linux/include/linux/mfd/cros_ec_commands.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 * Host communication command constants for ChromeOS EC
   4 *
   5 * Copyright (C) 2012 Google, Inc
   6 *
   7 * NOTE: This file is auto-generated from ChromeOS EC Open Source code from
   8 * https://chromium.googlesource.com/chromiumos/platform/ec/+/master/include/ec_commands.h
   9 */
  10
  11/* Host communication command constants for Chrome EC */
  12
  13#ifndef __CROS_EC_COMMANDS_H
  14#define __CROS_EC_COMMANDS_H
  15
  16
  17
  18
  19#define BUILD_ASSERT(_cond)
  20
  21/*
  22 * Current version of this protocol
  23 *
  24 * TODO(crosbug.com/p/11223): This is effectively useless; protocol is
  25 * determined in other ways.  Remove this once the kernel code no longer
  26 * depends on it.
  27 */
  28#define EC_PROTO_VERSION          0x00000002
  29
  30/* Command version mask */
  31#define EC_VER_MASK(version) BIT(version)
  32
  33/* I/O addresses for ACPI commands */
  34#define EC_LPC_ADDR_ACPI_DATA  0x62
  35#define EC_LPC_ADDR_ACPI_CMD   0x66
  36
  37/* I/O addresses for host command */
  38#define EC_LPC_ADDR_HOST_DATA  0x200
  39#define EC_LPC_ADDR_HOST_CMD   0x204
  40
  41/* I/O addresses for host command args and params */
  42/* Protocol version 2 */
  43#define EC_LPC_ADDR_HOST_ARGS    0x800  /* And 0x801, 0x802, 0x803 */
  44#define EC_LPC_ADDR_HOST_PARAM   0x804  /* For version 2 params; size is
  45                                         * EC_PROTO2_MAX_PARAM_SIZE
  46                                         */
  47/* Protocol version 3 */
  48#define EC_LPC_ADDR_HOST_PACKET  0x800  /* Offset of version 3 packet */
  49#define EC_LPC_HOST_PACKET_SIZE  0x100  /* Max size of version 3 packet */
  50
  51/*
  52 * The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
  53 * and they tell the kernel that so we have to think of it as two parts.
  54 */
  55#define EC_HOST_CMD_REGION0    0x800
  56#define EC_HOST_CMD_REGION1    0x880
  57#define EC_HOST_CMD_REGION_SIZE 0x80
  58
  59/* EC command register bit functions */
  60#define EC_LPC_CMDR_DATA        BIT(0)  /* Data ready for host to read */
  61#define EC_LPC_CMDR_PENDING     BIT(1)  /* Write pending to EC */
  62#define EC_LPC_CMDR_BUSY        BIT(2)  /* EC is busy processing a command */
  63#define EC_LPC_CMDR_CMD         BIT(3)  /* Last host write was a command */
  64#define EC_LPC_CMDR_ACPI_BRST   BIT(4)  /* Burst mode (not used) */
  65#define EC_LPC_CMDR_SCI         BIT(5)  /* SCI event is pending */
  66#define EC_LPC_CMDR_SMI         BIT(6)  /* SMI event is pending */
  67
  68#define EC_LPC_ADDR_MEMMAP       0x900
  69#define EC_MEMMAP_SIZE         255 /* ACPI IO buffer max is 255 bytes */
  70#define EC_MEMMAP_TEXT_MAX     8   /* Size of a string in the memory map */
  71
  72/* The offset address of each type of data in mapped memory. */
  73#define EC_MEMMAP_TEMP_SENSOR      0x00 /* Temp sensors 0x00 - 0x0f */
  74#define EC_MEMMAP_FAN              0x10 /* Fan speeds 0x10 - 0x17 */
  75#define EC_MEMMAP_TEMP_SENSOR_B    0x18 /* More temp sensors 0x18 - 0x1f */
  76#define EC_MEMMAP_ID               0x20 /* 0x20 == 'E', 0x21 == 'C' */
  77#define EC_MEMMAP_ID_VERSION       0x22 /* Version of data in 0x20 - 0x2f */
  78#define EC_MEMMAP_THERMAL_VERSION  0x23 /* Version of data in 0x00 - 0x1f */
  79#define EC_MEMMAP_BATTERY_VERSION  0x24 /* Version of data in 0x40 - 0x7f */
  80#define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
  81#define EC_MEMMAP_EVENTS_VERSION   0x26 /* Version of data in 0x34 - 0x3f */
  82#define EC_MEMMAP_HOST_CMD_FLAGS   0x27 /* Host cmd interface flags (8 bits) */
  83/* Unused 0x28 - 0x2f */
  84#define EC_MEMMAP_SWITCHES         0x30 /* 8 bits */
  85/* Unused 0x31 - 0x33 */
  86#define EC_MEMMAP_HOST_EVENTS      0x34 /* 64 bits */
  87/* Battery values are all 32 bits, unless otherwise noted. */
  88#define EC_MEMMAP_BATT_VOLT        0x40 /* Battery Present Voltage */
  89#define EC_MEMMAP_BATT_RATE        0x44 /* Battery Present Rate */
  90#define EC_MEMMAP_BATT_CAP         0x48 /* Battery Remaining Capacity */
  91#define EC_MEMMAP_BATT_FLAG        0x4c /* Battery State, see below (8-bit) */
  92#define EC_MEMMAP_BATT_COUNT       0x4d /* Battery Count (8-bit) */
  93#define EC_MEMMAP_BATT_INDEX       0x4e /* Current Battery Data Index (8-bit) */
  94/* Unused 0x4f */
  95#define EC_MEMMAP_BATT_DCAP        0x50 /* Battery Design Capacity */
  96#define EC_MEMMAP_BATT_DVLT        0x54 /* Battery Design Voltage */
  97#define EC_MEMMAP_BATT_LFCC        0x58 /* Battery Last Full Charge Capacity */
  98#define EC_MEMMAP_BATT_CCNT        0x5c /* Battery Cycle Count */
  99/* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
 100#define EC_MEMMAP_BATT_MFGR        0x60 /* Battery Manufacturer String */
 101#define EC_MEMMAP_BATT_MODEL       0x68 /* Battery Model Number String */
 102#define EC_MEMMAP_BATT_SERIAL      0x70 /* Battery Serial Number String */
 103#define EC_MEMMAP_BATT_TYPE        0x78 /* Battery Type String */
 104#define EC_MEMMAP_ALS              0x80 /* ALS readings in lux (2 X 16 bits) */
 105/* Unused 0x84 - 0x8f */
 106#define EC_MEMMAP_ACC_STATUS       0x90 /* Accelerometer status (8 bits )*/
 107/* Unused 0x91 */
 108#define EC_MEMMAP_ACC_DATA         0x92 /* Accelerometers data 0x92 - 0x9f */
 109/* 0x92: Lid Angle if available, LID_ANGLE_UNRELIABLE otherwise */
 110/* 0x94 - 0x99: 1st Accelerometer */
 111/* 0x9a - 0x9f: 2nd Accelerometer */
 112#define EC_MEMMAP_GYRO_DATA        0xa0 /* Gyroscope data 0xa0 - 0xa5 */
 113/* Unused 0xa6 - 0xdf */
 114
 115/*
 116 * ACPI is unable to access memory mapped data at or above this offset due to
 117 * limitations of the ACPI protocol. Do not place data in the range 0xe0 - 0xfe
 118 * which might be needed by ACPI.
 119 */
 120#define EC_MEMMAP_NO_ACPI 0xe0
 121
 122/* Define the format of the accelerometer mapped memory status byte. */
 123#define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK  0x0f
 124#define EC_MEMMAP_ACC_STATUS_BUSY_BIT        BIT(4)
 125#define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT    BIT(7)
 126
 127/* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
 128#define EC_TEMP_SENSOR_ENTRIES     16
 129/*
 130 * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
 131 *
 132 * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
 133 */
 134#define EC_TEMP_SENSOR_B_ENTRIES      8
 135
 136/* Special values for mapped temperature sensors */
 137#define EC_TEMP_SENSOR_NOT_PRESENT    0xff
 138#define EC_TEMP_SENSOR_ERROR          0xfe
 139#define EC_TEMP_SENSOR_NOT_POWERED    0xfd
 140#define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
 141/*
 142 * The offset of temperature value stored in mapped memory.  This allows
 143 * reporting a temperature range of 200K to 454K = -73C to 181C.
 144 */
 145#define EC_TEMP_SENSOR_OFFSET      200
 146
 147/*
 148 * Number of ALS readings at EC_MEMMAP_ALS
 149 */
 150#define EC_ALS_ENTRIES             2
 151
 152/*
 153 * The default value a temperature sensor will return when it is present but
 154 * has not been read this boot.  This is a reasonable number to avoid
 155 * triggering alarms on the host.
 156 */
 157#define EC_TEMP_SENSOR_DEFAULT     (296 - EC_TEMP_SENSOR_OFFSET)
 158
 159#define EC_FAN_SPEED_ENTRIES       4       /* Number of fans at EC_MEMMAP_FAN */
 160#define EC_FAN_SPEED_NOT_PRESENT   0xffff  /* Entry not present */
 161#define EC_FAN_SPEED_STALLED       0xfffe  /* Fan stalled */
 162
 163/* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
 164#define EC_BATT_FLAG_AC_PRESENT   0x01
 165#define EC_BATT_FLAG_BATT_PRESENT 0x02
 166#define EC_BATT_FLAG_DISCHARGING  0x04
 167#define EC_BATT_FLAG_CHARGING     0x08
 168#define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
 169/* Set if some of the static/dynamic data is invalid (or outdated). */
 170#define EC_BATT_FLAG_INVALID_DATA 0x20
 171
 172/* Switch flags at EC_MEMMAP_SWITCHES */
 173#define EC_SWITCH_LID_OPEN               0x01
 174#define EC_SWITCH_POWER_BUTTON_PRESSED   0x02
 175#define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
 176/* Was recovery requested via keyboard; now unused. */
 177#define EC_SWITCH_IGNORE1                0x08
 178/* Recovery requested via dedicated signal (from servo board) */
 179#define EC_SWITCH_DEDICATED_RECOVERY     0x10
 180/* Was fake developer mode switch; now unused.  Remove in next refactor. */
 181#define EC_SWITCH_IGNORE0                0x20
 182
 183/* Host command interface flags */
 184/* Host command interface supports LPC args (LPC interface only) */
 185#define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED  0x01
 186/* Host command interface supports version 3 protocol */
 187#define EC_HOST_CMD_FLAG_VERSION_3   0x02
 188
 189/* Wireless switch flags */
 190#define EC_WIRELESS_SWITCH_ALL       ~0x00  /* All flags */
 191#define EC_WIRELESS_SWITCH_WLAN       0x01  /* WLAN radio */
 192#define EC_WIRELESS_SWITCH_BLUETOOTH  0x02  /* Bluetooth radio */
 193#define EC_WIRELESS_SWITCH_WWAN       0x04  /* WWAN power */
 194#define EC_WIRELESS_SWITCH_WLAN_POWER 0x08  /* WLAN power */
 195
 196/*****************************************************************************/
 197/*
 198 * ACPI commands
 199 *
 200 * These are valid ONLY on the ACPI command/data port.
 201 */
 202
 203/*
 204 * ACPI Read Embedded Controller
 205 *
 206 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
 207 *
 208 * Use the following sequence:
 209 *
 210 *    - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
 211 *    - Wait for EC_LPC_CMDR_PENDING bit to clear
 212 *    - Write address to EC_LPC_ADDR_ACPI_DATA
 213 *    - Wait for EC_LPC_CMDR_DATA bit to set
 214 *    - Read value from EC_LPC_ADDR_ACPI_DATA
 215 */
 216#define EC_CMD_ACPI_READ 0x0080
 217
 218/*
 219 * ACPI Write Embedded Controller
 220 *
 221 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
 222 *
 223 * Use the following sequence:
 224 *
 225 *    - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
 226 *    - Wait for EC_LPC_CMDR_PENDING bit to clear
 227 *    - Write address to EC_LPC_ADDR_ACPI_DATA
 228 *    - Wait for EC_LPC_CMDR_PENDING bit to clear
 229 *    - Write value to EC_LPC_ADDR_ACPI_DATA
 230 */
 231#define EC_CMD_ACPI_WRITE 0x0081
 232
 233/*
 234 * ACPI Burst Enable Embedded Controller
 235 *
 236 * This enables burst mode on the EC to allow the host to issue several
 237 * commands back-to-back. While in this mode, writes to mapped multi-byte
 238 * data are locked out to ensure data consistency.
 239 */
 240#define EC_CMD_ACPI_BURST_ENABLE 0x0082
 241
 242/*
 243 * ACPI Burst Disable Embedded Controller
 244 *
 245 * This disables burst mode on the EC and stops preventing EC writes to mapped
 246 * multi-byte data.
 247 */
 248#define EC_CMD_ACPI_BURST_DISABLE 0x0083
 249
 250/*
 251 * ACPI Query Embedded Controller
 252 *
 253 * This clears the lowest-order bit in the currently pending host events, and
 254 * sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
 255 * event 0x80000000 = 32), or 0 if no event was pending.
 256 */
 257#define EC_CMD_ACPI_QUERY_EVENT 0x0084
 258
 259/* Valid addresses in ACPI memory space, for read/write commands */
 260
 261/* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
 262#define EC_ACPI_MEM_VERSION            0x00
 263/*
 264 * Test location; writing value here updates test compliment byte to (0xff -
 265 * value).
 266 */
 267#define EC_ACPI_MEM_TEST               0x01
 268/* Test compliment; writes here are ignored. */
 269#define EC_ACPI_MEM_TEST_COMPLIMENT    0x02
 270
 271/* Keyboard backlight brightness percent (0 - 100) */
 272#define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
 273/* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
 274#define EC_ACPI_MEM_FAN_DUTY           0x04
 275
 276/*
 277 * DPTF temp thresholds. Any of the EC's temp sensors can have up to two
 278 * independent thresholds attached to them. The current value of the ID
 279 * register determines which sensor is affected by the THRESHOLD and COMMIT
 280 * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
 281 * as the memory-mapped sensors. The COMMIT register applies those settings.
 282 *
 283 * The spec does not mandate any way to read back the threshold settings
 284 * themselves, but when a threshold is crossed the AP needs a way to determine
 285 * which sensor(s) are responsible. Each reading of the ID register clears and
 286 * returns one sensor ID that has crossed one of its threshold (in either
 287 * direction) since the last read. A value of 0xFF means "no new thresholds
 288 * have tripped". Setting or enabling the thresholds for a sensor will clear
 289 * the unread event count for that sensor.
 290 */
 291#define EC_ACPI_MEM_TEMP_ID            0x05
 292#define EC_ACPI_MEM_TEMP_THRESHOLD     0x06
 293#define EC_ACPI_MEM_TEMP_COMMIT        0x07
 294/*
 295 * Here are the bits for the COMMIT register:
 296 *   bit 0 selects the threshold index for the chosen sensor (0/1)
 297 *   bit 1 enables/disables the selected threshold (0 = off, 1 = on)
 298 * Each write to the commit register affects one threshold.
 299 */
 300#define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK BIT(0)
 301#define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK BIT(1)
 302/*
 303 * Example:
 304 *
 305 * Set the thresholds for sensor 2 to 50 C and 60 C:
 306 *   write 2 to [0x05]      --  select temp sensor 2
 307 *   write 0x7b to [0x06]   --  C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
 308 *   write 0x2 to [0x07]    --  enable threshold 0 with this value
 309 *   write 0x85 to [0x06]   --  C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
 310 *   write 0x3 to [0x07]    --  enable threshold 1 with this value
 311 *
 312 * Disable the 60 C threshold, leaving the 50 C threshold unchanged:
 313 *   write 2 to [0x05]      --  select temp sensor 2
 314 *   write 0x1 to [0x07]    --  disable threshold 1
 315 */
 316
 317/* DPTF battery charging current limit */
 318#define EC_ACPI_MEM_CHARGING_LIMIT     0x08
 319
 320/* Charging limit is specified in 64 mA steps */
 321#define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA   64
 322/* Value to disable DPTF battery charging limit */
 323#define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED  0xff
 324
 325/*
 326 * Report device orientation
 327 *  Bits       Definition
 328 *  3:1        Device DPTF Profile Number (DDPN)
 329 *               0   = Reserved for backward compatibility (indicates no valid
 330 *                     profile number. Host should fall back to using TBMD).
 331 *              1..7 = DPTF Profile number to indicate to host which table needs
 332 *                     to be loaded.
 333 *   0         Tablet Mode Device Indicator (TBMD)
 334 */
 335#define EC_ACPI_MEM_DEVICE_ORIENTATION 0x09
 336#define EC_ACPI_MEM_TBMD_SHIFT         0
 337#define EC_ACPI_MEM_TBMD_MASK          0x1
 338#define EC_ACPI_MEM_DDPN_SHIFT         1
 339#define EC_ACPI_MEM_DDPN_MASK          0x7
 340
 341/*
 342 * Report device features. Uses the same format as the host command, except:
 343 *
 344 * bit 0 (EC_FEATURE_LIMITED) changes meaning from "EC code has a limited set
 345 * of features", which is of limited interest when the system is already
 346 * interpreting ACPI bytecode, to "EC_FEATURES[0-7] is not supported". Since
 347 * these are supported, it defaults to 0.
 348 * This allows detecting the presence of this field since older versions of
 349 * the EC codebase would simply return 0xff to that unknown address. Check
 350 * FEATURES0 != 0xff (or FEATURES0[0] == 0) to make sure that the other bits
 351 * are valid.
 352 */
 353#define EC_ACPI_MEM_DEVICE_FEATURES0 0x0a
 354#define EC_ACPI_MEM_DEVICE_FEATURES1 0x0b
 355#define EC_ACPI_MEM_DEVICE_FEATURES2 0x0c
 356#define EC_ACPI_MEM_DEVICE_FEATURES3 0x0d
 357#define EC_ACPI_MEM_DEVICE_FEATURES4 0x0e
 358#define EC_ACPI_MEM_DEVICE_FEATURES5 0x0f
 359#define EC_ACPI_MEM_DEVICE_FEATURES6 0x10
 360#define EC_ACPI_MEM_DEVICE_FEATURES7 0x11
 361
 362#define EC_ACPI_MEM_BATTERY_INDEX    0x12
 363
 364/*
 365 * USB Port Power. Each bit indicates whether the corresponding USB ports' power
 366 * is enabled (1) or disabled (0).
 367 *   bit 0 USB port ID 0
 368 *   ...
 369 *   bit 7 USB port ID 7
 370 */
 371#define EC_ACPI_MEM_USB_PORT_POWER 0x13
 372
 373/*
 374 * ACPI addresses 0x20 - 0xff map to EC_MEMMAP offset 0x00 - 0xdf.  This data
 375 * is read-only from the AP.  Added in EC_ACPI_MEM_VERSION 2.
 376 */
 377#define EC_ACPI_MEM_MAPPED_BEGIN   0x20
 378#define EC_ACPI_MEM_MAPPED_SIZE    0xe0
 379
 380/* Current version of ACPI memory address space */
 381#define EC_ACPI_MEM_VERSION_CURRENT 2
 382
 383
 384/*
 385 * This header file is used in coreboot both in C and ACPI code.  The ACPI code
 386 * is pre-processed to handle constants but the ASL compiler is unable to
 387 * handle actual C code so keep it separate.
 388 */
 389
 390
 391/*
 392 * Attributes for EC request and response packets.  Just defining __packed
 393 * results in inefficient assembly code on ARM, if the structure is actually
 394 * 32-bit aligned, as it should be for all buffers.
 395 *
 396 * Be very careful when adding these to existing structures.  They will round
 397 * up the structure size to the specified boundary.
 398 *
 399 * Also be very careful to make that if a structure is included in some other
 400 * parent structure that the alignment will still be true given the packing of
 401 * the parent structure.  This is particularly important if the sub-structure
 402 * will be passed as a pointer to another function, since that function will
 403 * not know about the misaligment caused by the parent structure's packing.
 404 *
 405 * Also be very careful using __packed - particularly when nesting non-packed
 406 * structures inside packed ones.  In fact, DO NOT use __packed directly;
 407 * always use one of these attributes.
 408 *
 409 * Once everything is annotated properly, the following search strings should
 410 * not return ANY matches in this file other than right here:
 411 *
 412 * "__packed" - generates inefficient code; all sub-structs must also be packed
 413 *
 414 * "struct [^_]" - all structs should be annotated, except for structs that are
 415 * members of other structs/unions (and their original declarations should be
 416 * annotated).
 417 */
 418
 419/*
 420 * Packed structures make no assumption about alignment, so they do inefficient
 421 * byte-wise reads.
 422 */
 423#define __ec_align1 __packed
 424#define __ec_align2 __packed
 425#define __ec_align4 __packed
 426#define __ec_align_size1 __packed
 427#define __ec_align_offset1 __packed
 428#define __ec_align_offset2 __packed
 429#define __ec_todo_packed __packed
 430#define __ec_todo_unpacked
 431
 432
 433/* LPC command status byte masks */
 434/* EC has written a byte in the data register and host hasn't read it yet */
 435#define EC_LPC_STATUS_TO_HOST     0x01
 436/* Host has written a command/data byte and the EC hasn't read it yet */
 437#define EC_LPC_STATUS_FROM_HOST   0x02
 438/* EC is processing a command */
 439#define EC_LPC_STATUS_PROCESSING  0x04
 440/* Last write to EC was a command, not data */
 441#define EC_LPC_STATUS_LAST_CMD    0x08
 442/* EC is in burst mode */
 443#define EC_LPC_STATUS_BURST_MODE  0x10
 444/* SCI event is pending (requesting SCI query) */
 445#define EC_LPC_STATUS_SCI_PENDING 0x20
 446/* SMI event is pending (requesting SMI query) */
 447#define EC_LPC_STATUS_SMI_PENDING 0x40
 448/* (reserved) */
 449#define EC_LPC_STATUS_RESERVED    0x80
 450
 451/*
 452 * EC is busy.  This covers both the EC processing a command, and the host has
 453 * written a new command but the EC hasn't picked it up yet.
 454 */
 455#define EC_LPC_STATUS_BUSY_MASK \
 456        (EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
 457
 458/*
 459 * Host command response codes (16-bit).  Note that response codes should be
 460 * stored in a uint16_t rather than directly in a value of this type.
 461 */
 462enum ec_status {
 463        EC_RES_SUCCESS = 0,
 464        EC_RES_INVALID_COMMAND = 1,
 465        EC_RES_ERROR = 2,
 466        EC_RES_INVALID_PARAM = 3,
 467        EC_RES_ACCESS_DENIED = 4,
 468        EC_RES_INVALID_RESPONSE = 5,
 469        EC_RES_INVALID_VERSION = 6,
 470        EC_RES_INVALID_CHECKSUM = 7,
 471        EC_RES_IN_PROGRESS = 8,         /* Accepted, command in progress */
 472        EC_RES_UNAVAILABLE = 9,         /* No response available */
 473        EC_RES_TIMEOUT = 10,            /* We got a timeout */
 474        EC_RES_OVERFLOW = 11,           /* Table / data overflow */
 475        EC_RES_INVALID_HEADER = 12,     /* Header contains invalid data */
 476        EC_RES_REQUEST_TRUNCATED = 13,  /* Didn't get the entire request */
 477        EC_RES_RESPONSE_TOO_BIG = 14,   /* Response was too big to handle */
 478        EC_RES_BUS_ERROR = 15,          /* Communications bus error */
 479        EC_RES_BUSY = 16,               /* Up but too busy.  Should retry */
 480        EC_RES_INVALID_HEADER_VERSION = 17,  /* Header version invalid */
 481        EC_RES_INVALID_HEADER_CRC = 18,      /* Header CRC invalid */
 482        EC_RES_INVALID_DATA_CRC = 19,        /* Data CRC invalid */
 483        EC_RES_DUP_UNAVAILABLE = 20,         /* Can't resend response */
 484};
 485
 486/*
 487 * Host event codes.  Note these are 1-based, not 0-based, because ACPI query
 488 * EC command uses code 0 to mean "no event pending".  We explicitly specify
 489 * each value in the enum listing so they won't change if we delete/insert an
 490 * item or rearrange the list (it needs to be stable across platforms, not
 491 * just within a single compiled instance).
 492 */
 493enum host_event_code {
 494        EC_HOST_EVENT_LID_CLOSED = 1,
 495        EC_HOST_EVENT_LID_OPEN = 2,
 496        EC_HOST_EVENT_POWER_BUTTON = 3,
 497        EC_HOST_EVENT_AC_CONNECTED = 4,
 498        EC_HOST_EVENT_AC_DISCONNECTED = 5,
 499        EC_HOST_EVENT_BATTERY_LOW = 6,
 500        EC_HOST_EVENT_BATTERY_CRITICAL = 7,
 501        EC_HOST_EVENT_BATTERY = 8,
 502        EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
 503        /* Event generated by a device attached to the EC */
 504        EC_HOST_EVENT_DEVICE = 10,
 505        EC_HOST_EVENT_THERMAL = 11,
 506        EC_HOST_EVENT_USB_CHARGER = 12,
 507        EC_HOST_EVENT_KEY_PRESSED = 13,
 508        /*
 509         * EC has finished initializing the host interface.  The host can check
 510         * for this event following sending a EC_CMD_REBOOT_EC command to
 511         * determine when the EC is ready to accept subsequent commands.
