linux/include/crypto/hash.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * Hash: Hash algorithms under the crypto API
   4 * 
   5 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
   6 */
   7
   8#ifndef _CRYPTO_HASH_H
   9#define _CRYPTO_HASH_H
  10
  11#include <linux/crypto.h>
  12#include <linux/string.h>
  13
  14struct crypto_ahash;
  15
  16/**
  17 * DOC: Message Digest Algorithm Definitions
  18 *
  19 * These data structures define modular message digest algorithm
  20 * implementations, managed via crypto_register_ahash(),
  21 * crypto_register_shash(), crypto_unregister_ahash() and
  22 * crypto_unregister_shash().
  23 */
  24
  25/**
  26 * struct hash_alg_common - define properties of message digest
  27 * @digestsize: Size of the result of the transformation. A buffer of this size
  28 *              must be available to the @final and @finup calls, so they can
  29 *              store the resulting hash into it. For various predefined sizes,
  30 *              search include/crypto/ using
  31 *              git grep _DIGEST_SIZE include/crypto.
  32 * @statesize: Size of the block for partial state of the transformation. A
  33 *             buffer of this size must be passed to the @export function as it
  34 *             will save the partial state of the transformation into it. On the
  35 *             other side, the @import function will load the state from a
  36 *             buffer of this size as well.
  37 * @base: Start of data structure of cipher algorithm. The common data
  38 *        structure of crypto_alg contains information common to all ciphers.
  39 *        The hash_alg_common data structure now adds the hash-specific
  40 *        information.
  41 */
  42struct hash_alg_common {
  43        unsigned int digestsize;
  44        unsigned int statesize;
  45
  46        struct crypto_alg base;
  47};
  48
  49struct ahash_request {
  50        struct crypto_async_request base;
  51
  52        unsigned int nbytes;
  53        struct scatterlist *src;
  54        u8 *result;
  55
  56        /* This field may only be used by the ahash API code. */
  57        void *priv;
  58
  59        void *__ctx[] CRYPTO_MINALIGN_ATTR;
  60};
  61
  62#define AHASH_REQUEST_ON_STACK(name, ahash) \
  63        char __##name##_desc[sizeof(struct ahash_request) + \
  64                crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
  65        struct ahash_request *name = (void *)__##name##_desc
  66
  67/**
  68 * struct ahash_alg - asynchronous message digest definition
  69 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
  70 *        state of the HASH transformation at the beginning. This shall fill in
  71 *        the internal structures used during the entire duration of the whole
  72 *        transformation. No data processing happens at this point. Driver code
  73 *        implementation must not use req->result.
  74 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
  75 *         function actually pushes blocks of data from upper layers into the
  76 *         driver, which then passes those to the hardware as seen fit. This
  77 *         function must not finalize the HASH transformation by calculating the
  78 *         final message digest as this only adds more data into the
  79 *         transformation. This function shall not modify the transformation
  80 *         context, as this function may be called in parallel with the same
  81 *         transformation object. Data processing can happen synchronously
  82 *         [SHASH] or asynchronously [AHASH] at this point. Driver must not use
  83 *         req->result.
  84 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
  85 *         transformation and retrieves the resulting hash from the driver and
  86 *         pushes it back to upper layers. No data processing happens at this
  87 *         point unless hardware requires it to finish the transformation
  88 *         (then the data buffered by the device driver is processed).
  89 * @finup: **[optional]** Combination of @update and @final. This function is effectively a
  90 *         combination of @update and @final calls issued in sequence. As some
  91 *         hardware cannot do @update and @final separately, this callback was
  92 *         added to allow such hardware to be used at least by IPsec. Data
  93 *         processing can happen synchronously [SHASH] or asynchronously [AHASH]
  94 *         at this point.
  95 * @digest: Combination of @init and @update and @final. This function
  96 *          effectively behaves as the entire chain of operations, @init,
  97 *          @update and @final issued in sequence. Just like @finup, this was
  98 *          added for hardware which cannot do even the @finup, but can only do
  99 *          the whole transformation in one run. Data processing can happen
 100 *          synchronously [SHASH] or asynchronously [AHASH] at this point.
