linux/include/linux/ktime.h
<<
>>
Prefs
   1/*
   2 *  include/linux/ktime.h
   3 *
   4 *  ktime_t - nanosecond-resolution time format.
   5 *
   6 *   Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
   7 *   Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
   8 *
   9 *  data type definitions, declarations, prototypes and macros.
  10 *
  11 *  Started by: Thomas Gleixner and Ingo Molnar
  12 *
  13 *  Credits:
  14 *
  15 *      Roman Zippel provided the ideas and primary code snippets of
  16 *      the ktime_t union and further simplifications of the original
  17 *      code.
  18 *
  19 *  For licencing details see kernel-base/COPYING
  20 */
  21#ifndef _LINUX_KTIME_H
  22#define _LINUX_KTIME_H
  23
  24#include <linux/time.h>
  25#include <linux/jiffies.h>
  26
  27/* Nanosecond scalar representation for kernel time values */
  28typedef s64     ktime_t;
  29
  30/**
  31 * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
  32 * @secs:       seconds to set
  33 * @nsecs:      nanoseconds to set
  34 *
  35 * Return: The ktime_t representation of the value.
  36 */
  37static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs)
  38{
  39        if (unlikely(secs >= KTIME_SEC_MAX))
  40                return KTIME_MAX;
  41
  42        return secs * NSEC_PER_SEC + (s64)nsecs;
  43}
  44
  45/* Subtract two ktime_t variables. rem = lhs -rhs: */
  46#define ktime_sub(lhs, rhs)     ((lhs) - (rhs))
  47
  48/* Add two ktime_t variables. res = lhs + rhs: */
  49#define ktime_add(lhs, rhs)     ((lhs) + (rhs))
  50
  51/*
  52 * Same as ktime_add(), but avoids undefined behaviour on overflow; however,
  53 * this means that you must check the result for overflow yourself.
  54 */
  55#define ktime_add_unsafe(lhs, rhs)      ((u64) (lhs) + (rhs))
  56
  57/*
  58 * Add a ktime_t variable and a scalar nanosecond value.
  59 * res = kt + nsval:
  60 */
  61#define ktime_add_ns(kt, nsval)         ((kt) + (nsval))
  62
  63/*
  64 * Subtract a scalar nanosecod from a ktime_t variable
  65 * res = kt - nsval:
  66 */
  67#define ktime_sub_ns(kt, nsval)         ((kt) - (nsval))
  68
  69/* convert a timespec to ktime_t format: */
  70static inline ktime_t timespec_to_ktime(struct timespec ts)
  71{
  72        return ktime_set(ts.tv_sec, ts.tv_nsec);
  73}
  74
  75/* convert a timespec64 to ktime_t format: */
  76static inline ktime_t timespec64_to_ktime(struct timespec64 ts)
  77{
  78        return ktime_set(ts.tv_sec, ts.tv_nsec);
  79}
  80
  81/* convert a timeval to ktime_t format: */
  82static inline ktime_t timeval_to_ktime(struct timeval tv)
  83{
  84        return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
  85}
  86
  87/* Map the ktime_t to timespec conversion to ns_to_timespec function */
  88#define ktime_to_timespec(kt)           ns_to_timespec((kt))
  89
  90/* Map the ktime_t to timespec conversion to ns_to_timespec function */
  91#define ktime_to_timespec64(kt)         ns_to_timespec64((kt))
  92
  93/* Map the ktime_t to timeval conversion to ns_to_timeval function */
  94#define ktime_to_timeval(kt)            ns_to_timeval((kt))
  95
  96/* Convert ktime_t to nanoseconds */
  97static inline s64 ktime_to_ns(const ktime_t kt)
  98{
  99        return kt;
 100}
 101
 102/**
 103 * ktime_compare - Compares two ktime_t variables for less, greater or equal
 104 * @cmp1:       comparable1
 105 * @cmp2:       comparable2
 106 *
 107 * Return: ...
 108 *   cmp1  < cmp2: return <0
 109 *   cmp1 == cmp2: return 0
 110 *   cmp1  > cmp2: return >0
 111 */
 112static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2)
 113{
 114        if (cmp1 < cmp2)
 115                return -1;
 116        if (cmp1 > cmp2)
 117                return 1;
 118        return 0;
 119}
 120
 121/**
 122 * ktime_after - Compare if a ktime_t value is bigger than another one.
 123 * @cmp1:       comparable1
 124 * @cmp2:       comparable2
 125 *
 126 * Return: true if cmp1 happened after cmp2.
 127 */
 128static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2)
 129{
 130        return ktime_compare(cmp1, cmp2) > 0;
 131}
 132
 133/**
 134 * ktime_before - Compare if a ktime_t value is smaller than another one.
