linux/include/linux/dmaengine.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
   4 */
   5#ifndef LINUX_DMAENGINE_H
   6#define LINUX_DMAENGINE_H
   7
   8#include <linux/device.h>
   9#include <linux/err.h>
  10#include <linux/uio.h>
  11#include <linux/bug.h>
  12#include <linux/scatterlist.h>
  13#include <linux/bitmap.h>
  14#include <linux/types.h>
  15#include <asm/page.h>
  16
  17/**
  18 * typedef dma_cookie_t - an opaque DMA cookie
  19 *
  20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
  21 */
  22typedef s32 dma_cookie_t;
  23#define DMA_MIN_COOKIE  1
  24
  25static inline int dma_submit_error(dma_cookie_t cookie)
  26{
  27        return cookie < 0 ? cookie : 0;
  28}
  29
  30/**
  31 * enum dma_status - DMA transaction status
  32 * @DMA_COMPLETE: transaction completed
  33 * @DMA_IN_PROGRESS: transaction not yet processed
  34 * @DMA_PAUSED: transaction is paused
  35 * @DMA_ERROR: transaction failed
  36 */
  37enum dma_status {
  38        DMA_COMPLETE,
  39        DMA_IN_PROGRESS,
  40        DMA_PAUSED,
  41        DMA_ERROR,
  42};
  43
  44/**
  45 * enum dma_transaction_type - DMA transaction types/indexes
  46 *
  47 * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
  48 * automatically set as dma devices are registered.
  49 */
  50enum dma_transaction_type {
  51        DMA_MEMCPY,
  52        DMA_XOR,
  53        DMA_PQ,
  54        DMA_XOR_VAL,
  55        DMA_PQ_VAL,
  56        DMA_MEMSET,
  57        DMA_MEMSET_SG,
  58        DMA_INTERRUPT,
  59        DMA_PRIVATE,
  60        DMA_ASYNC_TX,
  61        DMA_SLAVE,
  62        DMA_CYCLIC,
  63        DMA_INTERLEAVE,
  64/* last transaction type for creation of the capabilities mask */
  65        DMA_TX_TYPE_END,
  66};
  67
  68/**
  69 * enum dma_transfer_direction - dma transfer mode and direction indicator
  70 * @DMA_MEM_TO_MEM: Async/Memcpy mode
  71 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
  72 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
  73 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
  74 */
  75enum dma_transfer_direction {
  76        DMA_MEM_TO_MEM,
  77        DMA_MEM_TO_DEV,
  78        DMA_DEV_TO_MEM,
  79        DMA_DEV_TO_DEV,
  80        DMA_TRANS_NONE,
  81};
  82
  83/**
  84 * Interleaved Transfer Request
  85 * ----------------------------
  86 * A chunk is collection of contiguous bytes to be transfered.
  87 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
  88 * ICGs may or maynot change between chunks.
  89 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
  90 *  that when repeated an integral number of times, specifies the transfer.
  91 * A transfer template is specification of a Frame, the number of times
  92 *  it is to be repeated and other per-transfer attributes.
  93 *
  94 * Practically, a client driver would have ready a template for each
  95 *  type of transfer it is going to need during its lifetime and
  96 *  set only 'src_start' and 'dst_start' before submitting the requests.
  97 *
  98 *
  99 *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
 100 *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
 101 *
 102 *    ==  Chunk size
 103 *    ... ICG
 104 */
 105
 106/**
 107 * struct data_chunk - Element of scatter-gather list that makes a frame.
 108 * @size: Number of bytes to read from source.
 109 *        size_dst := fn(op, size_src), so doesn't mean much for destination.
 110 * @icg: Number of bytes to jump after last src/dst address of this
 111 *       chunk and before first src/dst address for next chunk.
 112 *       Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
 113 *       Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
 114 * @dst_icg: Number of bytes to jump after last dst address of this
 115 *       chunk and before the first dst address for next chunk.
 116 *       Ignored if dst_inc is true and dst_sgl is false.
 117 * @src_icg: Number of bytes to jump after last src address of this
 118 *       chunk and before the first src address for next chunk.
 119 *       Ignored if src_inc is true and src_sgl is false.
 120 */
 121struct data_chunk {
 122        size_t size;
 123        size_t icg;
 124        size_t dst_icg;
 125        size_t src_icg;
 126};
 127
 128/**
 129 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
 130 *       and attributes.
 131 * @src_start: Bus address of source for the first chunk.
 132 * @dst_start: Bus address of destination for the first chunk.
 133 * @dir: Specifies the type of Source and Destination.
 134 * @src_inc: If the source address increments after reading from it.
 135 * @dst_inc: If the destination address increments after writing to it.
 136 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
 137 *              Otherwise, source is read contiguously (icg ignored).
 138 *              Ignored if src_inc is false.
 139 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
 140 *              Otherwise, destination is filled contiguously (icg ignored).
 141 *              Ignored if dst_inc is false.
 142 * @numf: Number of frames in this template.
 143 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
 144 * @sgl: Array of {chunk,icg} pairs that make up a frame.
 145 */
 146struct dma_interleaved_template {
 147        dma_addr_t src_start;
 148        dma_addr_t dst_start;
 149        enum dma_transfer_direction dir;
 150        bool src_inc;
 151        bool dst_inc;
 152        bool src_sgl;
 153        bool dst_sgl;
 154        size_t numf;
 155        size_t frame_size;
 156        struct data_chunk sgl[0];
 157};
 158
 159/**
 160 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
 161 *  control completion, and communicate status.
