ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3690
3691        if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3692                xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3693
3694        blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3695        if (blocks < BTOBB(iclog->ic_offset) + 1)
3696                xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3697    }
3698}       /* xlog_verify_tail_lsn */
3699
3700/*
3701 * Perform a number of checks on the iclog before writing to disk.
3702 *
3703 * 1. Make sure the iclogs are still circular
3704 * 2. Make sure we have a good magic number
3705 * 3. Make sure we don't have magic numbers in the data
3706 * 4. Check fields of each log operation header for:
3707 *      A. Valid client identifier
3708 *      B. tid ptr value falls in valid ptr space (user space code)
3709 *      C. Length in log record header is correct according to the
3710 *              individual operation headers within record.
3711 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3712 *      log, check the preceding blocks of the physical log to make sure all
3713 *      the cycle numbers agree with the current cycle number.
3714 */
3715STATIC void
3716xlog_verify_iclog(
3717        struct xlog             *log,
3718        struct xlog_in_core     *iclog,
3719        int                     count)
3720{
3721        xlog_op_header_t        *ophead;
3722        xlog_in_core_t          *icptr;
3723        xlog_in_core_2_t        *xhdr;
3724        void                    *base_ptr, *ptr, *p;
3725        ptrdiff_t               field_offset;
3726        uint8_t                 clientid;
3727        int                     len, i, j, k, op_len;
3728        int                     idx;
3729
3730        /* check validity of iclog pointers */
3731        spin_lock(&log->l_icloglock);
3732        icptr = log->l_iclog;
3733        for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3734                ASSERT(icptr);
3735
3736        if (icptr != log->l_iclog)
3737                xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3738        spin_unlock(&log->l_icloglock);
3739
3740        /* check log magic numbers */
3741        if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3742                xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3743
3744        base_ptr = ptr = &iclog->ic_header;
3745        p = &iclog->ic_header;
3746        for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3747                if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3748                        xfs_emerg(log->l_mp, "%s: unexpected magic num",
3749                                __func__);
3750        }
3751
3752        /* check fields */
3753        len = be32_to_cpu(iclog->ic_header.h_num_logops);
3754        base_ptr = ptr = iclog->ic_datap;
3755        ophead = ptr;
3756        xhdr = iclog->ic_data;
3757        for (i = 0; i < len; i++) {
3758                ophead = ptr;
3759
3760                /* clientid is only 1 byte */
3761                p = &ophead->oh_clientid;
3762                field_offset = p - base_ptr;
3763                if (field_offset & 0x1ff) {
3764                        clientid = ophead->oh_clientid;
3765                } else {
3766                        idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3767                        if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3768                                j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3769                                k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3770                                clientid = xlog_get_client_id(
3771                                        xhdr[j].hic_xheader.xh_cycle_data[k]);
3772                        } else {
3773                                clientid = xlog_get_client_id(
3774                                        iclog->ic_header.h_cycle_data[idx]);
3775                        }
3776                }
3777                if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3778                        xfs_warn(log->l_mp,
3779                                "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3780                                __func__, clientid, ophead,
3781                                (unsigned long)field_offset);
3782
3783                /* check length */
3784                p = &ophead->oh_len;
3785                field_offset = p - base_ptr;
3786                if (field_offset & 0x1ff) {
3787                        op_len = be32_to_cpu(ophead->oh_len);
3788                } else {
3789                        idx = BTOBBT((uintptr_t)&ophead->oh_len -
3790                                    (uintptr_t)iclog->ic_datap);
3791                        if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3792                                j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3793                                k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3794                                op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3795                        } else {
3796                                op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3797                        }
3798                }
3799                ptr += sizeof(xlog_op_header_t) + op_len;
3800        }
3801}       /* xlog_verify_iclog */
3802#endif
3803
3804/*
3805 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3806 */
3807STATIC int
3808xlog_state_ioerror(
3809        struct xlog     *log)
3810{
3811        xlog_in_core_t  *iclog, *ic;
3812
3813        iclog = log->l_iclog;
3814        if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3815                /*
3816                 * Mark all the incore logs IOERROR.
3817                 * From now on, no log flushes will result.
3818                 */
3819                ic = iclog;
3820                do {
3821                        ic->ic_state = XLOG_STATE_IOERROR;
3822                        ic = ic->ic_next;
3823                } while (ic != iclog);
3824                return 0;
3825        }
3826        /*
3827         * Return non-zero, if state transition has already happened.
3828         */
3829        return 1;
3830}
3831
3832/*
3833 * This is called from xfs_force_shutdown, when we're forcibly
3834 * shutting down the filesystem, typically because of an IO error.
3835 * Our main objectives here are to make sure that:
3836 *      a. if !logerror, flush the logs to disk. Anything modified
3837 *         after this is ignored.
3838 *      b. the filesystem gets marked 'SHUTDOWN' for all interested
3839 *         parties to find out, 'atomically'.
3840 *      c. those who're sleeping on log reservations, pinned objects and
3841 *          other resources get woken up, and be told the bad news.
3842 *      d. nothing new gets queued up after (b) and (c) are done.
3843 *
3844 * Note: for the !logerror case we need to flush the regions held in memory out
3845 * to disk first. This needs to be done before the log is marked as shutdown,
3846 * otherwise the iclog writes will fail.
