linux/fs/xfs/xfs_trans_buf.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_trans.h"
  14#include "xfs_buf_item.h"
  15#include "xfs_trans_priv.h"
  16#include "xfs_trace.h"
  17
  18/*
  19 * Check to see if a buffer matching the given parameters is already
  20 * a part of the given transaction.
  21 */
  22STATIC struct xfs_buf *
  23xfs_trans_buf_item_match(
  24        struct xfs_trans        *tp,
  25        struct xfs_buftarg      *target,
  26        struct xfs_buf_map      *map,
  27        int                     nmaps)
  28{
  29        struct xfs_log_item     *lip;
  30        struct xfs_buf_log_item *blip;
  31        int                     len = 0;
  32        int                     i;
  33
  34        for (i = 0; i < nmaps; i++)
  35                len += map[i].bm_len;
  36
  37        list_for_each_entry(lip, &tp->t_items, li_trans) {
  38                blip = (struct xfs_buf_log_item *)lip;
  39                if (blip->bli_item.li_type == XFS_LI_BUF &&
  40                    blip->bli_buf->b_target == target &&
  41                    XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
  42                    blip->bli_buf->b_length == len) {
  43                        ASSERT(blip->bli_buf->b_map_count == nmaps);
  44                        return blip->bli_buf;
  45                }
  46        }
  47
  48        return NULL;
  49}
  50
  51/*
  52 * Add the locked buffer to the transaction.
  53 *
  54 * The buffer must be locked, and it cannot be associated with any
  55 * transaction.
  56 *
  57 * If the buffer does not yet have a buf log item associated with it,
  58 * then allocate one for it.  Then add the buf item to the transaction.
  59 */
  60STATIC void
  61_xfs_trans_bjoin(
  62        struct xfs_trans        *tp,
  63        struct xfs_buf          *bp,
  64        int                     reset_recur)
  65{
  66        struct xfs_buf_log_item *bip;
  67
  68        ASSERT(bp->b_transp == NULL);
  69
  70        /*
  71         * The xfs_buf_log_item pointer is stored in b_log_item.  If
  72         * it doesn't have one yet, then allocate one and initialize it.
  73         * The checks to see if one is there are in xfs_buf_item_init().
  74         */
  75        xfs_buf_item_init(bp, tp->t_mountp);
  76        bip = bp->b_log_item;
  77        ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
  78        ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
  79        ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
  80        if (reset_recur)
  81                bip->bli_recur = 0;
  82
  83        /*
  84         * Take a reference for this transaction on the buf item.
  85         */
  86        atomic_inc(&bip->bli_refcount);
  87
  88        /*
  89         * Attach the item to the transaction so we can find it in
  90         * xfs_trans_get_buf() and friends.
  91         */
  92        xfs_trans_add_item(tp, &bip->bli_item);
  93        bp->b_transp = tp;
  94
  95}
  96
  97void
  98xfs_trans_bjoin(
  99        struct xfs_trans        *tp,
 100        struct xfs_buf          *bp)
 101{
 102        _xfs_trans_bjoin(tp, bp, 0);
 103        trace_xfs_trans_bjoin(bp->b_log_item);
 104}
 105
 106/*
 107 * Get and lock the buffer for the caller if it is not already
 108 * locked within the given transaction.  If it is already locked
 109 * within the transaction, just increment its lock recursion count
 110 * and return a pointer to it.
 111 *
 112 * If the transaction pointer is NULL, make this just a normal
 113 * get_buf() call.
 114 */
 115struct xfs_buf *
 116xfs_trans_get_buf_map(
 117        struct xfs_trans        *tp,
 118        struct xfs_buftarg      *target,
 119        struct xfs_buf_map      *map,
 120        int                     nmaps,
 121        xfs_buf_flags_t         flags)
 122{
 123        xfs_buf_t               *bp;
 124        struct xfs_buf_log_item *bip;
 125
 126        if (!tp)
 127                return xfs_buf_get_map(target, map, nmaps, flags);
 128
 129        /*
 130         * If we find the buffer in the cache with this transaction
 131         * pointer in its b_fsprivate2 field, then we know we already
 132         * have it locked.  In this case we just increment the lock
 133         * recursion count and return the buffer to the caller.
