linux/include/crypto/skcipher.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * Symmetric key ciphers.
   4 * 
   5 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
   6 */
   7
   8#ifndef _CRYPTO_SKCIPHER_H
   9#define _CRYPTO_SKCIPHER_H
  10
  11#include <linux/crypto.h>
  12#include <linux/kernel.h>
  13#include <linux/slab.h>
  14
  15/**
  16 *      struct skcipher_request - Symmetric key cipher request
  17 *      @cryptlen: Number of bytes to encrypt or decrypt
  18 *      @iv: Initialisation Vector
  19 *      @src: Source SG list
  20 *      @dst: Destination SG list
  21 *      @base: Underlying async request request
  22 *      @__ctx: Start of private context data
  23 */
  24struct skcipher_request {
  25        unsigned int cryptlen;
  26
  27        u8 *iv;
  28
  29        struct scatterlist *src;
  30        struct scatterlist *dst;
  31
  32        struct crypto_async_request base;
  33
  34        void *__ctx[] CRYPTO_MINALIGN_ATTR;
  35};
  36
  37struct crypto_skcipher {
  38        int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
  39                      unsigned int keylen);
  40        int (*encrypt)(struct skcipher_request *req);
  41        int (*decrypt)(struct skcipher_request *req);
  42
  43        unsigned int ivsize;
  44        unsigned int reqsize;
  45        unsigned int keysize;
  46
  47        struct crypto_tfm base;
  48};
  49
  50struct crypto_sync_skcipher {
  51        struct crypto_skcipher base;
  52};
  53
  54/**
  55 * struct skcipher_alg - symmetric key cipher definition
  56 * @min_keysize: Minimum key size supported by the transformation. This is the
  57 *               smallest key length supported by this transformation algorithm.
  58 *               This must be set to one of the pre-defined values as this is
  59 *               not hardware specific. Possible values for this field can be
  60 *               found via git grep "_MIN_KEY_SIZE" include/crypto/
  61 * @max_keysize: Maximum key size supported by the transformation. This is the
  62 *               largest key length supported by this transformation algorithm.
  63 *               This must be set to one of the pre-defined values as this is
  64 *               not hardware specific. Possible values for this field can be
  65 *               found via git grep "_MAX_KEY_SIZE" include/crypto/
  66 * @setkey: Set key for the transformation. This function is used to either
  67 *          program a supplied key into the hardware or store the key in the
  68 *          transformation context for programming it later. Note that this
  69 *          function does modify the transformation context. This function can
  70 *          be called multiple times during the existence of the transformation
  71 *          object, so one must make sure the key is properly reprogrammed into
  72 *          the hardware. This function is also responsible for checking the key
  73 *          length for validity. In case a software fallback was put in place in
  74 *          the @cra_init call, this function might need to use the fallback if
  75 *          the algorithm doesn't support all of the key sizes.
  76 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
  77 *           the supplied scatterlist containing the blocks of data. The crypto
  78 *           API consumer is responsible for aligning the entries of the
  79 *           scatterlist properly and making sure the chunks are correctly
  80 *           sized. In case a software fallback was put in place in the
  81 *           @cra_init call, this function might need to use the fallback if
  82 *           the algorithm doesn't support all of the key sizes. In case the
  83 *           key was stored in transformation context, the key might need to be
  84 *           re-programmed into the hardware in this function. This function
  85 *           shall not modify the transformation context, as this function may
  86 *           be called in parallel with the same transformation object.
  87 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
  88 *           and the conditions are exactly the same.
  89 * @init: Initialize the cryptographic transformation object. This function
  90 *        is used to initialize the cryptographic transformation object.
  91 *        This function is called only once at the instantiation time, right
  92 *        after the transformation context was allocated. In case the
  93 *        cryptographic hardware has some special requirements which need to
  94 *        be handled by software, this function shall check for the precise
  95 *        requirement of the transformation and put any software fallbacks
  96 *        in place.
  97 * @exit: Deinitialize the cryptographic transformation object. This is a
  98 *        counterpart to @init, used to remove various changes set in
  99 *        @init.
 100 * @ivsize: IV size applicable for transformation. The consumer must provide an
 101 *          IV of exactly that size to perform the encrypt or decrypt operation.