 512         */
 513        EC_HOST_EVENT_INTERFACE_READY = 14,
 514        /* Keyboard recovery combo has been pressed */
 515        EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
 516
 517        /* Shutdown due to thermal overload */
 518        EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
 519        /* Shutdown due to battery level too low */
 520        EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
 521
 522        /* Suggest that the AP throttle itself */
 523        EC_HOST_EVENT_THROTTLE_START = 18,
 524        /* Suggest that the AP resume normal speed */
 525        EC_HOST_EVENT_THROTTLE_STOP = 19,
 526
 527        /* Hang detect logic detected a hang and host event timeout expired */
 528        EC_HOST_EVENT_HANG_DETECT = 20,
 529        /* Hang detect logic detected a hang and warm rebooted the AP */
 530        EC_HOST_EVENT_HANG_REBOOT = 21,
 531
 532        /* PD MCU triggering host event */
 533        EC_HOST_EVENT_PD_MCU = 22,
 534
 535        /* Battery Status flags have changed */
 536        EC_HOST_EVENT_BATTERY_STATUS = 23,
 537
 538        /* EC encountered a panic, triggering a reset */
 539        EC_HOST_EVENT_PANIC = 24,
 540
 541        /* Keyboard fastboot combo has been pressed */
 542        EC_HOST_EVENT_KEYBOARD_FASTBOOT = 25,
 543
 544        /* EC RTC event occurred */
 545        EC_HOST_EVENT_RTC = 26,
 546
 547        /* Emulate MKBP event */
 548        EC_HOST_EVENT_MKBP = 27,
 549
 550        /* EC desires to change state of host-controlled USB mux */
 551        EC_HOST_EVENT_USB_MUX = 28,
 552
 553        /* TABLET/LAPTOP mode or detachable base attach/detach event */
 554        EC_HOST_EVENT_MODE_CHANGE = 29,
 555
 556        /* Keyboard recovery combo with hardware reinitialization */
 557        EC_HOST_EVENT_KEYBOARD_RECOVERY_HW_REINIT = 30,
 558
 559        /*
 560         * The high bit of the event mask is not used as a host event code.  If
 561         * it reads back as set, then the entire event mask should be
 562         * considered invalid by the host.  This can happen when reading the
 563         * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
 564         * not initialized on the EC, or improperly configured on the host.
 565         */
 566        EC_HOST_EVENT_INVALID = 32
 567};
 568/* Host event mask */
 569#define EC_HOST_EVENT_MASK(event_code) BIT_ULL((event_code) - 1)
 570
 571/**
 572 * struct ec_lpc_host_args - Arguments at EC_LPC_ADDR_HOST_ARGS
 573 * @flags: The host argument flags.
 574 * @command_version: Command version.
 575 * @data_size: The length of data.
 576 * @checksum: Checksum; sum of command + flags + command_version + data_size +
 577 *            all params/response data bytes.
 578 */
 579struct ec_lpc_host_args {
 580        uint8_t flags;
 581        uint8_t command_version;
 582        uint8_t data_size;
 583        uint8_t checksum;
 584} __ec_align4;
 585
 586/* Flags for ec_lpc_host_args.flags */
 587/*
 588 * Args are from host.  Data area at EC_LPC_ADDR_HOST_PARAM contains command
 589 * params.
 590 *
 591 * If EC gets a command and this flag is not set, this is an old-style command.
 592 * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
 593 * unknown length.  EC must respond with an old-style response (that is,
 594 * without setting EC_HOST_ARGS_FLAG_TO_HOST).
 595 */
 596#define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
 597/*
 598 * Args are from EC.  Data area at EC_LPC_ADDR_HOST_PARAM contains response.
 599 *
 600 * If EC responds to a command and this flag is not set, this is an old-style
 601 * response.  Command version is 0 and response data from EC is at
 602 * EC_LPC_ADDR_OLD_PARAM with unknown length.
 603 */
 604#define EC_HOST_ARGS_FLAG_TO_HOST   0x02
 605
 606/*****************************************************************************/
 607/*
 608 * Byte codes returned by EC over SPI interface.
 609 *
 610 * These can be used by the AP to debug the EC interface, and to determine
 611 * when the EC is not in a state where it will ever get around to responding
 612 * to the AP.
 613 *
 614 * Example of sequence of bytes read from EC for a current good transfer:
 615 *   1. -                  - AP asserts chip select (CS#)
 616 *   2. EC_SPI_OLD_READY   - AP sends first byte(s) of request
 617 *   3. -                  - EC starts handling CS# interrupt
 618 *   4. EC_SPI_RECEIVING   - AP sends remaining byte(s) of request
 619 *   5. EC_SPI_PROCESSING  - EC starts processing request; AP is clocking in
 620 *                           bytes looking for EC_SPI_FRAME_START
 621 *   6. -                  - EC finishes processing and sets up response
 622 *   7. EC_SPI_FRAME_START - AP reads frame byte
 623 *   8. (response packet)  - AP reads response packet
 624 *   9. EC_SPI_PAST_END    - Any additional bytes read by AP
 625 *   10 -                  - AP deasserts chip select
 626 *   11 -                  - EC processes CS# interrupt and sets up DMA for
 627 *                           next request
 628 *
 629 * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
 630 * the following byte values:
 631 *   EC_SPI_OLD_READY
 632 *   EC_SPI_RX_READY
 633 *   EC_SPI_RECEIVING
 634 *   EC_SPI_PROCESSING
 635 *
 636 * Then the EC found an error in the request, or was not ready for the request
 637 * and lost data.  The AP should give up waiting for EC_SPI_FRAME_START,
 638 * because the EC is unable to tell when the AP is done sending its request.
 639 */
 640
 641/*
 642 * Framing byte which precedes a response packet from the EC.  After sending a
 643 * request, the AP will clock in bytes until it sees the framing byte, then
 644 * clock in the response packet.
 645 */
 646#define EC_SPI_FRAME_START    0xec
 647
 648/*
 649 * Padding bytes which are clocked out after the end of a response packet.
 650 */
 651#define EC_SPI_PAST_END       0xed
 652
 653/*
 654 * EC is ready to receive, and has ignored the byte sent by the AP.  EC expects
 655 * that the AP will send a valid packet header (starting with
 656 * EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
 657 */
 658#define EC_SPI_RX_READY       0xf8
 659
 660/*
 661 * EC has started receiving the request from the AP, but hasn't started
 662 * processing it yet.
 663 */
 664#define EC_SPI_RECEIVING      0xf9
 665
 666/* EC has received the entire request from the AP and is processing it. */
 667#define EC_SPI_PROCESSING     0xfa
 668
 669/*
 670 * EC received bad data from the AP, such as a packet header with an invalid
 671 * length.  EC will ignore all data until chip select deasserts.
 672 */
 673#define EC_SPI_RX_BAD_DATA    0xfb
 674
 675/*
 676 * EC received data from the AP before it was ready.  That is, the AP asserted
 677 * chip select and started clocking data before the EC was ready to receive it.
 678 * EC will ignore all data until chip select deasserts.
 679 */
 680#define EC_SPI_NOT_READY      0xfc
 681
 682/*
 683 * EC was ready to receive a request from the AP.  EC has treated the byte sent
 684 * by the AP as part of a request packet, or (for old-style ECs) is processing
 685 * a fully received packet but is not ready to respond yet.
 686 */
 687#define EC_SPI_OLD_READY      0xfd
 688
 689/*****************************************************************************/
 690
 691/*
 692 * Protocol version 2 for I2C and SPI send a request this way:
 693 *
 694 *      0       EC_CMD_VERSION0 + (command version)
 695 *      1       Command number
 696 *      2       Length of params = N
 697 *      3..N+2  Params, if any
 698 *      N+3     8-bit checksum of bytes 0..N+2
 699 *
 700 * The corresponding response is:
 701 *
 702 *      0       Result code (EC_RES_*)
 703 *      1       Length of params = M
 704 *      2..M+1  Params, if any
 705 *      M+2     8-bit checksum of bytes 0..M+1
 706 */
 707#define EC_PROTO2_REQUEST_HEADER_BYTES 3
 708#define EC_PROTO2_REQUEST_TRAILER_BYTES 1
 709#define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES +    \
 710                                    EC_PROTO2_REQUEST_TRAILER_BYTES)
 711
 712#define EC_PROTO2_RESPONSE_HEADER_BYTES 2
 713#define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
 714#define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES +  \
 715                                     EC_PROTO2_RESPONSE_TRAILER_BYTES)
 716
 717/* Parameter length was limited by the LPC interface */
 718#define EC_PROTO2_MAX_PARAM_SIZE 0xfc
 719
 720/* Maximum request and response packet sizes for protocol version 2 */
 721#define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD +        \
 722                                    EC_PROTO2_MAX_PARAM_SIZE)
 723#define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD +      \
 724                                     EC_PROTO2_MAX_PARAM_SIZE)
 725
 726/*****************************************************************************/
 727
 728/*
 729 * Value written to legacy command port / prefix byte to indicate protocol
 730 * 3+ structs are being used.  Usage is bus-dependent.
 731 */
 732#define EC_COMMAND_PROTOCOL_3 0xda
 733
 734#define EC_HOST_REQUEST_VERSION 3
 735
 736/**
 737 * struct ec_host_request - Version 3 request from host.
 738 * @struct_version: Should be 3. The EC will return EC_RES_INVALID_HEADER if it
 739 *                  receives a header with a version it doesn't know how to
 740 *                  parse.
 741 * @checksum: Checksum of request and data; sum of all bytes including checksum
 742 *            should total to 0.
 743 * @command: Command to send (EC_CMD_...)
 744 * @command_version: Command version.
 745 * @reserved: Unused byte in current protocol version; set to 0.
 746 * @data_len: Length of data which follows this header.
 747 */
 748struct ec_host_request {
 749        uint8_t struct_version;
 750        uint8_t checksum;
 751        uint16_t command;
 752        uint8_t command_version;
 753        uint8_t reserved;
 754        uint16_t data_len;
 755} __ec_align4;
 756
 757#define EC_HOST_RESPONSE_VERSION 3
 758
 759/**
 760 * struct ec_host_response - Version 3 response from EC.
 761 * @struct_version: Struct version (=3).
 762 * @checksum: Checksum of response and data; sum of all bytes including
 763 *            checksum should total to 0.
 764 * @result: EC's response to the command (separate from communication failure)
 765 * @data_len: Length of data which follows this header.
 766 * @reserved: Unused bytes in current protocol version; set to 0.
 767 */
 768struct ec_host_response {
 769        uint8_t struct_version;
 770        uint8_t checksum;
 771        uint16_t result;
 772        uint16_t data_len;
 773        uint16_t reserved;
 774} __ec_align4;
 775
 776/*****************************************************************************/
 777
 778/*
 779 * Host command protocol V4.
 780 *
 781 * Packets always start with a request or response header.  They are followed
 782 * by data_len bytes of data.  If the data_crc_present flag is set, the data
 783 * bytes are followed by a CRC-8 of that data, using using x^8 + x^2 + x + 1
 784 * polynomial.
 785 *
 786 * Host algorithm when sending a request q:
 787 *
 788 * 101) tries_left=(some value, e.g. 3);
 789 * 102) q.seq_num++
 790 * 103) q.seq_dup=0
 791 * 104) Calculate q.header_crc.
 792 * 105) Send request q to EC.
 793 * 106) Wait for response r.  Go to 201 if received or 301 if timeout.
 794 *
 795 * 201) If r.struct_version != 4, go to 301.
 796 * 202) If r.header_crc mismatches calculated CRC for r header, go to 301.
 797 * 203) If r.data_crc_present and r.data_crc mismatches, go to 301.
 798 * 204) If r.seq_num != q.seq_num, go to 301.
 799 * 205) If r.seq_dup == q.seq_dup, return success.
 800 * 207) If r.seq_dup == 1, go to 301.
 801 * 208) Return error.
 802 *
 803 * 301) If --tries_left <= 0, return error.
 804 * 302) If q.seq_dup == 1, go to 105.
 805 * 303) q.seq_dup = 1
 806 * 304) Go to 104.
 807 *
 808 * EC algorithm when receiving a request q.
 809 * EC has response buffer r, error buffer e.
 810 *
 811 * 101) If q.struct_version != 4, set e.result = EC_RES_INVALID_HEADER_VERSION
 812 *      and go to 301
 813 * 102) If q.header_crc mismatches calculated CRC, set e.result =
 814 *      EC_RES_INVALID_HEADER_CRC and go to 301
 815 * 103) If q.data_crc_present, calculate data CRC.  If that mismatches the CRC
 816 *      byte at the end of the packet, set e.result = EC_RES_INVALID_DATA_CRC
 817 *      and go to 301.
 818 * 104) If q.seq_dup == 0, go to 201.
 819 * 105) If q.seq_num != r.seq_num, go to 201.
 820 * 106) If q.seq_dup == r.seq_dup, go to 205, else go to 203.
 821 *
 822 * 201) Process request q into response r.
 823 * 202) r.seq_num = q.seq_num
 824 * 203) r.seq_dup = q.seq_dup
 825 * 204) Calculate r.header_crc
 826 * 205) If r.data_len > 0 and data is no longer available, set e.result =
 827 *      EC_RES_DUP_UNAVAILABLE and go to 301.
 828 * 206) Send response r.
 829 *
 830 * 301) e.seq_num = q.seq_num
 831 * 302) e.seq_dup = q.seq_dup
 832 * 303) Calculate e.header_crc.
 833 * 304) Send error response e.
 834 */
 835
 836/* Version 4 request from host */
 837struct ec_host_request4 {
 838        /*
 839         * bits 0-3: struct_version: Structure version (=4)
 840         * bit    4: is_response: Is response (=0)
 841         * bits 5-6: seq_num: Sequence number
 842         * bit    7: seq_dup: Sequence duplicate flag
 843         */
 844        uint8_t fields0;
 845
 846        /*
 847         * bits 0-4: command_version: Command version
 848         * bits 5-6: Reserved (set 0, ignore on read)
 849         * bit    7: data_crc_present: Is data CRC present after data
 850         */
 851        uint8_t fields1;
 852
 853        /* Command code (EC_CMD_*) */
 854        uint16_t command;
 855
 856        /* Length of data which follows this header (not including data CRC) */
 857        uint16_t data_len;
 858
 859        /* Reserved (set 0, ignore on read) */
 860        uint8_t reserved;
 861
 862        /* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */
 863        uint8_t header_crc;
 864} __ec_align4;
 865
 866/* Version 4 response from EC */
 867struct ec_host_response4 {
 868        /*
 869         * bits 0-3: struct_version: Structure version (=4)
 870         * bit    4: is_response: Is response (=1)
 871         * bits 5-6: seq_num: Sequence number
 872         * bit    7: seq_dup: Sequence duplicate flag
 873         */
 874        uint8_t fields0;
 875
 876        /*
 877         * bits 0-6: Reserved (set 0, ignore on read)
 878         * bit    7: data_crc_present: Is data CRC present after data
 879         */
 880        uint8_t fields1;
 881
 882        /* Result code (EC_RES_*) */
 883        uint16_t result;
 884
 885        /* Length of data which follows this header (not including data CRC) */
 886        uint16_t data_len;
 887
 888        /* Reserved (set 0, ignore on read) */
 889        uint8_t reserved;
 890
 891        /* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */
 892        uint8_t header_crc;
 893} __ec_align4;
 894
 895/* Fields in fields0 byte */
 896#define EC_PACKET4_0_STRUCT_VERSION_MASK        0x0f
 897#define EC_PACKET4_0_IS_RESPONSE_MASK           0x10
 898#define EC_PACKET4_0_SEQ_NUM_SHIFT              5
 899#define EC_PACKET4_0_SEQ_NUM_MASK               0x60
 900#define EC_PACKET4_0_SEQ_DUP_MASK               0x80
 901
 902/* Fields in fields1 byte */
 903#define EC_PACKET4_1_COMMAND_VERSION_MASK       0x1f  /* (request only) */
 904#define EC_PACKET4_1_DATA_CRC_PRESENT_MASK      0x80
 905
 906/*****************************************************************************/
 907/*
 908 * Notes on commands:
 909 *
 910 * Each command is an 16-bit command value.  Commands which take params or
 911 * return response data specify structures for that data.  If no structure is
 912 * specified, the command does not input or output data, respectively.
 913 * Parameter/response length is implicit in the structs.  Some underlying
 914 * communication protocols (I2C, SPI) may add length or checksum headers, but
 915 * those are implementation-dependent and not defined here.
 916 *
 917 * All commands MUST be #defined to be 4-digit UPPER CASE hex values
 918 * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
 919 */
 920
 921/*****************************************************************************/
 922/* General / test commands */
 923
 924/*
 925 * Get protocol version, used to deal with non-backward compatible protocol
 926 * changes.
 927 */
 928#define EC_CMD_PROTO_VERSION 0x0000
 929
 930/**
 931 * struct ec_response_proto_version - Response to the proto version command.
 932 * @version: The protocol version.
 933 */
 934struct ec_response_proto_version {
 935        uint32_t version;
 936} __ec_align4;
 937
 938/*
 939 * Hello.  This is a simple command to test the EC is responsive to
 940 * commands.
 941 */
 942#define EC_CMD_HELLO 0x0001
 943
 944/**
 945 * struct ec_params_hello - Parameters to the hello command.
 946 * @in_data: Pass anything here.
 947 */
 948struct ec_params_hello {
 949        uint32_t in_data;
 950} __ec_align4;
 951
 952/**
 953 * struct ec_response_hello - Response to the hello command.
 954 * @out_data: Output will be in_data + 0x01020304.
 955 */
 956struct ec_response_hello {
 957        uint32_t out_data;
 958} __ec_align4;
 959
 960/* Get version number */
 961#define EC_CMD_GET_VERSION 0x0002
 962
 963enum ec_current_image {
 964        EC_IMAGE_UNKNOWN = 0,
 965        EC_IMAGE_RO,
 966        EC_IMAGE_RW
 967};
 968
 969/**
 970 * struct ec_response_get_version - Response to the get version command.
 971 * @version_string_ro: Null-terminated RO firmware version string.
 972 * @version_string_rw: Null-terminated RW firmware version string.
 973 * @reserved: Unused bytes; was previously RW-B firmware version string.
 974 * @current_image: One of ec_current_image.
 975 */
 976struct ec_response_get_version {
 977        char version_string_ro[32];
 978        char version_string_rw[32];
 979        char reserved[32];
 980        uint32_t current_image;
 981} __ec_align4;
 982
 983/* Read test */
 984#define EC_CMD_READ_TEST 0x0003
 985
 986/**
 987 * struct ec_params_read_test - Parameters for the read test command.
 988 * @offset: Starting value for read buffer.
 989 * @size: Size to read in bytes.
 990 */
 991struct ec_params_read_test {
 992        uint32_t offset;
 993        uint32_t size;
 994} __ec_align4;
 995
 996/**
 997 * struct ec_response_read_test - Response to the read test command.
 998 * @data: Data returned by the read test command.
 999 */
1000struct ec_response_read_test {
1001        uint32_t data[32];
1002} __ec_align4;
1003
1004/*
1005 * Get build information
1006 *
1007 * Response is null-terminated string.
1008 */
1009#define EC_CMD_GET_BUILD_INFO 0x0004
1010
1011/* Get chip info */
1012#define EC_CMD_GET_CHIP_INFO 0x0005
1013
1014/**
1015 * struct ec_response_get_chip_info - Response to the get chip info command.
1016 * @vendor: Null-terminated string for chip vendor.
1017 * @name: Null-terminated string for chip name.
1018 * @revision: Null-terminated string for chip mask version.
1019 */
1020struct ec_response_get_chip_info {
1021        char vendor[32];
1022        char name[32];
1023        char revision[32];
1024} __ec_align4;
1025
1026/* Get board HW version */
1027#define EC_CMD_GET_BOARD_VERSION 0x0006
1028
1029/**
1030 * struct ec_response_board_version - Response to the board version command.
1031 * @board_version: A monotonously incrementing number.
1032 */
1033struct ec_response_board_version {
1034        uint16_t board_version;
1035} __ec_align2;
1036
1037/*
1038 * Read memory-mapped data.
1039 *
1040 * This is an alternate interface to memory-mapped data for bus protocols
1041 * which don't support direct-mapped memory - I2C, SPI, etc.
1042 *
1043 * Response is params.size bytes of data.
1044 */
1045#define EC_CMD_READ_MEMMAP 0x0007
1046
1047/**
1048 * struct ec_params_read_memmap - Parameters for the read memory map command.
1049 * @offset: Offset in memmap (EC_MEMMAP_*).
1050 * @size: Size to read in bytes.
1051 */
1052struct ec_params_read_memmap {
1053        uint8_t offset;
1054        uint8_t size;
1055} __ec_align1;
1056
1057/* Read versions supported for a command */
1058#define EC_CMD_GET_CMD_VERSIONS 0x0008
1059
1060/**
1061 * struct ec_params_get_cmd_versions - Parameters for the get command versions.
1062 * @cmd: Command to check.
1063 */
1064struct ec_params_get_cmd_versions {
1065        uint8_t cmd;
1066} __ec_align1;
1067
1068/**
1069 * struct ec_params_get_cmd_versions_v1 - Parameters for the get command
1070 *         versions (v1)
1071 * @cmd: Command to check.
1072 */
1073struct ec_params_get_cmd_versions_v1 {
1074        uint16_t cmd;
1075} __ec_align2;
1076
1077/**
1078 * struct ec_response_get_cmd_version - Response to the get command versions.
1079 * @version_mask: Mask of supported versions; use EC_VER_MASK() to compare with
1080 *                a desired version.
1081 */
1082struct ec_response_get_cmd_versions {
1083        uint32_t version_mask;
1084} __ec_align4;
1085
1086/*
1087 * Check EC communications status (busy). This is needed on i2c/spi but not
1088 * on lpc since it has its own out-of-band busy indicator.
1089 *
1090 * lpc must read the status from the command register. Attempting this on
1091 * lpc will overwrite the args/parameter space and corrupt its data.
1092 */
1093#define EC_CMD_GET_COMMS_STATUS         0x0009
1094
1095/* Avoid using ec_status which is for return values */
1096enum ec_comms_status {
1097        EC_COMMS_STATUS_PROCESSING      = BIT(0),       /* Processing cmd */
1098};
1099
1100/**
1101 * struct ec_response_get_comms_status - Response to the get comms status
1102 *         command.
1103 * @flags: Mask of enum ec_comms_status.
1104 */
1105struct ec_response_get_comms_status {
1106        uint32_t flags;         /* Mask of enum ec_comms_status */
1107} __ec_align4;
1108
1109/* Fake a variety of responses, purely for testing purposes. */
1110#define EC_CMD_TEST_PROTOCOL            0x000A
1111
1112/* Tell the EC what to send back to us. */
1113struct ec_params_test_protocol {
1114        uint32_t ec_result;
1115        uint32_t ret_len;
1116        uint8_t buf[32];
1117} __ec_align4;
1118
1119/* Here it comes... */
1120struct ec_response_test_protocol {
1121        uint8_t buf[32];
1122} __ec_align4;
1123
1124/* Get protocol information */
1125#define EC_CMD_GET_PROTOCOL_INFO        0x000B
1126
1127/* Flags for ec_response_get_protocol_info.flags */
1128/* EC_RES_IN_PROGRESS may be returned if a command is slow */
1129#define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED BIT(0)
1130
1131/**
1132 * struct ec_response_get_protocol_info - Response to the get protocol info.
1133 * @protocol_versions: Bitmask of protocol versions supported (1 << n means
1134 *                     version n).
1135 * @max_request_packet_size: Maximum request packet size in bytes.
1136 * @max_response_packet_size: Maximum response packet size in bytes.
1137 * @flags: see EC_PROTOCOL_INFO_*
1138 */
1139struct ec_response_get_protocol_info {
1140        /* Fields which exist if at least protocol version 3 supported */
1141        uint32_t protocol_versions;
1142        uint16_t max_request_packet_size;
1143        uint16_t max_response_packet_size;
1144        uint32_t flags;
1145} __ec_align4;
1146
1147
1148/*****************************************************************************/
1149/* Get/Set miscellaneous values */
1150
1151/* The upper byte of .flags tells what to do (nothing means "get") */
1152#define EC_GSV_SET        0x80000000
1153
1154/*
1155 * The lower three bytes of .flags identifies the parameter, if that has
1156 * meaning for an individual command.
1157 */
1158#define EC_GSV_PARAM_MASK 0x00ffffff
1159
1160struct ec_params_get_set_value {
1161        uint32_t flags;
1162        uint32_t value;
1163} __ec_align4;
1164
1165struct ec_response_get_set_value {
1166        uint32_t flags;
1167        uint32_t value;
1168} __ec_align4;
1169
1170/* More than one command can use these structs to get/set parameters. */
1171#define EC_CMD_GSV_PAUSE_IN_S5  0x000C
1172
1173/*****************************************************************************/
1174/* List the features supported by the firmware */
1175#define EC_CMD_GET_FEATURES  0x000D
1176
1177/* Supported features */
1178enum ec_feature_code {
1179        /*
1180         * This image contains a limited set of features. Another image
1181         * in RW partition may support more features.
1182         */
1183        EC_FEATURE_LIMITED = 0,
1184        /*
1185         * Commands for probing/reading/writing/erasing the flash in the
1186         * EC are present.
1187         */
1188        EC_FEATURE_FLASH = 1,
1189        /*
1190         * Can control the fan speed directly.
1191         */
1192        EC_FEATURE_PWM_FAN = 2,
1193        /*
1194         * Can control the intensity of the keyboard backlight.
1195         */
1196        EC_FEATURE_PWM_KEYB = 3,
1197        /*
1198         * Support Google lightbar, introduced on Pixel.
1199         */
1200        EC_FEATURE_LIGHTBAR = 4,
1201        /* Control of LEDs  */
1202        EC_FEATURE_LED = 5,
1203        /* Exposes an interface to control gyro and sensors.
1204         * The host goes through the EC to access these sensors.
1205         * In addition, the EC may provide composite sensors, like lid angle.
1206         */
1207        EC_FEATURE_MOTION_SENSE = 6,
1208        /* The keyboard is controlled by the EC */
1209        EC_FEATURE_KEYB = 7,
1210        /* The AP can use part of the EC flash as persistent storage. */
1211        EC_FEATURE_PSTORE = 8,
1212        /* The EC monitors BIOS port 80h, and can return POST codes. */
1213        EC_FEATURE_PORT80 = 9,
1214        /*
1215         * Thermal management: include TMP specific commands.
1216         * Higher level than direct fan control.