 134         */
 135        bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
 136        if (bp != NULL) {
 137                ASSERT(xfs_buf_islocked(bp));
 138                if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
 139                        xfs_buf_stale(bp);
 140                        bp->b_flags |= XBF_DONE;
 141                }
 142
 143                ASSERT(bp->b_transp == tp);
 144                bip = bp->b_log_item;
 145                ASSERT(bip != NULL);
 146                ASSERT(atomic_read(&bip->bli_refcount) > 0);
 147                bip->bli_recur++;
 148                trace_xfs_trans_get_buf_recur(bip);
 149                return bp;
 150        }
 151
 152        bp = xfs_buf_get_map(target, map, nmaps, flags);
 153        if (bp == NULL) {
 154                return NULL;
 155        }
 156
 157        ASSERT(!bp->b_error);
 158
 159        _xfs_trans_bjoin(tp, bp, 1);
 160        trace_xfs_trans_get_buf(bp->b_log_item);
 161        return bp;
 162}
 163
 164/*
 165 * Get and lock the superblock buffer of this file system for the
 166 * given transaction.
 167 *
 168 * We don't need to use incore_match() here, because the superblock
 169 * buffer is a private buffer which we keep a pointer to in the
 170 * mount structure.
 171 */
 172xfs_buf_t *
 173xfs_trans_getsb(
 174        xfs_trans_t             *tp,
 175        struct xfs_mount        *mp)
 176{
 177        xfs_buf_t               *bp;
 178        struct xfs_buf_log_item *bip;
 179
 180        /*
 181         * Default to just trying to lock the superblock buffer
 182         * if tp is NULL.
 183         */
 184        if (tp == NULL)
 185                return xfs_getsb(mp);
 186
 187        /*
 188         * If the superblock buffer already has this transaction
 189         * pointer in its b_fsprivate2 field, then we know we already
 190         * have it locked.  In this case we just increment the lock
 191         * recursion count and return the buffer to the caller.
 192         */
 193        bp = mp->m_sb_bp;
 194        if (bp->b_transp == tp) {
 195                bip = bp->b_log_item;
 196                ASSERT(bip != NULL);
 197                ASSERT(atomic_read(&bip->bli_refcount) > 0);
 198                bip->bli_recur++;
 199                trace_xfs_trans_getsb_recur(bip);
 200                return bp;
 201        }
 202
 203        bp = xfs_getsb(mp);
 204        if (bp == NULL)
 205                return NULL;
 206
 207        _xfs_trans_bjoin(tp, bp, 1);
 208        trace_xfs_trans_getsb(bp->b_log_item);
 209        return bp;
 210}
 211
 212/*
 213 * Get and lock the buffer for the caller if it is not already
 214 * locked within the given transaction.  If it has not yet been
 215 * read in, read it from disk. If it is already locked
 216 * within the transaction and already read in, just increment its
 217 * lock recursion count and return a pointer to it.
 218 *
 219 * If the transaction pointer is NULL, make this just a normal
 220 * read_buf() call.
 221 */
 222int
 223xfs_trans_read_buf_map(
 224        struct xfs_mount        *mp,
 225        struct xfs_trans        *tp,
 226        struct xfs_buftarg      *target,
 227        struct xfs_buf_map      *map,
 228        int                     nmaps,
 229        xfs_buf_flags_t         flags,
 230        struct xfs_buf          **bpp,
 231        const struct xfs_buf_ops *ops)
 232{
 233        struct xfs_buf          *bp = NULL;
 234        struct xfs_buf_log_item *bip;
 235        int                     error;
 236
 237        *bpp = NULL;
 238        /*
 239         * If we find the buffer in the cache with this transaction
 240         * pointer in its b_fsprivate2 field, then we know we already
 241         * have it locked.  If it is already read in we just increment
 242         * the lock recursion count and return the buffer to the caller.