 102 * @chunksize: Equal to the block size except for stream ciphers such as
 103 *             CTR where it is set to the underlying block size.
 104 * @walksize: Equal to the chunk size except in cases where the algorithm is
 105 *            considerably more efficient if it can operate on multiple chunks
 106 *            in parallel. Should be a multiple of chunksize.
 107 * @base: Definition of a generic crypto algorithm.
 108 *
 109 * All fields except @ivsize are mandatory and must be filled.
 110 */
 111struct skcipher_alg {
 112        int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
 113                      unsigned int keylen);
 114        int (*encrypt)(struct skcipher_request *req);
 115        int (*decrypt)(struct skcipher_request *req);
 116        int (*init)(struct crypto_skcipher *tfm);
 117        void (*exit)(struct crypto_skcipher *tfm);
 118
 119        unsigned int min_keysize;
 120        unsigned int max_keysize;
 121        unsigned int ivsize;
 122        unsigned int chunksize;
 123        unsigned int walksize;
 124
 125        struct crypto_alg base;
 126};
 127
 128#define MAX_SYNC_SKCIPHER_REQSIZE      384
 129/*
 130 * This performs a type-check against the "tfm" argument to make sure
 131 * all users have the correct skcipher tfm for doing on-stack requests.
 132 */
 133#define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \
 134        char __##name##_desc[sizeof(struct skcipher_request) + \
 135                             MAX_SYNC_SKCIPHER_REQSIZE + \
 136                             (!(sizeof((struct crypto_sync_skcipher *)1 == \
 137                                       (typeof(tfm))1))) \
 138                            ] CRYPTO_MINALIGN_ATTR; \
 139        struct skcipher_request *name = (void *)__##name##_desc
 140
 141/**
 142 * DOC: Symmetric Key Cipher API
 143 *
 144 * Symmetric key cipher API is used with the ciphers of type
 145 * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
 146 *
 147 * Asynchronous cipher operations imply that the function invocation for a
 148 * cipher request returns immediately before the completion of the operation.
 149 * The cipher request is scheduled as a separate kernel thread and therefore
 150 * load-balanced on the different CPUs via the process scheduler. To allow
 151 * the kernel crypto API to inform the caller about the completion of a cipher
 152 * request, the caller must provide a callback function. That function is
 153 * invoked with the cipher handle when the request completes.
 154 *
 155 * To support the asynchronous operation, additional information than just the
 156 * cipher handle must be supplied to the kernel crypto API. That additional
 157 * information is given by filling in the skcipher_request data structure.
 158 *
 159 * For the symmetric key cipher API, the state is maintained with the tfm
 160 * cipher handle. A single tfm can be used across multiple calls and in
 161 * parallel. For asynchronous block cipher calls, context data supplied and
 162 * only used by the caller can be referenced the request data structure in
 163 * addition to the IV used for the cipher request. The maintenance of such
 164 * state information would be important for a crypto driver implementer to
 165 * have, because when calling the callback function upon completion of the
 166 * cipher operation, that callback function may need some information about
 167 * which operation just finished if it invoked multiple in parallel. This
 168 * state information is unused by the kernel crypto API.
 169 */
 170
 171static inline struct crypto_skcipher *__crypto_skcipher_cast(
 172        struct crypto_tfm *tfm)
 173{
 174        return container_of(tfm, struct crypto_skcipher, base);
 175}
 176
 177/**
 178 * crypto_alloc_skcipher() - allocate symmetric key cipher handle
 179 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 180 *            skcipher cipher
 181 * @type: specifies the type of the cipher
 182 * @mask: specifies the mask for the cipher
 183 *
 184 * Allocate a cipher handle for an skcipher. The returned struct
 185 * crypto_skcipher is the cipher handle that is required for any subsequent
 186 * API invocation for that skcipher.
 187 *
 188 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
 189 *         of an error, PTR_ERR() returns the error code.
