linux/include/asm-generic/div64.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _ASM_GENERIC_DIV64_H
   3#define _ASM_GENERIC_DIV64_H
   4/*
   5 * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
   6 * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h
   7 *
   8 * Optimization for constant divisors on 32-bit machines:
   9 * Copyright (C) 2006-2015 Nicolas Pitre
  10 *
  11 * The semantics of do_div() are:
  12 *
  13 * uint32_t do_div(uint64_t *n, uint32_t base)
  14 * {
  15 *      uint32_t remainder = *n % base;
  16 *      *n = *n / base;
  17 *      return remainder;
  18 * }
  19 *
  20 * NOTE: macro parameter n is evaluated multiple times,
  21 *       beware of side effects!
  22 */
  23
  24#include <linux/types.h>
  25#include <linux/compiler.h>
  26
  27#if BITS_PER_LONG == 64
  28
  29/**
  30 * do_div - returns 2 values: calculate remainder and update new dividend
  31 * @n: pointer to uint64_t dividend (will be updated)
  32 * @base: uint32_t divisor
  33 *
  34 * Summary:
  35 * ``uint32_t remainder = *n % base;``
  36 * ``*n = *n / base;``
  37 *
  38 * Return: (uint32_t)remainder
  39 *
  40 * NOTE: macro parameter @n is evaluated multiple times,
  41 * beware of side effects!
  42 */
  43# define do_div(n,base) ({                                      \
  44        uint32_t __base = (base);                               \
  45        uint32_t __rem;                                         \
  46        __rem = ((uint64_t)(n)) % __base;                       \
  47        (n) = ((uint64_t)(n)) / __base;                         \
  48        __rem;                                                  \
  49 })
  50
  51#elif BITS_PER_LONG == 32
  52
  53#include <linux/log2.h>
  54
  55/*
  56 * If the divisor happens to be constant, we determine the appropriate
  57 * inverse at compile time to turn the division into a few inline
  58 * multiplications which ought to be much faster. And yet only if compiling
  59 * with a sufficiently recent gcc version to perform proper 64-bit constant
  60 * propagation.
  61 *
  62 * (It is unfortunate that gcc doesn't perform all this internally.)
  63 */
  64
  65#ifndef __div64_const32_is_OK
  66#define __div64_const32_is_OK (__GNUC__ >= 4)
  67#endif
  68
  69#define __div64_const32(n, ___b)                                        \
  70({                                                                      \
  71        /*                                                              \
  72         * Multiplication by reciprocal of b: n / b = n * (p / b) / p   \
  73         *                                                              \
  74         * We rely on the fact that most of this code gets optimized    \
  75         * away at compile time due to constant propagation and only    \
  76         * a few multiplication instructions should remain.             \
  77         * Hence this monstrous macro (static inline doesn't always     \
  78         * do the trick here).                                          \
  79         */                                                             \
  80        uint64_t ___res, ___x, ___t, ___m, ___n = (n);                  \
  81        uint32_t ___p, ___bias;                                         \
  82                                                                        \
  83        /* determine MSB of b */                                        \
  84        ___p = 1 << ilog2(___b);                                        \
  85                                                                        \
  86        /* compute m = ((p << 64) + b - 1) / b */                       \
  87        ___m = (~0ULL / ___b) * ___p;                                   \
  88        ___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b;        \
  89                                                                        \
  90        /* one less than the dividend with highest result */            \
  91        ___x = ~0ULL / ___b * ___b - 1;                                 \
  92                                                                        \
  93        /* test our ___m with res = m * x / (p << 64) */                \
  94        ___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32;     \
  95        ___t = ___res += (___m & 0xffffffff) * (___x >> 32);            \
  96        ___res += (___x & 0xffffffff) * (___m >> 32);                   \
  97        ___t = (___res < ___t) ? (1ULL << 32) : 0;                      \
  98        ___res = (___res >> 32) + ___t;                                 \
  99        ___res += (___m >> 32) * (___x >> 32);                          \
 100        ___res /= ___p;                                                 \
 101                                                                        \
 102        /* Now sanitize and optimize what we've got. */                 \
 103        if (~0ULL % (___b / (___b & -___b)) == 0) {                     \
 104                /* special case, can be simplified to ... */            \
 105                ___n /= (___b & -___b);                                 \
 106                ___m = ~0ULL / (___b / (___b & -___b));                 \
 107                ___p = 1;                                               \
 108                ___bias = 1;                                            \
 109        } else if (___res != ___x / ___b) {                             \
 110                /*                                                      \
 111                 * We can't get away without a bias to compensate       \
 112                 * for bit truncation errors.  To avoid it we'd need an \
 113                 * additional bit to represent m which would overflow   \
 114                 * a 64-bit variable.                                   \
 115                 *                                                      \
 116                 * Instead we do m = p / b and n / b = (n * m + m) / p. \
 117                 */                                                     \
 118                ___bias = 1;                                            \
 119                /* Compute m = (p << 64) / b */                         \
 120                ___m = (~0ULL / ___b) * ___p;                           \
 121                ___m += ((~0ULL % ___b + 1) * ___p) / ___b;             \
 122        } else {                                                        \
 123                /*                                                      \