 243         * If the buffer is not yet read in, then we read it in, increment
 244         * the lock recursion count, and return it to the caller.
 245         */
 246        if (tp)
 247                bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
 248        if (bp) {
 249                ASSERT(xfs_buf_islocked(bp));
 250                ASSERT(bp->b_transp == tp);
 251                ASSERT(bp->b_log_item != NULL);
 252                ASSERT(!bp->b_error);
 253                ASSERT(bp->b_flags & XBF_DONE);
 254
 255                /*
 256                 * We never locked this buf ourselves, so we shouldn't
 257                 * brelse it either. Just get out.
 258                 */
 259                if (XFS_FORCED_SHUTDOWN(mp)) {
 260                        trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
 261                        return -EIO;
 262                }
 263
 264                /*
 265                 * Check if the caller is trying to read a buffer that is
 266                 * already attached to the transaction yet has no buffer ops
 267                 * assigned.  Ops are usually attached when the buffer is
 268                 * attached to the transaction, or by the read caller if
 269                 * special circumstances.  That didn't happen, which is not
 270                 * how this is supposed to go.
 271                 *
 272                 * If the buffer passes verification we'll let this go, but if
 273                 * not we have to shut down.  Let the transaction cleanup code
 274                 * release this buffer when it kills the tranaction.
 275                 */
 276                ASSERT(bp->b_ops != NULL);
 277                error = xfs_buf_reverify(bp, ops);
 278                if (error) {
 279                        xfs_buf_ioerror_alert(bp, __func__);
 280
 281                        if (tp->t_flags & XFS_TRANS_DIRTY)
 282                                xfs_force_shutdown(tp->t_mountp,
 283                                                SHUTDOWN_META_IO_ERROR);
 284
 285                        /* bad CRC means corrupted metadata */
 286                        if (error == -EFSBADCRC)
 287                                error = -EFSCORRUPTED;
 288                        return error;
 289                }
 290
 291                bip = bp->b_log_item;
 292                bip->bli_recur++;
 293
 294                ASSERT(atomic_read(&bip->bli_refcount) > 0);
 295                trace_xfs_trans_read_buf_recur(bip);
 296                ASSERT(bp->b_ops != NULL || ops == NULL);
 297                *bpp = bp;
 298                return 0;
 299        }
 300
 301        bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
 302        if (!bp) {
 303                if (!(flags & XBF_TRYLOCK))
 304                        return -ENOMEM;
 305                return tp ? 0 : -EAGAIN;
 306        }
 307
 308        /*
 309         * If we've had a read error, then the contents of the buffer are
 310         * invalid and should not be used. To ensure that a followup read tries
 311         * to pull the buffer from disk again, we clear the XBF_DONE flag and
 312         * mark the buffer stale. This ensures that anyone who has a current
 313         * reference to the buffer will interpret it's contents correctly and
 314         * future cache lookups will also treat it as an empty, uninitialised
 315         * buffer.
 316         */
 317        if (bp->b_error) {
 318                error = bp->b_error;
 319                if (!XFS_FORCED_SHUTDOWN(mp))
 320                        xfs_buf_ioerror_alert(bp, __func__);
 321                bp->b_flags &= ~XBF_DONE;
 322                xfs_buf_stale(bp);
 323
 324                if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
 325                        xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
 326                xfs_buf_relse(bp);
 327
 328                /* bad CRC means corrupted metadata */
 329                if (error == -EFSBADCRC)
 330                        error = -EFSCORRUPTED;
 331                return error;
 332        }
 333
 334        if (XFS_FORCED_SHUTDOWN(mp)) {
 335                xfs_buf_relse(bp);
 336                trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
 337                return -EIO;
 338        }
 339
 340        if (tp) {
 341                _xfs_trans_bjoin(tp, bp, 1);
 342                trace_xfs_trans_read_buf(bp->b_log_item);
 343        }
 344        ASSERT(bp->b_ops != NULL || ops == NULL);
 345        *bpp = bp;
 346        return 0;
 347
 348}
 349
 350/* Has this buffer been dirtied by anyone? */
 351bool
 352xfs_trans_buf_is_dirty(
 353        struct xfs_buf          *bp)
 354{
 355        struct xfs_buf_log_item *bip = bp->b_log_item;
 356
 357        if (!bip)
 358                return false;
 359        ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
 360        return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
 361}
 362
 363/*
 364 * Release a buffer previously joined to the transaction. If the buffer is
 365 * modified within this transaction, decrement the recursion count but do not
 366 * release the buffer even if the count goes to 0. If the buffer is not modified
 367 * within the transaction, decrement the recursion count and release the buffer
 368 * if the recursion count goes to 0.