 162 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
 163 *  this transaction
 164 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
 165 *  acknowledges receipt, i.e. has has a chance to establish any dependency
 166 *  chains
 167 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
 168 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
 169 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
 170 *  sources that were the result of a previous operation, in the case of a PQ
 171 *  operation it continues the calculation with new sources
 172 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
 173 *  on the result of this operation
 174 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
 175 *  cleared or freed
 176 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
 177 *  data and the descriptor should be in different format from normal
 178 *  data descriptors.
 179 */
 180enum dma_ctrl_flags {
 181        DMA_PREP_INTERRUPT = (1 << 0),
 182        DMA_CTRL_ACK = (1 << 1),
 183        DMA_PREP_PQ_DISABLE_P = (1 << 2),
 184        DMA_PREP_PQ_DISABLE_Q = (1 << 3),
 185        DMA_PREP_CONTINUE = (1 << 4),
 186        DMA_PREP_FENCE = (1 << 5),
 187        DMA_CTRL_REUSE = (1 << 6),
 188        DMA_PREP_CMD = (1 << 7),
 189};
 190
 191/**
 192 * enum sum_check_bits - bit position of pq_check_flags
 193 */
 194enum sum_check_bits {
 195        SUM_CHECK_P = 0,
 196        SUM_CHECK_Q = 1,
 197};
 198
 199/**
 200 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
 201 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
 202 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
 203 */
 204enum sum_check_flags {
 205        SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
 206        SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
 207};
 208
 209
 210/**
 211 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
 212 * See linux/cpumask.h
 213 */
 214typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
 215
 216/**
 217 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
 218 * @memcpy_count: transaction counter
 219 * @bytes_transferred: byte counter
 220 */
 221
 222struct dma_chan_percpu {
 223        /* stats */
 224        unsigned long memcpy_count;
 225        unsigned long bytes_transferred;
 226};
 227
 228/**
 229 * struct dma_router - DMA router structure
 230 * @dev: pointer to the DMA router device
 231 * @route_free: function to be called when the route can be disconnected
 232 */
 233struct dma_router {
 234        struct device *dev;
 235        void (*route_free)(struct device *dev, void *route_data);
 236};
 237
 238/**
 239 * struct dma_chan - devices supply DMA channels, clients use them
 240 * @device: ptr to the dma device who supplies this channel, always !%NULL
 241 * @cookie: last cookie value returned to client
 242 * @completed_cookie: last completed cookie for this channel
 243 * @chan_id: channel ID for sysfs
 244 * @dev: class device for sysfs
 245 * @device_node: used to add this to the device chan list
 246 * @local: per-cpu pointer to a struct dma_chan_percpu
 247 * @client_count: how many clients are using this channel
 248 * @table_count: number of appearances in the mem-to-mem allocation table
 249 * @router: pointer to the DMA router structure
 250 * @route_data: channel specific data for the router
 251 * @private: private data for certain client-channel associations
 252 */
 253struct dma_chan {
 254        struct dma_device *device;
 255        dma_cookie_t cookie;
 256        dma_cookie_t completed_cookie;
 257
 258        /* sysfs */
 259        int chan_id;
 260        struct dma_chan_dev *dev;
 261
 262        struct list_head device_node;
 263        struct dma_chan_percpu __percpu *local;
 264        int client_count;
 265        int table_count;
 266
 267        /* DMA router */
 268        struct dma_router *router;
 269        void *route_data;
 270
 271        void *private;
 272};
 273
 274/**
 275 * struct dma_chan_dev - relate sysfs device node to backing channel device
 276 * @chan: driver channel device
 277 * @device: sysfs device
 278 * @dev_id: parent dma_device dev_id
 279 * @idr_ref: reference count to gate release of dma_device dev_id
 280 */
 281struct dma_chan_dev {
 282        struct dma_chan *chan;
 283        struct device device;
 284        int dev_id;
 285        atomic_t *idr_ref;
 286};
 287
 288/**
 289 * enum dma_slave_buswidth - defines bus width of the DMA slave
 290 * device, source or target buses
 291 */
 292enum dma_slave_buswidth {
 293        DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
 294        DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
 295        DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
 296        DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
 297        DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
 298        DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
 299        DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
 300        DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
 301        DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
 302};
 303
 304/**
 305 * struct dma_slave_config - dma slave channel runtime config
 306 * @direction: whether the data shall go in or out on this slave
 307 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
 308 * legal values. DEPRECATED, drivers should use the direction argument
 309 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
 310 * the dir field in the dma_interleaved_template structure.
 311 * @src_addr: this is the physical address where DMA slave data
 312 * should be read (RX), if the source is memory this argument is
 313 * ignored.
 314 * @dst_addr: this is the physical address where DMA slave data
 315 * should be written (TX), if the source is memory this argument
 316 * is ignored.
 317 * @src_addr_width: this is the width in bytes of the source (RX)
 318 * register where DMA data shall be read. If the source
 319 * is memory this may be ignored depending on architecture.
 320 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64.
 321 * @dst_addr_width: same as src_addr_width but for destination
 322 * target (TX) mutatis mutandis.
 323 * @src_maxburst: the maximum number of words (note: words, as in
 324 * units of the src_addr_width member, not bytes) that can be sent
 325 * in one burst to the device. Typically something like half the
 326 * FIFO depth on I/O peripherals so you don't overflow it. This
 327 * may or may not be applicable on memory sources.
 328 * @dst_maxburst: same as src_maxburst but for destination target
 329 * mutatis mutandis.
 330 * @src_port_window_size: The length of the register area in words the data need
 331 * to be accessed on the device side. It is only used for devices which is using
 332 * an area instead of a single register to receive the data. Typically the DMA
 333 * loops in this area in order to transfer the data.
 334 * @dst_port_window_size: same as src_port_window_size but for the destination
 335 * port.
