linux/include/linux/kernel.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_KERNEL_H
   3#define _LINUX_KERNEL_H
   4
   5
   6#include <stdarg.h>
   7#include <linux/limits.h>
   8#include <linux/linkage.h>
   9#include <linux/stddef.h>
  10#include <linux/types.h>
  11#include <linux/compiler.h>
  12#include <linux/bitops.h>
  13#include <linux/log2.h>
  14#include <linux/typecheck.h>
  15#include <linux/printk.h>
  16#include <linux/build_bug.h>
  17#include <asm/byteorder.h>
  18#include <asm/div64.h>
  19#include <uapi/linux/kernel.h>
  20#include <asm/div64.h>
  21
  22#define STACK_MAGIC     0xdeadbeef
  23
  24/**
  25 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
  26 * @x: value to repeat
  27 *
  28 * NOTE: @x is not checked for > 0xff; larger values produce odd results.
  29 */
  30#define REPEAT_BYTE(x)  ((~0ul / 0xff) * (x))
  31
  32/* @a is a power of 2 value */
  33#define ALIGN(x, a)             __ALIGN_KERNEL((x), (a))
  34#define ALIGN_DOWN(x, a)        __ALIGN_KERNEL((x) - ((a) - 1), (a))
  35#define __ALIGN_MASK(x, mask)   __ALIGN_KERNEL_MASK((x), (mask))
  36#define PTR_ALIGN(p, a)         ((typeof(p))ALIGN((unsigned long)(p), (a)))
  37#define IS_ALIGNED(x, a)                (((x) & ((typeof(x))(a) - 1)) == 0)
  38
  39/* generic data direction definitions */
  40#define READ                    0
  41#define WRITE                   1
  42
  43/**
  44 * ARRAY_SIZE - get the number of elements in array @arr
  45 * @arr: array to be sized
  46 */
  47#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
  48
  49#define u64_to_user_ptr(x) (            \
  50{                                       \
  51        typecheck(u64, (x));            \
  52        (void __user *)(uintptr_t)(x);  \
  53}                                       \
  54)
  55
  56/*
  57 * This looks more complex than it should be. But we need to
  58 * get the type for the ~ right in round_down (it needs to be
  59 * as wide as the result!), and we want to evaluate the macro
  60 * arguments just once each.
  61 */
  62#define __round_mask(x, y) ((__typeof__(x))((y)-1))
  63/**
  64 * round_up - round up to next specified power of 2
  65 * @x: the value to round
  66 * @y: multiple to round up to (must be a power of 2)
  67 *
  68 * Rounds @x up to next multiple of @y (which must be a power of 2).
  69 * To perform arbitrary rounding up, use roundup() below.
  70 */
  71#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
  72/**
  73 * round_down - round down to next specified power of 2
  74 * @x: the value to round
  75 * @y: multiple to round down to (must be a power of 2)
  76 *
  77 * Rounds @x down to next multiple of @y (which must be a power of 2).
  78 * To perform arbitrary rounding down, use rounddown() below.
  79 */
  80#define round_down(x, y) ((x) & ~__round_mask(x, y))
  81
  82/**
  83 * FIELD_SIZEOF - get the size of a struct's field
  84 * @t: the target struct
  85 * @f: the target struct's field
  86 * Return: the size of @f in the struct definition without having a
  87 * declared instance of @t.
  88 */
  89#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
  90
  91#define typeof_member(T, m)     typeof(((T*)0)->m)
  92
  93#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
  94
  95#define DIV_ROUND_DOWN_ULL(ll, d) \
  96        ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
  97
  98#define DIV_ROUND_UP_ULL(ll, d) \
  99        DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
 100
 101#if BITS_PER_LONG == 32
 102# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
 103#else
 104# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
 105#endif
 106
 107/**
 108 * roundup - round up to the next specified multiple
 109 * @x: the value to up
 110 * @y: multiple to round up to
 111 *
 112 * Rounds @x up to next multiple of @y. If @y will always be a power
 113 * of 2, consider using the faster round_up().
 114 */
 115#define roundup(x, y) (                                 \
 116{                                                       \
 117        typeof(y) __y = y;                              \
 118        (((x) + (__y - 1)) / __y) * __y;                \
 119}                                                       \
 120)
 121/**
 122 * rounddown - round down to next specified multiple
 123 * @x: the value to round
 124 * @y: multiple to round down to
 125 *
 126 * Rounds @x down to next multiple of @y. If @y will always be a power
 127 * of 2, consider using the faster round_down().