 369 *
 370 * If the buffer is to be released and it was not already dirty before this
 371 * transaction began, then also free the buf_log_item associated with it.
 372 *
 373 * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
 374 */
 375void
 376xfs_trans_brelse(
 377        struct xfs_trans        *tp,
 378        struct xfs_buf          *bp)
 379{
 380        struct xfs_buf_log_item *bip = bp->b_log_item;
 381
 382        ASSERT(bp->b_transp == tp);
 383
 384        if (!tp) {
 385                xfs_buf_relse(bp);
 386                return;
 387        }
 388
 389        trace_xfs_trans_brelse(bip);
 390        ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
 391        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 392
 393        /*
 394         * If the release is for a recursive lookup, then decrement the count
 395         * and return.
 396         */
 397        if (bip->bli_recur > 0) {
 398                bip->bli_recur--;
 399                return;
 400        }
 401
 402        /*
 403         * If the buffer is invalidated or dirty in this transaction, we can't
 404         * release it until we commit.
 405         */
 406        if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
 407                return;
 408        if (bip->bli_flags & XFS_BLI_STALE)
 409                return;
 410
 411        /*
 412         * Unlink the log item from the transaction and clear the hold flag, if
 413         * set. We wouldn't want the next user of the buffer to get confused.
 414         */
 415        ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
 416        xfs_trans_del_item(&bip->bli_item);
 417        bip->bli_flags &= ~XFS_BLI_HOLD;
 418
 419        /* drop the reference to the bli */
 420        xfs_buf_item_put(bip);
 421
 422        bp->b_transp = NULL;
 423        xfs_buf_relse(bp);
 424}
 425
 426/*
 427 * Mark the buffer as not needing to be unlocked when the buf item's
 428 * iop_committing() routine is called.  The buffer must already be locked
 429 * and associated with the given transaction.
 430 */
 431/* ARGSUSED */
 432void
 433xfs_trans_bhold(
 434        xfs_trans_t             *tp,
 435        xfs_buf_t               *bp)
 436{
 437        struct xfs_buf_log_item *bip = bp->b_log_item;
 438
 439        ASSERT(bp->b_transp == tp);
 440        ASSERT(bip != NULL);
 441        ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 442        ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
 443        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 444
 445        bip->bli_flags |= XFS_BLI_HOLD;
 446        trace_xfs_trans_bhold(bip);
 447}
 448
 449/*
 450 * Cancel the previous buffer hold request made on this buffer
 451 * for this transaction.
 452 */
 453void
 454xfs_trans_bhold_release(
 455        xfs_trans_t             *tp,
 456        xfs_buf_t               *bp)
 457{
 458        struct xfs_buf_log_item *bip = bp->b_log_item;
 459
 460        ASSERT(bp->b_transp == tp);
 461        ASSERT(bip != NULL);
 462        ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 463        ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
 464        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 465        ASSERT(bip->bli_flags & XFS_BLI_HOLD);
 466
 467        bip->bli_flags &= ~XFS_BLI_HOLD;
 468        trace_xfs_trans_bhold_release(bip);
 469}
 470
 471/*
 472 * Mark a buffer dirty in the transaction.