 101 * @setkey: Set optional key used by the hashing algorithm. Intended to push
 102 *          optional key used by the hashing algorithm from upper layers into
 103 *          the driver. This function can store the key in the transformation
 104 *          context or can outright program it into the hardware. In the former
 105 *          case, one must be careful to program the key into the hardware at
 106 *          appropriate time and one must be careful that .setkey() can be
 107 *          called multiple times during the existence of the transformation
 108 *          object. Not  all hashing algorithms do implement this function as it
 109 *          is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
 110 *          implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
 111 *          this function. This function must be called before any other of the
 112 *          @init, @update, @final, @finup, @digest is called. No data
 113 *          processing happens at this point.
 114 * @export: Export partial state of the transformation. This function dumps the
 115 *          entire state of the ongoing transformation into a provided block of
 116 *          data so it can be @import 'ed back later on. This is useful in case
 117 *          you want to save partial result of the transformation after
 118 *          processing certain amount of data and reload this partial result
 119 *          multiple times later on for multiple re-use. No data processing
 120 *          happens at this point. Driver must not use req->result.
 121 * @import: Import partial state of the transformation. This function loads the
 122 *          entire state of the ongoing transformation from a provided block of
 123 *          data so the transformation can continue from this point onward. No
 124 *          data processing happens at this point. Driver must not use
 125 *          req->result.
 126 * @halg: see struct hash_alg_common
 127 */
 128struct ahash_alg {
 129        int (*init)(struct ahash_request *req);
 130        int (*update)(struct ahash_request *req);
 131        int (*final)(struct ahash_request *req);
 132        int (*finup)(struct ahash_request *req);
 133        int (*digest)(struct ahash_request *req);
 134        int (*export)(struct ahash_request *req, void *out);
 135        int (*import)(struct ahash_request *req, const void *in);
 136        int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
 137                      unsigned int keylen);
 138
 139        struct hash_alg_common halg;
 140};
 141
 142struct shash_desc {
 143        struct crypto_shash *tfm;
 144        void *__ctx[] CRYPTO_MINALIGN_ATTR;
 145};
 146
 147#define HASH_MAX_DIGESTSIZE      64
 148
 149/*
 150 * Worst case is hmac(sha3-224-generic).  Its context is a nested 'shash_desc'
 151 * containing a 'struct sha3_state'.
 152 */
 153#define HASH_MAX_DESCSIZE       (sizeof(struct shash_desc) + 360)
 154
 155#define HASH_MAX_STATESIZE      512
 156
 157#define SHASH_DESC_ON_STACK(shash, ctx)                           \
 158        char __##shash##_desc[sizeof(struct shash_desc) +         \
 159                HASH_MAX_DESCSIZE] CRYPTO_MINALIGN_ATTR; \
 160        struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
 161
 162/**
 163 * struct shash_alg - synchronous message digest definition
 164 * @init: see struct ahash_alg
 165 * @update: see struct ahash_alg
 166 * @final: see struct ahash_alg
 167 * @finup: see struct ahash_alg
 168 * @digest: see struct ahash_alg
 169 * @export: see struct ahash_alg
 170 * @import: see struct ahash_alg
 171 * @setkey: see struct ahash_alg
 172 * @digestsize: see struct ahash_alg
 173 * @statesize: see struct ahash_alg
 174 * @descsize: Size of the operational state for the message digest. This state
 175 *            size is the memory size that needs to be allocated for
 176 *            shash_desc.__ctx
 177 * @base: internally used
 178 */
 179struct shash_alg {
 180        int (*init)(struct shash_desc *desc);
 181        int (*update)(struct shash_desc *desc, const u8 *data,
 182                      unsigned int len);
 183        int (*final)(struct shash_desc *desc, u8 *out);
 184        int (*finup)(struct shash_desc *desc, const u8 *data,
 185                     unsigned int len, u8 *out);
 186        int (*digest)(struct shash_desc *desc, const u8 *data,
 187                      unsigned int len, u8 *out);
 188        int (*export)(struct shash_desc *desc, void *out);
 189        int (*import)(struct shash_desc *desc, const void *in);
 190        int (*setkey)(struct crypto_shash *tfm, const u8 *key,