 336 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
 337 * with 'true' if peripheral should be flow controller. Direction will be
 338 * selected at Runtime.
 339 * @slave_id: Slave requester id. Only valid for slave channels. The dma
 340 * slave peripheral will have unique id as dma requester which need to be
 341 * pass as slave config.
 342 *
 343 * This struct is passed in as configuration data to a DMA engine
 344 * in order to set up a certain channel for DMA transport at runtime.
 345 * The DMA device/engine has to provide support for an additional
 346 * callback in the dma_device structure, device_config and this struct
 347 * will then be passed in as an argument to the function.
 348 *
 349 * The rationale for adding configuration information to this struct is as
 350 * follows: if it is likely that more than one DMA slave controllers in
 351 * the world will support the configuration option, then make it generic.
 352 * If not: if it is fixed so that it be sent in static from the platform
 353 * data, then prefer to do that.
 354 */
 355struct dma_slave_config {
 356        enum dma_transfer_direction direction;
 357        phys_addr_t src_addr;
 358        phys_addr_t dst_addr;
 359        enum dma_slave_buswidth src_addr_width;
 360        enum dma_slave_buswidth dst_addr_width;
 361        u32 src_maxburst;
 362        u32 dst_maxburst;
 363        u32 src_port_window_size;
 364        u32 dst_port_window_size;
 365        bool device_fc;
 366        unsigned int slave_id;
 367};
 368
 369/**
 370 * enum dma_residue_granularity - Granularity of the reported transfer residue
 371 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
 372 *  DMA channel is only able to tell whether a descriptor has been completed or
 373 *  not, which means residue reporting is not supported by this channel. The
 374 *  residue field of the dma_tx_state field will always be 0.
 375 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
 376 *  completed segment of the transfer (For cyclic transfers this is after each
 377 *  period). This is typically implemented by having the hardware generate an
 378 *  interrupt after each transferred segment and then the drivers updates the
 379 *  outstanding residue by the size of the segment. Another possibility is if
 380 *  the hardware supports scatter-gather and the segment descriptor has a field
 381 *  which gets set after the segment has been completed. The driver then counts
 382 *  the number of segments without the flag set to compute the residue.
 383 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
 384 *  burst. This is typically only supported if the hardware has a progress
 385 *  register of some sort (E.g. a register with the current read/write address
 386 *  or a register with the amount of bursts/beats/bytes that have been
 387 *  transferred or still need to be transferred).
 388 */
 389enum dma_residue_granularity {
 390        DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
 391        DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
 392        DMA_RESIDUE_GRANULARITY_BURST = 2,
 393};
 394
 395/**
 396 * struct dma_slave_caps - expose capabilities of a slave channel only
 397 * @src_addr_widths: bit mask of src addr widths the channel supports.
 398 *      Width is specified in bytes, e.g. for a channel supporting
 399 *      a width of 4 the mask should have BIT(4) set.
 400 * @dst_addr_widths: bit mask of dst addr widths the channel supports
 401 * @directions: bit mask of slave directions the channel supports.
 402 *      Since the enum dma_transfer_direction is not defined as bit flag for
 403 *      each type, the dma controller should set BIT(<TYPE>) and same
 404 *      should be checked by controller as well
 405 * @max_burst: max burst capability per-transfer
 406 * @cmd_pause: true, if pause is supported (i.e. for reading residue or
 407 *             for resume later)
 408 * @cmd_resume: true, if resume is supported
 409 * @cmd_terminate: true, if terminate cmd is supported
 410 * @residue_granularity: granularity of the reported transfer residue
 411 * @descriptor_reuse: if a descriptor can be reused by client and
 412 * resubmitted multiple times
 413 */
 414struct dma_slave_caps {
 415        u32 src_addr_widths;
 416        u32 dst_addr_widths;
 417        u32 directions;
 418        u32 max_burst;
 419        bool cmd_pause;
 420        bool cmd_resume;
 421        bool cmd_terminate;
 422        enum dma_residue_granularity residue_granularity;
 423        bool descriptor_reuse;
 424};
 425
 426static inline const char *dma_chan_name(struct dma_chan *chan)
 427{
 428        return dev_name(&chan->dev->device);
 429}
 430
 431void dma_chan_cleanup(struct kref *kref);
 432
 433/**
 434 * typedef dma_filter_fn - callback filter for dma_request_channel
 435 * @chan: channel to be reviewed
 436 * @filter_param: opaque parameter passed through dma_request_channel
 437 *
 438 * When this optional parameter is specified in a call to dma_request_channel a
 439 * suitable channel is passed to this routine for further dispositioning before
 440 * being returned.  Where 'suitable' indicates a non-busy channel that
 441 * satisfies the given capability mask.  It returns 'true' to indicate that the
 442 * channel is suitable.