 190 */
 191struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
 192                                              u32 type, u32 mask);
 193
 194struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name,
 195                                              u32 type, u32 mask);
 196
 197static inline struct crypto_tfm *crypto_skcipher_tfm(
 198        struct crypto_skcipher *tfm)
 199{
 200        return &tfm->base;
 201}
 202
 203/**
 204 * crypto_free_skcipher() - zeroize and free cipher handle
 205 * @tfm: cipher handle to be freed
 206 */
 207static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
 208{
 209        crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
 210}
 211
 212static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm)
 213{
 214        crypto_free_skcipher(&tfm->base);
 215}
 216
 217/**
 218 * crypto_has_skcipher() - Search for the availability of an skcipher.
 219 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 220 *            skcipher
 221 * @type: specifies the type of the cipher
 222 * @mask: specifies the mask for the cipher
 223 *
 224 * Return: true when the skcipher is known to the kernel crypto API; false
 225 *         otherwise
 226 */
 227static inline int crypto_has_skcipher(const char *alg_name, u32 type,
 228                                        u32 mask)
 229{
 230        return crypto_has_alg(alg_name, crypto_skcipher_type(type),
 231                              crypto_skcipher_mask(mask));
 232}
 233
 234/**
 235 * crypto_has_skcipher2() - Search for the availability of an skcipher.
 236 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 237 *            skcipher
 238 * @type: specifies the type of the skcipher
 239 * @mask: specifies the mask for the skcipher
 240 *
 241 * Return: true when the skcipher is known to the kernel crypto API; false
 242 *         otherwise
 243 */
 244int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask);
 245
 246static inline const char *crypto_skcipher_driver_name(
 247        struct crypto_skcipher *tfm)
 248{
 249        return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
 250}
 251
 252static inline struct skcipher_alg *crypto_skcipher_alg(
 253        struct crypto_skcipher *tfm)
 254{
 255        return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
 256                            struct skcipher_alg, base);
 257}
 258
 259static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
 260{
 261        if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
 262            CRYPTO_ALG_TYPE_BLKCIPHER)
 263                return alg->base.cra_blkcipher.ivsize;
 264
 265        if (alg->base.cra_ablkcipher.encrypt)
 266                return alg->base.cra_ablkcipher.ivsize;
 267
 268        return alg->ivsize;
 269}
 270
 271/**
 272 * crypto_skcipher_ivsize() - obtain IV size
 273 * @tfm: cipher handle
 274 *
 275 * The size of the IV for the skcipher referenced by the cipher handle is
 276 * returned. This IV size may be zero if the cipher does not need an IV.
 277 *
 278 * Return: IV size in bytes
 279 */
 280static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
 281{
 282        return tfm->ivsize;
 283}
 284
 285static inline unsigned int crypto_sync_skcipher_ivsize(
 286        struct crypto_sync_skcipher *tfm)
 287{
 288        return crypto_skcipher_ivsize(&tfm->base);
 289}
 290
 291/**
 292 * crypto_skcipher_blocksize() - obtain block size of cipher
 293 * @tfm: cipher handle
 294 *
 295 * The block size for the skcipher referenced with the cipher handle is
 296 * returned. The caller may use that information to allocate appropriate
 297 * memory for the data returned by the encryption or decryption operation
 298 *
 299 * Return: block size of cipher
 300 */
 301static inline unsigned int crypto_skcipher_blocksize(
 302        struct crypto_skcipher *tfm)
 303{
 304        return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
 305}
 306
 307static inline unsigned int crypto_sync_skcipher_blocksize(
 308        struct crypto_sync_skcipher *tfm)
 309{
 310        return crypto_skcipher_blocksize(&tfm->base);
 311}
 312
 313static inline unsigned int crypto_skcipher_alignmask(
 314        struct crypto_skcipher *tfm)
 315{
 316        return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
 317}
 318
 319static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
 320{
 321        return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
 322}
 323
 324static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
 325                                               u32 flags)
 326{
 327        crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
 328}
 329
 330static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
 331                                                 u32 flags)
 332{
 333        crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
 334}
 335
 336static inline u32 crypto_sync_skcipher_get_flags(
 337        struct crypto_sync_skcipher *tfm)
 338{
 339        return crypto_skcipher_get_flags(&tfm->base);
 340}
 341
 342static inline void crypto_sync_skcipher_set_flags(
 343        struct crypto_sync_skcipher *tfm, u32 flags)
 344{
 345        crypto_skcipher_set_flags(&tfm->base, flags);
 346}
 347
 348static inline void crypto_sync_skcipher_clear_flags(
 349        struct crypto_sync_skcipher *tfm, u32 flags)
 350{
 351        crypto_skcipher_clear_flags(&tfm->base, flags);
 352}
 353
 354/**
 355 * crypto_skcipher_setkey() - set key for cipher
 356 * @tfm: cipher handle
 357 * @key: buffer holding the key
 358 * @keylen: length of the key in bytes
 359 *
 360 * The caller provided key is set for the skcipher referenced by the cipher
 361 * handle.