 191                      unsigned int keylen);
 192
 193        unsigned int descsize;
 194
 195        /* These fields must match hash_alg_common. */
 196        unsigned int digestsize
 197                __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
 198        unsigned int statesize;
 199
 200        struct crypto_alg base;
 201};
 202
 203struct crypto_ahash {
 204        int (*init)(struct ahash_request *req);
 205        int (*update)(struct ahash_request *req);
 206        int (*final)(struct ahash_request *req);
 207        int (*finup)(struct ahash_request *req);
 208        int (*digest)(struct ahash_request *req);
 209        int (*export)(struct ahash_request *req, void *out);
 210        int (*import)(struct ahash_request *req, const void *in);
 211        int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
 212                      unsigned int keylen);
 213
 214        unsigned int reqsize;
 215        struct crypto_tfm base;
 216};
 217
 218struct crypto_shash {
 219        unsigned int descsize;
 220        struct crypto_tfm base;
 221};
 222
 223/**
 224 * DOC: Asynchronous Message Digest API
 225 *
 226 * The asynchronous message digest API is used with the ciphers of type
 227 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
 228 *
 229 * The asynchronous cipher operation discussion provided for the
 230 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
 231 */
 232
 233static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
 234{
 235        return container_of(tfm, struct crypto_ahash, base);
 236}
 237
 238/**
 239 * crypto_alloc_ahash() - allocate ahash cipher handle
 240 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 241 *            ahash cipher
 242 * @type: specifies the type of the cipher
 243 * @mask: specifies the mask for the cipher
 244 *
 245 * Allocate a cipher handle for an ahash. The returned struct
 246 * crypto_ahash is the cipher handle that is required for any subsequent
 247 * API invocation for that ahash.
 248 *
 249 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
 250 *         of an error, PTR_ERR() returns the error code.
 251 */
 252struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
 253                                        u32 mask);
 254
 255static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
 256{
 257        return &tfm->base;
 258}
 259
 260/**
 261 * crypto_free_ahash() - zeroize and free the ahash handle
 262 * @tfm: cipher handle to be freed
 263 */
 264static inline void crypto_free_ahash(struct crypto_ahash *tfm)
 265{
 266        crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
 267}
 268
 269/**
 270 * crypto_has_ahash() - Search for the availability of an ahash.
 271 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 272 *            ahash
 273 * @type: specifies the type of the ahash
 274 * @mask: specifies the mask for the ahash
 275 *
 276 * Return: true when the ahash is known to the kernel crypto API; false
 277 *         otherwise
 278 */
 279int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
 280
 281static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
 282{
 283        return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
 284}
 285
 286static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
 287{
 288        return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
 289}
 290
 291static inline unsigned int crypto_ahash_alignmask(
 292        struct crypto_ahash *tfm)
 293{
 294        return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
 295}
 296
 297/**
 298 * crypto_ahash_blocksize() - obtain block size for cipher
 299 * @tfm: cipher handle
 300 *
 301 * The block size for the message digest cipher referenced with the cipher
 302 * handle is returned.
 303 *
 304 * Return: block size of cipher
 305 */
 306static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
 307{
 308        return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
 309}
 310
 311static inline struct hash_alg_common *__crypto_hash_alg_common(
 312        struct crypto_alg *alg)
 313{
 314        return container_of(alg, struct hash_alg_common, base);
 315}
 316
 317static inline struct hash_alg_common *crypto_hash_alg_common(
 318        struct crypto_ahash *tfm)
 319{
 320        return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
 321}
 322
 323/**
 324 * crypto_ahash_digestsize() - obtain message digest size
 325 * @tfm: cipher handle
 326 *
 327 * The size for the message digest created by the message digest cipher
 328 * referenced with the cipher handle is returned.