 473 */
 474void
 475xfs_trans_dirty_buf(
 476        struct xfs_trans        *tp,
 477        struct xfs_buf          *bp)
 478{
 479        struct xfs_buf_log_item *bip = bp->b_log_item;
 480
 481        ASSERT(bp->b_transp == tp);
 482        ASSERT(bip != NULL);
 483        ASSERT(bp->b_iodone == NULL ||
 484               bp->b_iodone == xfs_buf_iodone_callbacks);
 485
 486        /*
 487         * Mark the buffer as needing to be written out eventually,
 488         * and set its iodone function to remove the buffer's buf log
 489         * item from the AIL and free it when the buffer is flushed
 490         * to disk.  See xfs_buf_attach_iodone() for more details
 491         * on li_cb and xfs_buf_iodone_callbacks().
 492         * If we end up aborting this transaction, we trap this buffer
 493         * inside the b_bdstrat callback so that this won't get written to
 494         * disk.
 495         */
 496        bp->b_flags |= XBF_DONE;
 497
 498        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 499        bp->b_iodone = xfs_buf_iodone_callbacks;
 500        bip->bli_item.li_cb = xfs_buf_iodone;
 501
 502        /*
 503         * If we invalidated the buffer within this transaction, then
 504         * cancel the invalidation now that we're dirtying the buffer
 505         * again.  There are no races with the code in xfs_buf_item_unpin(),
 506         * because we have a reference to the buffer this entire time.
 507         */
 508        if (bip->bli_flags & XFS_BLI_STALE) {
 509                bip->bli_flags &= ~XFS_BLI_STALE;
 510                ASSERT(bp->b_flags & XBF_STALE);
 511                bp->b_flags &= ~XBF_STALE;
 512                bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
 513        }
 514        bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
 515
 516        tp->t_flags |= XFS_TRANS_DIRTY;
 517        set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
 518}
 519
 520/*
 521 * This is called to mark bytes first through last inclusive of the given
 522 * buffer as needing to be logged when the transaction is committed.
 523 * The buffer must already be associated with the given transaction.
 524 *
 525 * First and last are numbers relative to the beginning of this buffer,
 526 * so the first byte in the buffer is numbered 0 regardless of the
 527 * value of b_blkno.
 528 */
 529void
 530xfs_trans_log_buf(
 531        struct xfs_trans        *tp,
 532        struct xfs_buf          *bp,
 533        uint                    first,
 534        uint                    last)
 535{
 536        struct xfs_buf_log_item *bip = bp->b_log_item;
 537
 538        ASSERT(first <= last && last < BBTOB(bp->b_length));
 539        ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
 540
 541        xfs_trans_dirty_buf(tp, bp);
 542
 543        trace_xfs_trans_log_buf(bip);
 544        xfs_buf_item_log(bip, first, last);
 545}
 546
 547
 548/*
 549 * Invalidate a buffer that is being used within a transaction.
 550 *
 551 * Typically this is because the blocks in the buffer are being freed, so we
 552 * need to prevent it from being written out when we're done.  Allowing it
 553 * to be written again might overwrite data in the free blocks if they are
 554 * reallocated to a file.
 555 *
 556 * We prevent the buffer from being written out by marking it stale.  We can't
 557 * get rid of the buf log item at this point because the buffer may still be
 558 * pinned by another transaction.  If that is the case, then we'll wait until
 559 * the buffer is committed to disk for the last time (we can tell by the ref
 560 * count) and free it in xfs_buf_item_unpin().  Until that happens we will
 561 * keep the buffer locked so that the buffer and buf log item are not reused.
 562 *
 563 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
 564 * the buf item.  This will be used at recovery time to determine that copies
 565 * of the buffer in the log before this should not be replayed.
 566 *
 567 * We mark the item descriptor and the transaction dirty so that we'll hold
 568 * the buffer until after the commit.
 569 *
 570 * Since we're invalidating the buffer, we also clear the state about which
 571 * parts of the buffer have been logged.  We also clear the flag indicating
 572 * that this is an inode buffer since the data in the buffer will no longer
 573 * be valid.