 443 */
 444typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
 445
 446typedef void (*dma_async_tx_callback)(void *dma_async_param);
 447
 448enum dmaengine_tx_result {
 449        DMA_TRANS_NOERROR = 0,          /* SUCCESS */
 450        DMA_TRANS_READ_FAILED,          /* Source DMA read failed */
 451        DMA_TRANS_WRITE_FAILED,         /* Destination DMA write failed */
 452        DMA_TRANS_ABORTED,              /* Op never submitted / aborted */
 453};
 454
 455struct dmaengine_result {
 456        enum dmaengine_tx_result result;
 457        u32 residue;
 458};
 459
 460typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
 461                                const struct dmaengine_result *result);
 462
 463struct dmaengine_unmap_data {
 464#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
 465        u16 map_cnt;
 466#else
 467        u8 map_cnt;
 468#endif
 469        u8 to_cnt;
 470        u8 from_cnt;
 471        u8 bidi_cnt;
 472        struct device *dev;
 473        struct kref kref;
 474        size_t len;
 475        dma_addr_t addr[0];
 476};
 477
 478/**
 479 * struct dma_async_tx_descriptor - async transaction descriptor
 480 * ---dma generic offload fields---
 481 * @cookie: tracking cookie for this transaction, set to -EBUSY if
 482 *      this tx is sitting on a dependency list
 483 * @flags: flags to augment operation preparation, control completion, and
 484 *      communicate status
 485 * @phys: physical address of the descriptor
 486 * @chan: target channel for this operation
 487 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
 488 * descriptor pending. To be pushed on .issue_pending() call
 489 * @callback: routine to call after this operation is complete
 490 * @callback_param: general parameter to pass to the callback routine
 491 * ---async_tx api specific fields---
 492 * @next: at completion submit this descriptor
 493 * @parent: pointer to the next level up in the dependency chain
 494 * @lock: protect the parent and next pointers
 495 */
 496struct dma_async_tx_descriptor {
 497        dma_cookie_t cookie;
 498        enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
 499        dma_addr_t phys;
 500        struct dma_chan *chan;
 501        dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
 502        int (*desc_free)(struct dma_async_tx_descriptor *tx);
 503        dma_async_tx_callback callback;
 504        dma_async_tx_callback_result callback_result;
 505        void *callback_param;
 506        struct dmaengine_unmap_data *unmap;
 507#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
 508        struct dma_async_tx_descriptor *next;
 509        struct dma_async_tx_descriptor *parent;
 510        spinlock_t lock;
 511#endif
 512};
 513
 514#ifdef CONFIG_DMA_ENGINE
 515static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
 516                                 struct dmaengine_unmap_data *unmap)
 517{
 518        kref_get(&unmap->kref);
 519        tx->unmap = unmap;
 520}
 521
 522struct dmaengine_unmap_data *
 523dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
 524void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
 525#else
 526static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
 527                                 struct dmaengine_unmap_data *unmap)
 528{
 529}
 530static inline struct dmaengine_unmap_data *
 531dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
 532{
 533        return NULL;
 534}
 535static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
 536{
 537}
 538#endif
 539
 540static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
 541{
 542        if (tx->unmap) {
 543                dmaengine_unmap_put(tx->unmap);
 544                tx->unmap = NULL;
 545        }
 546}
 547
 548#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
 549static inline void txd_lock(struct dma_async_tx_descriptor *txd)
 550{
 551}
 552static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
 553{
 554}
 555static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
 556{
 557        BUG();
 558}
 559static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
 560{
 561}
 562static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
 563{
 564}
 565static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
 566{
 567        return NULL;
 568}
 569static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
 570{
 571        return NULL;
 572}
 573
 574#else
 575static inline void txd_lock(struct dma_async_tx_descriptor *txd)
 576{
 577        spin_lock_bh(&txd->lock);
 578}
 579static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
 580{
 581        spin_unlock_bh(&txd->lock);
 582}
 583static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
 584{
 585        txd->next = next;
 586        next->parent = txd;
 587}
 588static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
 589{
 590        txd->parent = NULL;
 591}
 592static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
 593{
 594        txd->next = NULL;
 595}
 596static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
 597{
 598        return txd->parent;
 599}
 600static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
 601{
 602        return txd->next;
 603}
 604#endif
 605
 606/**
 607 * struct dma_tx_state - filled in to report the status of
 608 * a transfer.
 609 * @last: last completed DMA cookie
 610 * @used: last issued DMA cookie (i.e. the one in progress)
 611 * @residue: the remaining number of bytes left to transmit
 612 *      on the selected transfer for states DMA_IN_PROGRESS and
 613 *      DMA_PAUSED if this is implemented in the driver, else 0
 614 */
 615struct dma_tx_state {
 616        dma_cookie_t last;
 617        dma_cookie_t used;
 618        u32 residue;
 619};
 620
 621/**
 622 * enum dmaengine_alignment - defines alignment of the DMA async tx
 623 * buffers
 624 */
 625enum dmaengine_alignment {
 626        DMAENGINE_ALIGN_1_BYTE = 0,
 627        DMAENGINE_ALIGN_2_BYTES = 1,
 628        DMAENGINE_ALIGN_4_BYTES = 2,
 629        DMAENGINE_ALIGN_8_BYTES = 3,
 630        DMAENGINE_ALIGN_16_BYTES = 4,
 631        DMAENGINE_ALIGN_32_BYTES = 5,
 632        DMAENGINE_ALIGN_64_BYTES = 6,
 633};
 634
 635/**
 636 * struct dma_slave_map - associates slave device and it's slave channel with
 637 * parameter to be used by a filter function
 638 * @devname: name of the device
 639 * @slave: slave channel name
 640 * @param: opaque parameter to pass to struct dma_filter.fn
 641 */
 642struct dma_slave_map {
 643        const char *devname;
 644        const char *slave;
 645        void *param;
 646};
 647
 648/**
 649 * struct dma_filter - information for slave device/channel to filter_fn/param
 650 * mapping
 651 * @fn: filter function callback
 652 * @mapcnt: number of slave device/channel in the map
 653 * @map: array of channel to filter mapping data
 654 */
 655struct dma_filter {
 656        dma_filter_fn fn;
 657        int mapcnt;
 658        const struct dma_slave_map *map;
 659};
 660
 661/**
 662 * struct dma_device - info on the entity supplying DMA services
 663 * @chancnt: how many DMA channels are supported
 664 * @privatecnt: how many DMA channels are requested by dma_request_channel
 665 * @channels: the list of struct dma_chan
 666 * @global_node: list_head for global dma_device_list
 667 * @filter: information for device/slave to filter function/param mapping
 668 * @cap_mask: one or more dma_capability flags
 669 * @max_xor: maximum number of xor sources, 0 if no capability
 670 * @max_pq: maximum number of PQ sources and PQ-continue capability
 671 * @copy_align: alignment shift for memcpy operations
 672 * @xor_align: alignment shift for xor operations
 673 * @pq_align: alignment shift for pq operations
 674 * @fill_align: alignment shift for memset operations
 675 * @dev_id: unique device ID
 676 * @dev: struct device reference for dma mapping api
 677 * @src_addr_widths: bit mask of src addr widths the device supports
 678 *      Width is specified in bytes, e.g. for a device supporting
 679 *      a width of 4 the mask should have BIT(4) set.