1217         */
1218        EC_FEATURE_THERMAL = 10,
1219        /* Can switch the screen backlight on/off */
1220        EC_FEATURE_BKLIGHT_SWITCH = 11,
1221        /* Can switch the wifi module on/off */
1222        EC_FEATURE_WIFI_SWITCH = 12,
1223        /* Monitor host events, through for example SMI or SCI */
1224        EC_FEATURE_HOST_EVENTS = 13,
1225        /* The EC exposes GPIO commands to control/monitor connected devices. */
1226        EC_FEATURE_GPIO = 14,
1227        /* The EC can send i2c messages to downstream devices. */
1228        EC_FEATURE_I2C = 15,
1229        /* Command to control charger are included */
1230        EC_FEATURE_CHARGER = 16,
1231        /* Simple battery support. */
1232        EC_FEATURE_BATTERY = 17,
1233        /*
1234         * Support Smart battery protocol
1235         * (Common Smart Battery System Interface Specification)
1236         */
1237        EC_FEATURE_SMART_BATTERY = 18,
1238        /* EC can detect when the host hangs. */
1239        EC_FEATURE_HANG_DETECT = 19,
1240        /* Report power information, for pit only */
1241        EC_FEATURE_PMU = 20,
1242        /* Another Cros EC device is present downstream of this one */
1243        EC_FEATURE_SUB_MCU = 21,
1244        /* Support USB Power delivery (PD) commands */
1245        EC_FEATURE_USB_PD = 22,
1246        /* Control USB multiplexer, for audio through USB port for instance. */
1247        EC_FEATURE_USB_MUX = 23,
1248        /* Motion Sensor code has an internal software FIFO */
1249        EC_FEATURE_MOTION_SENSE_FIFO = 24,
1250        /* Support temporary secure vstore */
1251        EC_FEATURE_VSTORE = 25,
1252        /* EC decides on USB-C SS mux state, muxes configured by host */
1253        EC_FEATURE_USBC_SS_MUX_VIRTUAL = 26,
1254        /* EC has RTC feature that can be controlled by host commands */
1255        EC_FEATURE_RTC = 27,
1256        /* The MCU exposes a Fingerprint sensor */
1257        EC_FEATURE_FINGERPRINT = 28,
1258        /* The MCU exposes a Touchpad */
1259        EC_FEATURE_TOUCHPAD = 29,
1260        /* The MCU has RWSIG task enabled */
1261        EC_FEATURE_RWSIG = 30,
1262        /* EC has device events support */
1263        EC_FEATURE_DEVICE_EVENT = 31,
1264        /* EC supports the unified wake masks for LPC/eSPI systems */
1265        EC_FEATURE_UNIFIED_WAKE_MASKS = 32,
1266        /* EC supports 64-bit host events */
1267        EC_FEATURE_HOST_EVENT64 = 33,
1268        /* EC runs code in RAM (not in place, a.k.a. XIP) */
1269        EC_FEATURE_EXEC_IN_RAM = 34,
1270        /* EC supports CEC commands */
1271        EC_FEATURE_CEC = 35,
1272        /* EC supports tight sensor timestamping. */
1273        EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS = 36,
1274        /*
1275         * EC supports tablet mode detection aligned to Chrome and allows
1276         * setting of threshold by host command using
1277         * MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE.
1278         */
1279        EC_FEATURE_REFINED_TABLET_MODE_HYSTERESIS = 37,
1280        /* EC supports audio codec. */
1281        EC_FEATURE_AUDIO_CODEC = 38,
1282        /* The MCU is a System Companion Processor (SCP). */
1283        EC_FEATURE_SCP = 39,
1284        /* The MCU is an Integrated Sensor Hub */
1285        EC_FEATURE_ISH = 40,
1286};
1287
1288#define EC_FEATURE_MASK_0(event_code) BIT(event_code % 32)
1289#define EC_FEATURE_MASK_1(event_code) BIT(event_code - 32)
1290
1291struct ec_response_get_features {
1292        uint32_t flags[2];
1293} __ec_align4;
1294
1295/*****************************************************************************/
1296/* Get the board's SKU ID from EC */
1297#define EC_CMD_GET_SKU_ID 0x000E
1298
1299/* Set SKU ID from AP */
1300#define EC_CMD_SET_SKU_ID 0x000F
1301
1302struct ec_sku_id_info {
1303        uint32_t sku_id;
1304} __ec_align4;
1305
1306/*****************************************************************************/
1307/* Flash commands */
1308
1309/* Get flash info */
1310#define EC_CMD_FLASH_INFO 0x0010
1311#define EC_VER_FLASH_INFO 2
1312
1313/**
1314 * struct ec_response_flash_info - Response to the flash info command.
1315 * @flash_size: Usable flash size in bytes.
1316 * @write_block_size: Write block size. Write offset and size must be a
1317 *                    multiple of this.
1318 * @erase_block_size: Erase block size. Erase offset and size must be a
1319 *                    multiple of this.
1320 * @protect_block_size: Protection block size. Protection offset and size
1321 *                      must be a multiple of this.
1322 *
1323 * Version 0 returns these fields.
1324 */
1325struct ec_response_flash_info {
1326        uint32_t flash_size;
1327        uint32_t write_block_size;
1328        uint32_t erase_block_size;
1329        uint32_t protect_block_size;
1330} __ec_align4;
1331
1332/*
1333 * Flags for version 1+ flash info command
1334 * EC flash erases bits to 0 instead of 1.
1335 */
1336#define EC_FLASH_INFO_ERASE_TO_0 BIT(0)
1337
1338/*
1339 * Flash must be selected for read/write/erase operations to succeed.  This may
1340 * be necessary on a chip where write/erase can be corrupted by other board
1341 * activity, or where the chip needs to enable some sort of programming voltage,
1342 * or where the read/write/erase operations require cleanly suspending other
1343 * chip functionality.
1344 */
1345#define EC_FLASH_INFO_SELECT_REQUIRED BIT(1)
1346
1347/**
1348 * struct ec_response_flash_info_1 - Response to the flash info v1 command.
1349 * @flash_size: Usable flash size in bytes.
1350 * @write_block_size: Write block size. Write offset and size must be a
1351 *                    multiple of this.
1352 * @erase_block_size: Erase block size. Erase offset and size must be a
1353 *                    multiple of this.
1354 * @protect_block_size: Protection block size. Protection offset and size
1355 *                      must be a multiple of this.
1356 * @write_ideal_size: Ideal write size in bytes.  Writes will be fastest if
1357 *                    size is exactly this and offset is a multiple of this.
1358 *                    For example, an EC may have a write buffer which can do
1359 *                    half-page operations if data is aligned, and a slower
1360 *                    word-at-a-time write mode.
1361 * @flags: Flags; see EC_FLASH_INFO_*
1362 *
1363 * Version 1 returns the same initial fields as version 0, with additional
1364 * fields following.
1365 *
1366 * gcc anonymous structs don't seem to get along with the __packed directive;
1367 * if they did we'd define the version 0 structure as a sub-structure of this
1368 * one.
1369 *
1370 * Version 2 supports flash banks of different sizes:
1371 * The caller specified the number of banks it has preallocated
1372 * (num_banks_desc)
1373 * The EC returns the number of banks describing the flash memory.
1374 * It adds banks descriptions up to num_banks_desc.
1375 */
1376struct ec_response_flash_info_1 {
1377        /* Version 0 fields; see above for description */
1378        uint32_t flash_size;
1379        uint32_t write_block_size;
1380        uint32_t erase_block_size;
1381        uint32_t protect_block_size;
1382
1383        /* Version 1 adds these fields: */
1384        uint32_t write_ideal_size;
1385        uint32_t flags;
1386} __ec_align4;
1387
1388struct ec_params_flash_info_2 {
1389        /* Number of banks to describe */
1390        uint16_t num_banks_desc;
1391        /* Reserved; set 0; ignore on read */
1392        uint8_t reserved[2];
1393} __ec_align4;
1394
1395struct ec_flash_bank {
1396        /* Number of sector is in this bank. */
1397        uint16_t count;
1398        /* Size in power of 2 of each sector (8 --> 256 bytes) */
1399        uint8_t size_exp;
1400        /* Minimal write size for the sectors in this bank */
1401        uint8_t write_size_exp;
1402        /* Erase size for the sectors in this bank */
1403        uint8_t erase_size_exp;
1404        /* Size for write protection, usually identical to erase size. */
1405        uint8_t protect_size_exp;
1406        /* Reserved; set 0; ignore on read */
1407        uint8_t reserved[2];
1408};
1409
1410struct ec_response_flash_info_2 {
1411        /* Total flash in the EC. */
1412        uint32_t flash_size;
1413        /* Flags; see EC_FLASH_INFO_* */
1414        uint32_t flags;
1415        /* Maximum size to use to send data to write to the EC. */
1416        uint32_t write_ideal_size;
1417        /* Number of banks present in the EC. */
1418        uint16_t num_banks_total;
1419        /* Number of banks described in banks array. */
1420        uint16_t num_banks_desc;
1421        struct ec_flash_bank banks[0];
1422} __ec_align4;
1423
1424/*
1425 * Read flash
1426 *
1427 * Response is params.size bytes of data.
1428 */
1429#define EC_CMD_FLASH_READ 0x0011
1430
1431/**
1432 * struct ec_params_flash_read - Parameters for the flash read command.
1433 * @offset: Byte offset to read.
1434 * @size: Size to read in bytes.
1435 */
1436struct ec_params_flash_read {
1437        uint32_t offset;
1438        uint32_t size;
1439} __ec_align4;
1440
1441/* Write flash */
1442#define EC_CMD_FLASH_WRITE 0x0012
1443#define EC_VER_FLASH_WRITE 1
1444
1445/* Version 0 of the flash command supported only 64 bytes of data */
1446#define EC_FLASH_WRITE_VER0_SIZE 64
1447
1448/**
1449 * struct ec_params_flash_write - Parameters for the flash write command.
1450 * @offset: Byte offset to write.
1451 * @size: Size to write in bytes.
1452 */
1453struct ec_params_flash_write {
1454        uint32_t offset;
1455        uint32_t size;
1456        /* Followed by data to write */
1457} __ec_align4;
1458
1459/* Erase flash */
1460#define EC_CMD_FLASH_ERASE 0x0013
1461
1462/**
1463 * struct ec_params_flash_erase - Parameters for the flash erase command, v0.
1464 * @offset: Byte offset to erase.
1465 * @size: Size to erase in bytes.
1466 */
1467struct ec_params_flash_erase {
1468        uint32_t offset;
1469        uint32_t size;
1470} __ec_align4;
1471
1472/*
1473 * v1 add async erase:
1474 * subcommands can returns:
1475 * EC_RES_SUCCESS : erased (see ERASE_SECTOR_ASYNC case below).
1476 * EC_RES_INVALID_PARAM : offset/size are not aligned on a erase boundary.
1477 * EC_RES_ERROR : other errors.
1478 * EC_RES_BUSY : an existing erase operation is in progress.
1479 * EC_RES_ACCESS_DENIED: Trying to erase running image.
1480 *
1481 * When ERASE_SECTOR_ASYNC returns EC_RES_SUCCESS, the operation is just
1482 * properly queued. The user must call ERASE_GET_RESULT subcommand to get
1483 * the proper result.
1484 * When ERASE_GET_RESULT returns EC_RES_BUSY, the caller must wait and send
1485 * ERASE_GET_RESULT again to get the result of ERASE_SECTOR_ASYNC.
1486 * ERASE_GET_RESULT command may timeout on EC where flash access is not
1487 * permitted while erasing. (For instance, STM32F4).
1488 */
1489enum ec_flash_erase_cmd {
1490        FLASH_ERASE_SECTOR,     /* Erase and wait for result */
1491        FLASH_ERASE_SECTOR_ASYNC,  /* Erase and return immediately. */
1492        FLASH_ERASE_GET_RESULT,  /* Ask for last erase result */
1493};
1494
1495/**
1496 * struct ec_params_flash_erase_v1 - Parameters for the flash erase command, v1.
1497 * @cmd: One of ec_flash_erase_cmd.
1498 * @reserved: Pad byte; currently always contains 0.
1499 * @flag: No flags defined yet; set to 0.
1500 * @params: Same as v0 parameters.
1501 */
1502struct ec_params_flash_erase_v1 {
1503        uint8_t  cmd;
1504        uint8_t  reserved;
1505        uint16_t flag;
1506        struct ec_params_flash_erase params;
1507} __ec_align4;
1508
1509/*
1510 * Get/set flash protection.
1511 *
1512 * If mask!=0, sets/clear the requested bits of flags.  Depending on the
1513 * firmware write protect GPIO, not all flags will take effect immediately;
1514 * some flags require a subsequent hard reset to take effect.  Check the
1515 * returned flags bits to see what actually happened.
1516 *
1517 * If mask=0, simply returns the current flags state.
1518 */
1519#define EC_CMD_FLASH_PROTECT 0x0015
1520#define EC_VER_FLASH_PROTECT 1  /* Command version 1 */
1521
1522/* Flags for flash protection */
1523/* RO flash code protected when the EC boots */
1524#define EC_FLASH_PROTECT_RO_AT_BOOT         BIT(0)
1525/*
1526 * RO flash code protected now.  If this bit is set, at-boot status cannot
1527 * be changed.
1528 */
1529#define EC_FLASH_PROTECT_RO_NOW             BIT(1)
1530/* Entire flash code protected now, until reboot. */
1531#define EC_FLASH_PROTECT_ALL_NOW            BIT(2)
1532/* Flash write protect GPIO is asserted now */
1533#define EC_FLASH_PROTECT_GPIO_ASSERTED      BIT(3)
1534/* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
1535#define EC_FLASH_PROTECT_ERROR_STUCK        BIT(4)
1536/*
1537 * Error - flash protection is in inconsistent state.  At least one bank of
1538 * flash which should be protected is not protected.  Usually fixed by
1539 * re-requesting the desired flags, or by a hard reset if that fails.
1540 */
1541#define EC_FLASH_PROTECT_ERROR_INCONSISTENT BIT(5)
1542/* Entire flash code protected when the EC boots */
1543#define EC_FLASH_PROTECT_ALL_AT_BOOT        BIT(6)
1544/* RW flash code protected when the EC boots */
1545#define EC_FLASH_PROTECT_RW_AT_BOOT         BIT(7)
1546/* RW flash code protected now. */
1547#define EC_FLASH_PROTECT_RW_NOW             BIT(8)
1548/* Rollback information flash region protected when the EC boots */
1549#define EC_FLASH_PROTECT_ROLLBACK_AT_BOOT   BIT(9)
1550/* Rollback information flash region protected now */
1551#define EC_FLASH_PROTECT_ROLLBACK_NOW       BIT(10)
1552
1553
1554/**
1555 * struct ec_params_flash_protect - Parameters for the flash protect command.
1556 * @mask: Bits in flags to apply.
1557 * @flags: New flags to apply.
1558 */
1559struct ec_params_flash_protect {
1560        uint32_t mask;
1561        uint32_t flags;
1562} __ec_align4;
1563
1564/**
1565 * struct ec_response_flash_protect - Response to the flash protect command.
1566 * @flags: Current value of flash protect flags.
1567 * @valid_flags: Flags which are valid on this platform. This allows the
1568 *               caller to distinguish between flags which aren't set vs. flags
1569 *               which can't be set on this platform.
1570 * @writable_flags: Flags which can be changed given the current protection
1571 *                  state.
1572 */
1573struct ec_response_flash_protect {
1574        uint32_t flags;
1575        uint32_t valid_flags;
1576        uint32_t writable_flags;
1577} __ec_align4;
1578
1579/*
1580 * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
1581 * write protect.  These commands may be reused with version > 0.
1582 */
1583
1584/* Get the region offset/size */
1585#define EC_CMD_FLASH_REGION_INFO 0x0016
1586#define EC_VER_FLASH_REGION_INFO 1
1587
1588enum ec_flash_region {
1589        /* Region which holds read-only EC image */
1590        EC_FLASH_REGION_RO = 0,
1591        /*
1592         * Region which holds active RW image. 'Active' is different from
1593         * 'running'. Active means 'scheduled-to-run'. Since RO image always
1594         * scheduled to run, active/non-active applies only to RW images (for
1595         * the same reason 'update' applies only to RW images. It's a state of
1596         * an image on a flash. Running image can be RO, RW_A, RW_B but active
1597         * image can only be RW_A or RW_B. In recovery mode, an active RW image
1598         * doesn't enter 'running' state but it's still active on a flash.
1599         */
1600        EC_FLASH_REGION_ACTIVE,
1601        /*
1602         * Region which should be write-protected in the factory (a superset of
1603         * EC_FLASH_REGION_RO)
1604         */
1605        EC_FLASH_REGION_WP_RO,
1606        /* Region which holds updatable (non-active) RW image */
1607        EC_FLASH_REGION_UPDATE,
1608        /* Number of regions */
1609        EC_FLASH_REGION_COUNT,
1610};
1611/*
1612 * 'RW' is vague if there are multiple RW images; we mean the active one,
1613 * so the old constant is deprecated.
1614 */
1615#define EC_FLASH_REGION_RW EC_FLASH_REGION_ACTIVE
1616
1617/**
1618 * struct ec_params_flash_region_info - Parameters for the flash region info
1619 *         command.
1620 * @region: Flash region; see EC_FLASH_REGION_*
1621 */
1622struct ec_params_flash_region_info {
1623        uint32_t region;
1624} __ec_align4;
1625
1626struct ec_response_flash_region_info {
1627        uint32_t offset;
1628        uint32_t size;
1629} __ec_align4;
1630
1631/* Read/write VbNvContext */
1632#define EC_CMD_VBNV_CONTEXT 0x0017
1633#define EC_VER_VBNV_CONTEXT 1
1634#define EC_VBNV_BLOCK_SIZE 16
1635
1636enum ec_vbnvcontext_op {
1637        EC_VBNV_CONTEXT_OP_READ,
1638        EC_VBNV_CONTEXT_OP_WRITE,
1639};
1640
1641struct ec_params_vbnvcontext {
1642        uint32_t op;
1643        uint8_t block[EC_VBNV_BLOCK_SIZE];
1644} __ec_align4;
1645
1646struct ec_response_vbnvcontext {
1647        uint8_t block[EC_VBNV_BLOCK_SIZE];
1648} __ec_align4;
1649
1650
1651/* Get SPI flash information */
1652#define EC_CMD_FLASH_SPI_INFO 0x0018
1653
1654struct ec_response_flash_spi_info {
1655        /* JEDEC info from command 0x9F (manufacturer, memory type, size) */
1656        uint8_t jedec[3];
1657
1658        /* Pad byte; currently always contains 0 */
1659        uint8_t reserved0;
1660
1661        /* Manufacturer / device ID from command 0x90 */
1662        uint8_t mfr_dev_id[2];
1663
1664        /* Status registers from command 0x05 and 0x35 */
1665        uint8_t sr1, sr2;
1666} __ec_align1;
1667
1668
1669/* Select flash during flash operations */
1670#define EC_CMD_FLASH_SELECT 0x0019
1671
1672/**
1673 * struct ec_params_flash_select - Parameters for the flash select command.
1674 * @select: 1 to select flash, 0 to deselect flash
1675 */
1676struct ec_params_flash_select {
1677        uint8_t select;
1678} __ec_align4;
1679
1680
1681/*****************************************************************************/
1682/* PWM commands */
1683
1684/* Get fan target RPM */
1685#define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x0020
1686
1687struct ec_response_pwm_get_fan_rpm {
1688        uint32_t rpm;
1689} __ec_align4;
1690
1691/* Set target fan RPM */
1692#define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x0021
1693
1694/* Version 0 of input params */
1695struct ec_params_pwm_set_fan_target_rpm_v0 {
1696        uint32_t rpm;
1697} __ec_align4;
1698
1699/* Version 1 of input params */
1700struct ec_params_pwm_set_fan_target_rpm_v1 {
1701        uint32_t rpm;
1702        uint8_t fan_idx;
1703} __ec_align_size1;
1704
1705/* Get keyboard backlight */
1706/* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1707#define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x0022
1708
1709struct ec_response_pwm_get_keyboard_backlight {
1710        uint8_t percent;
1711        uint8_t enabled;
1712} __ec_align1;
1713
1714/* Set keyboard backlight */
1715/* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1716#define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x0023
1717
1718struct ec_params_pwm_set_keyboard_backlight {
1719        uint8_t percent;
1720} __ec_align1;
1721
1722/* Set target fan PWM duty cycle */
1723#define EC_CMD_PWM_SET_FAN_DUTY 0x0024
1724
1725/* Version 0 of input params */
1726struct ec_params_pwm_set_fan_duty_v0 {
1727        uint32_t percent;
1728} __ec_align4;
1729
1730/* Version 1 of input params */
1731struct ec_params_pwm_set_fan_duty_v1 {
1732        uint32_t percent;
1733        uint8_t fan_idx;
1734} __ec_align_size1;
1735
1736#define EC_CMD_PWM_SET_DUTY 0x0025
1737/* 16 bit duty cycle, 0xffff = 100% */
1738#define EC_PWM_MAX_DUTY 0xffff
1739
1740enum ec_pwm_type {
1741        /* All types, indexed by board-specific enum pwm_channel */
1742        EC_PWM_TYPE_GENERIC = 0,
1743        /* Keyboard backlight */
1744        EC_PWM_TYPE_KB_LIGHT,
1745        /* Display backlight */
1746        EC_PWM_TYPE_DISPLAY_LIGHT,
1747        EC_PWM_TYPE_COUNT,
1748};
1749
1750struct ec_params_pwm_set_duty {
1751        uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1752        uint8_t pwm_type;  /* ec_pwm_type */
1753        uint8_t index;     /* Type-specific index, or 0 if unique */
1754} __ec_align4;
1755
1756#define EC_CMD_PWM_GET_DUTY 0x0026
1757
1758struct ec_params_pwm_get_duty {
1759        uint8_t pwm_type;  /* ec_pwm_type */
1760        uint8_t index;     /* Type-specific index, or 0 if unique */
1761} __ec_align1;
1762
1763struct ec_response_pwm_get_duty {
1764        uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1765} __ec_align2;
1766
1767/*****************************************************************************/
1768/*
1769 * Lightbar commands. This looks worse than it is. Since we only use one HOST
1770 * command to say "talk to the lightbar", we put the "and tell it to do X" part
1771 * into a subcommand. We'll make separate structs for subcommands with
1772 * different input args, so that we know how much to expect.
1773 */
1774#define EC_CMD_LIGHTBAR_CMD 0x0028
1775
1776struct rgb_s {
1777        uint8_t r, g, b;
1778} __ec_todo_unpacked;
1779
1780#define LB_BATTERY_LEVELS 4
1781
1782/*
1783 * List of tweakable parameters. NOTE: It's __packed so it can be sent in a
1784 * host command, but the alignment is the same regardless. Keep it that way.
1785 */
1786struct lightbar_params_v0 {
1787        /* Timing */
1788        int32_t google_ramp_up;
1789        int32_t google_ramp_down;
1790        int32_t s3s0_ramp_up;
1791        int32_t s0_tick_delay[2];               /* AC=0/1 */
1792        int32_t s0a_tick_delay[2];              /* AC=0/1 */
1793        int32_t s0s3_ramp_down;
1794        int32_t s3_sleep_for;
1795        int32_t s3_ramp_up;
1796        int32_t s3_ramp_down;
1797
1798        /* Oscillation */
1799        uint8_t new_s0;
1800        uint8_t osc_min[2];                     /* AC=0/1 */
1801        uint8_t osc_max[2];                     /* AC=0/1 */
1802        uint8_t w_ofs[2];                       /* AC=0/1 */
1803
1804        /* Brightness limits based on the backlight and AC. */
1805        uint8_t bright_bl_off_fixed[2];         /* AC=0/1 */
1806        uint8_t bright_bl_on_min[2];            /* AC=0/1 */
1807        uint8_t bright_bl_on_max[2];            /* AC=0/1 */
1808
1809        /* Battery level thresholds */
1810        uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1811
1812        /* Map [AC][battery_level] to color index */
1813        uint8_t s0_idx[2][LB_BATTERY_LEVELS];   /* AP is running */
1814        uint8_t s3_idx[2][LB_BATTERY_LEVELS];   /* AP is sleeping */
1815
1816        /* Color palette */
1817        struct rgb_s color[8];                  /* 0-3 are Google colors */
1818} __ec_todo_packed;
1819
1820struct lightbar_params_v1 {
1821        /* Timing */
1822        int32_t google_ramp_up;
1823        int32_t google_ramp_down;
1824        int32_t s3s0_ramp_up;
1825        int32_t s0_tick_delay[2];               /* AC=0/1 */
1826        int32_t s0a_tick_delay[2];              /* AC=0/1 */
1827        int32_t s0s3_ramp_down;
1828        int32_t s3_sleep_for;
1829        int32_t s3_ramp_up;
1830        int32_t s3_ramp_down;
1831        int32_t s5_ramp_up;
1832        int32_t s5_ramp_down;
1833        int32_t tap_tick_delay;
1834        int32_t tap_gate_delay;
1835        int32_t tap_display_time;
1836
1837        /* Tap-for-battery params */
1838        uint8_t tap_pct_red;
1839        uint8_t tap_pct_green;
1840        uint8_t tap_seg_min_on;
1841        uint8_t tap_seg_max_on;
1842        uint8_t tap_seg_osc;
1843        uint8_t tap_idx[3];
1844
1845        /* Oscillation */
1846        uint8_t osc_min[2];                     /* AC=0/1 */
1847        uint8_t osc_max[2];                     /* AC=0/1 */
1848        uint8_t w_ofs[2];                       /* AC=0/1 */
1849
1850        /* Brightness limits based on the backlight and AC. */
1851        uint8_t bright_bl_off_fixed[2];         /* AC=0/1 */
1852        uint8_t bright_bl_on_min[2];            /* AC=0/1 */
1853        uint8_t bright_bl_on_max[2];            /* AC=0/1 */
1854
1855        /* Battery level thresholds */
1856        uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1857
1858        /* Map [AC][battery_level] to color index */
1859        uint8_t s0_idx[2][LB_BATTERY_LEVELS];   /* AP is running */
1860        uint8_t s3_idx[2][LB_BATTERY_LEVELS];   /* AP is sleeping */
1861
1862        /* s5: single color pulse on inhibited power-up */
1863        uint8_t s5_idx;
1864
1865        /* Color palette */
1866        struct rgb_s color[8];                  /* 0-3 are Google colors */
1867} __ec_todo_packed;
1868
1869/* Lightbar command params v2
1870 * crbug.com/467716
1871 *
1872 * lightbar_parms_v1 was too big for i2c, therefore in v2, we split them up by
1873 * logical groups to make it more manageable ( < 120 bytes).
1874 *
1875 * NOTE: Each of these groups must be less than 120 bytes.