 329 *
 330 *
 331 * Return: message digest size of cipher
 332 */
 333static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
 334{
 335        return crypto_hash_alg_common(tfm)->digestsize;
 336}
 337
 338/**
 339 * crypto_ahash_statesize() - obtain size of the ahash state
 340 * @tfm: cipher handle
 341 *
 342 * Return the size of the ahash state. With the crypto_ahash_export()
 343 * function, the caller can export the state into a buffer whose size is
 344 * defined with this function.
 345 *
 346 * Return: size of the ahash state
 347 */
 348static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
 349{
 350        return crypto_hash_alg_common(tfm)->statesize;
 351}
 352
 353static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
 354{
 355        return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
 356}
 357
 358static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
 359{
 360        crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
 361}
 362
 363static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
 364{
 365        crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
 366}
 367
 368/**
 369 * crypto_ahash_reqtfm() - obtain cipher handle from request
 370 * @req: asynchronous request handle that contains the reference to the ahash
 371 *       cipher handle
 372 *
 373 * Return the ahash cipher handle that is registered with the asynchronous
 374 * request handle ahash_request.
 375 *
 376 * Return: ahash cipher handle
 377 */
 378static inline struct crypto_ahash *crypto_ahash_reqtfm(
 379        struct ahash_request *req)
 380{
 381        return __crypto_ahash_cast(req->base.tfm);
 382}
 383
 384/**
 385 * crypto_ahash_reqsize() - obtain size of the request data structure
 386 * @tfm: cipher handle
 387 *
 388 * Return: size of the request data
 389 */
 390static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
 391{
 392        return tfm->reqsize;
 393}
 394
 395static inline void *ahash_request_ctx(struct ahash_request *req)
 396{
 397        return req->__ctx;
 398}
 399
 400/**
 401 * crypto_ahash_setkey - set key for cipher handle
 402 * @tfm: cipher handle
 403 * @key: buffer holding the key
 404 * @keylen: length of the key in bytes
 405 *
 406 * The caller provided key is set for the ahash cipher. The cipher
 407 * handle must point to a keyed hash in order for this function to succeed.
 408 *
 409 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 410 */
 411int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
 412                        unsigned int keylen);
 413
 414/**
 415 * crypto_ahash_finup() - update and finalize message digest
 416 * @req: reference to the ahash_request handle that holds all information
 417 *       needed to perform the cipher operation
 418 *
 419 * This function is a "short-hand" for the function calls of
 420 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
 421 * meaning as discussed for those separate functions.
 422 *
 423 * Return: see crypto_ahash_final()
 424 */
 425int crypto_ahash_finup(struct ahash_request *req);
 426
 427/**
 428 * crypto_ahash_final() - calculate message digest
 429 * @req: reference to the ahash_request handle that holds all information
 430 *       needed to perform the cipher operation
 431 *
 432 * Finalize the message digest operation and create the message digest
 433 * based on all data added to the cipher handle. The message digest is placed
 434 * into the output buffer registered with the ahash_request handle.
 435 *
 436 * Return:
 437 * 0            if the message digest was successfully calculated;
 438 * -EINPROGRESS if data is feeded into hardware (DMA) or queued for later;
 439 * -EBUSY       if queue is full and request should be resubmitted later;
 440 * other < 0    if an error occurred
 441 */
 442int crypto_ahash_final(struct ahash_request *req);
 443
 444/**
 445 * crypto_ahash_digest() - calculate message digest for a buffer
 446 * @req: reference to the ahash_request handle that holds all information
 447 *       needed to perform the cipher operation
 448 *
 449 * This function is a "short-hand" for the function calls of crypto_ahash_init,
 450 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
 451 * meaning as discussed for those separate three functions.
 452 *
 453 * Return: see crypto_ahash_final()
 454 */
 455int crypto_ahash_digest(struct ahash_request *req);
 456
 457/**
 458 * crypto_ahash_export() - extract current message digest state
 459 * @req: reference to the ahash_request handle whose state is exported
 460 * @out: output buffer of sufficient size that can hold the hash state
 461 *
 462 * This function exports the hash state of the ahash_request handle into the
 463 * caller-allocated output buffer out which must have sufficient size (e.g. by
 464 * calling crypto_ahash_statesize()).