 128 */
 129#define rounddown(x, y) (                               \
 130{                                                       \
 131        typeof(x) __x = (x);                            \
 132        __x - (__x % (y));                              \
 133}                                                       \
 134)
 135
 136/*
 137 * Divide positive or negative dividend by positive or negative divisor
 138 * and round to closest integer. Result is undefined for negative
 139 * divisors if the dividend variable type is unsigned and for negative
 140 * dividends if the divisor variable type is unsigned.
 141 */
 142#define DIV_ROUND_CLOSEST(x, divisor)(                  \
 143{                                                       \
 144        typeof(x) __x = x;                              \
 145        typeof(divisor) __d = divisor;                  \
 146        (((typeof(x))-1) > 0 ||                         \
 147         ((typeof(divisor))-1) > 0 ||                   \
 148         (((__x) > 0) == ((__d) > 0))) ?                \
 149                (((__x) + ((__d) / 2)) / (__d)) :       \
 150                (((__x) - ((__d) / 2)) / (__d));        \
 151}                                                       \
 152)
 153/*
 154 * Same as above but for u64 dividends. divisor must be a 32-bit
 155 * number.
 156 */
 157#define DIV_ROUND_CLOSEST_ULL(x, divisor)(              \
 158{                                                       \
 159        typeof(divisor) __d = divisor;                  \
 160        unsigned long long _tmp = (x) + (__d) / 2;      \
 161        do_div(_tmp, __d);                              \
 162        _tmp;                                           \
 163}                                                       \
 164)
 165
 166/*
 167 * Multiplies an integer by a fraction, while avoiding unnecessary
 168 * overflow or loss of precision.
 169 */
 170#define mult_frac(x, numer, denom)(                     \
 171{                                                       \
 172        typeof(x) quot = (x) / (denom);                 \
 173        typeof(x) rem  = (x) % (denom);                 \
 174        (quot * (numer)) + ((rem * (numer)) / (denom)); \
 175}                                                       \
 176)
 177
 178
 179#define _RET_IP_                (unsigned long)__builtin_return_address(0)
 180#define _THIS_IP_  ({ __label__ __here; __here: (unsigned long)&&__here; })
 181
 182#define sector_div(a, b) do_div(a, b)
 183
 184/**
 185 * upper_32_bits - return bits 32-63 of a number
 186 * @n: the number we're accessing
 187 *
 188 * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
 189 * the "right shift count >= width of type" warning when that quantity is
 190 * 32-bits.
 191 */
 192#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
 193
 194/**
 195 * lower_32_bits - return bits 0-31 of a number
 196 * @n: the number we're accessing
 197 */
 198#define lower_32_bits(n) ((u32)(n))
 199
 200struct completion;
 201struct pt_regs;
 202struct user;
 203
 204#ifdef CONFIG_PREEMPT_VOLUNTARY
 205extern int _cond_resched(void);
 206# define might_resched() _cond_resched()
 207#else
 208# define might_resched() do { } while (0)
 209#endif
 210
 211#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 212extern void ___might_sleep(const char *file, int line, int preempt_offset);
 213extern void __might_sleep(const char *file, int line, int preempt_offset);
 214extern void __cant_sleep(const char *file, int line, int preempt_offset);
 215
 216/**
 217 * might_sleep - annotation for functions that can sleep
 218 *
 219 * this macro will print a stack trace if it is executed in an atomic
 220 * context (spinlock, irq-handler, ...).
 221 *
 222 * This is a useful debugging help to be able to catch problems early and not
 223 * be bitten later when the calling function happens to sleep when it is not
 224 * supposed to.
 225 */
 226# define might_sleep() \
 227        do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
 228/**
 229 * cant_sleep - annotation for functions that cannot sleep
 230 *
 231 * this macro will print a stack trace if it is executed with preemption enabled
 232 */
 233# define cant_sleep() \
 234        do { __cant_sleep(__FILE__, __LINE__, 0); } while (0)
 235# define sched_annotate_sleep() (current->task_state_change = 0)
 236#else
 237  static inline void ___might_sleep(const char *file, int line,
 238                                   int preempt_offset) { }
 239  static inline void __might_sleep(const char *file, int line,
 240                                   int preempt_offset) { }
 241# define might_sleep() do { might_resched(); } while (0)
 242# define cant_sleep() do { } while (0)
 243# define sched_annotate_sleep() do { } while (0)
 244#endif
 245
 246#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
 247
 248/**
 249 * abs - return absolute value of an argument
 250 * @x: the value.  If it is unsigned type, it is converted to signed type first.
 251 *     char is treated as if it was signed (regardless of whether it really is)
 252 *     but the macro's return type is preserved as char.
 253 *
 254 * Return: an absolute value of x.