1876 */
1877
1878struct lightbar_params_v2_timing {
1879        /* Timing */
1880        int32_t google_ramp_up;
1881        int32_t google_ramp_down;
1882        int32_t s3s0_ramp_up;
1883        int32_t s0_tick_delay[2];               /* AC=0/1 */
1884        int32_t s0a_tick_delay[2];              /* AC=0/1 */
1885        int32_t s0s3_ramp_down;
1886        int32_t s3_sleep_for;
1887        int32_t s3_ramp_up;
1888        int32_t s3_ramp_down;
1889        int32_t s5_ramp_up;
1890        int32_t s5_ramp_down;
1891        int32_t tap_tick_delay;
1892        int32_t tap_gate_delay;
1893        int32_t tap_display_time;
1894} __ec_todo_packed;
1895
1896struct lightbar_params_v2_tap {
1897        /* Tap-for-battery params */
1898        uint8_t tap_pct_red;
1899        uint8_t tap_pct_green;
1900        uint8_t tap_seg_min_on;
1901        uint8_t tap_seg_max_on;
1902        uint8_t tap_seg_osc;
1903        uint8_t tap_idx[3];
1904} __ec_todo_packed;
1905
1906struct lightbar_params_v2_oscillation {
1907        /* Oscillation */
1908        uint8_t osc_min[2];                     /* AC=0/1 */
1909        uint8_t osc_max[2];                     /* AC=0/1 */
1910        uint8_t w_ofs[2];                       /* AC=0/1 */
1911} __ec_todo_packed;
1912
1913struct lightbar_params_v2_brightness {
1914        /* Brightness limits based on the backlight and AC. */
1915        uint8_t bright_bl_off_fixed[2];         /* AC=0/1 */
1916        uint8_t bright_bl_on_min[2];            /* AC=0/1 */
1917        uint8_t bright_bl_on_max[2];            /* AC=0/1 */
1918} __ec_todo_packed;
1919
1920struct lightbar_params_v2_thresholds {
1921        /* Battery level thresholds */
1922        uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1923} __ec_todo_packed;
1924
1925struct lightbar_params_v2_colors {
1926        /* Map [AC][battery_level] to color index */
1927        uint8_t s0_idx[2][LB_BATTERY_LEVELS];   /* AP is running */
1928        uint8_t s3_idx[2][LB_BATTERY_LEVELS];   /* AP is sleeping */
1929
1930        /* s5: single color pulse on inhibited power-up */
1931        uint8_t s5_idx;
1932
1933        /* Color palette */
1934        struct rgb_s color[8];                  /* 0-3 are Google colors */
1935} __ec_todo_packed;
1936
1937/* Lightbar program. */
1938#define EC_LB_PROG_LEN 192
1939struct lightbar_program {
1940        uint8_t size;
1941        uint8_t data[EC_LB_PROG_LEN];
1942} __ec_todo_unpacked;
1943
1944struct ec_params_lightbar {
1945        uint8_t cmd;                  /* Command (see enum lightbar_command) */
1946        union {
1947                /*
1948                 * The following commands have no args:
1949                 *
1950                 * dump, off, on, init, get_seq, get_params_v0, get_params_v1,
1951                 * version, get_brightness, get_demo, suspend, resume,
1952                 * get_params_v2_timing, get_params_v2_tap, get_params_v2_osc,
1953                 * get_params_v2_bright, get_params_v2_thlds,
1954                 * get_params_v2_colors
1955                 *
1956                 * Don't use an empty struct, because C++ hates that.
1957                 */
1958
1959                struct __ec_todo_unpacked {
1960                        uint8_t num;
1961                } set_brightness, seq, demo;
1962
1963                struct __ec_todo_unpacked {
1964                        uint8_t ctrl, reg, value;
1965                } reg;
1966
1967                struct __ec_todo_unpacked {
1968                        uint8_t led, red, green, blue;
1969                } set_rgb;
1970
1971                struct __ec_todo_unpacked {
1972                        uint8_t led;
1973                } get_rgb;
1974
1975                struct __ec_todo_unpacked {
1976                        uint8_t enable;
1977                } manual_suspend_ctrl;
1978
1979                struct lightbar_params_v0 set_params_v0;
1980                struct lightbar_params_v1 set_params_v1;
1981
1982                struct lightbar_params_v2_timing set_v2par_timing;
1983                struct lightbar_params_v2_tap set_v2par_tap;
1984                struct lightbar_params_v2_oscillation set_v2par_osc;
1985                struct lightbar_params_v2_brightness set_v2par_bright;
1986                struct lightbar_params_v2_thresholds set_v2par_thlds;
1987                struct lightbar_params_v2_colors set_v2par_colors;
1988
1989                struct lightbar_program set_program;
1990        };
1991} __ec_todo_packed;
1992
1993struct ec_response_lightbar {
1994        union {
1995                struct __ec_todo_unpacked {
1996                        struct __ec_todo_unpacked {
1997                                uint8_t reg;
1998                                uint8_t ic0;
1999                                uint8_t ic1;
2000                        } vals[23];
2001                } dump;
2002
2003                struct __ec_todo_unpacked {
2004                        uint8_t num;
2005                } get_seq, get_brightness, get_demo;
2006
2007                struct lightbar_params_v0 get_params_v0;
2008                struct lightbar_params_v1 get_params_v1;
2009
2010
2011                struct lightbar_params_v2_timing get_params_v2_timing;
2012                struct lightbar_params_v2_tap get_params_v2_tap;
2013                struct lightbar_params_v2_oscillation get_params_v2_osc;
2014                struct lightbar_params_v2_brightness get_params_v2_bright;
2015                struct lightbar_params_v2_thresholds get_params_v2_thlds;
2016                struct lightbar_params_v2_colors get_params_v2_colors;
2017
2018                struct __ec_todo_unpacked {
2019                        uint32_t num;
2020                        uint32_t flags;
2021                } version;
2022
2023                struct __ec_todo_unpacked {
2024                        uint8_t red, green, blue;
2025                } get_rgb;
2026
2027                /*
2028                 * The following commands have no response:
2029                 *
2030                 * off, on, init, set_brightness, seq, reg, set_rgb, demo,
2031                 * set_params_v0, set_params_v1, set_program,
2032                 * manual_suspend_ctrl, suspend, resume, set_v2par_timing,
2033                 * set_v2par_tap, set_v2par_osc, set_v2par_bright,
2034                 * set_v2par_thlds, set_v2par_colors
2035                 */
2036        };
2037} __ec_todo_packed;
2038
2039/* Lightbar commands */
2040enum lightbar_command {
2041        LIGHTBAR_CMD_DUMP = 0,
2042        LIGHTBAR_CMD_OFF = 1,
2043        LIGHTBAR_CMD_ON = 2,
2044        LIGHTBAR_CMD_INIT = 3,
2045        LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
2046        LIGHTBAR_CMD_SEQ = 5,
2047        LIGHTBAR_CMD_REG = 6,
2048        LIGHTBAR_CMD_SET_RGB = 7,
2049        LIGHTBAR_CMD_GET_SEQ = 8,
2050        LIGHTBAR_CMD_DEMO = 9,
2051        LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
2052        LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
2053        LIGHTBAR_CMD_VERSION = 12,
2054        LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
2055        LIGHTBAR_CMD_GET_RGB = 14,
2056        LIGHTBAR_CMD_GET_DEMO = 15,
2057        LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
2058        LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
2059        LIGHTBAR_CMD_SET_PROGRAM = 18,
2060        LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19,
2061        LIGHTBAR_CMD_SUSPEND = 20,
2062        LIGHTBAR_CMD_RESUME = 21,
2063        LIGHTBAR_CMD_GET_PARAMS_V2_TIMING = 22,
2064        LIGHTBAR_CMD_SET_PARAMS_V2_TIMING = 23,
2065        LIGHTBAR_CMD_GET_PARAMS_V2_TAP = 24,
2066        LIGHTBAR_CMD_SET_PARAMS_V2_TAP = 25,
2067        LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION = 26,
2068        LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION = 27,
2069        LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS = 28,
2070        LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS = 29,
2071        LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS = 30,
2072        LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS = 31,
2073        LIGHTBAR_CMD_GET_PARAMS_V2_COLORS = 32,
2074        LIGHTBAR_CMD_SET_PARAMS_V2_COLORS = 33,
2075        LIGHTBAR_NUM_CMDS
2076};
2077
2078/*****************************************************************************/
2079/* LED control commands */
2080
2081#define EC_CMD_LED_CONTROL 0x0029
2082
2083enum ec_led_id {
2084        /* LED to indicate battery state of charge */
2085        EC_LED_ID_BATTERY_LED = 0,
2086        /*
2087         * LED to indicate system power state (on or in suspend).
2088         * May be on power button or on C-panel.
2089         */
2090        EC_LED_ID_POWER_LED,
2091        /* LED on power adapter or its plug */
2092        EC_LED_ID_ADAPTER_LED,
2093        /* LED to indicate left side */
2094        EC_LED_ID_LEFT_LED,
2095        /* LED to indicate right side */
2096        EC_LED_ID_RIGHT_LED,
2097        /* LED to indicate recovery mode with HW_REINIT */
2098        EC_LED_ID_RECOVERY_HW_REINIT_LED,
2099        /* LED to indicate sysrq debug mode. */
2100        EC_LED_ID_SYSRQ_DEBUG_LED,
2101
2102        EC_LED_ID_COUNT
2103};
2104
2105/* LED control flags */
2106#define EC_LED_FLAGS_QUERY BIT(0) /* Query LED capability only */
2107#define EC_LED_FLAGS_AUTO  BIT(1) /* Switch LED back to automatic control */
2108
2109enum ec_led_colors {
2110        EC_LED_COLOR_RED = 0,
2111        EC_LED_COLOR_GREEN,
2112        EC_LED_COLOR_BLUE,
2113        EC_LED_COLOR_YELLOW,
2114        EC_LED_COLOR_WHITE,
2115        EC_LED_COLOR_AMBER,
2116
2117        EC_LED_COLOR_COUNT
2118};
2119
2120struct ec_params_led_control {
2121        uint8_t led_id;     /* Which LED to control */
2122        uint8_t flags;      /* Control flags */
2123
2124        uint8_t brightness[EC_LED_COLOR_COUNT];
2125} __ec_align1;
2126
2127struct ec_response_led_control {
2128        /*
2129         * Available brightness value range.
2130         *
2131         * Range 0 means color channel not present.
2132         * Range 1 means on/off control.
2133         * Other values means the LED is control by PWM.
2134         */
2135        uint8_t brightness_range[EC_LED_COLOR_COUNT];
2136} __ec_align1;
2137
2138/*****************************************************************************/
2139/* Verified boot commands */
2140
2141/*
2142 * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
2143 * reused for other purposes with version > 0.
2144 */
2145
2146/* Verified boot hash command */
2147#define EC_CMD_VBOOT_HASH 0x002A
2148
2149struct ec_params_vboot_hash {
2150        uint8_t cmd;             /* enum ec_vboot_hash_cmd */
2151        uint8_t hash_type;       /* enum ec_vboot_hash_type */
2152        uint8_t nonce_size;      /* Nonce size; may be 0 */
2153        uint8_t reserved0;       /* Reserved; set 0 */
2154        uint32_t offset;         /* Offset in flash to hash */
2155        uint32_t size;           /* Number of bytes to hash */
2156        uint8_t nonce_data[64];  /* Nonce data; ignored if nonce_size=0 */
2157} __ec_align4;
2158
2159struct ec_response_vboot_hash {
2160        uint8_t status;          /* enum ec_vboot_hash_status */
2161        uint8_t hash_type;       /* enum ec_vboot_hash_type */
2162        uint8_t digest_size;     /* Size of hash digest in bytes */
2163        uint8_t reserved0;       /* Ignore; will be 0 */
2164        uint32_t offset;         /* Offset in flash which was hashed */
2165        uint32_t size;           /* Number of bytes hashed */
2166        uint8_t hash_digest[64]; /* Hash digest data */
2167} __ec_align4;
2168
2169enum ec_vboot_hash_cmd {
2170        EC_VBOOT_HASH_GET = 0,       /* Get current hash status */
2171        EC_VBOOT_HASH_ABORT = 1,     /* Abort calculating current hash */
2172        EC_VBOOT_HASH_START = 2,     /* Start computing a new hash */
2173        EC_VBOOT_HASH_RECALC = 3,    /* Synchronously compute a new hash */
2174};
2175
2176enum ec_vboot_hash_type {
2177        EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
2178};
2179
2180enum ec_vboot_hash_status {
2181        EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
2182        EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
2183        EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
2184};
2185
2186/*
2187 * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
2188 * If one of these is specified, the EC will automatically update offset and
2189 * size to the correct values for the specified image (RO or RW).
2190 */
2191#define EC_VBOOT_HASH_OFFSET_RO         0xfffffffe
2192#define EC_VBOOT_HASH_OFFSET_ACTIVE     0xfffffffd
2193#define EC_VBOOT_HASH_OFFSET_UPDATE     0xfffffffc
2194
2195/*
2196 * 'RW' is vague if there are multiple RW images; we mean the active one,
2197 * so the old constant is deprecated.
2198 */
2199#define EC_VBOOT_HASH_OFFSET_RW EC_VBOOT_HASH_OFFSET_ACTIVE
2200
2201/*****************************************************************************/
2202/*
2203 * Motion sense commands. We'll make separate structs for sub-commands with
2204 * different input args, so that we know how much to expect.
2205 */
2206#define EC_CMD_MOTION_SENSE_CMD 0x002B
2207
2208/* Motion sense commands */
2209enum motionsense_command {
2210        /*
2211         * Dump command returns all motion sensor data including motion sense
2212         * module flags and individual sensor flags.
2213         */
2214        MOTIONSENSE_CMD_DUMP = 0,
2215
2216        /*
2217         * Info command returns data describing the details of a given sensor,
2218         * including enum motionsensor_type, enum motionsensor_location, and
2219         * enum motionsensor_chip.
2220         */
2221        MOTIONSENSE_CMD_INFO = 1,
2222
2223        /*
2224         * EC Rate command is a setter/getter command for the EC sampling rate
2225         * in milliseconds.
2226         * It is per sensor, the EC run sample task  at the minimum of all
2227         * sensors EC_RATE.
2228         * For sensors without hardware FIFO, EC_RATE should be equals to 1/ODR
2229         * to collect all the sensor samples.
2230         * For sensor with hardware FIFO, EC_RATE is used as the maximal delay
2231         * to process of all motion sensors in milliseconds.
2232         */
2233        MOTIONSENSE_CMD_EC_RATE = 2,
2234
2235        /*
2236         * Sensor ODR command is a setter/getter command for the output data
2237         * rate of a specific motion sensor in millihertz.
2238         */
2239        MOTIONSENSE_CMD_SENSOR_ODR = 3,
2240
2241        /*
2242         * Sensor range command is a setter/getter command for the range of
2243         * a specified motion sensor in +/-G's or +/- deg/s.
2244         */
2245        MOTIONSENSE_CMD_SENSOR_RANGE = 4,
2246
2247        /*
2248         * Setter/getter command for the keyboard wake angle. When the lid
2249         * angle is greater than this value, keyboard wake is disabled in S3,
2250         * and when the lid angle goes less than this value, keyboard wake is
2251         * enabled. Note, the lid angle measurement is an approximate,
2252         * un-calibrated value, hence the wake angle isn't exact.
2253         */
2254        MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
2255
2256        /*
2257         * Returns a single sensor data.
2258         */
2259        MOTIONSENSE_CMD_DATA = 6,
2260
2261        /*
2262         * Return sensor fifo info.
2263         */
2264        MOTIONSENSE_CMD_FIFO_INFO = 7,
2265
2266        /*
2267         * Insert a flush element in the fifo and return sensor fifo info.
2268         * The host can use that element to synchronize its operation.
2269         */
2270        MOTIONSENSE_CMD_FIFO_FLUSH = 8,
2271
2272        /*
2273         * Return a portion of the fifo.
2274         */
2275        MOTIONSENSE_CMD_FIFO_READ = 9,
2276
2277        /*
2278         * Perform low level calibration.
2279         * On sensors that support it, ask to do offset calibration.
2280         */
2281        MOTIONSENSE_CMD_PERFORM_CALIB = 10,
2282
2283        /*
2284         * Sensor Offset command is a setter/getter command for the offset
2285         * used for calibration.
2286         * The offsets can be calculated by the host, or via
2287         * PERFORM_CALIB command.
2288         */
2289        MOTIONSENSE_CMD_SENSOR_OFFSET = 11,
2290
2291        /*
2292         * List available activities for a MOTION sensor.
2293         * Indicates if they are enabled or disabled.
2294         */
2295        MOTIONSENSE_CMD_LIST_ACTIVITIES = 12,
2296
2297        /*
2298         * Activity management
2299         * Enable/Disable activity recognition.
2300         */
2301        MOTIONSENSE_CMD_SET_ACTIVITY = 13,
2302
2303        /*
2304         * Lid Angle
2305         */
2306        MOTIONSENSE_CMD_LID_ANGLE = 14,
2307
2308        /*
2309         * Allow the FIFO to trigger interrupt via MKBP events.
2310         * By default the FIFO does not send interrupt to process the FIFO
2311         * until the AP is ready or it is coming from a wakeup sensor.
2312         */
2313        MOTIONSENSE_CMD_FIFO_INT_ENABLE = 15,
2314
2315        /*
2316         * Spoof the readings of the sensors.  The spoofed readings can be set
2317         * to arbitrary values, or will lock to the last read actual values.
2318         */
2319        MOTIONSENSE_CMD_SPOOF = 16,
2320
2321        /* Set lid angle for tablet mode detection. */
2322        MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE = 17,
2323
2324        /*
2325         * Sensor Scale command is a setter/getter command for the calibration
2326         * scale.
2327         */
2328        MOTIONSENSE_CMD_SENSOR_SCALE = 18,
2329
2330        /* Number of motionsense sub-commands. */
2331        MOTIONSENSE_NUM_CMDS
2332};
2333
2334/* List of motion sensor types. */
2335enum motionsensor_type {
2336        MOTIONSENSE_TYPE_ACCEL = 0,
2337        MOTIONSENSE_TYPE_GYRO = 1,
2338        MOTIONSENSE_TYPE_MAG = 2,
2339        MOTIONSENSE_TYPE_PROX = 3,
2340        MOTIONSENSE_TYPE_LIGHT = 4,
2341        MOTIONSENSE_TYPE_ACTIVITY = 5,
2342        MOTIONSENSE_TYPE_BARO = 6,
2343        MOTIONSENSE_TYPE_SYNC = 7,
2344        MOTIONSENSE_TYPE_MAX,
2345};
2346
2347/* List of motion sensor locations. */
2348enum motionsensor_location {
2349        MOTIONSENSE_LOC_BASE = 0,
2350        MOTIONSENSE_LOC_LID = 1,
2351        MOTIONSENSE_LOC_CAMERA = 2,
2352        MOTIONSENSE_LOC_MAX,
2353};
2354
2355/* List of motion sensor chips. */
2356enum motionsensor_chip {
2357        MOTIONSENSE_CHIP_KXCJ9 = 0,
2358        MOTIONSENSE_CHIP_LSM6DS0 = 1,
2359        MOTIONSENSE_CHIP_BMI160 = 2,
2360        MOTIONSENSE_CHIP_SI1141 = 3,
2361        MOTIONSENSE_CHIP_SI1142 = 4,
2362        MOTIONSENSE_CHIP_SI1143 = 5,
2363        MOTIONSENSE_CHIP_KX022 = 6,
2364        MOTIONSENSE_CHIP_L3GD20H = 7,
2365        MOTIONSENSE_CHIP_BMA255 = 8,
2366        MOTIONSENSE_CHIP_BMP280 = 9,
2367        MOTIONSENSE_CHIP_OPT3001 = 10,
2368        MOTIONSENSE_CHIP_BH1730 = 11,
2369        MOTIONSENSE_CHIP_GPIO = 12,
2370        MOTIONSENSE_CHIP_LIS2DH = 13,
2371        MOTIONSENSE_CHIP_LSM6DSM = 14,
2372        MOTIONSENSE_CHIP_LIS2DE = 15,
2373        MOTIONSENSE_CHIP_LIS2MDL = 16,
2374        MOTIONSENSE_CHIP_LSM6DS3 = 17,
2375        MOTIONSENSE_CHIP_LSM6DSO = 18,
2376        MOTIONSENSE_CHIP_LNG2DM = 19,
2377        MOTIONSENSE_CHIP_MAX,
2378};
2379
2380/* List of orientation positions */
2381enum motionsensor_orientation {
2382        MOTIONSENSE_ORIENTATION_LANDSCAPE = 0,
2383        MOTIONSENSE_ORIENTATION_PORTRAIT = 1,
2384        MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_PORTRAIT = 2,
2385        MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_LANDSCAPE = 3,
2386        MOTIONSENSE_ORIENTATION_UNKNOWN = 4,
2387};
2388
2389struct ec_response_motion_sensor_data {
2390        /* Flags for each sensor. */
2391        uint8_t flags;
2392        /* Sensor number the data comes from. */
2393        uint8_t sensor_num;
2394        /* Each sensor is up to 3-axis. */
2395        union {
2396                int16_t             data[3];
2397                struct __ec_todo_packed {
2398                        uint16_t    reserved;
2399                        uint32_t    timestamp;
2400                };
2401                struct __ec_todo_unpacked {
2402                        uint8_t     activity; /* motionsensor_activity */
2403                        uint8_t     state;
2404                        int16_t     add_info[2];
2405                };
2406        };
2407} __ec_todo_packed;
2408
2409/* Note: used in ec_response_get_next_data */
2410struct ec_response_motion_sense_fifo_info {
2411        /* Size of the fifo */
2412        uint16_t size;
2413        /* Amount of space used in the fifo */
2414        uint16_t count;
2415        /* Timestamp recorded in us.
2416         * aka accurate timestamp when host event was triggered.
2417         */
2418        uint32_t timestamp;
2419        /* Total amount of vector lost */
2420        uint16_t total_lost;
2421        /* Lost events since the last fifo_info, per sensors */
2422        uint16_t lost[0];
2423} __ec_todo_packed;
2424
2425struct ec_response_motion_sense_fifo_data {
2426        uint32_t number_data;
2427        struct ec_response_motion_sensor_data data[0];
2428} __ec_todo_packed;
2429
2430/* List supported activity recognition */
2431enum motionsensor_activity {
2432        MOTIONSENSE_ACTIVITY_RESERVED = 0,
2433        MOTIONSENSE_ACTIVITY_SIG_MOTION = 1,
2434        MOTIONSENSE_ACTIVITY_DOUBLE_TAP = 2,
2435        MOTIONSENSE_ACTIVITY_ORIENTATION = 3,
2436};
2437
2438struct ec_motion_sense_activity {
2439        uint8_t sensor_num;
2440        uint8_t activity; /* one of enum motionsensor_activity */
2441        uint8_t enable;   /* 1: enable, 0: disable */
2442        uint8_t reserved;
2443        uint16_t parameters[3]; /* activity dependent parameters */
2444} __ec_todo_unpacked;
2445
2446/* Module flag masks used for the dump sub-command. */
2447#define MOTIONSENSE_MODULE_FLAG_ACTIVE BIT(0)
2448
2449/* Sensor flag masks used for the dump sub-command. */
2450#define MOTIONSENSE_SENSOR_FLAG_PRESENT BIT(0)
2451
2452/*
2453 * Flush entry for synchronization.
2454 * data contains time stamp
2455 */
2456#define MOTIONSENSE_SENSOR_FLAG_FLUSH BIT(0)
2457#define MOTIONSENSE_SENSOR_FLAG_TIMESTAMP BIT(1)
2458#define MOTIONSENSE_SENSOR_FLAG_WAKEUP BIT(2)
2459#define MOTIONSENSE_SENSOR_FLAG_TABLET_MODE BIT(3)
2460#define MOTIONSENSE_SENSOR_FLAG_ODR BIT(4)
2461
2462/*
2463 * Send this value for the data element to only perform a read. If you
2464 * send any other value, the EC will interpret it as data to set and will
2465 * return the actual value set.
2466 */
2467#define EC_MOTION_SENSE_NO_VALUE -1
2468
2469#define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000
2470
2471/* MOTIONSENSE_CMD_SENSOR_OFFSET subcommand flag */
2472/* Set Calibration information */
2473#define MOTION_SENSE_SET_OFFSET BIT(0)
2474
2475/* Default Scale value, factor 1. */
2476#define MOTION_SENSE_DEFAULT_SCALE BIT(15)
2477
2478#define LID_ANGLE_UNRELIABLE 500
2479
2480enum motionsense_spoof_mode {
2481        /* Disable spoof mode. */
2482        MOTIONSENSE_SPOOF_MODE_DISABLE = 0,
2483
2484        /* Enable spoof mode, but use provided component values. */
2485        MOTIONSENSE_SPOOF_MODE_CUSTOM,
2486
2487        /* Enable spoof mode, but use the current sensor values. */
2488        MOTIONSENSE_SPOOF_MODE_LOCK_CURRENT,
2489
2490        /* Query the current spoof mode status for the sensor. */
2491        MOTIONSENSE_SPOOF_MODE_QUERY,
2492};
2493
2494struct ec_params_motion_sense {
2495        uint8_t cmd;
2496        union {
2497                /* Used for MOTIONSENSE_CMD_DUMP. */
2498                struct __ec_todo_unpacked {
2499                        /*
2500                         * Maximal number of sensor the host is expecting.
2501                         * 0 means the host is only interested in the number
2502                         * of sensors controlled by the EC.
2503                         */
2504                        uint8_t max_sensor_count;
2505                } dump;
2506
2507                /*
2508                 * Used for MOTIONSENSE_CMD_KB_WAKE_ANGLE.
2509                 */
2510                struct __ec_todo_unpacked {
2511                        /* Data to set or EC_MOTION_SENSE_NO_VALUE to read.
2512                         * kb_wake_angle: angle to wakup AP.
2513                         */
2514                        int16_t data;
2515                } kb_wake_angle;
2516
2517                /*
2518                 * Used for MOTIONSENSE_CMD_INFO, MOTIONSENSE_CMD_DATA
2519                 * and MOTIONSENSE_CMD_PERFORM_CALIB.
2520                 */
2521                struct __ec_todo_unpacked {
2522                        uint8_t sensor_num;
2523                } info, info_3, data, fifo_flush, perform_calib,
2524                                list_activities;
2525
2526                /*
2527                 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR
2528                 * and MOTIONSENSE_CMD_SENSOR_RANGE.
2529                 */
2530                struct __ec_todo_unpacked {
2531                        uint8_t sensor_num;
2532
2533                        /* Rounding flag, true for round-up, false for down. */
2534                        uint8_t roundup;
2535
2536                        uint16_t reserved;
2537
2538                        /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
2539                        int32_t data;
2540                } ec_rate, sensor_odr, sensor_range;
2541
2542                /* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
2543                struct __ec_todo_packed {
2544                        uint8_t sensor_num;
2545
2546                        /*
2547                         * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2548                         * the calibration information in the EC.