 465 *
 466 * Return: 0 if the export was successful; < 0 if an error occurred
 467 */
 468static inline int crypto_ahash_export(struct ahash_request *req, void *out)
 469{
 470        return crypto_ahash_reqtfm(req)->export(req, out);
 471}
 472
 473/**
 474 * crypto_ahash_import() - import message digest state
 475 * @req: reference to ahash_request handle the state is imported into
 476 * @in: buffer holding the state
 477 *
 478 * This function imports the hash state into the ahash_request handle from the
 479 * input buffer. That buffer should have been generated with the
 480 * crypto_ahash_export function.
 481 *
 482 * Return: 0 if the import was successful; < 0 if an error occurred
 483 */
 484static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
 485{
 486        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 487
 488        if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
 489                return -ENOKEY;
 490
 491        return tfm->import(req, in);
 492}
 493
 494/**
 495 * crypto_ahash_init() - (re)initialize message digest handle
 496 * @req: ahash_request handle that already is initialized with all necessary
 497 *       data using the ahash_request_* API functions
 498 *
 499 * The call (re-)initializes the message digest referenced by the ahash_request
 500 * handle. Any potentially existing state created by previous operations is
 501 * discarded.
 502 *
 503 * Return: see crypto_ahash_final()
 504 */
 505static inline int crypto_ahash_init(struct ahash_request *req)
 506{
 507        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 508
 509        if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
 510                return -ENOKEY;
 511
 512        return tfm->init(req);
 513}
 514
 515/**
 516 * crypto_ahash_update() - add data to message digest for processing
 517 * @req: ahash_request handle that was previously initialized with the
 518 *       crypto_ahash_init call.
 519 *
 520 * Updates the message digest state of the &ahash_request handle. The input data
 521 * is pointed to by the scatter/gather list registered in the &ahash_request
 522 * handle
 523 *
 524 * Return: see crypto_ahash_final()
 525 */
 526static inline int crypto_ahash_update(struct ahash_request *req)
 527{
 528        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 529        struct crypto_alg *alg = tfm->base.__crt_alg;
 530        unsigned int nbytes = req->nbytes;
 531        int ret;
 532
 533        crypto_stats_get(alg);
 534        ret = crypto_ahash_reqtfm(req)->update(req);
 535        crypto_stats_ahash_update(nbytes, ret, alg);
 536        return ret;
 537}
 538
 539/**
 540 * DOC: Asynchronous Hash Request Handle
 541 *
 542 * The &ahash_request data structure contains all pointers to data
 543 * required for the asynchronous cipher operation. This includes the cipher
 544 * handle (which can be used by multiple &ahash_request instances), pointer
 545 * to plaintext and the message digest output buffer, asynchronous callback
 546 * function, etc. It acts as a handle to the ahash_request_* API calls in a
 547 * similar way as ahash handle to the crypto_ahash_* API calls.
 548 */
 549
 550/**
 551 * ahash_request_set_tfm() - update cipher handle reference in request
 552 * @req: request handle to be modified
 553 * @tfm: cipher handle that shall be added to the request handle
 554 *
 555 * Allow the caller to replace the existing ahash handle in the request
 556 * data structure with a different one.
 557 */
 558static inline void ahash_request_set_tfm(struct ahash_request *req,
 559                                         struct crypto_ahash *tfm)
 560{
 561        req->base.tfm = crypto_ahash_tfm(tfm);
 562}
 563
 564/**
 565 * ahash_request_alloc() - allocate request data structure
 566 * @tfm: cipher handle to be registered with the request
 567 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
 568 *
 569 * Allocate the request data structure that must be used with the ahash
 570 * message digest API calls. During
 571 * the allocation, the provided ahash handle
 572 * is registered in the request data structure.