 255 */
 256#define abs(x)  __abs_choose_expr(x, long long,                         \
 257                __abs_choose_expr(x, long,                              \
 258                __abs_choose_expr(x, int,                               \
 259                __abs_choose_expr(x, short,                             \
 260                __abs_choose_expr(x, char,                              \
 261                __builtin_choose_expr(                                  \
 262                        __builtin_types_compatible_p(typeof(x), char),  \
 263                        (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
 264                        ((void)0)))))))
 265
 266#define __abs_choose_expr(x, type, other) __builtin_choose_expr(        \
 267        __builtin_types_compatible_p(typeof(x),   signed type) ||       \
 268        __builtin_types_compatible_p(typeof(x), unsigned type),         \
 269        ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
 270
 271/**
 272 * reciprocal_scale - "scale" a value into range [0, ep_ro)
 273 * @val: value
 274 * @ep_ro: right open interval endpoint
 275 *
 276 * Perform a "reciprocal multiplication" in order to "scale" a value into
 277 * range [0, @ep_ro), where the upper interval endpoint is right-open.
 278 * This is useful, e.g. for accessing a index of an array containing
 279 * @ep_ro elements, for example. Think of it as sort of modulus, only that
 280 * the result isn't that of modulo. ;) Note that if initial input is a
 281 * small value, then result will return 0.
 282 *
 283 * Return: a result based on @val in interval [0, @ep_ro).
 284 */
 285static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
 286{
 287        return (u32)(((u64) val * ep_ro) >> 32);
 288}
 289
 290#if defined(CONFIG_MMU) && \
 291        (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
 292#define might_fault() __might_fault(__FILE__, __LINE__)
 293void __might_fault(const char *file, int line);
 294#else
 295static inline void might_fault(void) { }
 296#endif
 297
 298extern struct atomic_notifier_head panic_notifier_list;
 299extern long (*panic_blink)(int state);
 300__printf(1, 2)
 301void panic(const char *fmt, ...) __noreturn __cold;
 302void nmi_panic(struct pt_regs *regs, const char *msg);
 303extern void oops_enter(void);
 304extern void oops_exit(void);
 305void print_oops_end_marker(void);
 306extern int oops_may_print(void);
 307void do_exit(long error_code) __noreturn;
 308void complete_and_exit(struct completion *, long) __noreturn;
 309
 310#ifdef CONFIG_ARCH_HAS_REFCOUNT
 311void refcount_error_report(struct pt_regs *regs, const char *err);
 312#else
 313static inline void refcount_error_report(struct pt_regs *regs, const char *err)
 314{ }
 315#endif
 316
 317/* Internal, do not use. */
 318int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
 319int __must_check _kstrtol(const char *s, unsigned int base, long *res);
 320
 321int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
 322int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
 323
 324/**
 325 * kstrtoul - convert a string to an unsigned long
 326 * @s: The start of the string. The string must be null-terminated, and may also
 327 *  include a single newline before its terminating null. The first character
 328 *  may also be a plus sign, but not a minus sign.
 329 * @base: The number base to use. The maximum supported base is 16. If base is
 330 *  given as 0, then the base of the string is automatically detected with the
 331 *  conventional semantics - If it begins with 0x the number will be parsed as a
 332 *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
 333 *  parsed as an octal number. Otherwise it will be parsed as a decimal.
 334 * @res: Where to write the result of the conversion on success.
 335 *
 336 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
 337 * Used as a replacement for the obsolete simple_strtoull. Return code must
 338 * be checked.
 339*/
 340static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
 341{
 342        /*
 343         * We want to shortcut function call, but
 344         * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
 345         */
 346        if (sizeof(unsigned long) == sizeof(unsigned long long) &&
 347            __alignof__(unsigned long) == __alignof__(unsigned long long))
 348                return kstrtoull(s, base, (unsigned long long *)res);
 349        else
 350                return _kstrtoul(s, base, res);
 351}
 352
 353/**
 354 * kstrtol - convert a string to a long
 355 * @s: The start of the string. The string must be null-terminated, and may also
 356 *  include a single newline before its terminating null. The first character
 357 *  may also be a plus sign or a minus sign.
 358 * @base: The number base to use. The maximum supported base is 16. If base is
 359 *  given as 0, then the base of the string is automatically detected with the
 360 *  conventional semantics - If it begins with 0x the number will be parsed as a
 361 *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
 362 *  parsed as an octal number. Otherwise it will be parsed as a decimal.
 363 * @res: Where to write the result of the conversion on success.
 364 *
 365 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
 366 * Used as a replacement for the obsolete simple_strtoull. Return code must
 367 * be checked.