2549                         * If unset, just retrieve calibration information.
2550                         */
2551                        uint16_t flags;
2552
2553                        /*
2554                         * Temperature at calibration, in units of 0.01 C
2555                         * 0x8000: invalid / unknown.
2556                         * 0x0: 0C
2557                         * 0x7fff: +327.67C
2558                         */
2559                        int16_t temp;
2560
2561                        /*
2562                         * Offset for calibration.
2563                         * Unit:
2564                         * Accelerometer: 1/1024 g
2565                         * Gyro:          1/1024 deg/s
2566                         * Compass:       1/16 uT
2567                         */
2568                        int16_t offset[3];
2569                } sensor_offset;
2570
2571                /* Used for MOTIONSENSE_CMD_SENSOR_SCALE */
2572                struct __ec_todo_packed {
2573                        uint8_t sensor_num;
2574
2575                        /*
2576                         * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2577                         * the calibration information in the EC.
2578                         * If unset, just retrieve calibration information.
2579                         */
2580                        uint16_t flags;
2581
2582                        /*
2583                         * Temperature at calibration, in units of 0.01 C
2584                         * 0x8000: invalid / unknown.
2585                         * 0x0: 0C
2586                         * 0x7fff: +327.67C
2587                         */
2588                        int16_t temp;
2589
2590                        /*
2591                         * Scale for calibration:
2592                         * By default scale is 1, it is encoded on 16bits:
2593                         * 1 = BIT(15)
2594                         * ~2 = 0xFFFF
2595                         * ~0 = 0.
2596                         */
2597                        uint16_t scale[3];
2598                } sensor_scale;
2599
2600
2601                /* Used for MOTIONSENSE_CMD_FIFO_INFO */
2602                /* (no params) */
2603
2604                /* Used for MOTIONSENSE_CMD_FIFO_READ */
2605                struct __ec_todo_unpacked {
2606                        /*
2607                         * Number of expected vector to return.
2608                         * EC may return less or 0 if none available.
2609                         */
2610                        uint32_t max_data_vector;
2611                } fifo_read;
2612
2613                struct ec_motion_sense_activity set_activity;
2614
2615                /* Used for MOTIONSENSE_CMD_LID_ANGLE */
2616                /* (no params) */
2617
2618                /* Used for MOTIONSENSE_CMD_FIFO_INT_ENABLE */
2619                struct __ec_todo_unpacked {
2620                        /*
2621                         * 1: enable, 0 disable fifo,
2622                         * EC_MOTION_SENSE_NO_VALUE return value.
2623                         */
2624                        int8_t enable;
2625                } fifo_int_enable;
2626
2627                /* Used for MOTIONSENSE_CMD_SPOOF */
2628                struct __ec_todo_packed {
2629                        uint8_t sensor_id;
2630
2631                        /* See enum motionsense_spoof_mode. */
2632                        uint8_t spoof_enable;
2633
2634                        /* Ignored, used for alignment. */
2635                        uint8_t reserved;
2636
2637                        /* Individual component values to spoof. */
2638                        int16_t components[3];
2639                } spoof;
2640
2641                /* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */
2642                struct __ec_todo_unpacked {
2643                        /*
2644                         * Lid angle threshold for switching between tablet and
2645                         * clamshell mode.
2646                         */
2647                        int16_t lid_angle;
2648
2649                        /*
2650                         * Hysteresis degree to prevent fluctuations between
2651                         * clamshell and tablet mode if lid angle keeps
2652                         * changing around the threshold. Lid motion driver will
2653                         * use lid_angle + hys_degree to trigger tablet mode and
2654                         * lid_angle - hys_degree to trigger clamshell mode.
2655                         */
2656                        int16_t hys_degree;
2657                } tablet_mode_threshold;
2658        };
2659} __ec_todo_packed;
2660
2661struct ec_response_motion_sense {
2662        union {
2663                /* Used for MOTIONSENSE_CMD_DUMP */
2664                struct __ec_todo_unpacked {
2665                        /* Flags representing the motion sensor module. */
2666                        uint8_t module_flags;
2667
2668                        /* Number of sensors managed directly by the EC. */
2669                        uint8_t sensor_count;
2670
2671                        /*
2672                         * Sensor data is truncated if response_max is too small
2673                         * for holding all the data.
2674                         */
2675                        struct ec_response_motion_sensor_data sensor[0];
2676                } dump;
2677
2678                /* Used for MOTIONSENSE_CMD_INFO. */
2679                struct __ec_todo_unpacked {
2680                        /* Should be element of enum motionsensor_type. */
2681                        uint8_t type;
2682
2683                        /* Should be element of enum motionsensor_location. */
2684                        uint8_t location;
2685
2686                        /* Should be element of enum motionsensor_chip. */
2687                        uint8_t chip;
2688                } info;
2689
2690                /* Used for MOTIONSENSE_CMD_INFO version 3 */
2691                struct __ec_todo_unpacked {
2692                        /* Should be element of enum motionsensor_type. */
2693                        uint8_t type;
2694
2695                        /* Should be element of enum motionsensor_location. */
2696                        uint8_t location;
2697
2698                        /* Should be element of enum motionsensor_chip. */
2699                        uint8_t chip;
2700
2701                        /* Minimum sensor sampling frequency */
2702                        uint32_t min_frequency;
2703
2704                        /* Maximum sensor sampling frequency */
2705                        uint32_t max_frequency;
2706
2707                        /* Max number of sensor events that could be in fifo */
2708                        uint32_t fifo_max_event_count;
2709                } info_3;
2710
2711                /* Used for MOTIONSENSE_CMD_DATA */
2712                struct ec_response_motion_sensor_data data;
2713
2714                /*
2715                 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
2716                 * MOTIONSENSE_CMD_SENSOR_RANGE,
2717                 * MOTIONSENSE_CMD_KB_WAKE_ANGLE,
2718                 * MOTIONSENSE_CMD_FIFO_INT_ENABLE and
2719                 * MOTIONSENSE_CMD_SPOOF.
2720                 */
2721                struct __ec_todo_unpacked {
2722                        /* Current value of the parameter queried. */
2723                        int32_t ret;
2724                } ec_rate, sensor_odr, sensor_range, kb_wake_angle,
2725                  fifo_int_enable, spoof;
2726
2727                /*
2728                 * Used for MOTIONSENSE_CMD_SENSOR_OFFSET,
2729                 * PERFORM_CALIB.
2730                 */
2731                struct __ec_todo_unpacked  {
2732                        int16_t temp;
2733                        int16_t offset[3];
2734                } sensor_offset, perform_calib;
2735
2736                /* Used for MOTIONSENSE_CMD_SENSOR_SCALE */
2737                struct __ec_todo_unpacked  {
2738                        int16_t temp;
2739                        uint16_t scale[3];
2740                } sensor_scale;
2741
2742                struct ec_response_motion_sense_fifo_info fifo_info, fifo_flush;
2743
2744                struct ec_response_motion_sense_fifo_data fifo_read;
2745
2746                struct __ec_todo_packed {
2747                        uint16_t reserved;
2748                        uint32_t enabled;
2749                        uint32_t disabled;
2750                } list_activities;
2751
2752                /* No params for set activity */
2753
2754                /* Used for MOTIONSENSE_CMD_LID_ANGLE */
2755                struct __ec_todo_unpacked {
2756                        /*
2757                         * Angle between 0 and 360 degree if available,
2758                         * LID_ANGLE_UNRELIABLE otherwise.
2759                         */
2760                        uint16_t value;
2761                } lid_angle;
2762
2763                /* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */
2764                struct __ec_todo_unpacked {
2765                        /*
2766                         * Lid angle threshold for switching between tablet and
2767                         * clamshell mode.
2768                         */
2769                        uint16_t lid_angle;
2770
2771                        /* Hysteresis degree. */
2772                        uint16_t hys_degree;
2773                } tablet_mode_threshold;
2774
2775        };
2776} __ec_todo_packed;
2777
2778/*****************************************************************************/
2779/* Force lid open command */
2780
2781/* Make lid event always open */
2782#define EC_CMD_FORCE_LID_OPEN 0x002C
2783
2784struct ec_params_force_lid_open {
2785        uint8_t enabled;
2786} __ec_align1;
2787
2788/*****************************************************************************/
2789/* Configure the behavior of the power button */
2790#define EC_CMD_CONFIG_POWER_BUTTON 0x002D
2791
2792enum ec_config_power_button_flags {
2793        /* Enable/Disable power button pulses for x86 devices */
2794        EC_POWER_BUTTON_ENABLE_PULSE = BIT(0),
2795};
2796
2797struct ec_params_config_power_button {
2798        /* See enum ec_config_power_button_flags */
2799        uint8_t flags;
2800} __ec_align1;
2801
2802/*****************************************************************************/
2803/* USB charging control commands */
2804
2805/* Set USB port charging mode */
2806#define EC_CMD_USB_CHARGE_SET_MODE 0x0030
2807
2808struct ec_params_usb_charge_set_mode {
2809        uint8_t usb_port_id;
2810        uint8_t mode:7;
2811        uint8_t inhibit_charge:1;
2812} __ec_align1;
2813
2814/*****************************************************************************/
2815/* Persistent storage for host */
2816
2817/* Maximum bytes that can be read/written in a single command */
2818#define EC_PSTORE_SIZE_MAX 64
2819
2820/* Get persistent storage info */
2821#define EC_CMD_PSTORE_INFO 0x0040
2822
2823struct ec_response_pstore_info {
2824        /* Persistent storage size, in bytes */
2825        uint32_t pstore_size;
2826        /* Access size; read/write offset and size must be a multiple of this */
2827        uint32_t access_size;
2828} __ec_align4;
2829
2830/*
2831 * Read persistent storage
2832 *
2833 * Response is params.size bytes of data.
2834 */
2835#define EC_CMD_PSTORE_READ 0x0041
2836
2837struct ec_params_pstore_read {
2838        uint32_t offset;   /* Byte offset to read */
2839        uint32_t size;     /* Size to read in bytes */
2840} __ec_align4;
2841
2842/* Write persistent storage */
2843#define EC_CMD_PSTORE_WRITE 0x0042
2844
2845struct ec_params_pstore_write {
2846        uint32_t offset;   /* Byte offset to write */
2847        uint32_t size;     /* Size to write in bytes */
2848        uint8_t data[EC_PSTORE_SIZE_MAX];
2849} __ec_align4;
2850
2851/*****************************************************************************/
2852/* Real-time clock */
2853
2854/* RTC params and response structures */
2855struct ec_params_rtc {
2856        uint32_t time;
2857} __ec_align4;
2858
2859struct ec_response_rtc {
2860        uint32_t time;
2861} __ec_align4;
2862
2863/* These use ec_response_rtc */
2864#define EC_CMD_RTC_GET_VALUE 0x0044
2865#define EC_CMD_RTC_GET_ALARM 0x0045
2866
2867/* These all use ec_params_rtc */
2868#define EC_CMD_RTC_SET_VALUE 0x0046
2869#define EC_CMD_RTC_SET_ALARM 0x0047
2870
2871/* Pass as time param to SET_ALARM to clear the current alarm */
2872#define EC_RTC_ALARM_CLEAR 0
2873
2874/*****************************************************************************/
2875/* Port80 log access */
2876
2877/* Maximum entries that can be read/written in a single command */
2878#define EC_PORT80_SIZE_MAX 32
2879
2880/* Get last port80 code from previous boot */
2881#define EC_CMD_PORT80_LAST_BOOT 0x0048
2882#define EC_CMD_PORT80_READ 0x0048
2883
2884enum ec_port80_subcmd {
2885        EC_PORT80_GET_INFO = 0,
2886        EC_PORT80_READ_BUFFER,
2887};
2888
2889struct ec_params_port80_read {
2890        uint16_t subcmd;
2891        union {
2892                struct __ec_todo_unpacked {
2893                        uint32_t offset;
2894                        uint32_t num_entries;
2895                } read_buffer;
2896        };
2897} __ec_todo_packed;
2898
2899struct ec_response_port80_read {
2900        union {
2901                struct __ec_todo_unpacked {
2902                        uint32_t writes;
2903                        uint32_t history_size;
2904                        uint32_t last_boot;
2905                } get_info;
2906                struct __ec_todo_unpacked {
2907                        uint16_t codes[EC_PORT80_SIZE_MAX];
2908                } data;
2909        };
2910} __ec_todo_packed;
2911
2912struct ec_response_port80_last_boot {
2913        uint16_t code;
2914} __ec_align2;
2915
2916/*****************************************************************************/
2917/* Temporary secure storage for host verified boot use */
2918
2919/* Number of bytes in a vstore slot */
2920#define EC_VSTORE_SLOT_SIZE 64
2921
2922/* Maximum number of vstore slots */
2923#define EC_VSTORE_SLOT_MAX 32
2924
2925/* Get persistent storage info */
2926#define EC_CMD_VSTORE_INFO 0x0049
2927struct ec_response_vstore_info {
2928        /* Indicates which slots are locked */
2929        uint32_t slot_locked;
2930        /* Total number of slots available */
2931        uint8_t slot_count;
2932} __ec_align_size1;
2933
2934/*
2935 * Read temporary secure storage
2936 *
2937 * Response is EC_VSTORE_SLOT_SIZE bytes of data.
2938 */
2939#define EC_CMD_VSTORE_READ 0x004A
2940
2941struct ec_params_vstore_read {
2942        uint8_t slot; /* Slot to read from */
2943} __ec_align1;
2944
2945struct ec_response_vstore_read {
2946        uint8_t data[EC_VSTORE_SLOT_SIZE];
2947} __ec_align1;
2948
2949/*
2950 * Write temporary secure storage and lock it.
2951 */
2952#define EC_CMD_VSTORE_WRITE 0x004B
2953
2954struct ec_params_vstore_write {
2955        uint8_t slot; /* Slot to write to */
2956        uint8_t data[EC_VSTORE_SLOT_SIZE];
2957} __ec_align1;
2958
2959/*****************************************************************************/
2960/* Thermal engine commands. Note that there are two implementations. We'll
2961 * reuse the command number, but the data and behavior is incompatible.
2962 * Version 0 is what originally shipped on Link.
2963 * Version 1 separates the CPU thermal limits from the fan control.
2964 */
2965
2966#define EC_CMD_THERMAL_SET_THRESHOLD 0x0050
2967#define EC_CMD_THERMAL_GET_THRESHOLD 0x0051
2968
2969/* The version 0 structs are opaque. You have to know what they are for
2970 * the get/set commands to make any sense.
2971 */
2972
2973/* Version 0 - set */
2974struct ec_params_thermal_set_threshold {
2975        uint8_t sensor_type;
2976        uint8_t threshold_id;
2977        uint16_t value;
2978} __ec_align2;
2979
2980/* Version 0 - get */
2981struct ec_params_thermal_get_threshold {
2982        uint8_t sensor_type;
2983        uint8_t threshold_id;
2984} __ec_align1;
2985
2986struct ec_response_thermal_get_threshold {
2987        uint16_t value;
2988} __ec_align2;
2989
2990
2991/* The version 1 structs are visible. */
2992enum ec_temp_thresholds {
2993        EC_TEMP_THRESH_WARN = 0,
2994        EC_TEMP_THRESH_HIGH,
2995        EC_TEMP_THRESH_HALT,
2996
2997        EC_TEMP_THRESH_COUNT
2998};
2999
3000/*
3001 * Thermal configuration for one temperature sensor. Temps are in degrees K.
3002 * Zero values will be silently ignored by the thermal task.
3003 *
3004 * Set 'temp_host' value allows thermal task to trigger some event with 1 degree
3005 * hysteresis.
3006 * For example,
3007 *      temp_host[EC_TEMP_THRESH_HIGH] = 300 K
3008 *      temp_host_release[EC_TEMP_THRESH_HIGH] = 0 K
3009 * EC will throttle ap when temperature >= 301 K, and release throttling when
3010 * temperature <= 299 K.
3011 *
3012 * Set 'temp_host_release' value allows thermal task has a custom hysteresis.
3013 * For example,
3014 *      temp_host[EC_TEMP_THRESH_HIGH] = 300 K
3015 *      temp_host_release[EC_TEMP_THRESH_HIGH] = 295 K
3016 * EC will throttle ap when temperature >= 301 K, and release throttling when
3017 * temperature <= 294 K.
3018 *
3019 * Note that this structure is a sub-structure of
3020 * ec_params_thermal_set_threshold_v1, but maintains its alignment there.
3021 */
3022struct ec_thermal_config {
3023        uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
3024        uint32_t temp_host_release[EC_TEMP_THRESH_COUNT]; /* release levels */
3025        uint32_t temp_fan_off;          /* no active cooling needed */
3026        uint32_t temp_fan_max;          /* max active cooling needed */
3027} __ec_align4;
3028
3029/* Version 1 - get config for one sensor. */
3030struct ec_params_thermal_get_threshold_v1 {
3031        uint32_t sensor_num;
3032} __ec_align4;
3033/* This returns a struct ec_thermal_config */
3034
3035/*
3036 * Version 1 - set config for one sensor.
3037 * Use read-modify-write for best results!
3038 */
3039struct ec_params_thermal_set_threshold_v1 {
3040        uint32_t sensor_num;
3041        struct ec_thermal_config cfg;
3042} __ec_align4;
3043/* This returns no data */
3044
3045/****************************************************************************/
3046
3047/* Toggle automatic fan control */
3048#define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x0052
3049
3050/* Version 1 of input params */
3051struct ec_params_auto_fan_ctrl_v1 {
3052        uint8_t fan_idx;
3053} __ec_align1;
3054
3055/* Get/Set TMP006 calibration data */
3056#define EC_CMD_TMP006_GET_CALIBRATION 0x0053
3057#define EC_CMD_TMP006_SET_CALIBRATION 0x0054
3058
3059/*
3060 * The original TMP006 calibration only needed four params, but now we need
3061 * more. Since the algorithm is nothing but magic numbers anyway, we'll leave
3062 * the params opaque. The v1 "get" response will include the algorithm number
3063 * and how many params it requires. That way we can change the EC code without
3064 * needing to update this file. We can also use a different algorithm on each
3065 * sensor.
3066 */
3067
3068/* This is the same struct for both v0 and v1. */
3069struct ec_params_tmp006_get_calibration {
3070        uint8_t index;
3071} __ec_align1;
3072
3073/* Version 0 */
3074struct ec_response_tmp006_get_calibration_v0 {
3075        float s0;
3076        float b0;
3077        float b1;
3078        float b2;
3079} __ec_align4;
3080
3081struct ec_params_tmp006_set_calibration_v0 {
3082        uint8_t index;
3083        uint8_t reserved[3];
3084        float s0;
3085        float b0;
3086        float b1;
3087        float b2;
3088} __ec_align4;
3089
3090/* Version 1 */
3091struct ec_response_tmp006_get_calibration_v1 {
3092        uint8_t algorithm;
3093        uint8_t num_params;
3094        uint8_t reserved[2];
3095        float val[0];
3096} __ec_align4;
3097
3098struct ec_params_tmp006_set_calibration_v1 {
3099        uint8_t index;
3100        uint8_t algorithm;
3101        uint8_t num_params;
3102        uint8_t reserved;
3103        float val[0];
3104} __ec_align4;
3105
3106
3107/* Read raw TMP006 data */
3108#define EC_CMD_TMP006_GET_RAW 0x0055
3109
3110struct ec_params_tmp006_get_raw {
3111        uint8_t index;
3112} __ec_align1;
3113
3114struct ec_response_tmp006_get_raw {
3115        int32_t t;  /* In 1/100 K */
3116        int32_t v;  /* In nV */
3117} __ec_align4;
3118
3119/*****************************************************************************/
3120/* MKBP - Matrix KeyBoard Protocol */
3121
3122/*
3123 * Read key state
3124 *
3125 * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
3126 * expected response size.
3127 *
3128 * NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT.  If you wish
3129 * to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type
3130 * EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX.
3131 */
3132#define EC_CMD_MKBP_STATE 0x0060
3133
3134/*
3135 * Provide information about various MKBP things.  See enum ec_mkbp_info_type.
3136 */
3137#define EC_CMD_MKBP_INFO 0x0061
3138
3139struct ec_response_mkbp_info {
3140        uint32_t rows;
3141        uint32_t cols;
3142        /* Formerly "switches", which was 0. */
3143        uint8_t reserved;
3144} __ec_align_size1;
3145
3146struct ec_params_mkbp_info {
3147        uint8_t info_type;
3148        uint8_t event_type;
3149} __ec_align1;
3150
3151enum ec_mkbp_info_type {
3152        /*
3153         * Info about the keyboard matrix: number of rows and columns.
3154         *
3155         * Returns struct ec_response_mkbp_info.
3156         */
3157        EC_MKBP_INFO_KBD = 0,
3158
3159        /*
3160         * For buttons and switches, info about which specifically are
3161         * supported.  event_type must be set to one of the values in enum
3162         * ec_mkbp_event.
3163         *
3164         * For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte
3165         * bitmask indicating which buttons or switches are present.  See the
3166         * bit inidices below.
3167         */
3168        EC_MKBP_INFO_SUPPORTED = 1,
3169
3170        /*
3171         * Instantaneous state of buttons and switches.
3172         *
3173         * event_type must be set to one of the values in enum ec_mkbp_event.
3174         *
3175         * For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13]
3176         * indicating the current state of the keyboard matrix.
3177         *
3178         * For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw
3179         * event state.
3180         *
3181         * For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the
3182         * state of supported buttons.
3183         *
3184         * For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the
3185         * state of supported switches.
3186         */
3187        EC_MKBP_INFO_CURRENT = 2,
3188};
3189
3190/* Simulate key press */
3191#define EC_CMD_MKBP_SIMULATE_KEY 0x0062
3192
3193struct ec_params_mkbp_simulate_key {
3194        uint8_t col;
3195        uint8_t row;
3196        uint8_t pressed;
3197} __ec_align1;
3198
3199#define EC_CMD_GET_KEYBOARD_ID 0x0063
3200
3201struct ec_response_keyboard_id {
3202        uint32_t keyboard_id;
3203} __ec_align4;
3204
3205enum keyboard_id {
3206        KEYBOARD_ID_UNSUPPORTED = 0,
3207        KEYBOARD_ID_UNREADABLE = 0xffffffff,
3208};
3209
3210/* Configure keyboard scanning */
3211#define EC_CMD_MKBP_SET_CONFIG 0x0064
3212#define EC_CMD_MKBP_GET_CONFIG 0x0065
3213
3214/* flags */
3215enum mkbp_config_flags {
3216        EC_MKBP_FLAGS_ENABLE = 1,       /* Enable keyboard scanning */
3217};
3218
3219enum mkbp_config_valid {
3220        EC_MKBP_VALID_SCAN_PERIOD               = BIT(0),
3221        EC_MKBP_VALID_POLL_TIMEOUT              = BIT(1),
3222        EC_MKBP_VALID_MIN_POST_SCAN_DELAY       = BIT(3),
3223        EC_MKBP_VALID_OUTPUT_SETTLE             = BIT(4),
3224        EC_MKBP_VALID_DEBOUNCE_DOWN             = BIT(5),
3225        EC_MKBP_VALID_DEBOUNCE_UP               = BIT(6),
3226        EC_MKBP_VALID_FIFO_MAX_DEPTH            = BIT(7),
3227};
3228
3229/*
3230 * Configuration for our key scanning algorithm.
3231 *
3232 * Note that this is used as a sub-structure of
3233 * ec_{params/response}_mkbp_get_config.
3234 */
3235struct ec_mkbp_config {
3236        uint32_t valid_mask;            /* valid fields */
3237        uint8_t flags;          /* some flags (enum mkbp_config_flags) */
3238        uint8_t valid_flags;            /* which flags are valid */
3239        uint16_t scan_period_us;        /* period between start of scans */
3240        /* revert to interrupt mode after no activity for this long */
3241        uint32_t poll_timeout_us;
3242        /*
3243         * minimum post-scan relax time. Once we finish a scan we check
3244         * the time until we are due to start the next one. If this time is
3245         * shorter this field, we use this instead.
3246         */
3247        uint16_t min_post_scan_delay_us;
3248        /* delay between setting up output and waiting for it to settle */
3249        uint16_t output_settle_us;
3250        uint16_t debounce_down_us;      /* time for debounce on key down */
3251        uint16_t debounce_up_us;        /* time for debounce on key up */
3252        /* maximum depth to allow for fifo (0 = no keyscan output) */
3253        uint8_t fifo_max_depth;
3254} __ec_align_size1;
3255
3256struct ec_params_mkbp_set_config {
3257        struct ec_mkbp_config config;
3258} __ec_align_size1;
3259
3260struct ec_response_mkbp_get_config {
3261        struct ec_mkbp_config config;
3262} __ec_align_size1;
3263
3264/* Run the key scan emulation */
3265#define EC_CMD_KEYSCAN_SEQ_CTRL 0x0066
3266
3267enum ec_keyscan_seq_cmd {
3268        EC_KEYSCAN_SEQ_STATUS = 0,      /* Get status information */
3269        EC_KEYSCAN_SEQ_CLEAR = 1,       /* Clear sequence */
3270        EC_KEYSCAN_SEQ_ADD = 2,         /* Add item to sequence */
3271        EC_KEYSCAN_SEQ_START = 3,       /* Start running sequence */
3272        EC_KEYSCAN_SEQ_COLLECT = 4,     /* Collect sequence summary data */
3273};
3274
3275enum ec_collect_flags {
3276        /*
3277         * Indicates this scan was processed by the EC. Due to timing, some
3278         * scans may be skipped.
3279         */
3280        EC_KEYSCAN_SEQ_FLAG_DONE        = BIT(0),
3281};
3282
3283struct ec_collect_item {
3284        uint8_t flags;          /* some flags (enum ec_collect_flags) */
3285} __ec_align1;
3286
3287struct ec_params_keyscan_seq_ctrl {
3288        uint8_t cmd;    /* Command to send (enum ec_keyscan_seq_cmd) */
3289        union {
3290                struct __ec_align1 {
3291                        uint8_t active;         /* still active */
3292                        uint8_t num_items;      /* number of items */
3293                        /* Current item being presented */
3294                        uint8_t cur_item;
3295                } status;
3296                struct __ec_todo_unpacked {
3297                        /*
3298                         * Absolute time for this scan, measured from the
3299                         * start of the sequence.