 573 *
 574 * Return: allocated request handle in case of success, or NULL if out of memory
 575 */
 576static inline struct ahash_request *ahash_request_alloc(
 577        struct crypto_ahash *tfm, gfp_t gfp)
 578{
 579        struct ahash_request *req;
 580
 581        req = kmalloc(sizeof(struct ahash_request) +
 582                      crypto_ahash_reqsize(tfm), gfp);
 583
 584        if (likely(req))
 585                ahash_request_set_tfm(req, tfm);
 586
 587        return req;
 588}
 589
 590/**
 591 * ahash_request_free() - zeroize and free the request data structure
 592 * @req: request data structure cipher handle to be freed
 593 */
 594static inline void ahash_request_free(struct ahash_request *req)
 595{
 596        kzfree(req);
 597}
 598
 599static inline void ahash_request_zero(struct ahash_request *req)
 600{
 601        memzero_explicit(req, sizeof(*req) +
 602                              crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
 603}
 604
 605static inline struct ahash_request *ahash_request_cast(
 606        struct crypto_async_request *req)
 607{
 608        return container_of(req, struct ahash_request, base);
 609}
 610
 611/**
 612 * ahash_request_set_callback() - set asynchronous callback function
 613 * @req: request handle
 614 * @flags: specify zero or an ORing of the flags
 615 *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
 616 *         increase the wait queue beyond the initial maximum size;
 617 *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
 618 * @compl: callback function pointer to be registered with the request handle
 619 * @data: The data pointer refers to memory that is not used by the kernel
 620 *        crypto API, but provided to the callback function for it to use. Here,
 621 *        the caller can provide a reference to memory the callback function can
 622 *        operate on. As the callback function is invoked asynchronously to the
 623 *        related functionality, it may need to access data structures of the
 624 *        related functionality which can be referenced using this pointer. The
 625 *        callback function can access the memory via the "data" field in the
 626 *        &crypto_async_request data structure provided to the callback function.
 627 *
 628 * This function allows setting the callback function that is triggered once
 629 * the cipher operation completes.
 630 *
 631 * The callback function is registered with the &ahash_request handle and
 632 * must comply with the following template::
 633 *
 634 *      void callback_function(struct crypto_async_request *req, int error)
 635 */
 636static inline void ahash_request_set_callback(struct ahash_request *req,
 637                                              u32 flags,
 638                                              crypto_completion_t compl,
 639                                              void *data)
 640{
 641        req->base.complete = compl;
 642        req->base.data = data;
 643        req->base.flags = flags;
 644}
 645
 646/**
 647 * ahash_request_set_crypt() - set data buffers
 648 * @req: ahash_request handle to be updated
 649 * @src: source scatter/gather list
 650 * @result: buffer that is filled with the message digest -- the caller must
 651 *          ensure that the buffer has sufficient space by, for example, calling
 652 *          crypto_ahash_digestsize()
 653 * @nbytes: number of bytes to process from the source scatter/gather list
 654 *
 655 * By using this call, the caller references the source scatter/gather list.
 656 * The source scatter/gather list points to the data the message digest is to
 657 * be calculated for.
 658 */
 659static inline void ahash_request_set_crypt(struct ahash_request *req,
 660                                           struct scatterlist *src, u8 *result,
 661                                           unsigned int nbytes)
 662{
 663        req->src = src;
 664        req->nbytes = nbytes;
 665        req->result = result;
 666}
 667
 668/**
 669 * DOC: Synchronous Message Digest API
 670 *
 671 * The synchronous message digest API is used with the ciphers of type
 672 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
 673 *
 674 * The message digest API is able to maintain state information for the
 675 * caller.
 676 *
 677 * The synchronous message digest API can store user-related context in in its
 678 * shash_desc request data structure.
 679 */
 680
 681/**
 682 * crypto_alloc_shash() - allocate message digest handle
 683 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 684 *            message digest cipher
 685 * @type: specifies the type of the cipher
 686 * @mask: specifies the mask for the cipher
 687 *
 688 * Allocate a cipher handle for a message digest. The returned &struct
 689 * crypto_shash is the cipher handle that is required for any subsequent
 690 * API invocation for that message digest.