 135 * @cmp1:       comparable1
 136 * @cmp2:       comparable2
 137 *
 138 * Return: true if cmp1 happened before cmp2.
 139 */
 140static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2)
 141{
 142        return ktime_compare(cmp1, cmp2) < 0;
 143}
 144
 145#if BITS_PER_LONG < 64
 146extern s64 __ktime_divns(const ktime_t kt, s64 div);
 147static inline s64 ktime_divns(const ktime_t kt, s64 div)
 148{
 149        /*
 150         * Negative divisors could cause an inf loop,
 151         * so bug out here.
 152         */
 153        BUG_ON(div < 0);
 154        if (__builtin_constant_p(div) && !(div >> 32)) {
 155                s64 ns = kt;
 156                u64 tmp = ns < 0 ? -ns : ns;
 157
 158                do_div(tmp, div);
 159                return ns < 0 ? -tmp : tmp;
 160        } else {
 161                return __ktime_divns(kt, div);
 162        }
 163}
 164#else /* BITS_PER_LONG < 64 */
 165static inline s64 ktime_divns(const ktime_t kt, s64 div)
 166{
 167        /*
 168         * 32-bit implementation cannot handle negative divisors,
 169         * so catch them on 64bit as well.
 170         */
 171        WARN_ON(div < 0);
 172        return kt / div;
 173}
 174#endif
 175
 176static inline s64 ktime_to_us(const ktime_t kt)
 177{
 178        return ktime_divns(kt, NSEC_PER_USEC);
 179}
 180
 181static inline s64 ktime_to_ms(const ktime_t kt)
 182{
 183        return ktime_divns(kt, NSEC_PER_MSEC);
 184}
 185
 186static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier)
 187{
 188       return ktime_to_us(ktime_sub(later, earlier));
 189}
 190
 191static inline s64 ktime_ms_delta(const ktime_t later, const ktime_t earlier)
 192{
 193        return ktime_to_ms(ktime_sub(later, earlier));
 194}
 195
 196static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec)
 197{
 198        return ktime_add_ns(kt, usec * NSEC_PER_USEC);
 199}
 200
 201static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec)
 202{
 203        return ktime_add_ns(kt, msec * NSEC_PER_MSEC);
 204}
 205
 206static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec)
 207{
 208        return ktime_sub_ns(kt, usec * NSEC_PER_USEC);
 209}
 210
 211static inline ktime_t ktime_sub_ms(const ktime_t kt, const u64 msec)
 212{
 213        return ktime_sub_ns(kt, msec * NSEC_PER_MSEC);
 214}
 215
 216extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs);
 217
 218/**
 219 * ktime_to_timespec_cond - convert a ktime_t variable to timespec
 220 *                          format only if the variable contains data
 221 * @kt:         the ktime_t variable to convert
 222 * @ts:         the timespec variable to store the result in
 223 *
 224 * Return: %true if there was a successful conversion, %false if kt was 0.
 225 */
 226static inline __must_check bool ktime_to_timespec_cond(const ktime_t kt,
 227                                                       struct timespec *ts)
 228{
 229        if (kt) {
 230                *ts = ktime_to_timespec(kt);
 231                return true;
 232        } else {
 233                return false;
 234        }
 235}
 236
 237/**
 238 * ktime_to_timespec64_cond - convert a ktime_t variable to timespec64
 239 *                          format only if the variable contains data
 240 * @kt:         the ktime_t variable to convert
 241 * @ts:         the timespec variable to store the result in
 242 *
 243 * Return: %true if there was a successful conversion, %false if kt was 0.
 244 */
 245static inline __must_check bool ktime_to_timespec64_cond(const ktime_t kt,
 246                                                       struct timespec64 *ts)
 247{
 248        if (kt) {
 249                *ts = ktime_to_timespec64(kt);
 250                return true;
 251        } else {
 252                return false;
 253        }
 254}
 255
 256/*
 257 * The resolution of the clocks. The resolution value is returned in
 258 * the clock_getres() system call to give application programmers an
 259 * idea of the (in)accuracy of timers. Timer values are rounded up to
 260 * this resolution values.
 261 */
 262#define LOW_RES_NSEC            TICK_NSEC
 263#define KTIME_LOW_RES           (LOW_RES_NSEC)
 264
 265static inline ktime_t ns_to_ktime(u64 ns)
 266{
 267        return ns;
 268}
 269
 270static inline ktime_t ms_to_ktime(u64 ms)
 271{
 272        return ms * NSEC_PER_MSEC;
 273}
 274
 275# include <linux/timekeeping.h>
 276# include <linux/timekeeping32.h>
 277
 278#endif
 279