 368 */
 369static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
 370{
 371        /*
 372         * We want to shortcut function call, but
 373         * __builtin_types_compatible_p(long, long long) = 0.
 374         */
 375        if (sizeof(long) == sizeof(long long) &&
 376            __alignof__(long) == __alignof__(long long))
 377                return kstrtoll(s, base, (long long *)res);
 378        else
 379                return _kstrtol(s, base, res);
 380}
 381
 382int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
 383int __must_check kstrtoint(const char *s, unsigned int base, int *res);
 384
 385static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
 386{
 387        return kstrtoull(s, base, res);
 388}
 389
 390static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
 391{
 392        return kstrtoll(s, base, res);
 393}
 394
 395static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
 396{
 397        return kstrtouint(s, base, res);
 398}
 399
 400static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
 401{
 402        return kstrtoint(s, base, res);
 403}
 404
 405int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
 406int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
 407int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
 408int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
 409int __must_check kstrtobool(const char *s, bool *res);
 410
 411int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
 412int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
 413int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
 414int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
 415int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
 416int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
 417int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
 418int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
 419int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
 420int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
 421int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
 422
 423static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
 424{
 425        return kstrtoull_from_user(s, count, base, res);
 426}
 427
 428static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
 429{
 430        return kstrtoll_from_user(s, count, base, res);
 431}
 432
 433static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
 434{
 435        return kstrtouint_from_user(s, count, base, res);
 436}
 437
 438static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
 439{
 440        return kstrtoint_from_user(s, count, base, res);
 441}
 442
 443/* Obsolete, do not use.  Use kstrto<foo> instead */
 444
 445extern unsigned long simple_strtoul(const char *,char **,unsigned int);
 446extern long simple_strtol(const char *,char **,unsigned int);
 447extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
 448extern long long simple_strtoll(const char *,char **,unsigned int);
 449
 450extern int num_to_str(char *buf, int size,
 451                      unsigned long long num, unsigned int width);
 452
 453/* lib/printf utilities */
 454
 455extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
 456extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
 457extern __printf(3, 4)
 458int snprintf(char *buf, size_t size, const char *fmt, ...);
 459extern __printf(3, 0)
 460int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
 461extern __printf(3, 4)
 462int scnprintf(char *buf, size_t size, const char *fmt, ...);
 463extern __printf(3, 0)
 464int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
 465extern __printf(2, 3) __malloc
 466char *kasprintf(gfp_t gfp, const char *fmt, ...);
 467extern __printf(2, 0) __malloc
 468char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
 469extern __printf(2, 0)
 470const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
 471
 472extern __scanf(2, 3)
 473int sscanf(const char *, const char *, ...);
 474extern __scanf(2, 0)
 475int vsscanf(const char *, const char *, va_list);
 476
 477extern int get_option(char **str, int *pint);
 478extern char *get_options(const char *str, int nints, int *ints);
 479extern unsigned long long memparse(const char *ptr, char **retptr);
 480extern bool parse_option_str(const char *str, const char *option);
 481extern char *next_arg(char *args, char **param, char **val);
 482
 483extern int core_kernel_text(unsigned long addr);
 484extern int init_kernel_text(unsigned long addr);
 485extern int core_kernel_data(unsigned long addr);
 486extern int __kernel_text_address(unsigned long addr);
 487extern int kernel_text_address(unsigned long addr);
 488extern int func_ptr_is_kernel_text(void *ptr);
 489
 490u64 int_pow(u64 base, unsigned int exp);
 491unsigned long int_sqrt(unsigned long);
 492
 493#if BITS_PER_LONG < 64
 494u32 int_sqrt64(u64 x);
 495#else
 496static inline u32 int_sqrt64(u64 x)
 497{
 498        return (u32)int_sqrt(x);
 499}
 500#endif
 501
 502extern void bust_spinlocks(int yes);
 503extern int oops_in_progress;            /* If set, an oops, panic(), BUG() or die() is in progress */
 504extern int panic_timeout;
 505extern unsigned long panic_print;
 506extern int panic_on_oops;
 507extern int panic_on_unrecovered_nmi;
 508extern int panic_on_io_nmi;
 509extern int panic_on_warn;
 510extern int sysctl_panic_on_rcu_stall;
 511extern int sysctl_panic_on_stackoverflow;
 512
 513extern bool crash_kexec_post_notifiers;
 514
 515/*
 516 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
 517 * holds a CPU number which is executing panic() currently. A value of
 518 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
 519 */
 520extern atomic_t panic_cpu;
 521#define PANIC_CPU_INVALID       -1
 522
 523/*
 524 * Only to be used by arch init code. If the user over-wrote the default
 525 * CONFIG_PANIC_TIMEOUT, honor it.