 574 *
 575 * We set the stale bit in the buffer as well since we're getting rid of it.
 576 */
 577void
 578xfs_trans_binval(
 579        xfs_trans_t             *tp,
 580        xfs_buf_t               *bp)
 581{
 582        struct xfs_buf_log_item *bip = bp->b_log_item;
 583        int                     i;
 584
 585        ASSERT(bp->b_transp == tp);
 586        ASSERT(bip != NULL);
 587        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 588
 589        trace_xfs_trans_binval(bip);
 590
 591        if (bip->bli_flags & XFS_BLI_STALE) {
 592                /*
 593                 * If the buffer is already invalidated, then
 594                 * just return.
 595                 */
 596                ASSERT(bp->b_flags & XBF_STALE);
 597                ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
 598                ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
 599                ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
 600                ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
 601                ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
 602                ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
 603                return;
 604        }
 605
 606        xfs_buf_stale(bp);
 607
 608        bip->bli_flags |= XFS_BLI_STALE;
 609        bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
 610        bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
 611        bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
 612        bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
 613        for (i = 0; i < bip->bli_format_count; i++) {
 614                memset(bip->bli_formats[i].blf_data_map, 0,
 615                       (bip->bli_formats[i].blf_map_size * sizeof(uint)));
 616        }
 617        set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
 618        tp->t_flags |= XFS_TRANS_DIRTY;
 619}
 620
 621/*
 622 * This call is used to indicate that the buffer contains on-disk inodes which
 623 * must be handled specially during recovery.  They require special handling
 624 * because only the di_next_unlinked from the inodes in the buffer should be
 625 * recovered.  The rest of the data in the buffer is logged via the inodes
 626 * themselves.
 627 *
 628 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
 629 * transferred to the buffer's log format structure so that we'll know what to
 630 * do at recovery time.
 631 */
 632void
 633xfs_trans_inode_buf(
 634        xfs_trans_t             *tp,
 635        xfs_buf_t               *bp)
 636{
 637        struct xfs_buf_log_item *bip = bp->b_log_item;
 638
 639        ASSERT(bp->b_transp == tp);
 640        ASSERT(bip != NULL);
 641        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 642
 643        bip->bli_flags |= XFS_BLI_INODE_BUF;
 644        xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
 645}
 646
 647/*
 648 * This call is used to indicate that the buffer is going to
 649 * be staled and was an inode buffer. This means it gets
 650 * special processing during unpin - where any inodes
 651 * associated with the buffer should be removed from ail.
 652 * There is also special processing during recovery,
 653 * any replay of the inodes in the buffer needs to be
 654 * prevented as the buffer may have been reused.
 655 */
 656void
 657xfs_trans_stale_inode_buf(
 658        xfs_trans_t             *tp,
 659        xfs_buf_t               *bp)
 660{
 661        struct xfs_buf_log_item *bip = bp->b_log_item;
 662
 663        ASSERT(bp->b_transp == tp);
 664        ASSERT(bip != NULL);
 665        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 666
 667        bip->bli_flags |= XFS_BLI_STALE_INODE;
 668        bip->bli_item.li_cb = xfs_buf_iodone;
 669        xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
 670}
 671
 672/*
 673 * Mark the buffer as being one which contains newly allocated
 674 * inodes.  We need to make sure that even if this buffer is
 675 * relogged as an 'inode buf' we still recover all of the inode
 676 * images in the face of a crash.  This works in coordination with
 677 * xfs_buf_item_committed() to ensure that the buffer remains in the
 678 * AIL at its original location even after it has been relogged.
 679 */
 680/* ARGSUSED */
 681void
 682xfs_trans_inode_alloc_buf(
 683        xfs_trans_t             *tp,
 684        xfs_buf_t               *bp)
 685{
 686        struct xfs_buf_log_item *bip = bp->b_log_item;
 687
 688        ASSERT(bp->b_transp == tp);
 689        ASSERT(bip != NULL);
 690        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 691
 692        bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
 693        xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
 694}
 695
 696/*
 697 * Mark the buffer as ordered for this transaction. This means that the contents
 698 * of the buffer are not recorded in the transaction but it is tracked in the
 699 * AIL as though it was. This allows us to record logical changes in
 700 * transactions rather than the physical changes we make to the buffer without
 701 * changing writeback ordering constraints of metadata buffers.