3300                         */
3301                        uint32_t time_us;
3302                        uint8_t scan[0];        /* keyscan data */
3303                } add;
3304                struct __ec_align1 {
3305                        uint8_t start_item;     /* First item to return */
3306                        uint8_t num_items;      /* Number of items to return */
3307                } collect;
3308        };
3309} __ec_todo_packed;
3310
3311struct ec_result_keyscan_seq_ctrl {
3312        union {
3313                struct __ec_todo_unpacked {
3314                        uint8_t num_items;      /* Number of items */
3315                        /* Data for each item */
3316                        struct ec_collect_item item[0];
3317                } collect;
3318        };
3319} __ec_todo_packed;
3320
3321/*
3322 * Get the next pending MKBP event.
3323 *
3324 * Returns EC_RES_UNAVAILABLE if there is no event pending.
3325 */
3326#define EC_CMD_GET_NEXT_EVENT 0x0067
3327
3328#define EC_MKBP_HAS_MORE_EVENTS_SHIFT 7
3329
3330/*
3331 * We use the most significant bit of the event type to indicate to the host
3332 * that the EC has more MKBP events available to provide.
3333 */
3334#define EC_MKBP_HAS_MORE_EVENTS BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT)
3335
3336/* The mask to apply to get the raw event type */
3337#define EC_MKBP_EVENT_TYPE_MASK (BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT) - 1)
3338
3339enum ec_mkbp_event {
3340        /* Keyboard matrix changed. The event data is the new matrix state. */
3341        EC_MKBP_EVENT_KEY_MATRIX = 0,
3342
3343        /* New host event. The event data is 4 bytes of host event flags. */
3344        EC_MKBP_EVENT_HOST_EVENT = 1,
3345
3346        /* New Sensor FIFO data. The event data is fifo_info structure. */
3347        EC_MKBP_EVENT_SENSOR_FIFO = 2,
3348
3349        /* The state of the non-matrixed buttons have changed. */
3350        EC_MKBP_EVENT_BUTTON = 3,
3351
3352        /* The state of the switches have changed. */
3353        EC_MKBP_EVENT_SWITCH = 4,
3354
3355        /* New Fingerprint sensor event, the event data is fp_events bitmap. */
3356        EC_MKBP_EVENT_FINGERPRINT = 5,
3357
3358        /*
3359         * Sysrq event: send emulated sysrq. The event data is sysrq,
3360         * corresponding to the key to be pressed.
3361         */
3362        EC_MKBP_EVENT_SYSRQ = 6,
3363
3364        /*
3365         * New 64-bit host event.
3366         * The event data is 8 bytes of host event flags.
3367         */
3368        EC_MKBP_EVENT_HOST_EVENT64 = 7,
3369
3370        /* Notify the AP that something happened on CEC */
3371        EC_MKBP_EVENT_CEC_EVENT = 8,
3372
3373        /* Send an incoming CEC message to the AP */
3374        EC_MKBP_EVENT_CEC_MESSAGE = 9,
3375
3376        /* Number of MKBP events */
3377        EC_MKBP_EVENT_COUNT,
3378};
3379BUILD_ASSERT(EC_MKBP_EVENT_COUNT <= EC_MKBP_EVENT_TYPE_MASK);
3380
3381union __ec_align_offset1 ec_response_get_next_data {
3382        uint8_t key_matrix[13];
3383
3384        /* Unaligned */
3385        uint32_t host_event;
3386        uint64_t host_event64;
3387
3388        struct __ec_todo_unpacked {
3389                /* For aligning the fifo_info */
3390                uint8_t reserved[3];
3391                struct ec_response_motion_sense_fifo_info info;
3392        } sensor_fifo;
3393
3394        uint32_t buttons;
3395
3396        uint32_t switches;
3397
3398        uint32_t fp_events;
3399
3400        uint32_t sysrq;
3401
3402        /* CEC events from enum mkbp_cec_event */
3403        uint32_t cec_events;
3404};
3405
3406union __ec_align_offset1 ec_response_get_next_data_v1 {
3407        uint8_t key_matrix[16];
3408
3409        /* Unaligned */
3410        uint32_t host_event;
3411        uint64_t host_event64;
3412
3413        struct __ec_todo_unpacked {
3414                /* For aligning the fifo_info */
3415                uint8_t reserved[3];
3416                struct ec_response_motion_sense_fifo_info info;
3417        } sensor_fifo;
3418
3419        uint32_t buttons;
3420
3421        uint32_t switches;
3422
3423        uint32_t fp_events;
3424
3425        uint32_t sysrq;
3426
3427        /* CEC events from enum mkbp_cec_event */
3428        uint32_t cec_events;
3429
3430        uint8_t cec_message[16];
3431};
3432BUILD_ASSERT(sizeof(union ec_response_get_next_data_v1) == 16);
3433
3434struct ec_response_get_next_event {
3435        uint8_t event_type;
3436        /* Followed by event data if any */
3437        union ec_response_get_next_data data;
3438} __ec_align1;
3439
3440struct ec_response_get_next_event_v1 {
3441        uint8_t event_type;
3442        /* Followed by event data if any */
3443        union ec_response_get_next_data_v1 data;
3444} __ec_align1;
3445
3446/* Bit indices for buttons and switches.*/
3447/* Buttons */
3448#define EC_MKBP_POWER_BUTTON    0
3449#define EC_MKBP_VOL_UP          1
3450#define EC_MKBP_VOL_DOWN        2
3451#define EC_MKBP_RECOVERY        3
3452
3453/* Switches */
3454#define EC_MKBP_LID_OPEN        0
3455#define EC_MKBP_TABLET_MODE     1
3456#define EC_MKBP_BASE_ATTACHED   2
3457
3458/* Run keyboard factory test scanning */
3459#define EC_CMD_KEYBOARD_FACTORY_TEST 0x0068
3460
3461struct ec_response_keyboard_factory_test {
3462        uint16_t shorted;       /* Keyboard pins are shorted */
3463} __ec_align2;
3464
3465/* Fingerprint events in 'fp_events' for EC_MKBP_EVENT_FINGERPRINT */
3466#define EC_MKBP_FP_RAW_EVENT(fp_events) ((fp_events) & 0x00FFFFFF)
3467#define EC_MKBP_FP_ERRCODE(fp_events)   ((fp_events) & 0x0000000F)
3468#define EC_MKBP_FP_ENROLL_PROGRESS_OFFSET 4
3469#define EC_MKBP_FP_ENROLL_PROGRESS(fpe) (((fpe) & 0x00000FF0) \
3470                                         >> EC_MKBP_FP_ENROLL_PROGRESS_OFFSET)
3471#define EC_MKBP_FP_MATCH_IDX_OFFSET 12
3472#define EC_MKBP_FP_MATCH_IDX_MASK 0x0000F000
3473#define EC_MKBP_FP_MATCH_IDX(fpe) (((fpe) & EC_MKBP_FP_MATCH_IDX_MASK) \
3474                                         >> EC_MKBP_FP_MATCH_IDX_OFFSET)
3475#define EC_MKBP_FP_ENROLL               BIT(27)
3476#define EC_MKBP_FP_MATCH                BIT(28)
3477#define EC_MKBP_FP_FINGER_DOWN          BIT(29)
3478#define EC_MKBP_FP_FINGER_UP            BIT(30)
3479#define EC_MKBP_FP_IMAGE_READY          BIT(31)
3480/* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_ENROLL is set */
3481#define EC_MKBP_FP_ERR_ENROLL_OK               0
3482#define EC_MKBP_FP_ERR_ENROLL_LOW_QUALITY      1
3483#define EC_MKBP_FP_ERR_ENROLL_IMMOBILE         2
3484#define EC_MKBP_FP_ERR_ENROLL_LOW_COVERAGE     3
3485#define EC_MKBP_FP_ERR_ENROLL_INTERNAL         5
3486/* Can be used to detect if image was usable for enrollment or not. */
3487#define EC_MKBP_FP_ERR_ENROLL_PROBLEM_MASK     1
3488/* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_MATCH is set */
3489#define EC_MKBP_FP_ERR_MATCH_NO                0
3490#define EC_MKBP_FP_ERR_MATCH_NO_INTERNAL       6
3491#define EC_MKBP_FP_ERR_MATCH_NO_TEMPLATES      7
3492#define EC_MKBP_FP_ERR_MATCH_NO_LOW_QUALITY    2
3493#define EC_MKBP_FP_ERR_MATCH_NO_LOW_COVERAGE   4
3494#define EC_MKBP_FP_ERR_MATCH_YES               1
3495#define EC_MKBP_FP_ERR_MATCH_YES_UPDATED       3
3496#define EC_MKBP_FP_ERR_MATCH_YES_UPDATE_FAILED 5
3497
3498
3499/*****************************************************************************/
3500/* Temperature sensor commands */
3501
3502/* Read temperature sensor info */
3503#define EC_CMD_TEMP_SENSOR_GET_INFO 0x0070
3504
3505struct ec_params_temp_sensor_get_info {
3506        uint8_t id;
3507} __ec_align1;
3508
3509struct ec_response_temp_sensor_get_info {
3510        char sensor_name[32];
3511        uint8_t sensor_type;
3512} __ec_align1;
3513
3514/*****************************************************************************/
3515
3516/*
3517 * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
3518 * commands accidentally sent to the wrong interface.  See the ACPI section
3519 * below.
3520 */
3521
3522/*****************************************************************************/
3523/* Host event commands */
3524
3525
3526/* Obsolete. New implementation should use EC_CMD_HOST_EVENT instead */
3527/*
3528 * Host event mask params and response structures, shared by all of the host
3529 * event commands below.
3530 */
3531struct ec_params_host_event_mask {
3532        uint32_t mask;
3533} __ec_align4;
3534
3535struct ec_response_host_event_mask {
3536        uint32_t mask;
3537} __ec_align4;
3538
3539/* These all use ec_response_host_event_mask */
3540#define EC_CMD_HOST_EVENT_GET_B         0x0087
3541#define EC_CMD_HOST_EVENT_GET_SMI_MASK  0x0088
3542#define EC_CMD_HOST_EVENT_GET_SCI_MASK  0x0089
3543#define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x008D
3544
3545/* These all use ec_params_host_event_mask */
3546#define EC_CMD_HOST_EVENT_SET_SMI_MASK  0x008A
3547#define EC_CMD_HOST_EVENT_SET_SCI_MASK  0x008B
3548#define EC_CMD_HOST_EVENT_CLEAR         0x008C
3549#define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x008E
3550#define EC_CMD_HOST_EVENT_CLEAR_B       0x008F
3551
3552/*
3553 * Unified host event programming interface - Should be used by newer versions
3554 * of BIOS/OS to program host events and masks
3555 */
3556
3557struct ec_params_host_event {
3558
3559        /* Action requested by host - one of enum ec_host_event_action. */
3560        uint8_t action;
3561
3562        /*
3563         * Mask type that the host requested the action on - one of
3564         * enum ec_host_event_mask_type.
3565         */
3566        uint8_t mask_type;
3567
3568        /* Set to 0, ignore on read */
3569        uint16_t reserved;
3570
3571        /* Value to be used in case of set operations. */
3572        uint64_t value;
3573} __ec_align4;
3574
3575/*
3576 * Response structure returned by EC_CMD_HOST_EVENT.
3577 * Update the value on a GET request. Set to 0 on GET/CLEAR
3578 */
3579
3580struct ec_response_host_event {
3581
3582        /* Mask value in case of get operation */
3583        uint64_t value;
3584} __ec_align4;
3585
3586enum ec_host_event_action {
3587        /*
3588         * params.value is ignored. Value of mask_type populated
3589         * in response.value
3590         */
3591        EC_HOST_EVENT_GET,
3592
3593        /* Bits in params.value are set */
3594        EC_HOST_EVENT_SET,
3595
3596        /* Bits in params.value are cleared */
3597        EC_HOST_EVENT_CLEAR,
3598};
3599
3600enum ec_host_event_mask_type {
3601
3602        /* Main host event copy */
3603        EC_HOST_EVENT_MAIN,
3604
3605        /* Copy B of host events */
3606        EC_HOST_EVENT_B,
3607
3608        /* SCI Mask */
3609        EC_HOST_EVENT_SCI_MASK,
3610
3611        /* SMI Mask */
3612        EC_HOST_EVENT_SMI_MASK,
3613
3614        /* Mask of events that should be always reported in hostevents */
3615        EC_HOST_EVENT_ALWAYS_REPORT_MASK,
3616
3617        /* Active wake mask */
3618        EC_HOST_EVENT_ACTIVE_WAKE_MASK,
3619
3620        /* Lazy wake mask for S0ix */
3621        EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX,
3622
3623        /* Lazy wake mask for S3 */
3624        EC_HOST_EVENT_LAZY_WAKE_MASK_S3,
3625
3626        /* Lazy wake mask for S5 */
3627        EC_HOST_EVENT_LAZY_WAKE_MASK_S5,
3628};
3629
3630#define EC_CMD_HOST_EVENT       0x00A4
3631
3632/*****************************************************************************/
3633/* Switch commands */
3634
3635/* Enable/disable LCD backlight */
3636#define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x0090
3637
3638struct ec_params_switch_enable_backlight {
3639        uint8_t enabled;
3640} __ec_align1;
3641
3642/* Enable/disable WLAN/Bluetooth */
3643#define EC_CMD_SWITCH_ENABLE_WIRELESS 0x0091
3644#define EC_VER_SWITCH_ENABLE_WIRELESS 1
3645
3646/* Version 0 params; no response */
3647struct ec_params_switch_enable_wireless_v0 {
3648        uint8_t enabled;
3649} __ec_align1;
3650
3651/* Version 1 params */
3652struct ec_params_switch_enable_wireless_v1 {
3653        /* Flags to enable now */
3654        uint8_t now_flags;
3655
3656        /* Which flags to copy from now_flags */
3657        uint8_t now_mask;
3658
3659        /*
3660         * Flags to leave enabled in S3, if they're on at the S0->S3
3661         * transition.  (Other flags will be disabled by the S0->S3
3662         * transition.)
3663         */
3664        uint8_t suspend_flags;
3665
3666        /* Which flags to copy from suspend_flags */
3667        uint8_t suspend_mask;
3668} __ec_align1;
3669
3670/* Version 1 response */
3671struct ec_response_switch_enable_wireless_v1 {
3672        /* Flags to enable now */
3673        uint8_t now_flags;
3674
3675        /* Flags to leave enabled in S3 */
3676        uint8_t suspend_flags;
3677} __ec_align1;
3678
3679/*****************************************************************************/
3680/* GPIO commands. Only available on EC if write protect has been disabled. */
3681
3682/* Set GPIO output value */
3683#define EC_CMD_GPIO_SET 0x0092
3684
3685struct ec_params_gpio_set {
3686        char name[32];
3687        uint8_t val;
3688} __ec_align1;
3689
3690/* Get GPIO value */
3691#define EC_CMD_GPIO_GET 0x0093
3692
3693/* Version 0 of input params and response */
3694struct ec_params_gpio_get {
3695        char name[32];
3696} __ec_align1;
3697
3698struct ec_response_gpio_get {
3699        uint8_t val;
3700} __ec_align1;
3701
3702/* Version 1 of input params and response */
3703struct ec_params_gpio_get_v1 {
3704        uint8_t subcmd;
3705        union {
3706                struct __ec_align1 {
3707                        char name[32];
3708                } get_value_by_name;
3709                struct __ec_align1 {
3710                        uint8_t index;
3711                } get_info;
3712        };
3713} __ec_align1;
3714
3715struct ec_response_gpio_get_v1 {
3716        union {
3717                struct __ec_align1 {
3718                        uint8_t val;
3719                } get_value_by_name, get_count;
3720                struct __ec_todo_unpacked {
3721                        uint8_t val;
3722                        char name[32];
3723                        uint32_t flags;
3724                } get_info;
3725        };
3726} __ec_todo_packed;
3727
3728enum gpio_get_subcmd {
3729        EC_GPIO_GET_BY_NAME = 0,
3730        EC_GPIO_GET_COUNT = 1,
3731        EC_GPIO_GET_INFO = 2,
3732};
3733
3734/*****************************************************************************/
3735/* I2C commands. Only available when flash write protect is unlocked. */
3736
3737/*
3738 * CAUTION: These commands are deprecated, and are not supported anymore in EC
3739 * builds >= 8398.0.0 (see crosbug.com/p/23570).
3740 *
3741 * Use EC_CMD_I2C_PASSTHRU instead.
3742 */
3743
3744/* Read I2C bus */
3745#define EC_CMD_I2C_READ 0x0094
3746
3747struct ec_params_i2c_read {
3748        uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3749        uint8_t read_size; /* Either 8 or 16. */
3750        uint8_t port;
3751        uint8_t offset;
3752} __ec_align_size1;
3753
3754struct ec_response_i2c_read {
3755        uint16_t data;
3756} __ec_align2;
3757
3758/* Write I2C bus */
3759#define EC_CMD_I2C_WRITE 0x0095
3760
3761struct ec_params_i2c_write {
3762        uint16_t data;
3763        uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3764        uint8_t write_size; /* Either 8 or 16. */
3765        uint8_t port;
3766        uint8_t offset;
3767} __ec_align_size1;
3768
3769/*****************************************************************************/
3770/* Charge state commands. Only available when flash write protect unlocked. */
3771
3772/* Force charge state machine to stop charging the battery or force it to
3773 * discharge the battery.
3774 */
3775#define EC_CMD_CHARGE_CONTROL 0x0096
3776#define EC_VER_CHARGE_CONTROL 1
3777
3778enum ec_charge_control_mode {
3779        CHARGE_CONTROL_NORMAL = 0,
3780        CHARGE_CONTROL_IDLE,
3781        CHARGE_CONTROL_DISCHARGE,
3782};
3783
3784struct ec_params_charge_control {
3785        uint32_t mode;  /* enum charge_control_mode */
3786} __ec_align4;
3787
3788/*****************************************************************************/
3789
3790/* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
3791#define EC_CMD_CONSOLE_SNAPSHOT 0x0097
3792
3793/*
3794 * Read data from the saved snapshot. If the subcmd parameter is
3795 * CONSOLE_READ_NEXT, this will return data starting from the beginning of
3796 * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the
3797 * end of the previous snapshot.
3798 *
3799 * The params are only looked at in version >= 1 of this command. Prior
3800 * versions will just default to CONSOLE_READ_NEXT behavior.
3801 *
3802 * Response is null-terminated string.  Empty string, if there is no more
3803 * remaining output.
3804 */
3805#define EC_CMD_CONSOLE_READ 0x0098
3806
3807enum ec_console_read_subcmd {
3808        CONSOLE_READ_NEXT = 0,
3809        CONSOLE_READ_RECENT
3810};
3811
3812struct ec_params_console_read_v1 {
3813        uint8_t subcmd; /* enum ec_console_read_subcmd */
3814} __ec_align1;
3815
3816/*****************************************************************************/
3817
3818/*
3819 * Cut off battery power immediately or after the host has shut down.
3820 *
3821 * return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
3822 *        EC_RES_SUCCESS if the command was successful.
3823 *        EC_RES_ERROR if the cut off command failed.
3824 */
3825#define EC_CMD_BATTERY_CUT_OFF 0x0099
3826
3827#define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN      BIT(0)
3828
3829struct ec_params_battery_cutoff {
3830        uint8_t flags;
3831} __ec_align1;
3832
3833/*****************************************************************************/
3834/* USB port mux control. */
3835
3836/*
3837 * Switch USB mux or return to automatic switching.
3838 */
3839#define EC_CMD_USB_MUX 0x009A
3840
3841struct ec_params_usb_mux {
3842        uint8_t mux;
3843} __ec_align1;
3844
3845/*****************************************************************************/
3846/* LDOs / FETs control. */
3847
3848enum ec_ldo_state {
3849        EC_LDO_STATE_OFF = 0,   /* the LDO / FET is shut down */
3850        EC_LDO_STATE_ON = 1,    /* the LDO / FET is ON / providing power */
3851};
3852
3853/*
3854 * Switch on/off a LDO.
3855 */
3856#define EC_CMD_LDO_SET 0x009B
3857
3858struct ec_params_ldo_set {
3859        uint8_t index;
3860        uint8_t state;
3861} __ec_align1;
3862
3863/*
3864 * Get LDO state.
3865 */
3866#define EC_CMD_LDO_GET 0x009C
3867
3868struct ec_params_ldo_get {
3869        uint8_t index;
3870} __ec_align1;
3871
3872struct ec_response_ldo_get {
3873        uint8_t state;
3874} __ec_align1;
3875
3876/*****************************************************************************/
3877/* Power info. */
3878
3879/*
3880 * Get power info.
3881 */
3882#define EC_CMD_POWER_INFO 0x009D
3883
3884struct ec_response_power_info {
3885        uint32_t usb_dev_type;
3886        uint16_t voltage_ac;
3887        uint16_t voltage_system;
3888        uint16_t current_system;
3889        uint16_t usb_current_limit;
3890} __ec_align4;
3891
3892/*****************************************************************************/
3893/* I2C passthru command */
3894
3895#define EC_CMD_I2C_PASSTHRU 0x009E
3896
3897/* Read data; if not present, message is a write */
3898#define EC_I2C_FLAG_READ        BIT(15)
3899
3900/* Mask for address */
3901#define EC_I2C_ADDR_MASK        0x3ff
3902
3903#define EC_I2C_STATUS_NAK       BIT(0) /* Transfer was not acknowledged */
3904#define EC_I2C_STATUS_TIMEOUT   BIT(1) /* Timeout during transfer */
3905
3906/* Any error */
3907#define EC_I2C_STATUS_ERROR     (EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
3908
3909struct ec_params_i2c_passthru_msg {
3910        uint16_t addr_flags;    /* I2C slave address (7 or 10 bits) and flags */
3911        uint16_t len;           /* Number of bytes to read or write */
3912} __ec_align2;
3913
3914struct ec_params_i2c_passthru {
3915        uint8_t port;           /* I2C port number */
3916        uint8_t num_msgs;       /* Number of messages */
3917        struct ec_params_i2c_passthru_msg msg[];
3918        /* Data to write for all messages is concatenated here */
3919} __ec_align2;
3920
3921struct ec_response_i2c_passthru {
3922        uint8_t i2c_status;     /* Status flags (EC_I2C_STATUS_...) */
3923        uint8_t num_msgs;       /* Number of messages processed */
3924        uint8_t data[];         /* Data read by messages concatenated here */
3925} __ec_align1;
3926
3927/*****************************************************************************/
3928/* Power button hang detect */
3929
3930#define EC_CMD_HANG_DETECT 0x009F
3931
3932/* Reasons to start hang detection timer */
3933/* Power button pressed */
3934#define EC_HANG_START_ON_POWER_PRESS  BIT(0)
3935
3936/* Lid closed */
3937#define EC_HANG_START_ON_LID_CLOSE    BIT(1)
3938
3939 /* Lid opened */
3940#define EC_HANG_START_ON_LID_OPEN     BIT(2)
3941
3942/* Start of AP S3->S0 transition (booting or resuming from suspend) */
3943#define EC_HANG_START_ON_RESUME       BIT(3)
3944
3945/* Reasons to cancel hang detection */
3946
3947/* Power button released */
3948#define EC_HANG_STOP_ON_POWER_RELEASE BIT(8)
3949
3950/* Any host command from AP received */
3951#define EC_HANG_STOP_ON_HOST_COMMAND  BIT(9)
3952
3953/* Stop on end of AP S0->S3 transition (suspending or shutting down) */
3954#define EC_HANG_STOP_ON_SUSPEND       BIT(10)
3955
3956/*
3957 * If this flag is set, all the other fields are ignored, and the hang detect
3958 * timer is started.  This provides the AP a way to start the hang timer
3959 * without reconfiguring any of the other hang detect settings.  Note that
3960 * you must previously have configured the timeouts.
3961 */
3962#define EC_HANG_START_NOW             BIT(30)
3963
3964/*
3965 * If this flag is set, all the other fields are ignored (including
3966 * EC_HANG_START_NOW).  This provides the AP a way to stop the hang timer
3967 * without reconfiguring any of the other hang detect settings.
3968 */
3969#define EC_HANG_STOP_NOW              BIT(31)
3970
3971struct ec_params_hang_detect {
3972        /* Flags; see EC_HANG_* */
3973        uint32_t flags;
3974
3975        /* Timeout in msec before generating host event, if enabled */
3976        uint16_t host_event_timeout_msec;
3977
3978        /* Timeout in msec before generating warm reboot, if enabled */
3979        uint16_t warm_reboot_timeout_msec;
3980} __ec_align4;
3981
3982/*****************************************************************************/
3983/* Commands for battery charging */
3984
3985/*
3986 * This is the single catch-all host command to exchange data regarding the
3987 * charge state machine (v2 and up).
3988 */
3989#define EC_CMD_CHARGE_STATE 0x00A0
3990
3991/* Subcommands for this host command */
3992enum charge_state_command {
3993        CHARGE_STATE_CMD_GET_STATE,
3994        CHARGE_STATE_CMD_GET_PARAM,
3995        CHARGE_STATE_CMD_SET_PARAM,
3996        CHARGE_STATE_NUM_CMDS
3997};
3998
3999/*
4000 * Known param numbers are defined here. Ranges are reserved for board-specific
4001 * params, which are handled by the particular implementations.
4002 */
4003enum charge_state_params {
4004        CS_PARAM_CHG_VOLTAGE,         /* charger voltage limit */
4005        CS_PARAM_CHG_CURRENT,         /* charger current limit */
4006        CS_PARAM_CHG_INPUT_CURRENT,   /* charger input current limit */
4007        CS_PARAM_CHG_STATUS,          /* charger-specific status */
4008        CS_PARAM_CHG_OPTION,          /* charger-specific options */
4009        CS_PARAM_LIMIT_POWER,         /*
4010                                       * Check if power is limited due to
4011                                       * low battery and / or a weak external
4012                                       * charger. READ ONLY.