3847 */
3848int
3849xfs_log_force_umount(
3850        struct xfs_mount        *mp,
3851        int                     logerror)
3852{
3853        struct xlog     *log;
3854        int             retval;
3855
3856        log = mp->m_log;
3857
3858        /*
3859         * If this happens during log recovery, don't worry about
3860         * locking; the log isn't open for business yet.
3861         */
3862        if (!log ||
3863            log->l_flags & XLOG_ACTIVE_RECOVERY) {
3864                mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3865                if (mp->m_sb_bp)
3866                        mp->m_sb_bp->b_flags |= XBF_DONE;
3867                return 0;
3868        }
3869
3870        /*
3871         * Somebody could've already done the hard work for us.
3872         * No need to get locks for this.
3873         */
3874        if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3875                ASSERT(XLOG_FORCED_SHUTDOWN(log));
3876                return 1;
3877        }
3878
3879        /*
3880         * Flush all the completed transactions to disk before marking the log
3881         * being shut down. We need to do it in this order to ensure that
3882         * completed operations are safely on disk before we shut down, and that
3883         * we don't have to issue any buffer IO after the shutdown flags are set
3884         * to guarantee this.
3885         */
3886        if (!logerror)
3887                xfs_log_force(mp, XFS_LOG_SYNC);
3888
3889        /*
3890         * mark the filesystem and the as in a shutdown state and wake
3891         * everybody up to tell them the bad news.
3892         */
3893        spin_lock(&log->l_icloglock);
3894        mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3895        if (mp->m_sb_bp)
3896                mp->m_sb_bp->b_flags |= XBF_DONE;
3897
3898        /*
3899         * Mark the log and the iclogs with IO error flags to prevent any
3900         * further log IO from being issued or completed.
3901         */
3902        log->l_flags |= XLOG_IO_ERROR;
3903        retval = xlog_state_ioerror(log);
3904        spin_unlock(&log->l_icloglock);
3905
3906        /*
3907         * We don't want anybody waiting for log reservations after this. That
3908         * means we have to wake up everybody queued up on reserveq as well as
3909         * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3910         * we don't enqueue anything once the SHUTDOWN flag is set, and this
3911         * action is protected by the grant locks.
3912         */
3913        xlog_grant_head_wake_all(&log->l_reserve_head);
3914        xlog_grant_head_wake_all(&log->l_write_head);
3915
3916        /*
3917         * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3918         * as if the log writes were completed. The abort handling in the log
3919         * item committed callback functions will do this again under lock to
3920         * avoid races.
3921         */
3922        wake_up_all(&log->l_cilp->xc_commit_wait);
3923        xlog_state_do_callback(log, true, NULL);
3924
3925#ifdef XFSERRORDEBUG
3926        {
3927                xlog_in_core_t  *iclog;
3928
3929                spin_lock(&log->l_icloglock);
3930                iclog = log->l_iclog;
3931                do {
3932                        ASSERT(iclog->ic_callback == 0);
3933                        iclog = iclog->ic_next;
3934                } while (iclog != log->l_iclog);
3935                spin_unlock(&log->l_icloglock);
3936        }
3937#endif
3938        /* return non-zero if log IOERROR transition had already happened */
3939        return retval;
3940}
3941
3942STATIC int
3943xlog_iclogs_empty(
3944        struct xlog     *log)
3945{
3946        xlog_in_core_t  *iclog;
3947
3948        iclog = log->l_iclog;
3949        do {
3950                /* endianness does not matter here, zero is zero in
3951                 * any language.
3952                 */
3953                if (iclog->ic_header.h_num_logops)
3954                        return 0;
3955                iclog = iclog->ic_next;
3956        } while (iclog != log->l_iclog);
3957        return 1;
3958}
3959
3960/*
3961 * Verify that an LSN stamped into a piece of metadata is valid. This is
3962 * intended for use in read verifiers on v5 superblocks.
3963 */
3964bool
3965xfs_log_check_lsn(
3966        struct xfs_mount        *mp,
3967        xfs_lsn_t               lsn)
3968{
3969        struct xlog             *log = mp->m_log;
3970        bool                    valid;
3971
3972        /*
3973         * norecovery mode skips mount-time log processing and unconditionally
3974         * resets the in-core LSN. We can't validate in this mode, but
3975         * modifications are not allowed anyways so just return true.
3976         */
3977        if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3978                return true;
3979
3980        /*
3981         * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3982         * handled by recovery and thus safe to ignore here.
3983         */
3984        if (lsn == NULLCOMMITLSN)
3985                return true;
3986
3987        valid = xlog_valid_lsn(mp->m_log, lsn);
3988
3989        /* warn the user about what's gone wrong before verifier failure */
3990        if (!valid) {
3991                spin_lock(&log->l_icloglock);
3992                xfs_warn(mp,
3993"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3994"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3995                         CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3996                         log->l_curr_cycle, log->l_curr_block);
3997                spin_unlock(&log->l_icloglock);
3998        }
3999
4000        return valid;
4001}
4002
4003bool
4004xfs_log_in_recovery(
4005        struct xfs_mount        *mp)
4006{
4007        struct xlog             *log = mp->m_log;
4008
4009        return log->l_flags & XLOG_ACTIVE_RECOVERY;
4010}
4011