 702 */
 703bool
 704xfs_trans_ordered_buf(
 705        struct xfs_trans        *tp,
 706        struct xfs_buf          *bp)
 707{
 708        struct xfs_buf_log_item *bip = bp->b_log_item;
 709
 710        ASSERT(bp->b_transp == tp);
 711        ASSERT(bip != NULL);
 712        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 713
 714        if (xfs_buf_item_dirty_format(bip))
 715                return false;
 716
 717        bip->bli_flags |= XFS_BLI_ORDERED;
 718        trace_xfs_buf_item_ordered(bip);
 719
 720        /*
 721         * We don't log a dirty range of an ordered buffer but it still needs
 722         * to be marked dirty and that it has been logged.
 723         */
 724        xfs_trans_dirty_buf(tp, bp);
 725        return true;
 726}
 727
 728/*
 729 * Set the type of the buffer for log recovery so that it can correctly identify
 730 * and hence attach the correct buffer ops to the buffer after replay.
 731 */
 732void
 733xfs_trans_buf_set_type(
 734        struct xfs_trans        *tp,
 735        struct xfs_buf          *bp,
 736        enum xfs_blft           type)
 737{
 738        struct xfs_buf_log_item *bip = bp->b_log_item;
 739
 740        if (!tp)
 741                return;
 742
 743        ASSERT(bp->b_transp == tp);
 744        ASSERT(bip != NULL);
 745        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 746
 747        xfs_blft_to_flags(&bip->__bli_format, type);
 748}
 749
 750void
 751xfs_trans_buf_copy_type(
 752        struct xfs_buf          *dst_bp,
 753        struct xfs_buf          *src_bp)
 754{
 755        struct xfs_buf_log_item *sbip = src_bp->b_log_item;
 756        struct xfs_buf_log_item *dbip = dst_bp->b_log_item;
 757        enum xfs_blft           type;
 758
 759        type = xfs_blft_from_flags(&sbip->__bli_format);
 760        xfs_blft_to_flags(&dbip->__bli_format, type);
 761}
 762
 763/*
 764 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
 765 * dquots. However, unlike in inode buffer recovery, dquot buffers get
 766 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
 767 * The only thing that makes dquot buffers different from regular
 768 * buffers is that we must not replay dquot bufs when recovering
 769 * if a _corresponding_ quotaoff has happened. We also have to distinguish
 770 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
 771 * can be turned off independently.
 772 */
 773/* ARGSUSED */
 774void
 775xfs_trans_dquot_buf(
 776        xfs_trans_t             *tp,
 777        xfs_buf_t               *bp,
 778        uint                    type)
 779{
 780        struct xfs_buf_log_item *bip = bp->b_log_item;
 781
 782        ASSERT(type == XFS_BLF_UDQUOT_BUF ||
 783               type == XFS_BLF_PDQUOT_BUF ||
 784               type == XFS_BLF_GDQUOT_BUF);
 785
 786        bip->__bli_format.blf_flags |= type;
 787
 788        switch (type) {
 789        case XFS_BLF_UDQUOT_BUF:
 790                type = XFS_BLFT_UDQUOT_BUF;
 791                break;
 792        case XFS_BLF_PDQUOT_BUF:
 793                type = XFS_BLFT_PDQUOT_BUF;
 794                break;
 795        case XFS_BLF_GDQUOT_BUF:
 796                type = XFS_BLFT_GDQUOT_BUF;
 797                break;
 798        default:
 799                type = XFS_BLFT_UNKNOWN_BUF;
 800                break;
 801        }
 802
 803        xfs_trans_buf_set_type(tp, bp, type);
 804}
 805