4013                                       */
4014        /* How many so far? */
4015        CS_NUM_BASE_PARAMS,
4016
4017        /* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
4018        CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
4019        CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
4020
4021        /* Range for CONFIG_CHARGE_STATE_DEBUG params */
4022        CS_PARAM_DEBUG_MIN = 0x20000,
4023        CS_PARAM_DEBUG_CTL_MODE = 0x20000,
4024        CS_PARAM_DEBUG_MANUAL_MODE,
4025        CS_PARAM_DEBUG_SEEMS_DEAD,
4026        CS_PARAM_DEBUG_SEEMS_DISCONNECTED,
4027        CS_PARAM_DEBUG_BATT_REMOVED,
4028        CS_PARAM_DEBUG_MANUAL_CURRENT,
4029        CS_PARAM_DEBUG_MANUAL_VOLTAGE,
4030        CS_PARAM_DEBUG_MAX = 0x2ffff,
4031
4032        /* Other custom param ranges go here... */
4033};
4034
4035struct ec_params_charge_state {
4036        uint8_t cmd;                            /* enum charge_state_command */
4037        union {
4038                /* get_state has no args */
4039
4040                struct __ec_todo_unpacked {
4041                        uint32_t param;         /* enum charge_state_param */
4042                } get_param;
4043
4044                struct __ec_todo_unpacked {
4045                        uint32_t param;         /* param to set */
4046                        uint32_t value;         /* value to set */
4047                } set_param;
4048        };
4049} __ec_todo_packed;
4050
4051struct ec_response_charge_state {
4052        union {
4053                struct __ec_align4 {
4054                        int ac;
4055                        int chg_voltage;
4056                        int chg_current;
4057                        int chg_input_current;
4058                        int batt_state_of_charge;
4059                } get_state;
4060
4061                struct __ec_align4 {
4062                        uint32_t value;
4063                } get_param;
4064
4065                /* set_param returns no args */
4066        };
4067} __ec_align4;
4068
4069
4070/*
4071 * Set maximum battery charging current.
4072 */
4073#define EC_CMD_CHARGE_CURRENT_LIMIT 0x00A1
4074
4075struct ec_params_current_limit {
4076        uint32_t limit; /* in mA */
4077} __ec_align4;
4078
4079/*
4080 * Set maximum external voltage / current.
4081 */
4082#define EC_CMD_EXTERNAL_POWER_LIMIT 0x00A2
4083
4084/* Command v0 is used only on Spring and is obsolete + unsupported */
4085struct ec_params_external_power_limit_v1 {
4086        uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */
4087        uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */
4088} __ec_align2;
4089
4090#define EC_POWER_LIMIT_NONE 0xffff
4091
4092/*
4093 * Set maximum voltage & current of a dedicated charge port
4094 */
4095#define EC_CMD_OVERRIDE_DEDICATED_CHARGER_LIMIT 0x00A3
4096
4097struct ec_params_dedicated_charger_limit {
4098        uint16_t current_lim; /* in mA */
4099        uint16_t voltage_lim; /* in mV */
4100} __ec_align2;
4101
4102/*****************************************************************************/
4103/* Hibernate/Deep Sleep Commands */
4104
4105/* Set the delay before going into hibernation. */
4106#define EC_CMD_HIBERNATION_DELAY 0x00A8
4107
4108struct ec_params_hibernation_delay {
4109        /*
4110         * Seconds to wait in G3 before hibernate.  Pass in 0 to read the
4111         * current settings without changing them.
4112         */
4113        uint32_t seconds;
4114} __ec_align4;
4115
4116struct ec_response_hibernation_delay {
4117        /*
4118         * The current time in seconds in which the system has been in the G3
4119         * state.  This value is reset if the EC transitions out of G3.
4120         */
4121        uint32_t time_g3;
4122
4123        /*
4124         * The current time remaining in seconds until the EC should hibernate.
4125         * This value is also reset if the EC transitions out of G3.
4126         */
4127        uint32_t time_remaining;
4128
4129        /*
4130         * The current time in seconds that the EC should wait in G3 before
4131         * hibernating.
4132         */
4133        uint32_t hibernate_delay;
4134} __ec_align4;
4135
4136/* Inform the EC when entering a sleep state */
4137#define EC_CMD_HOST_SLEEP_EVENT 0x00A9
4138
4139enum host_sleep_event {
4140        HOST_SLEEP_EVENT_S3_SUSPEND   = 1,
4141        HOST_SLEEP_EVENT_S3_RESUME    = 2,
4142        HOST_SLEEP_EVENT_S0IX_SUSPEND = 3,
4143        HOST_SLEEP_EVENT_S0IX_RESUME  = 4,
4144        /* S3 suspend with additional enabled wake sources */
4145        HOST_SLEEP_EVENT_S3_WAKEABLE_SUSPEND = 5,
4146};
4147
4148struct ec_params_host_sleep_event {
4149        uint8_t sleep_event;
4150} __ec_align1;
4151
4152/*
4153 * Use a default timeout value (CONFIG_SLEEP_TIMEOUT_MS) for detecting sleep
4154 * transition failures
4155 */
4156#define EC_HOST_SLEEP_TIMEOUT_DEFAULT 0
4157
4158/* Disable timeout detection for this sleep transition */
4159#define EC_HOST_SLEEP_TIMEOUT_INFINITE 0xFFFF
4160
4161struct ec_params_host_sleep_event_v1 {
4162        /* The type of sleep being entered or exited. */
4163        uint8_t sleep_event;
4164
4165        /* Padding */
4166        uint8_t reserved;
4167        union {
4168                /* Parameters that apply for suspend messages. */
4169                struct {
4170                        /*
4171                         * The timeout in milliseconds between when this message
4172                         * is received and when the EC will declare sleep
4173                         * transition failure if the sleep signal is not
4174                         * asserted.
4175                         */
4176                        uint16_t sleep_timeout_ms;
4177                } suspend_params;
4178
4179                /* No parameters for non-suspend messages. */
4180        };
4181} __ec_align2;
4182
4183/* A timeout occurred when this bit is set */
4184#define EC_HOST_RESUME_SLEEP_TIMEOUT 0x80000000
4185
4186/*
4187 * The mask defining which bits correspond to the number of sleep transitions,
4188 * as well as the maximum number of suspend line transitions that will be
4189 * reported back to the host.
4190 */
4191#define EC_HOST_RESUME_SLEEP_TRANSITIONS_MASK 0x7FFFFFFF
4192
4193struct ec_response_host_sleep_event_v1 {
4194        union {
4195                /* Response fields that apply for resume messages. */
4196                struct {
4197                        /*
4198                         * The number of sleep power signal transitions that
4199                         * occurred since the suspend message. The high bit
4200                         * indicates a timeout occurred.
4201                         */
4202                        uint32_t sleep_transitions;
4203                } resume_response;
4204
4205                /* No response fields for non-resume messages. */
4206        };
4207} __ec_align4;
4208
4209/*****************************************************************************/
4210/* Device events */
4211#define EC_CMD_DEVICE_EVENT 0x00AA
4212
4213enum ec_device_event {
4214        EC_DEVICE_EVENT_TRACKPAD,
4215        EC_DEVICE_EVENT_DSP,
4216        EC_DEVICE_EVENT_WIFI,
4217};
4218
4219enum ec_device_event_param {
4220        /* Get and clear pending device events */
4221        EC_DEVICE_EVENT_PARAM_GET_CURRENT_EVENTS,
4222        /* Get device event mask */
4223        EC_DEVICE_EVENT_PARAM_GET_ENABLED_EVENTS,
4224        /* Set device event mask */
4225        EC_DEVICE_EVENT_PARAM_SET_ENABLED_EVENTS,
4226};
4227
4228#define EC_DEVICE_EVENT_MASK(event_code) BIT(event_code % 32)
4229
4230struct ec_params_device_event {
4231        uint32_t event_mask;
4232        uint8_t param;
4233} __ec_align_size1;
4234
4235struct ec_response_device_event {
4236        uint32_t event_mask;
4237} __ec_align4;
4238
4239/*****************************************************************************/
4240/* Smart battery pass-through */
4241
4242/* Get / Set 16-bit smart battery registers */
4243#define EC_CMD_SB_READ_WORD   0x00B0
4244#define EC_CMD_SB_WRITE_WORD  0x00B1
4245
4246/* Get / Set string smart battery parameters
4247 * formatted as SMBUS "block".
4248 */
4249#define EC_CMD_SB_READ_BLOCK  0x00B2
4250#define EC_CMD_SB_WRITE_BLOCK 0x00B3
4251
4252struct ec_params_sb_rd {
4253        uint8_t reg;
4254} __ec_align1;
4255
4256struct ec_response_sb_rd_word {
4257        uint16_t value;
4258} __ec_align2;
4259
4260struct ec_params_sb_wr_word {
4261        uint8_t reg;
4262        uint16_t value;
4263} __ec_align1;
4264
4265struct ec_response_sb_rd_block {
4266        uint8_t data[32];
4267} __ec_align1;
4268
4269struct ec_params_sb_wr_block {
4270        uint8_t reg;
4271        uint16_t data[32];
4272} __ec_align1;
4273
4274/*****************************************************************************/
4275/* Battery vendor parameters
4276 *
4277 * Get or set vendor-specific parameters in the battery. Implementations may
4278 * differ between boards or batteries. On a set operation, the response
4279 * contains the actual value set, which may be rounded or clipped from the
4280 * requested value.
4281 */
4282
4283#define EC_CMD_BATTERY_VENDOR_PARAM 0x00B4
4284
4285enum ec_battery_vendor_param_mode {
4286        BATTERY_VENDOR_PARAM_MODE_GET = 0,
4287        BATTERY_VENDOR_PARAM_MODE_SET,
4288};
4289
4290struct ec_params_battery_vendor_param {
4291        uint32_t param;
4292        uint32_t value;
4293        uint8_t mode;
4294} __ec_align_size1;
4295
4296struct ec_response_battery_vendor_param {
4297        uint32_t value;
4298} __ec_align4;
4299
4300/*****************************************************************************/
4301/*
4302 * Smart Battery Firmware Update Commands
4303 */
4304#define EC_CMD_SB_FW_UPDATE 0x00B5
4305
4306enum ec_sb_fw_update_subcmd {
4307        EC_SB_FW_UPDATE_PREPARE  = 0x0,
4308        EC_SB_FW_UPDATE_INFO     = 0x1, /*query sb info */
4309        EC_SB_FW_UPDATE_BEGIN    = 0x2, /*check if protected */
4310        EC_SB_FW_UPDATE_WRITE    = 0x3, /*check if protected */
4311        EC_SB_FW_UPDATE_END      = 0x4,
4312        EC_SB_FW_UPDATE_STATUS   = 0x5,
4313        EC_SB_FW_UPDATE_PROTECT  = 0x6,
4314        EC_SB_FW_UPDATE_MAX      = 0x7,
4315};
4316
4317#define SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE 32
4318#define SB_FW_UPDATE_CMD_STATUS_SIZE 2
4319#define SB_FW_UPDATE_CMD_INFO_SIZE 8
4320
4321struct ec_sb_fw_update_header {
4322        uint16_t subcmd;  /* enum ec_sb_fw_update_subcmd */
4323        uint16_t fw_id;   /* firmware id */
4324} __ec_align4;
4325
4326struct ec_params_sb_fw_update {
4327        struct ec_sb_fw_update_header hdr;
4328        union {
4329                /* EC_SB_FW_UPDATE_PREPARE  = 0x0 */
4330                /* EC_SB_FW_UPDATE_INFO     = 0x1 */
4331                /* EC_SB_FW_UPDATE_BEGIN    = 0x2 */
4332                /* EC_SB_FW_UPDATE_END      = 0x4 */
4333                /* EC_SB_FW_UPDATE_STATUS   = 0x5 */
4334                /* EC_SB_FW_UPDATE_PROTECT  = 0x6 */
4335                /* Those have no args */
4336
4337                /* EC_SB_FW_UPDATE_WRITE    = 0x3 */
4338                struct __ec_align4 {
4339                        uint8_t  data[SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE];
4340                } write;
4341        };
4342} __ec_align4;
4343
4344struct ec_response_sb_fw_update {
4345        union {
4346                /* EC_SB_FW_UPDATE_INFO     = 0x1 */
4347                struct __ec_align1 {
4348                        uint8_t data[SB_FW_UPDATE_CMD_INFO_SIZE];
4349                } info;
4350
4351                /* EC_SB_FW_UPDATE_STATUS   = 0x5 */
4352                struct __ec_align1 {
4353                        uint8_t data[SB_FW_UPDATE_CMD_STATUS_SIZE];
4354                } status;
4355        };
4356} __ec_align1;
4357
4358/*
4359 * Entering Verified Boot Mode Command
4360 * Default mode is VBOOT_MODE_NORMAL if EC did not receive this command.
4361 * Valid Modes are: normal, developer, and recovery.
4362 */
4363#define EC_CMD_ENTERING_MODE 0x00B6
4364
4365struct ec_params_entering_mode {
4366        int vboot_mode;
4367} __ec_align4;
4368
4369#define VBOOT_MODE_NORMAL    0
4370#define VBOOT_MODE_DEVELOPER 1
4371#define VBOOT_MODE_RECOVERY  2
4372
4373/*****************************************************************************/
4374/*
4375 * I2C passthru protection command: Protects I2C tunnels against access on
4376 * certain addresses (board-specific).
4377 */
4378#define EC_CMD_I2C_PASSTHRU_PROTECT 0x00B7
4379
4380enum ec_i2c_passthru_protect_subcmd {
4381        EC_CMD_I2C_PASSTHRU_PROTECT_STATUS = 0x0,
4382        EC_CMD_I2C_PASSTHRU_PROTECT_ENABLE = 0x1,
4383};
4384
4385struct ec_params_i2c_passthru_protect {
4386        uint8_t subcmd;
4387        uint8_t port;           /* I2C port number */
4388} __ec_align1;
4389
4390struct ec_response_i2c_passthru_protect {
4391        uint8_t status;         /* Status flags (0: unlocked, 1: locked) */
4392} __ec_align1;
4393
4394
4395/*****************************************************************************/
4396/*
4397 * HDMI CEC commands
4398 *
4399 * These commands are for sending and receiving message via HDMI CEC
4400 */
4401
4402#define MAX_CEC_MSG_LEN 16
4403
4404/* CEC message from the AP to be written on the CEC bus */
4405#define EC_CMD_CEC_WRITE_MSG 0x00B8
4406
4407/**
4408 * struct ec_params_cec_write - Message to write to the CEC bus
4409 * @msg: message content to write to the CEC bus
4410 */
4411struct ec_params_cec_write {
4412        uint8_t msg[MAX_CEC_MSG_LEN];
4413} __ec_align1;
4414
4415/* Set various CEC parameters */
4416#define EC_CMD_CEC_SET 0x00BA
4417
4418/**
4419 * struct ec_params_cec_set - CEC parameters set
4420 * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
4421 * @val: in case cmd is CEC_CMD_ENABLE, this field can be 0 to disable CEC
4422 *      or 1 to enable CEC functionality, in case cmd is
4423 *      CEC_CMD_LOGICAL_ADDRESS, this field encodes the requested logical
4424 *      address between 0 and 15 or 0xff to unregister
4425 */
4426struct ec_params_cec_set {
4427        uint8_t cmd; /* enum cec_command */
4428        uint8_t val;
4429} __ec_align1;
4430
4431/* Read various CEC parameters */
4432#define EC_CMD_CEC_GET 0x00BB
4433
4434/**
4435 * struct ec_params_cec_get - CEC parameters get
4436 * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
4437 */
4438struct ec_params_cec_get {
4439        uint8_t cmd; /* enum cec_command */
4440} __ec_align1;
4441
4442/**
4443 * struct ec_response_cec_get - CEC parameters get response
4444 * @val: in case cmd was CEC_CMD_ENABLE, this field will 0 if CEC is
4445 *      disabled or 1 if CEC functionality is enabled,
4446 *      in case cmd was CEC_CMD_LOGICAL_ADDRESS, this will encode the
4447 *      configured logical address between 0 and 15 or 0xff if unregistered
4448 */
4449struct ec_response_cec_get {
4450        uint8_t val;
4451} __ec_align1;
4452
4453/* CEC parameters command */
4454enum cec_command {
4455        /* CEC reading, writing and events enable */
4456        CEC_CMD_ENABLE,
4457        /* CEC logical address  */
4458        CEC_CMD_LOGICAL_ADDRESS,
4459};
4460
4461/* Events from CEC to AP */
4462enum mkbp_cec_event {
4463        /* Outgoing message was acknowledged by a follower */
4464        EC_MKBP_CEC_SEND_OK                     = BIT(0),
4465        /* Outgoing message was not acknowledged */
4466        EC_MKBP_CEC_SEND_FAILED                 = BIT(1),
4467};
4468
4469/*****************************************************************************/
4470
4471/* Commands for I2S recording on audio codec. */
4472
4473#define EC_CMD_CODEC_I2S 0x00BC
4474#define EC_WOV_I2S_SAMPLE_RATE 48000
4475
4476enum ec_codec_i2s_subcmd {
4477        EC_CODEC_SET_SAMPLE_DEPTH = 0x0,
4478        EC_CODEC_SET_GAIN = 0x1,
4479        EC_CODEC_GET_GAIN = 0x2,
4480        EC_CODEC_I2S_ENABLE = 0x3,
4481        EC_CODEC_I2S_SET_CONFIG = 0x4,
4482        EC_CODEC_I2S_SET_TDM_CONFIG = 0x5,
4483        EC_CODEC_I2S_SET_BCLK = 0x6,
4484        EC_CODEC_I2S_SUBCMD_COUNT = 0x7,
4485};
4486
4487enum ec_sample_depth_value {
4488        EC_CODEC_SAMPLE_DEPTH_16 = 0,
4489        EC_CODEC_SAMPLE_DEPTH_24 = 1,
4490};
4491
4492enum ec_i2s_config {
4493        EC_DAI_FMT_I2S = 0,
4494        EC_DAI_FMT_RIGHT_J = 1,
4495        EC_DAI_FMT_LEFT_J = 2,
4496        EC_DAI_FMT_PCM_A = 3,
4497        EC_DAI_FMT_PCM_B = 4,
4498        EC_DAI_FMT_PCM_TDM = 5,
4499};
4500
4501/*
4502 * For subcommand EC_CODEC_GET_GAIN.
4503 */
4504struct __ec_align1 ec_codec_i2s_gain {
4505        uint8_t left;
4506        uint8_t right;
4507};
4508
4509struct __ec_todo_unpacked ec_param_codec_i2s_tdm {
4510        int16_t ch0_delay; /* 0 to 496 */
4511        int16_t ch1_delay; /* -1 to 496 */
4512        uint8_t adjacent_to_ch0;
4513        uint8_t adjacent_to_ch1;
4514};
4515
4516struct __ec_todo_packed ec_param_codec_i2s {
4517        /* enum ec_codec_i2s_subcmd */
4518        uint8_t cmd;
4519        union {
4520                /*
4521                 * EC_CODEC_SET_SAMPLE_DEPTH
4522                 * Value should be one of ec_sample_depth_value.
4523                 */
4524                uint8_t depth;
4525
4526                /*
4527                 * EC_CODEC_SET_GAIN
4528                 * Value should be 0~43 for both channels.
4529                 */
4530                struct ec_codec_i2s_gain gain;
4531
4532                /*
4533                 * EC_CODEC_I2S_ENABLE
4534                 * 1 to enable, 0 to disable.
4535                 */
4536                uint8_t i2s_enable;
4537
4538                /*
4539                 * EC_CODEC_I2S_SET_CONFIG
4540                 * Value should be one of ec_i2s_config.
4541                 */
4542                uint8_t i2s_config;
4543
4544                /*
4545                 * EC_CODEC_I2S_SET_TDM_CONFIG
4546                 * Value should be one of ec_i2s_config.
4547                 */
4548                struct ec_param_codec_i2s_tdm tdm_param;
4549
4550                /*
4551                 * EC_CODEC_I2S_SET_BCLK
4552                 */
4553                uint32_t bclk;
4554        };
4555};
4556
4557
4558/*****************************************************************************/
4559/* System commands */
4560
4561/*
4562 * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
4563 * necessarily reboot the EC.  Rename to "image" or something similar?
4564 */
4565#define EC_CMD_REBOOT_EC 0x00D2
4566
4567/* Command */
4568enum ec_reboot_cmd {
4569        EC_REBOOT_CANCEL = 0,        /* Cancel a pending reboot */
4570        EC_REBOOT_JUMP_RO = 1,       /* Jump to RO without rebooting */
4571        EC_REBOOT_JUMP_RW = 2,       /* Jump to active RW without rebooting */
4572        /* (command 3 was jump to RW-B) */
4573        EC_REBOOT_COLD = 4,          /* Cold-reboot */
4574        EC_REBOOT_DISABLE_JUMP = 5,  /* Disable jump until next reboot */
4575        EC_REBOOT_HIBERNATE = 6,     /* Hibernate EC */
4576        EC_REBOOT_HIBERNATE_CLEAR_AP_OFF = 7, /* and clears AP_OFF flag */
4577};
4578
4579/* Flags for ec_params_reboot_ec.reboot_flags */
4580#define EC_REBOOT_FLAG_RESERVED0      BIT(0)  /* Was recovery request */
4581#define EC_REBOOT_FLAG_ON_AP_SHUTDOWN BIT(1)  /* Reboot after AP shutdown */
4582#define EC_REBOOT_FLAG_SWITCH_RW_SLOT BIT(2)  /* Switch RW slot */
4583
4584struct ec_params_reboot_ec {
4585        uint8_t cmd;           /* enum ec_reboot_cmd */
4586        uint8_t flags;         /* See EC_REBOOT_FLAG_* */
4587} __ec_align1;
4588
4589/*
4590 * Get information on last EC panic.
4591 *
4592 * Returns variable-length platform-dependent panic information.  See panic.h
4593 * for details.
4594 */
4595#define EC_CMD_GET_PANIC_INFO 0x00D3
4596
4597/*****************************************************************************/
4598/*
4599 * Special commands
4600 *
4601 * These do not follow the normal rules for commands.  See each command for
4602 * details.
4603 */
4604
4605/*
4606 * Reboot NOW
4607 *
4608 * This command will work even when the EC LPC interface is busy, because the
4609 * reboot command is processed at interrupt level.  Note that when the EC
4610 * reboots, the host will reboot too, so there is no response to this command.
4611 *
4612 * Use EC_CMD_REBOOT_EC to reboot the EC more politely.
4613 */
4614#define EC_CMD_REBOOT 0x00D1  /* Think "die" */
4615
4616/*
4617 * Resend last response (not supported on LPC).
4618 *
4619 * Returns EC_RES_UNAVAILABLE if there is no response available - for example,
4620 * there was no previous command, or the previous command's response was too
4621 * big to save.
4622 */
4623#define EC_CMD_RESEND_RESPONSE 0x00DB
4624
4625/*
4626 * This header byte on a command indicate version 0. Any header byte less
4627 * than this means that we are talking to an old EC which doesn't support
4628 * versioning. In that case, we assume version 0.
4629 *
4630 * Header bytes greater than this indicate a later version. For example,
4631 * EC_CMD_VERSION0 + 1 means we are using version 1.
4632 *
4633 * The old EC interface must not use commands 0xdc or higher.
4634 */
4635#define EC_CMD_VERSION0 0x00DC
4636
4637/*****************************************************************************/
4638/*
4639 * PD commands
4640 *
4641 * These commands are for PD MCU communication.