 691 *
 692 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
 693 *         of an error, PTR_ERR() returns the error code.
 694 */
 695struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
 696                                        u32 mask);
 697
 698static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
 699{
 700        return &tfm->base;
 701}
 702
 703/**
 704 * crypto_free_shash() - zeroize and free the message digest handle
 705 * @tfm: cipher handle to be freed
 706 */
 707static inline void crypto_free_shash(struct crypto_shash *tfm)
 708{
 709        crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
 710}
 711
 712static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
 713{
 714        return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
 715}
 716
 717static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
 718{
 719        return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
 720}
 721
 722static inline unsigned int crypto_shash_alignmask(
 723        struct crypto_shash *tfm)
 724{
 725        return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
 726}
 727
 728/**
 729 * crypto_shash_blocksize() - obtain block size for cipher
 730 * @tfm: cipher handle
 731 *
 732 * The block size for the message digest cipher referenced with the cipher
 733 * handle is returned.
 734 *
 735 * Return: block size of cipher
 736 */
 737static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
 738{
 739        return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
 740}
 741
 742static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
 743{
 744        return container_of(alg, struct shash_alg, base);
 745}
 746
 747static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
 748{
 749        return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
 750}
 751
 752/**
 753 * crypto_shash_digestsize() - obtain message digest size
 754 * @tfm: cipher handle
 755 *
 756 * The size for the message digest created by the message digest cipher
 757 * referenced with the cipher handle is returned.
 758 *
 759 * Return: digest size of cipher
 760 */
 761static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
 762{
 763        return crypto_shash_alg(tfm)->digestsize;
 764}
 765
 766static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
 767{
 768        return crypto_shash_alg(tfm)->statesize;
 769}
 770
 771static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
 772{
 773        return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
 774}
 775
 776static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
 777{
 778        crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
 779}
 780
 781static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
 782{
 783        crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
 784}
 785
 786/**
 787 * crypto_shash_descsize() - obtain the operational state size
 788 * @tfm: cipher handle
 789 *
 790 * The size of the operational state the cipher needs during operation is
 791 * returned for the hash referenced with the cipher handle. This size is
 792 * required to calculate the memory requirements to allow the caller allocating
 793 * sufficient memory for operational state.
 794 *
 795 * The operational state is defined with struct shash_desc where the size of
 796 * that data structure is to be calculated as
 797 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
 798 *
 799 * Return: size of the operational state
 800 */
 801static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
 802{
 803        return tfm->descsize;
 804}
 805
 806static inline void *shash_desc_ctx(struct shash_desc *desc)
 807{
 808        return desc->__ctx;
 809}
 810
 811/**
 812 * crypto_shash_setkey() - set key for message digest
 813 * @tfm: cipher handle
 814 * @key: buffer holding the key
 815 * @keylen: length of the key in bytes
 816 *
 817 * The caller provided key is set for the keyed message digest cipher. The
 818 * cipher handle must point to a keyed message digest cipher in order for this
 819 * function to succeed.
 820 *
 821 * Context: Any context.
 822 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 823 */
 824int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
 825                        unsigned int keylen);
 826
 827/**
 828 * crypto_shash_digest() - calculate message digest for buffer
 829 * @desc: see crypto_shash_final()
 830 * @data: see crypto_shash_update()
 831 * @len: see crypto_shash_update()
 832 * @out: see crypto_shash_final()
 833 *
 834 * This function is a "short-hand" for the function calls of crypto_shash_init,
 835 * crypto_shash_update and crypto_shash_final. The parameters have the same
 836 * meaning as discussed for those separate three functions.
 837 *
 838 * Context: Any context.
 839 * Return: 0 if the message digest creation was successful; < 0 if an error
 840 *         occurred
 841 */
 842int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
 843                        unsigned int len, u8 *out);
 844
 845/**
 846 * crypto_shash_export() - extract operational state for message digest
 847 * @desc: reference to the operational state handle whose state is exported
 848 * @out: output buffer of sufficient size that can hold the hash state
 849 *
 850 * This function exports the hash state of the operational state handle into the
 851 * caller-allocated output buffer out which must have sufficient size (e.g. by
 852 * calling crypto_shash_descsize).