 526 */
 527static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
 528{
 529        if (panic_timeout == arch_default_timeout)
 530                panic_timeout = timeout;
 531}
 532extern const char *print_tainted(void);
 533enum lockdep_ok {
 534        LOCKDEP_STILL_OK,
 535        LOCKDEP_NOW_UNRELIABLE
 536};
 537extern void add_taint(unsigned flag, enum lockdep_ok);
 538extern int test_taint(unsigned flag);
 539extern unsigned long get_taint(void);
 540extern int root_mountflags;
 541
 542extern bool early_boot_irqs_disabled;
 543
 544/*
 545 * Values used for system_state. Ordering of the states must not be changed
 546 * as code checks for <, <=, >, >= STATE.
 547 */
 548extern enum system_states {
 549        SYSTEM_BOOTING,
 550        SYSTEM_SCHEDULING,
 551        SYSTEM_RUNNING,
 552        SYSTEM_HALT,
 553        SYSTEM_POWER_OFF,
 554        SYSTEM_RESTART,
 555        SYSTEM_SUSPEND,
 556} system_state;
 557
 558/* This cannot be an enum because some may be used in assembly source. */
 559#define TAINT_PROPRIETARY_MODULE        0
 560#define TAINT_FORCED_MODULE             1
 561#define TAINT_CPU_OUT_OF_SPEC           2
 562#define TAINT_FORCED_RMMOD              3
 563#define TAINT_MACHINE_CHECK             4
 564#define TAINT_BAD_PAGE                  5
 565#define TAINT_USER                      6
 566#define TAINT_DIE                       7
 567#define TAINT_OVERRIDDEN_ACPI_TABLE     8
 568#define TAINT_WARN                      9
 569#define TAINT_CRAP                      10
 570#define TAINT_FIRMWARE_WORKAROUND       11
 571#define TAINT_OOT_MODULE                12
 572#define TAINT_UNSIGNED_MODULE           13
 573#define TAINT_SOFTLOCKUP                14
 574#define TAINT_LIVEPATCH                 15
 575#define TAINT_AUX                       16
 576#define TAINT_RANDSTRUCT                17
 577#define TAINT_FLAGS_COUNT               18
 578
 579struct taint_flag {
 580        char c_true;    /* character printed when tainted */
 581        char c_false;   /* character printed when not tainted */
 582        bool module;    /* also show as a per-module taint flag */
 583};
 584
 585extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
 586
 587extern const char hex_asc[];
 588#define hex_asc_lo(x)   hex_asc[((x) & 0x0f)]
 589#define hex_asc_hi(x)   hex_asc[((x) & 0xf0) >> 4]
 590
 591static inline char *hex_byte_pack(char *buf, u8 byte)
 592{
 593        *buf++ = hex_asc_hi(byte);
 594        *buf++ = hex_asc_lo(byte);
 595        return buf;
 596}
 597
 598extern const char hex_asc_upper[];
 599#define hex_asc_upper_lo(x)     hex_asc_upper[((x) & 0x0f)]
 600#define hex_asc_upper_hi(x)     hex_asc_upper[((x) & 0xf0) >> 4]
 601
 602static inline char *hex_byte_pack_upper(char *buf, u8 byte)
 603{
 604        *buf++ = hex_asc_upper_hi(byte);
 605        *buf++ = hex_asc_upper_lo(byte);
 606        return buf;
 607}
 608
 609extern int hex_to_bin(char ch);
 610extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
 611extern char *bin2hex(char *dst, const void *src, size_t count);
 612
 613bool mac_pton(const char *s, u8 *mac);
 614
 615/*
 616 * General tracing related utility functions - trace_printk(),
 617 * tracing_on/tracing_off and tracing_start()/tracing_stop
 618 *
 619 * Use tracing_on/tracing_off when you want to quickly turn on or off
 620 * tracing. It simply enables or disables the recording of the trace events.
 621 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
 622 * file, which gives a means for the kernel and userspace to interact.
 623 * Place a tracing_off() in the kernel where you want tracing to end.
 624 * From user space, examine the trace, and then echo 1 > tracing_on
 625 * to continue tracing.
 626 *
 627 * tracing_stop/tracing_start has slightly more overhead. It is used
 628 * by things like suspend to ram where disabling the recording of the
 629 * trace is not enough, but tracing must actually stop because things
 630 * like calling smp_processor_id() may crash the system.
 631 *
 632 * Most likely, you want to use tracing_on/tracing_off.