 680 * @dst_addr_widths: bit mask of dst addr widths the device supports
 681 * @directions: bit mask of slave directions the device supports.
 682 *      Since the enum dma_transfer_direction is not defined as bit flag for
 683 *      each type, the dma controller should set BIT(<TYPE>) and same
 684 *      should be checked by controller as well
 685 * @max_burst: max burst capability per-transfer
 686 * @residue_granularity: granularity of the transfer residue reported
 687 *      by tx_status
 688 * @device_alloc_chan_resources: allocate resources and return the
 689 *      number of allocated descriptors
 690 * @device_free_chan_resources: release DMA channel's resources
 691 * @device_prep_dma_memcpy: prepares a memcpy operation
 692 * @device_prep_dma_xor: prepares a xor operation
 693 * @device_prep_dma_xor_val: prepares a xor validation operation
 694 * @device_prep_dma_pq: prepares a pq operation
 695 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
 696 * @device_prep_dma_memset: prepares a memset operation
 697 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
 698 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
 699 * @device_prep_slave_sg: prepares a slave dma operation
 700 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
 701 *      The function takes a buffer of size buf_len. The callback function will
 702 *      be called after period_len bytes have been transferred.
 703 * @device_prep_interleaved_dma: Transfer expression in a generic way.
 704 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
 705 * @device_config: Pushes a new configuration to a channel, return 0 or an error
 706 *      code
 707 * @device_pause: Pauses any transfer happening on a channel. Returns
 708 *      0 or an error code
 709 * @device_resume: Resumes any transfer on a channel previously
 710 *      paused. Returns 0 or an error code
 711 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
 712 *      or an error code
 713 * @device_synchronize: Synchronizes the termination of a transfers to the
 714 *  current context.
 715 * @device_tx_status: poll for transaction completion, the optional
 716 *      txstate parameter can be supplied with a pointer to get a
 717 *      struct with auxiliary transfer status information, otherwise the call
 718 *      will just return a simple status code
 719 * @device_issue_pending: push pending transactions to hardware
 720 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
 721 */
 722struct dma_device {
 723
 724        unsigned int chancnt;
 725        unsigned int privatecnt;
 726        struct list_head channels;
 727        struct list_head global_node;
 728        struct dma_filter filter;
 729        dma_cap_mask_t  cap_mask;
 730        unsigned short max_xor;
 731        unsigned short max_pq;
 732        enum dmaengine_alignment copy_align;
 733        enum dmaengine_alignment xor_align;
 734        enum dmaengine_alignment pq_align;
 735        enum dmaengine_alignment fill_align;
 736        #define DMA_HAS_PQ_CONTINUE (1 << 15)
 737
 738        int dev_id;
 739        struct device *dev;
 740
 741        u32 src_addr_widths;
 742        u32 dst_addr_widths;
 743        u32 directions;
 744        u32 max_burst;
 745        bool descriptor_reuse;
 746        enum dma_residue_granularity residue_granularity;
 747
 748        int (*device_alloc_chan_resources)(struct dma_chan *chan);
 749        void (*device_free_chan_resources)(struct dma_chan *chan);
 750
 751        struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
 752                struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
 753                size_t len, unsigned long flags);
 754        struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
 755                struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
 756                unsigned int src_cnt, size_t len, unsigned long flags);
 757        struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
 758                struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
 759                size_t len, enum sum_check_flags *result, unsigned long flags);
 760        struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
 761                struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
 762                unsigned int src_cnt, const unsigned char *scf,
 763                size_t len, unsigned long flags);
 764        struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
 765                struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
 766                unsigned int src_cnt, const unsigned char *scf, size_t len,
 767                enum sum_check_flags *pqres, unsigned long flags);
 768        struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
 769                struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
 770                unsigned long flags);
 771        struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
 772                struct dma_chan *chan, struct scatterlist *sg,
 773                unsigned int nents, int value, unsigned long flags);
 774        struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
 775                struct dma_chan *chan, unsigned long flags);
 776
 777        struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
 778                struct dma_chan *chan, struct scatterlist *sgl,
 779                unsigned int sg_len, enum dma_transfer_direction direction,
 780                unsigned long flags, void *context);
 781        struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
 782                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
 783                size_t period_len, enum dma_transfer_direction direction,
 784                unsigned long flags);
 785        struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
 786                struct dma_chan *chan, struct dma_interleaved_template *xt,
 787                unsigned long flags);
 788        struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
 789                struct dma_chan *chan, dma_addr_t dst, u64 data,
 790                unsigned long flags);
 791
 792        int (*device_config)(struct dma_chan *chan,
 793                             struct dma_slave_config *config);
 794        int (*device_pause)(struct dma_chan *chan);
 795        int (*device_resume)(struct dma_chan *chan);
 796        int (*device_terminate_all)(struct dma_chan *chan);
 797        void (*device_synchronize)(struct dma_chan *chan);
 798
 799        enum dma_status (*device_tx_status)(struct dma_chan *chan,
 800                                            dma_cookie_t cookie,
 801                                            struct dma_tx_state *txstate);
 802        void (*device_issue_pending)(struct dma_chan *chan);