 362 *
 363 * Note, the key length determines the cipher type. Many block ciphers implement
 364 * different cipher modes depending on the key size, such as AES-128 vs AES-192
 365 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
 366 * is performed.
 367 *
 368 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 369 */
 370static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
 371                                         const u8 *key, unsigned int keylen)
 372{
 373        return tfm->setkey(tfm, key, keylen);
 374}
 375
 376static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm,
 377                                         const u8 *key, unsigned int keylen)
 378{
 379        return crypto_skcipher_setkey(&tfm->base, key, keylen);
 380}
 381
 382static inline unsigned int crypto_skcipher_default_keysize(
 383        struct crypto_skcipher *tfm)
 384{
 385        return tfm->keysize;
 386}
 387
 388/**
 389 * crypto_skcipher_reqtfm() - obtain cipher handle from request
 390 * @req: skcipher_request out of which the cipher handle is to be obtained
 391 *
 392 * Return the crypto_skcipher handle when furnishing an skcipher_request
 393 * data structure.
 394 *
 395 * Return: crypto_skcipher handle
 396 */
 397static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
 398        struct skcipher_request *req)
 399{
 400        return __crypto_skcipher_cast(req->base.tfm);
 401}
 402
 403static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm(
 404        struct skcipher_request *req)
 405{
 406        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 407
 408        return container_of(tfm, struct crypto_sync_skcipher, base);
 409}
 410
 411/**
 412 * crypto_skcipher_encrypt() - encrypt plaintext
 413 * @req: reference to the skcipher_request handle that holds all information
 414 *       needed to perform the cipher operation
 415 *
 416 * Encrypt plaintext data using the skcipher_request handle. That data
 417 * structure and how it is filled with data is discussed with the
 418 * skcipher_request_* functions.
 419 *
 420 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 421 */
 422int crypto_skcipher_encrypt(struct skcipher_request *req);
 423
 424/**
 425 * crypto_skcipher_decrypt() - decrypt ciphertext
 426 * @req: reference to the skcipher_request handle that holds all information
 427 *       needed to perform the cipher operation
 428 *
 429 * Decrypt ciphertext data using the skcipher_request handle. That data
 430 * structure and how it is filled with data is discussed with the
 431 * skcipher_request_* functions.
 432 *
 433 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 434 */
 435int crypto_skcipher_decrypt(struct skcipher_request *req);
 436
 437/**
 438 * DOC: Symmetric Key Cipher Request Handle
 439 *
 440 * The skcipher_request data structure contains all pointers to data
 441 * required for the symmetric key cipher operation. This includes the cipher
 442 * handle (which can be used by multiple skcipher_request instances), pointer
 443 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
 444 * as a handle to the skcipher_request_* API calls in a similar way as
 445 * skcipher handle to the crypto_skcipher_* API calls.
 446 */
 447
 448/**
 449 * crypto_skcipher_reqsize() - obtain size of the request data structure
 450 * @tfm: cipher handle
 451 *
 452 * Return: number of bytes
 453 */
 454static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
 455{
 456        return tfm->reqsize;
 457}
 458
 459/**
 460 * skcipher_request_set_tfm() - update cipher handle reference in request
 461 * @req: request handle to be modified
 462 * @tfm: cipher handle that shall be added to the request handle
 463 *
 464 * Allow the caller to replace the existing skcipher handle in the request
 465 * data structure with a different one.