 124                 * Reduce m / p, and try to clear bit 31 of m when      \
 125                 * possible, otherwise that'll need extra overflow      \
 126                 * handling later.                                      \
 127                 */                                                     \
 128                uint32_t ___bits = -(___m & -___m);                     \
 129                ___bits |= ___m >> 32;                                  \
 130                ___bits = (~___bits) << 1;                              \
 131                /*                                                      \
 132                 * If ___bits == 0 then setting bit 31 is  unavoidable. \
 133                 * Simply apply the maximum possible reduction in that  \
 134                 * case. Otherwise the MSB of ___bits indicates the     \
 135                 * best reduction we should apply.                      \
 136                 */                                                     \
 137                if (!___bits) {                                         \
 138                        ___p /= (___m & -___m);                         \
 139                        ___m /= (___m & -___m);                         \
 140                } else {                                                \
 141                        ___p >>= ilog2(___bits);                        \
 142                        ___m >>= ilog2(___bits);                        \
 143                }                                                       \
 144                /* No bias needed. */                                   \
 145                ___bias = 0;                                            \
 146        }                                                               \
 147                                                                        \
 148        /*                                                              \
 149         * Now we have a combination of 2 conditions:                   \
 150         *                                                              \
 151         * 1) whether or not we need to apply a bias, and               \
 152         *                                                              \
 153         * 2) whether or not there might be an overflow in the cross    \
 154         *    product determined by (___m & ((1 << 63) | (1 << 31))).   \
 155         *                                                              \
 156         * Select the best way to do (m_bias + m * n) / (1 << 64).      \
 157         * From now on there will be actual runtime code generated.     \
 158         */                                                             \
 159        ___res = __arch_xprod_64(___m, ___n, ___bias);                  \
 160                                                                        \
 161        ___res /= ___p;                                                 \
 162})
 163
 164#ifndef __arch_xprod_64
 165/*
 166 * Default C implementation for __arch_xprod_64()
 167 *
 168 * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
 169 * Semantic:  retval = ((bias ? m : 0) + m * n) >> 64
 170 *
 171 * The product is a 128-bit value, scaled down to 64 bits.
 172 * Assuming constant propagation to optimize away unused conditional code.
 173 * Architectures may provide their own optimized assembly implementation.
 174 */
 175static inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
 176{
 177        uint32_t m_lo = m;
 178        uint32_t m_hi = m >> 32;
 179        uint32_t n_lo = n;
 180        uint32_t n_hi = n >> 32;
 181        uint64_t res, tmp;
 182
 183        if (!bias) {
 184                res = ((uint64_t)m_lo * n_lo) >> 32;
 185        } else if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
 186                /* there can't be any overflow here */
 187                res = (m + (uint64_t)m_lo * n_lo) >> 32;
 188        } else {
 189                res = m + (uint64_t)m_lo * n_lo;
 190                tmp = (res < m) ? (1ULL << 32) : 0;
 191                res = (res >> 32) + tmp;
 192        }
 193
 194        if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
 195                /* there can't be any overflow here */
 196                res += (uint64_t)m_lo * n_hi;
 197                res += (uint64_t)m_hi * n_lo;
 198                res >>= 32;
 199        } else {
 200                tmp = res += (uint64_t)m_lo * n_hi;
 201                res += (uint64_t)m_hi * n_lo;
 202                tmp = (res < tmp) ? (1ULL << 32) : 0;
 203                res = (res >> 32) + tmp;
 204        }
 205
 206        res += (uint64_t)m_hi * n_hi;
 207
 208        return res;
 209}
 210#endif
 211
 212#ifndef __div64_32
 213extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
 214#endif
 215
 216/* The unnecessary pointer compare is there
 217 * to check for type safety (n must be 64bit)
 218 */
 219# define do_div(n,base) ({                              \
 220        uint32_t __base = (base);                       \
 221        uint32_t __rem;                                 \
 222        (void)(((typeof((n)) *)0) == ((uint64_t *)0));  \
 223        if (__builtin_constant_p(__base) &&             \
 224            is_power_of_2(__base)) {                    \
 225                __rem = (n) & (__base - 1);             \
 226                (n) >>= ilog2(__base);                  \
 227        } else if (__div64_const32_is_OK &&             \
 228                   __builtin_constant_p(__base) &&      \
 229                   __base != 0) {                       \
 230                uint32_t __res_lo, __n_lo = (n);        \
 231                (n) = __div64_const32(n, __base);       \
 232                /* the remainder can be computed with 32-bit regs */ \
 233                __res_lo = (n);                         \
 234                __rem = __n_lo - __res_lo * __base;     \
 235        } else if (likely(((n) >> 32) == 0)) {          \
 236                __rem = (uint32_t)(n) % __base;         \
 237                (n) = (uint32_t)(n) / __base;           \
 238        } else                                          \
 239                __rem = __div64_32(&(n), __base);       \
 240        __rem;                                          \
 241 })
 242
 243#else /* BITS_PER_LONG == ?? */
 244
 245# error do_div() does not yet support the C64
 246
 247#endif /* BITS_PER_LONG */
 248
 249#endif /* _ASM_GENERIC_DIV64_H */
 250