 803};
 804
 805static inline int dmaengine_slave_config(struct dma_chan *chan,
 806                                          struct dma_slave_config *config)
 807{
 808        if (chan->device->device_config)
 809                return chan->device->device_config(chan, config);
 810
 811        return -ENOSYS;
 812}
 813
 814static inline bool is_slave_direction(enum dma_transfer_direction direction)
 815{
 816        return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
 817}
 818
 819static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
 820        struct dma_chan *chan, dma_addr_t buf, size_t len,
 821        enum dma_transfer_direction dir, unsigned long flags)
 822{
 823        struct scatterlist sg;
 824        sg_init_table(&sg, 1);
 825        sg_dma_address(&sg) = buf;
 826        sg_dma_len(&sg) = len;
 827
 828        if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
 829                return NULL;
 830
 831        return chan->device->device_prep_slave_sg(chan, &sg, 1,
 832                                                  dir, flags, NULL);
 833}
 834
 835static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
 836        struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
 837        enum dma_transfer_direction dir, unsigned long flags)
 838{
 839        if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
 840                return NULL;
 841
 842        return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
 843                                                  dir, flags, NULL);
 844}
 845
 846#ifdef CONFIG_RAPIDIO_DMA_ENGINE
 847struct rio_dma_ext;
 848static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
 849        struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
 850        enum dma_transfer_direction dir, unsigned long flags,
 851        struct rio_dma_ext *rio_ext)
 852{
 853        if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
 854                return NULL;
 855
 856        return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
 857                                                  dir, flags, rio_ext);
 858}
 859#endif
 860
 861static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
 862                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
 863                size_t period_len, enum dma_transfer_direction dir,
 864                unsigned long flags)
 865{
 866        if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
 867                return NULL;
 868
 869        return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
 870                                                period_len, dir, flags);
 871}
 872
 873static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
 874                struct dma_chan *chan, struct dma_interleaved_template *xt,
 875                unsigned long flags)
 876{
 877        if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
 878                return NULL;
 879
 880        return chan->device->device_prep_interleaved_dma(chan, xt, flags);
 881}
 882
 883static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
 884                struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
 885                unsigned long flags)
 886{
 887        if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
 888                return NULL;
 889
 890        return chan->device->device_prep_dma_memset(chan, dest, value,
 891                                                    len, flags);
 892}
 893
 894static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
 895                struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
 896                size_t len, unsigned long flags)
 897{
 898        if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
 899                return NULL;
 900
 901        return chan->device->device_prep_dma_memcpy(chan, dest, src,
 902                                                    len, flags);
 903}
 904
 905/**
 906 * dmaengine_terminate_all() - Terminate all active DMA transfers
 907 * @chan: The channel for which to terminate the transfers
 908 *
 909 * This function is DEPRECATED use either dmaengine_terminate_sync() or
 910 * dmaengine_terminate_async() instead.
 911 */
 912static inline int dmaengine_terminate_all(struct dma_chan *chan)
 913{
 914        if (chan->device->device_terminate_all)
 915                return chan->device->device_terminate_all(chan);
 916
 917        return -ENOSYS;
 918}
 919
 920/**
 921 * dmaengine_terminate_async() - Terminate all active DMA transfers
 922 * @chan: The channel for which to terminate the transfers
 923 *
 924 * Calling this function will terminate all active and pending descriptors
 925 * that have previously been submitted to the channel. It is not guaranteed
 926 * though that the transfer for the active descriptor has stopped when the
 927 * function returns. Furthermore it is possible the complete callback of a
 928 * submitted transfer is still running when this function returns.
 929 *
 930 * dmaengine_synchronize() needs to be called before it is safe to free
 931 * any memory that is accessed by previously submitted descriptors or before
 932 * freeing any resources accessed from within the completion callback of any
 933 * perviously submitted descriptors.
 934 *
 935 * This function can be called from atomic context as well as from within a
 936 * complete callback of a descriptor submitted on the same channel.
 937 *
 938 * If none of the two conditions above apply consider using
 939 * dmaengine_terminate_sync() instead.
 940 */
 941static inline int dmaengine_terminate_async(struct dma_chan *chan)
 942{
 943        if (chan->device->device_terminate_all)
 944                return chan->device->device_terminate_all(chan);
 945
 946        return -EINVAL;
 947}
 948
 949/**
 950 * dmaengine_synchronize() - Synchronize DMA channel termination
 951 * @chan: The channel to synchronize
 952 *
 953 * Synchronizes to the DMA channel termination to the current context. When this
 954 * function returns it is guaranteed that all transfers for previously issued
 955 * descriptors have stopped and and it is safe to free the memory assoicated
 956 * with them. Furthermore it is guaranteed that all complete callback functions
 957 * for a previously submitted descriptor have finished running and it is safe to
 958 * free resources accessed from within the complete callbacks.
 959 *
 960 * The behavior of this function is undefined if dma_async_issue_pending() has
 961 * been called between dmaengine_terminate_async() and this function.
 962 *
 963 * This function must only be called from non-atomic context and must not be
 964 * called from within a complete callback of a descriptor submitted on the same
 965 * channel.