 853 *
 854 * Context: Any context.
 855 * Return: 0 if the export creation was successful; < 0 if an error occurred
 856 */
 857static inline int crypto_shash_export(struct shash_desc *desc, void *out)
 858{
 859        return crypto_shash_alg(desc->tfm)->export(desc, out);
 860}
 861
 862/**
 863 * crypto_shash_import() - import operational state
 864 * @desc: reference to the operational state handle the state imported into
 865 * @in: buffer holding the state
 866 *
 867 * This function imports the hash state into the operational state handle from
 868 * the input buffer. That buffer should have been generated with the
 869 * crypto_ahash_export function.
 870 *
 871 * Context: Any context.
 872 * Return: 0 if the import was successful; < 0 if an error occurred
 873 */
 874static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
 875{
 876        struct crypto_shash *tfm = desc->tfm;
 877
 878        if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
 879                return -ENOKEY;
 880
 881        return crypto_shash_alg(tfm)->import(desc, in);
 882}
 883
 884/**
 885 * crypto_shash_init() - (re)initialize message digest
 886 * @desc: operational state handle that is already filled
 887 *
 888 * The call (re-)initializes the message digest referenced by the
 889 * operational state handle. Any potentially existing state created by
 890 * previous operations is discarded.
 891 *
 892 * Context: Any context.
 893 * Return: 0 if the message digest initialization was successful; < 0 if an
 894 *         error occurred
 895 */
 896static inline int crypto_shash_init(struct shash_desc *desc)
 897{
 898        struct crypto_shash *tfm = desc->tfm;
 899
 900        if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
 901                return -ENOKEY;
 902
 903        return crypto_shash_alg(tfm)->init(desc);
 904}
 905
 906/**
 907 * crypto_shash_update() - add data to message digest for processing
 908 * @desc: operational state handle that is already initialized
 909 * @data: input data to be added to the message digest
 910 * @len: length of the input data
 911 *
 912 * Updates the message digest state of the operational state handle.
 913 *
 914 * Context: Any context.
 915 * Return: 0 if the message digest update was successful; < 0 if an error
 916 *         occurred
 917 */
 918int crypto_shash_update(struct shash_desc *desc, const u8 *data,
 919                        unsigned int len);
 920
 921/**
 922 * crypto_shash_final() - calculate message digest
 923 * @desc: operational state handle that is already filled with data
 924 * @out: output buffer filled with the message digest
 925 *
 926 * Finalize the message digest operation and create the message digest
 927 * based on all data added to the cipher handle. The message digest is placed
 928 * into the output buffer. The caller must ensure that the output buffer is
 929 * large enough by using crypto_shash_digestsize.
 930 *
 931 * Context: Any context.
 932 * Return: 0 if the message digest creation was successful; < 0 if an error
 933 *         occurred
 934 */
 935int crypto_shash_final(struct shash_desc *desc, u8 *out);
 936
 937/**
 938 * crypto_shash_finup() - calculate message digest of buffer
 939 * @desc: see crypto_shash_final()
 940 * @data: see crypto_shash_update()
 941 * @len: see crypto_shash_update()
 942 * @out: see crypto_shash_final()
 943 *
 944 * This function is a "short-hand" for the function calls of
 945 * crypto_shash_update and crypto_shash_final. The parameters have the same
 946 * meaning as discussed for those separate functions.
 947 *
 948 * Context: Any context.
 949 * Return: 0 if the message digest creation was successful; < 0 if an error
 950 *         occurred
 951 */
 952int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
 953                       unsigned int len, u8 *out);
 954
 955static inline void shash_desc_zero(struct shash_desc *desc)
 956{
 957        memzero_explicit(desc,
 958                         sizeof(*desc) + crypto_shash_descsize(desc->tfm));
 959}
 960
 961#endif  /* _CRYPTO_HASH_H */
 962