 466 */
 467static inline void skcipher_request_set_tfm(struct skcipher_request *req,
 468                                            struct crypto_skcipher *tfm)
 469{
 470        req->base.tfm = crypto_skcipher_tfm(tfm);
 471}
 472
 473static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req,
 474                                            struct crypto_sync_skcipher *tfm)
 475{
 476        skcipher_request_set_tfm(req, &tfm->base);
 477}
 478
 479static inline struct skcipher_request *skcipher_request_cast(
 480        struct crypto_async_request *req)
 481{
 482        return container_of(req, struct skcipher_request, base);
 483}
 484
 485/**
 486 * skcipher_request_alloc() - allocate request data structure
 487 * @tfm: cipher handle to be registered with the request
 488 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
 489 *
 490 * Allocate the request data structure that must be used with the skcipher
 491 * encrypt and decrypt API calls. During the allocation, the provided skcipher
 492 * handle is registered in the request data structure.
 493 *
 494 * Return: allocated request handle in case of success, or NULL if out of memory
 495 */
 496static inline struct skcipher_request *skcipher_request_alloc(
 497        struct crypto_skcipher *tfm, gfp_t gfp)
 498{
 499        struct skcipher_request *req;
 500
 501        req = kmalloc(sizeof(struct skcipher_request) +
 502                      crypto_skcipher_reqsize(tfm), gfp);
 503
 504        if (likely(req))
 505                skcipher_request_set_tfm(req, tfm);
 506
 507        return req;
 508}
 509
 510/**
 511 * skcipher_request_free() - zeroize and free request data structure
 512 * @req: request data structure cipher handle to be freed
 513 */
 514static inline void skcipher_request_free(struct skcipher_request *req)
 515{
 516        kzfree(req);
 517}
 518
 519static inline void skcipher_request_zero(struct skcipher_request *req)
 520{
 521        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 522
 523        memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
 524}
 525
 526/**
 527 * skcipher_request_set_callback() - set asynchronous callback function
 528 * @req: request handle
 529 * @flags: specify zero or an ORing of the flags
 530 *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
 531 *         increase the wait queue beyond the initial maximum size;
 532 *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
 533 * @compl: callback function pointer to be registered with the request handle
 534 * @data: The data pointer refers to memory that is not used by the kernel
 535 *        crypto API, but provided to the callback function for it to use. Here,
 536 *        the caller can provide a reference to memory the callback function can
 537 *        operate on. As the callback function is invoked asynchronously to the
 538 *        related functionality, it may need to access data structures of the
 539 *        related functionality which can be referenced using this pointer. The
 540 *        callback function can access the memory via the "data" field in the
 541 *        crypto_async_request data structure provided to the callback function.
 542 *
 543 * This function allows setting the callback function that is triggered once the
 544 * cipher operation completes.
 545 *
 546 * The callback function is registered with the skcipher_request handle and
 547 * must comply with the following template::
 548 *
 549 *      void callback_function(struct crypto_async_request *req, int error)
 550 */
 551static inline void skcipher_request_set_callback(struct skcipher_request *req,
 552                                                 u32 flags,
 553                                                 crypto_completion_t compl,
 554                                                 void *data)
 555{
 556        req->base.complete = compl;
 557        req->base.data = data;
 558        req->base.flags = flags;
 559}
 560
 561/**
 562 * skcipher_request_set_crypt() - set data buffers
 563 * @req: request handle
 564 * @src: source scatter / gather list
 565 * @dst: destination scatter / gather list
 566 * @cryptlen: number of bytes to process from @src
 567 * @iv: IV for the cipher operation which must comply with the IV size defined
 568 *      by crypto_skcipher_ivsize
 569 *
 570 * This function allows setting of the source data and destination data
 571 * scatter / gather lists.
 572 *
 573 * For encryption, the source is treated as the plaintext and the
 574 * destination is the ciphertext. For a decryption operation, the use is
 575 * reversed - the source is the ciphertext and the destination is the plaintext.
 576 */
 577static inline void skcipher_request_set_crypt(
 578        struct skcipher_request *req,
 579        struct scatterlist *src, struct scatterlist *dst,
 580        unsigned int cryptlen, void *iv)
 581{
 582        req->src = src;
 583        req->dst = dst;
 584        req->cryptlen = cryptlen;
 585        req->iv = iv;
 586}
 587
 588#endif  /* _CRYPTO_SKCIPHER_H */
 589
 590