 966 */
 967static inline void dmaengine_synchronize(struct dma_chan *chan)
 968{
 969        might_sleep();
 970
 971        if (chan->device->device_synchronize)
 972                chan->device->device_synchronize(chan);
 973}
 974
 975/**
 976 * dmaengine_terminate_sync() - Terminate all active DMA transfers
 977 * @chan: The channel for which to terminate the transfers
 978 *
 979 * Calling this function will terminate all active and pending transfers
 980 * that have previously been submitted to the channel. It is similar to
 981 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
 982 * stopped and that all complete callbacks have finished running when the
 983 * function returns.
 984 *
 985 * This function must only be called from non-atomic context and must not be
 986 * called from within a complete callback of a descriptor submitted on the same
 987 * channel.
 988 */
 989static inline int dmaengine_terminate_sync(struct dma_chan *chan)
 990{
 991        int ret;
 992
 993        ret = dmaengine_terminate_async(chan);
 994        if (ret)
 995                return ret;
 996
 997        dmaengine_synchronize(chan);
 998
 999        return 0;
1000}
1001
1002static inline int dmaengine_pause(struct dma_chan *chan)
1003{
1004        if (chan->device->device_pause)
1005                return chan->device->device_pause(chan);
1006
1007        return -ENOSYS;
1008}
1009
1010static inline int dmaengine_resume(struct dma_chan *chan)
1011{
1012        if (chan->device->device_resume)
1013                return chan->device->device_resume(chan);
1014
1015        return -ENOSYS;
1016}
1017
1018static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1019        dma_cookie_t cookie, struct dma_tx_state *state)
1020{
1021        return chan->device->device_tx_status(chan, cookie, state);
1022}
1023
1024static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1025{
1026        return desc->tx_submit(desc);
1027}
1028
1029static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1030                                         size_t off1, size_t off2, size_t len)
1031{
1032        size_t mask;
1033
1034        if (!align)
1035                return true;
1036        mask = (1 << align) - 1;
1037        if (mask & (off1 | off2 | len))
1038                return false;
1039        return true;
1040}
1041
1042static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1043                                       size_t off2, size_t len)
1044{
1045        return dmaengine_check_align(dev->copy_align, off1, off2, len);
1046}
1047
1048static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1049                                      size_t off2, size_t len)
1050{
1051        return dmaengine_check_align(dev->xor_align, off1, off2, len);
1052}
1053
1054static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1055                                     size_t off2, size_t len)
1056{
1057        return dmaengine_check_align(dev->pq_align, off1, off2, len);
1058}
1059
1060static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1061                                       size_t off2, size_t len)
1062{
1063        return dmaengine_check_align(dev->fill_align, off1, off2, len);
1064}
1065
1066static inline void
1067dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1068{
1069        dma->max_pq = maxpq;
1070        if (has_pq_continue)
1071                dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1072}
1073
1074static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1075{
1076        return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1077}
1078
1079static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1080{
1081        enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1082
1083        return (flags & mask) == mask;
1084}
1085
1086static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1087{
1088        return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1089}
1090
1091static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1092{
1093        return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1094}
1095
1096/* dma_maxpq - reduce maxpq in the face of continued operations
1097 * @dma - dma device with PQ capability
1098 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1099 *
1100 * When an engine does not support native continuation we need 3 extra
1101 * source slots to reuse P and Q with the following coefficients:
1102 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1103 * 2/ {01} * Q : use Q to continue Q' calculation
1104 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1105 *
1106 * In the case where P is disabled we only need 1 extra source:
1107 * 1/ {01} * Q : use Q to continue Q' calculation
1108 */
1109static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1110{
1111        if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1112                return dma_dev_to_maxpq(dma);
1113        else if (dmaf_p_disabled_continue(flags))
1114                return dma_dev_to_maxpq(dma) - 1;
1115        else if (dmaf_continue(flags))
1116                return dma_dev_to_maxpq(dma) - 3;
1117        BUG();
1118}
1119
1120static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1121                                      size_t dir_icg)
1122{
1123        if (inc) {
1124                if (dir_icg)
1125                        return dir_icg;
1126                else if (sgl)
1127                        return icg;
1128        }
1129
1130        return 0;
1131}
1132
1133static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1134                                           struct data_chunk *chunk)
1135{
1136        return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1137                                 chunk->icg, chunk->dst_icg);
1138}
1139
1140static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1141                                           struct data_chunk *chunk)
1142{
1143        return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1144                                 chunk->icg, chunk->src_icg);
1145}
1146
1147/* --- public DMA engine API --- */
1148
1149#ifdef CONFIG_DMA_ENGINE
1150void dmaengine_get(void);
1151void dmaengine_put(void);
1152#else
1153static inline void dmaengine_get(void)
1154{
1155}
1156static inline void dmaengine_put(void)
1157{
1158}
1159#endif
1160
1161#ifdef CONFIG_ASYNC_TX_DMA
1162#define async_dmaengine_get()   dmaengine_get()
1163#define async_dmaengine_put()   dmaengine_put()
1164#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1165#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1166#else
1167#define async_dma_find_channel(type) dma_find_channel(type)
1168#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1169#else
1170static inline void async_dmaengine_get(void)
1171{
1172}
1173static inline void async_dmaengine_put(void)
1174{
1175}
1176static inline struct dma_chan *
1177async_dma_find_channel(enum dma_transaction_type type)
1178{
1179        return NULL;
1180}
1181#endif /* CONFIG_ASYNC_TX_DMA */
1182void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1183                                  struct dma_chan *chan);
1184
1185static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1186{
1187        tx->flags |= DMA_CTRL_ACK;
1188}
1189
1190static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1191{
1192        tx->flags &= ~DMA_CTRL_ACK;
1193}
1194
1195static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1196{
1197        return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1198}
1199
1200#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1201static inline void
1202__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1203{
1204        set_bit(tx_type, dstp->bits);
1205}
1206
1207#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1208static inline void
1209__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1210{
1211        clear_bit(tx_type, dstp->bits);
1212}
1213
1214#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1215static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1216{
1217        bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1218}
1219
1220#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1221static inline int
1222__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1223{
1224        return test_bit(tx_type, srcp->bits);
1225}
1226
1227#define for_each_dma_cap_mask(cap, mask) \
1228        for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1229
1230/**
1231 * dma_async_issue_pending - flush pending transactions to HW
1232 * @chan: target DMA channel
1233 *
1234 * This allows drivers to push copies to HW in batches,
1235 * reducing MMIO writes where possible.