 633 */
 634
 635enum ftrace_dump_mode {
 636        DUMP_NONE,
 637        DUMP_ALL,
 638        DUMP_ORIG,
 639};
 640
 641#ifdef CONFIG_TRACING
 642void tracing_on(void);
 643void tracing_off(void);
 644int tracing_is_on(void);
 645void tracing_snapshot(void);
 646void tracing_snapshot_alloc(void);
 647
 648extern void tracing_start(void);
 649extern void tracing_stop(void);
 650
 651static inline __printf(1, 2)
 652void ____trace_printk_check_format(const char *fmt, ...)
 653{
 654}
 655#define __trace_printk_check_format(fmt, args...)                       \
 656do {                                                                    \
 657        if (0)                                                          \
 658                ____trace_printk_check_format(fmt, ##args);             \
 659} while (0)
 660
 661/**
 662 * trace_printk - printf formatting in the ftrace buffer
 663 * @fmt: the printf format for printing
 664 *
 665 * Note: __trace_printk is an internal function for trace_printk() and
 666 *       the @ip is passed in via the trace_printk() macro.
 667 *
 668 * This function allows a kernel developer to debug fast path sections
 669 * that printk is not appropriate for. By scattering in various
 670 * printk like tracing in the code, a developer can quickly see
 671 * where problems are occurring.
 672 *
 673 * This is intended as a debugging tool for the developer only.
 674 * Please refrain from leaving trace_printks scattered around in
 675 * your code. (Extra memory is used for special buffers that are
 676 * allocated when trace_printk() is used.)
 677 *
 678 * A little optimization trick is done here. If there's only one
 679 * argument, there's no need to scan the string for printf formats.
 680 * The trace_puts() will suffice. But how can we take advantage of
 681 * using trace_puts() when trace_printk() has only one argument?
 682 * By stringifying the args and checking the size we can tell
 683 * whether or not there are args. __stringify((__VA_ARGS__)) will
 684 * turn into "()\0" with a size of 3 when there are no args, anything
 685 * else will be bigger. All we need to do is define a string to this,
 686 * and then take its size and compare to 3. If it's bigger, use
 687 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
 688 * let gcc optimize the rest.
 689 */
 690
 691#define trace_printk(fmt, ...)                          \
 692do {                                                    \
 693        char _______STR[] = __stringify((__VA_ARGS__)); \
 694        if (sizeof(_______STR) > 3)                     \
 695                do_trace_printk(fmt, ##__VA_ARGS__);    \
 696        else                                            \
 697                trace_puts(fmt);                        \
 698} while (0)
 699
 700#define do_trace_printk(fmt, args...)                                   \
 701do {                                                                    \
 702        static const char *trace_printk_fmt __used                      \
 703                __attribute__((section("__trace_printk_fmt"))) =        \
 704                __builtin_constant_p(fmt) ? fmt : NULL;                 \
 705                                                                        \
 706        __trace_printk_check_format(fmt, ##args);                       \
 707                                                                        \
 708        if (__builtin_constant_p(fmt))                                  \
 709                __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args);   \
 710        else                                                            \
 711                __trace_printk(_THIS_IP_, fmt, ##args);                 \
 712} while (0)
 713
 714extern __printf(2, 3)
 715int __trace_bprintk(unsigned long ip, const char *fmt, ...);
 716
 717extern __printf(2, 3)
 718int __trace_printk(unsigned long ip, const char *fmt, ...);
 719
 720/**
 721 * trace_puts - write a string into the ftrace buffer
 722 * @str: the string to record
 723 *
 724 * Note: __trace_bputs is an internal function for trace_puts and
 725 *       the @ip is passed in via the trace_puts macro.
 726 *
 727 * This is similar to trace_printk() but is made for those really fast
 728 * paths that a developer wants the least amount of "Heisenbug" effects,
 729 * where the processing of the print format is still too much.
 730 *
 731 * This function allows a kernel developer to debug fast path sections
 732 * that printk is not appropriate for. By scattering in various
 733 * printk like tracing in the code, a developer can quickly see
 734 * where problems are occurring.
 735 *
 736 * This is intended as a debugging tool for the developer only.
 737 * Please refrain from leaving trace_puts scattered around in
 738 * your code. (Extra memory is used for special buffers that are
 739 * allocated when trace_puts() is used.)
 740 *
 741 * Returns: 0 if nothing was written, positive # if string was.