1236 */
1237static inline void dma_async_issue_pending(struct dma_chan *chan)
1238{
1239        chan->device->device_issue_pending(chan);
1240}
1241
1242/**
1243 * dma_async_is_tx_complete - poll for transaction completion
1244 * @chan: DMA channel
1245 * @cookie: transaction identifier to check status of
1246 * @last: returns last completed cookie, can be NULL
1247 * @used: returns last issued cookie, can be NULL
1248 *
1249 * If @last and @used are passed in, upon return they reflect the driver
1250 * internal state and can be used with dma_async_is_complete() to check
1251 * the status of multiple cookies without re-checking hardware state.
1252 */
1253static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1254        dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1255{
1256        struct dma_tx_state state;
1257        enum dma_status status;
1258
1259        status = chan->device->device_tx_status(chan, cookie, &state);
1260        if (last)
1261                *last = state.last;
1262        if (used)
1263                *used = state.used;
1264        return status;
1265}
1266
1267/**
1268 * dma_async_is_complete - test a cookie against chan state
1269 * @cookie: transaction identifier to test status of
1270 * @last_complete: last know completed transaction
1271 * @last_used: last cookie value handed out
1272 *
1273 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1274 * the test logic is separated for lightweight testing of multiple cookies
1275 */
1276static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1277                        dma_cookie_t last_complete, dma_cookie_t last_used)
1278{
1279        if (last_complete <= last_used) {
1280                if ((cookie <= last_complete) || (cookie > last_used))
1281                        return DMA_COMPLETE;
1282        } else {
1283                if ((cookie <= last_complete) && (cookie > last_used))
1284                        return DMA_COMPLETE;
1285        }
1286        return DMA_IN_PROGRESS;
1287}
1288
1289static inline void
1290dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1291{
1292        if (st) {
1293                st->last = last;
1294                st->used = used;
1295                st->residue = residue;
1296        }
1297}
1298
1299#ifdef CONFIG_DMA_ENGINE
1300struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1301enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1302enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1303void dma_issue_pending_all(void);
1304struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1305                                       dma_filter_fn fn, void *fn_param,
1306                                       struct device_node *np);
1307struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1308
1309struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1310struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1311
1312void dma_release_channel(struct dma_chan *chan);
1313int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1314#else
1315static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1316{
1317        return NULL;
1318}
1319static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1320{
1321        return DMA_COMPLETE;
1322}
1323static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1324{
1325        return DMA_COMPLETE;
1326}
1327static inline void dma_issue_pending_all(void)
1328{
1329}
1330static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1331                                                     dma_filter_fn fn,
1332                                                     void *fn_param,
1333                                                     struct device_node *np)
1334{
1335        return NULL;
1336}
1337static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1338                                                         const char *name)
1339{
1340        return NULL;
1341}
1342static inline struct dma_chan *dma_request_chan(struct device *dev,
1343                                                const char *name)
1344{
1345        return ERR_PTR(-ENODEV);
1346}
1347static inline struct dma_chan *dma_request_chan_by_mask(
1348                                                const dma_cap_mask_t *mask)
1349{
1350        return ERR_PTR(-ENODEV);
1351}
1352static inline void dma_release_channel(struct dma_chan *chan)
1353{
1354}
1355static inline int dma_get_slave_caps(struct dma_chan *chan,
1356                                     struct dma_slave_caps *caps)
1357{
1358        return -ENXIO;
1359}
1360#endif
1361
1362#define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name)
1363
1364static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1365{
1366        struct dma_slave_caps caps;
1367
1368        dma_get_slave_caps(tx->chan, &caps);
1369
1370        if (caps.descriptor_reuse) {
1371                tx->flags |= DMA_CTRL_REUSE;
1372                return 0;
1373        } else {
1374                return -EPERM;
1375        }
1376}
1377
1378static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1379{
1380        tx->flags &= ~DMA_CTRL_REUSE;
1381}
1382
1383static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1384{
1385        return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1386}
1387
1388static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1389{
1390        /* this is supported for reusable desc, so check that */
1391        if (dmaengine_desc_test_reuse(desc))
1392                return desc->desc_free(desc);
1393        else
1394                return -EPERM;
1395}
1396
1397/* --- DMA device --- */
1398
1399int dma_async_device_register(struct dma_device *device);
1400int dmaenginem_async_device_register(struct dma_device *device);
1401void dma_async_device_unregister(struct dma_device *device);
1402void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1403struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1404struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1405#define dma_request_channel(mask, x, y) \
1406        __dma_request_channel(&(mask), x, y, NULL)
1407#define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1408        __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1409
1410static inline struct dma_chan
1411*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1412                                  dma_filter_fn fn, void *fn_param,
1413                                  struct device *dev, const char *name)
1414{
1415        struct dma_chan *chan;
1416
1417        chan = dma_request_slave_channel(dev, name);
1418        if (chan)
1419                return chan;
1420
1421        if (!fn || !fn_param)
1422                return NULL;
1423
1424        return __dma_request_channel(mask, fn, fn_param, NULL);
1425}
1426#endif /* DMAENGINE_H */
1427