 742 *  (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
 743 */
 744
 745#define trace_puts(str) ({                                              \
 746        static const char *trace_printk_fmt __used                      \
 747                __attribute__((section("__trace_printk_fmt"))) =        \
 748                __builtin_constant_p(str) ? str : NULL;                 \
 749                                                                        \
 750        if (__builtin_constant_p(str))                                  \
 751                __trace_bputs(_THIS_IP_, trace_printk_fmt);             \
 752        else                                                            \
 753                __trace_puts(_THIS_IP_, str, strlen(str));              \
 754})
 755extern int __trace_bputs(unsigned long ip, const char *str);
 756extern int __trace_puts(unsigned long ip, const char *str, int size);
 757
 758extern void trace_dump_stack(int skip);
 759
 760/*
 761 * The double __builtin_constant_p is because gcc will give us an error
 762 * if we try to allocate the static variable to fmt if it is not a
 763 * constant. Even with the outer if statement.
 764 */
 765#define ftrace_vprintk(fmt, vargs)                                      \
 766do {                                                                    \
 767        if (__builtin_constant_p(fmt)) {                                \
 768                static const char *trace_printk_fmt __used              \
 769                  __attribute__((section("__trace_printk_fmt"))) =      \
 770                        __builtin_constant_p(fmt) ? fmt : NULL;         \
 771                                                                        \
 772                __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs);  \
 773        } else                                                          \
 774                __ftrace_vprintk(_THIS_IP_, fmt, vargs);                \
 775} while (0)
 776
 777extern __printf(2, 0) int
 778__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
 779
 780extern __printf(2, 0) int
 781__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
 782
 783extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
 784#else
 785static inline void tracing_start(void) { }
 786static inline void tracing_stop(void) { }
 787static inline void trace_dump_stack(int skip) { }
 788
 789static inline void tracing_on(void) { }
 790static inline void tracing_off(void) { }
 791static inline int tracing_is_on(void) { return 0; }
 792static inline void tracing_snapshot(void) { }
 793static inline void tracing_snapshot_alloc(void) { }
 794
 795static inline __printf(1, 2)
 796int trace_printk(const char *fmt, ...)
 797{
 798        return 0;
 799}
 800static __printf(1, 0) inline int
 801ftrace_vprintk(const char *fmt, va_list ap)
 802{
 803        return 0;
 804}
 805static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
 806#endif /* CONFIG_TRACING */
 807
 808/*
 809 * min()/max()/clamp() macros must accomplish three things:
 810 *
 811 * - avoid multiple evaluations of the arguments (so side-effects like
 812 *   "x++" happen only once) when non-constant.
 813 * - perform strict type-checking (to generate warnings instead of
 814 *   nasty runtime surprises). See the "unnecessary" pointer comparison
 815 *   in __typecheck().
 816 * - retain result as a constant expressions when called with only
 817 *   constant expressions (to avoid tripping VLA warnings in stack
 818 *   allocation usage).
 819 */
 820#define __typecheck(x, y) \
 821                (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
 822
 823/*
 824 * This returns a constant expression while determining if an argument is
 825 * a constant expression, most importantly without evaluating the argument.
 826 * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
 827 */
 828#define __is_constexpr(x) \
 829        (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
 830
 831#define __no_side_effects(x, y) \
 832                (__is_constexpr(x) && __is_constexpr(y))
 833
 834#define __safe_cmp(x, y) \
 835                (__typecheck(x, y) && __no_side_effects(x, y))
 836
 837#define __cmp(x, y, op) ((x) op (y) ? (x) : (y))
 838
 839#define __cmp_once(x, y, unique_x, unique_y, op) ({     \
 840                typeof(x) unique_x = (x);               \
 841                typeof(y) unique_y = (y);               \
 842                __cmp(unique_x, unique_y, op); })
 843
 844#define __careful_cmp(x, y, op) \
 845        __builtin_choose_expr(__safe_cmp(x, y), \
 846                __cmp(x, y, op), \
 847                __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
 848
 849/**
 850 * min - return minimum of two values of the same or compatible types
 851 * @x: first value
 852 * @y: second value
 853 */
 854#define min(x, y)       __careful_cmp(x, y, <)
 855
 856/**
 857 * max - return maximum of two values of the same or compatible types
 858 * @x: first value
 859 * @y: second value
 860 */
 861#define max(x, y)       __careful_cmp(x, y, >)
 862
 863/**
 864 * min3 - return minimum of three values
 865 * @x: first value
 866 * @y: second value
 867 * @z: third value
 868 */
 869#define min3(x, y, z) min((typeof(x))min(x, y), z)
 870
 871/**
 872 * max3 - return maximum of three values
 873 * @x: first value
 874 * @y: second value
 875 * @z: third value
 876 */
 877#define max3(x, y, z) max((typeof(x))max(x, y), z)
 878
 879/**
 880 * min_not_zero - return the minimum that is _not_ zero, unless both are zero
 881 * @x: value1
 882 * @y: value2
 883 */
 884#define min_not_zero(x, y) ({                   \
 885        typeof(x) __x = (x);                    \
 886        typeof(y) __y = (y);                    \
 887        __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
 888
 889/**
 890 * clamp - return a value clamped to a given range with strict typechecking
 891 * @val: current value
 892 * @lo: lowest allowable value
 893 * @hi: highest allowable value
 894 *
 895 * This macro does strict typechecking of @lo/@hi to make sure they are of the
 896 * same type as @val.  See the unnecessary pointer comparisons.
 897 */
 898#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
 899
 900/*
 901 * ..and if you can't take the strict
 902 * types, you can specify one yourself.
 903 *
 904 * Or not use min/max/clamp at all, of course.
 905 */
 906
 907/**
 908 * min_t - return minimum of two values, using the specified type
 909 * @type: data type to use
 910 * @x: first value
 911 * @y: second value
 912 */
 913#define min_t(type, x, y)       __careful_cmp((type)(x), (type)(y), <)
 914
 915/**
 916 * max_t - return maximum of two values, using the specified type
 917 * @type: data type to use
 918 * @x: first value
 919 * @y: second value
 920 */
 921#define max_t(type, x, y)       __careful_cmp((type)(x), (type)(y), >)
 922
 923/**
 924 * clamp_t - return a value clamped to a given range using a given type
 925 * @type: the type of variable to use
 926 * @val: current value
 927 * @lo: minimum allowable value
 928 * @hi: maximum allowable value
 929 *
 930 * This macro does no typechecking and uses temporary variables of type
 931 * @type to make all the comparisons.
 932 */
 933#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
 934
 935/**
 936 * clamp_val - return a value clamped to a given range using val's type
 937 * @val: current value
 938 * @lo: minimum allowable value
 939 * @hi: maximum allowable value
 940 *
 941 * This macro does no typechecking and uses temporary variables of whatever
 942 * type the input argument @val is.  This is useful when @val is an unsigned
 943 * type and @lo and @hi are literals that will otherwise be assigned a signed
 944 * integer type.
 945 */
 946#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
 947
 948
 949/**
 950 * swap - swap values of @a and @b
 951 * @a: first value
 952 * @b: second value
 953 */
 954#define swap(a, b) \
 955        do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
 956
 957/* This counts to 12. Any more, it will return 13th argument. */
 958#define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n
 959#define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
 960
 961#define __CONCAT(a, b) a ## b
 962#define CONCATENATE(a, b) __CONCAT(a, b)
 963
 964/**
 965 * container_of - cast a member of a structure out to the containing structure
 966 * @ptr:        the pointer to the member.
 967 * @type:       the type of the container struct this is embedded in.
 968 * @member:     the name of the member within the struct.
 969 *
 970 */
 971#define container_of(ptr, type, member) ({                              \
 972        void *__mptr = (void *)(ptr);                                   \
 973        BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&   \
 974                         !__same_type(*(ptr), void),                    \
 975                         "pointer type mismatch in container_of()");    \
 976        ((type *)(__mptr - offsetof(type, member))); })
 977
 978/**
 979 * container_of_safe - cast a member of a structure out to the containing structure
 980 * @ptr:        the pointer to the member.
 981 * @type:       the type of the container struct this is embedded in.
 982 * @member:     the name of the member within the struct.
 983 *
 984 * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged.
 985 */
 986#define container_of_safe(ptr, type, member) ({                         \
 987        void *__mptr = (void *)(ptr);                                   \
 988        BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&   \
 989                         !__same_type(*(ptr), void),                    \
 990                         "pointer type mismatch in container_of()");    \
 991        IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) :                     \
 992                ((type *)(__mptr - offsetof(type, member))); })
 993
 994/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
 995#ifdef CONFIG_FTRACE_MCOUNT_RECORD
 996# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
 997#endif
 998
 999/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
1000#define VERIFY_OCTAL_PERMISSIONS(perms)                                         \
1001        (BUILD_BUG_ON_ZERO((perms) < 0) +                                       \
1002         BUILD_BUG_ON_ZERO((perms) > 0777) +                                    \
1003         /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */                \
1004         BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) +       \
1005         BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) +              \
1006         /* USER_WRITABLE >= GROUP_WRITABLE */                                  \
1007         BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) +       \
1008         /* OTHER_WRITABLE?  Generally considered a bad idea. */                \
1009         BUILD_BUG_ON_ZERO((perms) & 2) +                                       \
1010         (perms))
1011#endif
1012