4642 */
4643
4644/* EC to PD MCU exchange status command */
4645#define EC_CMD_PD_EXCHANGE_STATUS 0x0100
4646#define EC_VER_PD_EXCHANGE_STATUS 2
4647
4648enum pd_charge_state {
4649        PD_CHARGE_NO_CHANGE = 0, /* Don't change charge state */
4650        PD_CHARGE_NONE,          /* No charging allowed */
4651        PD_CHARGE_5V,            /* 5V charging only */
4652        PD_CHARGE_MAX            /* Charge at max voltage */
4653};
4654
4655/* Status of EC being sent to PD */
4656#define EC_STATUS_HIBERNATING   BIT(0)
4657
4658struct ec_params_pd_status {
4659        uint8_t status;       /* EC status */
4660        int8_t batt_soc;      /* battery state of charge */
4661        uint8_t charge_state; /* charging state (from enum pd_charge_state) */
4662} __ec_align1;
4663
4664/* Status of PD being sent back to EC */
4665#define PD_STATUS_HOST_EVENT      BIT(0) /* Forward host event to AP */
4666#define PD_STATUS_IN_RW           BIT(1) /* Running RW image */
4667#define PD_STATUS_JUMPED_TO_IMAGE BIT(2) /* Current image was jumped to */
4668#define PD_STATUS_TCPC_ALERT_0    BIT(3) /* Alert active in port 0 TCPC */
4669#define PD_STATUS_TCPC_ALERT_1    BIT(4) /* Alert active in port 1 TCPC */
4670#define PD_STATUS_TCPC_ALERT_2    BIT(5) /* Alert active in port 2 TCPC */
4671#define PD_STATUS_TCPC_ALERT_3    BIT(6) /* Alert active in port 3 TCPC */
4672#define PD_STATUS_EC_INT_ACTIVE  (PD_STATUS_TCPC_ALERT_0 | \
4673                                      PD_STATUS_TCPC_ALERT_1 | \
4674                                      PD_STATUS_HOST_EVENT)
4675struct ec_response_pd_status {
4676        uint32_t curr_lim_ma;       /* input current limit */
4677        uint16_t status;            /* PD MCU status */
4678        int8_t active_charge_port;  /* active charging port */
4679} __ec_align_size1;
4680
4681/* AP to PD MCU host event status command, cleared on read */
4682#define EC_CMD_PD_HOST_EVENT_STATUS 0x0104
4683
4684/* PD MCU host event status bits */
4685#define PD_EVENT_UPDATE_DEVICE     BIT(0)
4686#define PD_EVENT_POWER_CHANGE      BIT(1)
4687#define PD_EVENT_IDENTITY_RECEIVED BIT(2)
4688#define PD_EVENT_DATA_SWAP         BIT(3)
4689struct ec_response_host_event_status {
4690        uint32_t status;      /* PD MCU host event status */
4691} __ec_align4;
4692
4693/* Set USB type-C port role and muxes */
4694#define EC_CMD_USB_PD_CONTROL 0x0101
4695
4696enum usb_pd_control_role {
4697        USB_PD_CTRL_ROLE_NO_CHANGE = 0,
4698        USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
4699        USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
4700        USB_PD_CTRL_ROLE_FORCE_SINK = 3,
4701        USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
4702        USB_PD_CTRL_ROLE_FREEZE = 5,
4703        USB_PD_CTRL_ROLE_COUNT
4704};
4705
4706enum usb_pd_control_mux {
4707        USB_PD_CTRL_MUX_NO_CHANGE = 0,
4708        USB_PD_CTRL_MUX_NONE = 1,
4709        USB_PD_CTRL_MUX_USB = 2,
4710        USB_PD_CTRL_MUX_DP = 3,
4711        USB_PD_CTRL_MUX_DOCK = 4,
4712        USB_PD_CTRL_MUX_AUTO = 5,
4713        USB_PD_CTRL_MUX_COUNT
4714};
4715
4716enum usb_pd_control_swap {
4717        USB_PD_CTRL_SWAP_NONE = 0,
4718        USB_PD_CTRL_SWAP_DATA = 1,
4719        USB_PD_CTRL_SWAP_POWER = 2,
4720        USB_PD_CTRL_SWAP_VCONN = 3,
4721        USB_PD_CTRL_SWAP_COUNT
4722};
4723
4724struct ec_params_usb_pd_control {
4725        uint8_t port;
4726        uint8_t role;
4727        uint8_t mux;
4728        uint8_t swap;
4729} __ec_align1;
4730
4731#define PD_CTRL_RESP_ENABLED_COMMS      BIT(0) /* Communication enabled */
4732#define PD_CTRL_RESP_ENABLED_CONNECTED  BIT(1) /* Device connected */
4733#define PD_CTRL_RESP_ENABLED_PD_CAPABLE BIT(2) /* Partner is PD capable */
4734
4735#define PD_CTRL_RESP_ROLE_POWER         BIT(0) /* 0=SNK/1=SRC */
4736#define PD_CTRL_RESP_ROLE_DATA          BIT(1) /* 0=UFP/1=DFP */
4737#define PD_CTRL_RESP_ROLE_VCONN         BIT(2) /* Vconn status */
4738#define PD_CTRL_RESP_ROLE_DR_POWER      BIT(3) /* Partner is dualrole power */
4739#define PD_CTRL_RESP_ROLE_DR_DATA       BIT(4) /* Partner is dualrole data */
4740#define PD_CTRL_RESP_ROLE_USB_COMM      BIT(5) /* Partner USB comm capable */
4741#define PD_CTRL_RESP_ROLE_EXT_POWERED   BIT(6) /* Partner externally powerd */
4742
4743struct ec_response_usb_pd_control {
4744        uint8_t enabled;
4745        uint8_t role;
4746        uint8_t polarity;
4747        uint8_t state;
4748} __ec_align1;
4749
4750struct ec_response_usb_pd_control_v1 {
4751        uint8_t enabled;
4752        uint8_t role;
4753        uint8_t polarity;
4754        char state[32];
4755} __ec_align1;
4756
4757/* Values representing usbc PD CC state */
4758#define USBC_PD_CC_NONE         0 /* No accessory connected */
4759#define USBC_PD_CC_NO_UFP       1 /* No UFP accessory connected */
4760#define USBC_PD_CC_AUDIO_ACC    2 /* Audio accessory connected */
4761#define USBC_PD_CC_DEBUG_ACC    3 /* Debug accessory connected */
4762#define USBC_PD_CC_UFP_ATTACHED 4 /* UFP attached to usbc */
4763#define USBC_PD_CC_DFP_ATTACHED 5 /* DPF attached to usbc */
4764
4765struct ec_response_usb_pd_control_v2 {
4766        uint8_t enabled;
4767        uint8_t role;
4768        uint8_t polarity;
4769        char state[32];
4770        uint8_t cc_state; /* USBC_PD_CC_*Encoded cc state */
4771        uint8_t dp_mode;  /* Current DP pin mode (MODE_DP_PIN_[A-E]) */
4772        /* CL:1500994 Current cable type */
4773        uint8_t reserved_cable_type;
4774} __ec_align1;
4775
4776#define EC_CMD_USB_PD_PORTS 0x0102
4777
4778/* Maximum number of PD ports on a device, num_ports will be <= this */
4779#define EC_USB_PD_MAX_PORTS 8
4780
4781struct ec_response_usb_pd_ports {
4782        uint8_t num_ports;
4783} __ec_align1;
4784
4785#define EC_CMD_USB_PD_POWER_INFO 0x0103
4786
4787#define PD_POWER_CHARGING_PORT 0xff
4788struct ec_params_usb_pd_power_info {
4789        uint8_t port;
4790} __ec_align1;
4791
4792enum usb_chg_type {
4793        USB_CHG_TYPE_NONE,
4794        USB_CHG_TYPE_PD,
4795        USB_CHG_TYPE_C,
4796        USB_CHG_TYPE_PROPRIETARY,
4797        USB_CHG_TYPE_BC12_DCP,
4798        USB_CHG_TYPE_BC12_CDP,
4799        USB_CHG_TYPE_BC12_SDP,
4800        USB_CHG_TYPE_OTHER,
4801        USB_CHG_TYPE_VBUS,
4802        USB_CHG_TYPE_UNKNOWN,
4803        USB_CHG_TYPE_DEDICATED,
4804};
4805enum usb_power_roles {
4806        USB_PD_PORT_POWER_DISCONNECTED,
4807        USB_PD_PORT_POWER_SOURCE,
4808        USB_PD_PORT_POWER_SINK,
4809        USB_PD_PORT_POWER_SINK_NOT_CHARGING,
4810};
4811
4812struct usb_chg_measures {
4813        uint16_t voltage_max;
4814        uint16_t voltage_now;
4815        uint16_t current_max;
4816        uint16_t current_lim;
4817} __ec_align2;
4818
4819struct ec_response_usb_pd_power_info {
4820        uint8_t role;
4821        uint8_t type;
4822        uint8_t dualrole;
4823        uint8_t reserved1;
4824        struct usb_chg_measures meas;
4825        uint32_t max_power;
4826} __ec_align4;
4827
4828
4829/*
4830 * This command will return the number of USB PD charge port + the number
4831 * of dedicated port present.
4832 * EC_CMD_USB_PD_PORTS does NOT include the dedicated ports
4833 */
4834#define EC_CMD_CHARGE_PORT_COUNT 0x0105
4835struct ec_response_charge_port_count {
4836        uint8_t port_count;
4837} __ec_align1;
4838
4839/* Write USB-PD device FW */
4840#define EC_CMD_USB_PD_FW_UPDATE 0x0110
4841
4842enum usb_pd_fw_update_cmds {
4843        USB_PD_FW_REBOOT,
4844        USB_PD_FW_FLASH_ERASE,
4845        USB_PD_FW_FLASH_WRITE,
4846        USB_PD_FW_ERASE_SIG,
4847};
4848
4849struct ec_params_usb_pd_fw_update {
4850        uint16_t dev_id;
4851        uint8_t cmd;
4852        uint8_t port;
4853        uint32_t size;     /* Size to write in bytes */
4854        /* Followed by data to write */
4855} __ec_align4;
4856
4857/* Write USB-PD Accessory RW_HASH table entry */
4858#define EC_CMD_USB_PD_RW_HASH_ENTRY 0x0111
4859/* RW hash is first 20 bytes of SHA-256 of RW section */
4860#define PD_RW_HASH_SIZE 20
4861struct ec_params_usb_pd_rw_hash_entry {
4862        uint16_t dev_id;
4863        uint8_t dev_rw_hash[PD_RW_HASH_SIZE];
4864        uint8_t reserved;        /*
4865                                  * For alignment of current_image
4866                                  * TODO(rspangler) but it's not aligned!
4867                                  * Should have been reserved[2].
4868                                  */
4869        uint32_t current_image;  /* One of ec_current_image */
4870} __ec_align1;
4871
4872/* Read USB-PD Accessory info */
4873#define EC_CMD_USB_PD_DEV_INFO 0x0112
4874
4875struct ec_params_usb_pd_info_request {
4876        uint8_t port;
4877} __ec_align1;
4878
4879/* Read USB-PD Device discovery info */
4880#define EC_CMD_USB_PD_DISCOVERY 0x0113
4881struct ec_params_usb_pd_discovery_entry {
4882        uint16_t vid;  /* USB-IF VID */
4883        uint16_t pid;  /* USB-IF PID */
4884        uint8_t ptype; /* product type (hub,periph,cable,ama) */
4885} __ec_align_size1;
4886
4887/* Override default charge behavior */
4888#define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x0114
4889
4890/* Negative port parameters have special meaning */
4891enum usb_pd_override_ports {
4892        OVERRIDE_DONT_CHARGE = -2,
4893        OVERRIDE_OFF = -1,
4894        /* [0, CONFIG_USB_PD_PORT_COUNT): Port# */
4895};
4896
4897struct ec_params_charge_port_override {
4898        int16_t override_port; /* Override port# */
4899} __ec_align2;
4900
4901/*
4902 * Read (and delete) one entry of PD event log.
4903 * TODO(crbug.com/751742): Make this host command more generic to accommodate
4904 * future non-PD logs that use the same internal EC event_log.
4905 */
4906#define EC_CMD_PD_GET_LOG_ENTRY 0x0115
4907
4908struct ec_response_pd_log {
4909        uint32_t timestamp; /* relative timestamp in milliseconds */
4910        uint8_t type;       /* event type : see PD_EVENT_xx below */
4911        uint8_t size_port;  /* [7:5] port number [4:0] payload size in bytes */
4912        uint16_t data;      /* type-defined data payload */
4913        uint8_t payload[0]; /* optional additional data payload: 0..16 bytes */
4914} __ec_align4;
4915
4916/* The timestamp is the microsecond counter shifted to get about a ms. */
4917#define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */
4918
4919#define PD_LOG_SIZE_MASK  0x1f
4920#define PD_LOG_PORT_MASK  0xe0
4921#define PD_LOG_PORT_SHIFT    5
4922#define PD_LOG_PORT_SIZE(port, size) (((port) << PD_LOG_PORT_SHIFT) | \
4923                                      ((size) & PD_LOG_SIZE_MASK))
4924#define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT)
4925#define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK)
4926
4927/* PD event log : entry types */
4928/* PD MCU events */
4929#define PD_EVENT_MCU_BASE       0x00
4930#define PD_EVENT_MCU_CHARGE             (PD_EVENT_MCU_BASE+0)
4931#define PD_EVENT_MCU_CONNECT            (PD_EVENT_MCU_BASE+1)
4932/* Reserved for custom board event */
4933#define PD_EVENT_MCU_BOARD_CUSTOM       (PD_EVENT_MCU_BASE+2)
4934/* PD generic accessory events */
4935#define PD_EVENT_ACC_BASE       0x20
4936#define PD_EVENT_ACC_RW_FAIL   (PD_EVENT_ACC_BASE+0)
4937#define PD_EVENT_ACC_RW_ERASE  (PD_EVENT_ACC_BASE+1)
4938/* PD power supply events */
4939#define PD_EVENT_PS_BASE        0x40
4940#define PD_EVENT_PS_FAULT      (PD_EVENT_PS_BASE+0)
4941/* PD video dongles events */
4942#define PD_EVENT_VIDEO_BASE     0x60
4943#define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE+0)
4944#define PD_EVENT_VIDEO_CODEC   (PD_EVENT_VIDEO_BASE+1)
4945/* Returned in the "type" field, when there is no entry available */
4946#define PD_EVENT_NO_ENTRY       0xff
4947
4948/*
4949 * PD_EVENT_MCU_CHARGE event definition :
4950 * the payload is "struct usb_chg_measures"
4951 * the data field contains the port state flags as defined below :
4952 */
4953/* Port partner is a dual role device */
4954#define CHARGE_FLAGS_DUAL_ROLE         BIT(15)
4955/* Port is the pending override port */
4956#define CHARGE_FLAGS_DELAYED_OVERRIDE  BIT(14)
4957/* Port is the override port */
4958#define CHARGE_FLAGS_OVERRIDE          BIT(13)
4959/* Charger type */
4960#define CHARGE_FLAGS_TYPE_SHIFT               3
4961#define CHARGE_FLAGS_TYPE_MASK       (0xf << CHARGE_FLAGS_TYPE_SHIFT)
4962/* Power delivery role */
4963#define CHARGE_FLAGS_ROLE_MASK         (7 <<  0)
4964
4965/*
4966 * PD_EVENT_PS_FAULT data field flags definition :
4967 */
4968#define PS_FAULT_OCP                          1
4969#define PS_FAULT_FAST_OCP                     2
4970#define PS_FAULT_OVP                          3
4971#define PS_FAULT_DISCH                        4
4972
4973/*
4974 * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info".
4975 */
4976struct mcdp_version {
4977        uint8_t major;
4978        uint8_t minor;
4979        uint16_t build;
4980} __ec_align4;
4981
4982struct mcdp_info {
4983        uint8_t family[2];
4984        uint8_t chipid[2];
4985        struct mcdp_version irom;
4986        struct mcdp_version fw;
4987} __ec_align4;
4988
4989/* struct mcdp_info field decoding */
4990#define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1])
4991#define MCDP_FAMILY(family) ((family[0] << 8) | family[1])
4992
4993/* Get/Set USB-PD Alternate mode info */
4994#define EC_CMD_USB_PD_GET_AMODE 0x0116
4995struct ec_params_usb_pd_get_mode_request {
4996        uint16_t svid_idx; /* SVID index to get */
4997        uint8_t port;      /* port */
4998} __ec_align_size1;
4999
5000struct ec_params_usb_pd_get_mode_response {
5001        uint16_t svid;   /* SVID */
5002        uint16_t opos;    /* Object Position */
5003        uint32_t vdo[6]; /* Mode VDOs */
5004} __ec_align4;
5005
5006#define EC_CMD_USB_PD_SET_AMODE 0x0117
5007
5008enum pd_mode_cmd {
5009        PD_EXIT_MODE = 0,
5010        PD_ENTER_MODE = 1,
5011        /* Not a command.  Do NOT remove. */
5012        PD_MODE_CMD_COUNT,
5013};
5014
5015struct ec_params_usb_pd_set_mode_request {
5016        uint32_t cmd;  /* enum pd_mode_cmd */
5017        uint16_t svid; /* SVID to set */
5018        uint8_t opos;  /* Object Position */
5019        uint8_t port;  /* port */
5020} __ec_align4;
5021
5022/* Ask the PD MCU to record a log of a requested type */
5023#define EC_CMD_PD_WRITE_LOG_ENTRY 0x0118
5024
5025struct ec_params_pd_write_log_entry {
5026        uint8_t type; /* event type : see PD_EVENT_xx above */
5027        uint8_t port; /* port#, or 0 for events unrelated to a given port */
5028} __ec_align1;
5029
5030
5031/* Control USB-PD chip */
5032#define EC_CMD_PD_CONTROL 0x0119
5033
5034enum ec_pd_control_cmd {
5035        PD_SUSPEND = 0,      /* Suspend the PD chip (EC: stop talking to PD) */
5036        PD_RESUME,           /* Resume the PD chip (EC: start talking to PD) */
5037        PD_RESET,            /* Force reset the PD chip */
5038        PD_CONTROL_DISABLE,  /* Disable further calls to this command */
5039        PD_CHIP_ON,          /* Power on the PD chip */
5040};
5041
5042struct ec_params_pd_control {
5043        uint8_t chip;         /* chip id */
5044        uint8_t subcmd;
5045} __ec_align1;
5046
5047/* Get info about USB-C SS muxes */
5048#define EC_CMD_USB_PD_MUX_INFO 0x011A
5049
5050struct ec_params_usb_pd_mux_info {
5051        uint8_t port; /* USB-C port number */
5052} __ec_align1;
5053
5054/* Flags representing mux state */
5055#define USB_PD_MUX_USB_ENABLED       BIT(0) /* USB connected */
5056#define USB_PD_MUX_DP_ENABLED        BIT(1) /* DP connected */
5057#define USB_PD_MUX_POLARITY_INVERTED BIT(2) /* CC line Polarity inverted */
5058#define USB_PD_MUX_HPD_IRQ           BIT(3) /* HPD IRQ is asserted */
5059#define USB_PD_MUX_HPD_LVL           BIT(4) /* HPD level is asserted */
5060
5061struct ec_response_usb_pd_mux_info {
5062        uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */
5063} __ec_align1;
5064
5065#define EC_CMD_PD_CHIP_INFO             0x011B
5066
5067struct ec_params_pd_chip_info {
5068        uint8_t port;   /* USB-C port number */
5069        uint8_t renew;  /* Force renewal */
5070} __ec_align1;
5071
5072struct ec_response_pd_chip_info {
5073        uint16_t vendor_id;
5074        uint16_t product_id;
5075        uint16_t device_id;
5076        union {
5077                uint8_t fw_version_string[8];
5078                uint64_t fw_version_number;
5079        };
5080} __ec_align2;
5081
5082struct ec_response_pd_chip_info_v1 {
5083        uint16_t vendor_id;
5084        uint16_t product_id;
5085        uint16_t device_id;
5086        union {
5087                uint8_t fw_version_string[8];
5088                uint64_t fw_version_number;
5089        };
5090        union {
5091                uint8_t min_req_fw_version_string[8];
5092                uint64_t min_req_fw_version_number;
5093        };
5094} __ec_align2;
5095
5096/* Run RW signature verification and get status */
5097#define EC_CMD_RWSIG_CHECK_STATUS       0x011C
5098
5099struct ec_response_rwsig_check_status {
5100        uint32_t status;
5101} __ec_align4;
5102
5103/* For controlling RWSIG task */
5104#define EC_CMD_RWSIG_ACTION     0x011D
5105
5106enum rwsig_action {
5107        RWSIG_ACTION_ABORT = 0,         /* Abort RWSIG and prevent jumping */
5108        RWSIG_ACTION_CONTINUE = 1,      /* Jump to RW immediately */
5109};
5110
5111struct ec_params_rwsig_action {
5112        uint32_t action;
5113} __ec_align4;
5114
5115/* Run verification on a slot */
5116#define EC_CMD_EFS_VERIFY       0x011E
5117
5118struct ec_params_efs_verify {
5119        uint8_t region;         /* enum ec_flash_region */
5120} __ec_align1;
5121
5122/*
5123 * Retrieve info from Cros Board Info store. Response is based on the data
5124 * type. Integers return a uint32. Strings return a string, using the response
5125 * size to determine how big it is.
5126 */
5127#define EC_CMD_GET_CROS_BOARD_INFO      0x011F
5128/*
5129 * Write info into Cros Board Info on EEPROM. Write fails if the board has
5130 * hardware write-protect enabled.
5131 */
5132#define EC_CMD_SET_CROS_BOARD_INFO      0x0120
5133
5134enum cbi_data_tag {
5135        CBI_TAG_BOARD_VERSION = 0, /* uint32_t or smaller */
5136        CBI_TAG_OEM_ID = 1,        /* uint32_t or smaller */
5137        CBI_TAG_SKU_ID = 2,        /* uint32_t or smaller */
5138        CBI_TAG_DRAM_PART_NUM = 3, /* variable length ascii, nul terminated. */
5139        CBI_TAG_OEM_NAME = 4,      /* variable length ascii, nul terminated. */
5140        CBI_TAG_MODEL_ID = 5,      /* uint32_t or smaller */
5141        CBI_TAG_COUNT,
5142};
5143
5144/*
5145 * Flags to control read operation
5146 *
5147 * RELOAD:  Invalidate cache and read data from EEPROM. Useful to verify
5148 *          write was successful without reboot.
5149 */
5150#define CBI_GET_RELOAD          BIT(0)
5151
5152struct ec_params_get_cbi {
5153        uint32_t tag;           /* enum cbi_data_tag */
5154        uint32_t flag;          /* CBI_GET_* */
5155} __ec_align4;
5156
5157/*
5158 * Flags to control write behavior.
5159 *
5160 * NO_SYNC: Makes EC update data in RAM but skip writing to EEPROM. It's
5161 *          useful when writing multiple fields in a row.
5162 * INIT:    Need to be set when creating a new CBI from scratch. All fields
5163 *          will be initialized to zero first.
5164 */
5165#define CBI_SET_NO_SYNC         BIT(0)
5166#define CBI_SET_INIT            BIT(1)
5167
5168struct ec_params_set_cbi {
5169        uint32_t tag;           /* enum cbi_data_tag */
5170        uint32_t flag;          /* CBI_SET_* */
5171        uint32_t size;          /* Data size */
5172        uint8_t data[];         /* For string and raw data */
5173} __ec_align1;
5174
5175/*
5176 * Information about resets of the AP by the EC and the EC's own uptime.
5177 */
5178#define EC_CMD_GET_UPTIME_INFO 0x0121
5179
5180struct ec_response_uptime_info {
5181        /*
5182         * Number of milliseconds since the last EC boot. Sysjump resets
5183         * typically do not restart the EC's time_since_boot epoch.
5184         *
5185         * WARNING: The EC's sense of time is much less accurate than the AP's
5186         * sense of time, in both phase and frequency.  This timebase is similar
5187         * to CLOCK_MONOTONIC_RAW, but with 1% or more frequency error.
5188         */
5189        uint32_t time_since_ec_boot_ms;
5190
5191        /*
5192         * Number of times the AP was reset by the EC since the last EC boot.
5193         * Note that the AP may be held in reset by the EC during the initial
5194         * boot sequence, such that the very first AP boot may count as more
5195         * than one here.
5196         */
5197        uint32_t ap_resets_since_ec_boot;
5198
5199        /*
5200         * The set of flags which describe the EC's most recent reset.  See
5201         * include/system.h RESET_FLAG_* for details.
5202         */
5203        uint32_t ec_reset_flags;
5204
5205        /* Empty log entries have both the cause and timestamp set to zero. */
5206        struct ap_reset_log_entry {
5207                /*
5208                 * See include/chipset.h: enum chipset_{reset,shutdown}_reason
5209                 * for details.
5210                 */
5211                uint16_t reset_cause;
5212
5213                /* Reserved for protocol growth. */
5214                uint16_t reserved;
5215
5216                /*
5217                 * The time of the reset's assertion, in milliseconds since the
5218                 * last EC boot, in the same epoch as time_since_ec_boot_ms.
5219                 * Set to zero if the log entry is empty.
5220                 */
5221                uint32_t reset_time_ms;
5222        } recent_ap_reset[4];
5223} __ec_align4;
5224
5225/*
5226 * Add entropy to the device secret (stored in the rollback region).
5227 *
5228 * Depending on the chip, the operation may take a long time (e.g. to erase
5229 * flash), so the commands are asynchronous.
5230 */
5231#define EC_CMD_ADD_ENTROPY      0x0122
5232
5233enum add_entropy_action {
5234        /* Add entropy to the current secret. */
5235        ADD_ENTROPY_ASYNC = 0,
5236        /*
5237         * Add entropy, and also make sure that the previous secret is erased.
5238         * (this can be implemented by adding entropy multiple times until
5239         * all rolback blocks have been overwritten).
5240         */
5241        ADD_ENTROPY_RESET_ASYNC = 1,
5242        /* Read back result from the previous operation. */
5243        ADD_ENTROPY_GET_RESULT = 2,
5244};
5245
5246struct ec_params_rollback_add_entropy {
5247        uint8_t action;
5248} __ec_align1;
5249
5250/*
5251 * Perform a single read of a given ADC channel.
5252 */
5253#define EC_CMD_ADC_READ         0x0123
5254
5255struct ec_params_adc_read {
5256        uint8_t adc_channel;
5257} __ec_align1;
5258
5259struct ec_response_adc_read {
5260        int32_t adc_value;
5261} __ec_align4;
5262
5263/*
5264 * Read back rollback info
5265 */
5266#define EC_CMD_ROLLBACK_INFO            0x0124
5267
5268struct ec_response_rollback_info {
5269        int32_t id; /* Incrementing number to indicate which region to use. */
5270        int32_t rollback_min_version;
5271        int32_t rw_rollback_version;
5272} __ec_align4;
5273
5274
5275/* Issue AP reset */
5276#define EC_CMD_AP_RESET 0x0125
5277
5278/*****************************************************************************/
5279/* The command range 0x200-0x2FF is reserved for Rotor. */
5280
5281/*****************************************************************************/
5282/*
5283 * Reserve a range of host commands for the CR51 firmware.
5284 */
5285#define EC_CMD_CR51_BASE 0x0300
5286#define EC_CMD_CR51_LAST 0x03FF
5287
5288/*****************************************************************************/
5289/* Fingerprint MCU commands: range 0x0400-0x040x */
5290
5291/* Fingerprint SPI sensor passthru command: prototyping ONLY */
5292#define EC_CMD_FP_PASSTHRU 0x0400
5293
5294#define EC_FP_FLAG_NOT_COMPLETE 0x1
5295
5296struct ec_params_fp_passthru {
5297        uint16_t len;           /* Number of bytes to write then read */
5298        uint16_t flags;         /* EC_FP_FLAG_xxx */
5299        uint8_t data[];         /* Data to send */
5300} __ec_align2;
5301
5302/* Configure the Fingerprint MCU behavior */
5303#define EC_CMD_FP_MODE 0x0402
5304
5305/* Put the sensor in its lowest power mode */
5306#define FP_MODE_DEEPSLEEP      BIT(0)
5307/* Wait to see a finger on the sensor */
5308#define FP_MODE_FINGER_DOWN    BIT(1)
5309/* Poll until the finger has left the sensor */
5310#define FP_MODE_FINGER_UP      BIT(2)
5311/* Capture the current finger image */
5312#define FP_MODE_CAPTURE        BIT(3)
5313/* Finger enrollment session on-going */
5314#define FP_MODE_ENROLL_SESSION BIT(4)
5315/* Enroll the current finger image */
5316#define FP_MODE_ENROLL_IMAGE   BIT(5)
5317/* Try to match the current finger image */
5318#define FP_MODE_MATCH          BIT(6)
5319/* Reset and re-initialize the sensor. */
5320#define FP_MODE_RESET_SENSOR   BIT(7)
5321/* special value: don't change anything just read back current mode */
5322#define FP_MODE_DONT_CHANGE    BIT(31)
5323
5324#define FP_VALID_MODES (FP_MODE_DEEPSLEEP      | \
5325                        FP_MODE_FINGER_DOWN    | \
5326                        FP_MODE_FINGER_UP      | \
5327                        FP_MODE_CAPTURE        | \
5328                        FP_MODE_ENROLL_SESSION | \
5329                        FP_MODE_ENROLL_IMAGE   | \
5330                        FP_MODE_MATCH          | \
5331                        FP_MODE_RESET_SENSOR   | \
5332                        FP_MODE_DONT_CHANGE)
5333
5334/* Capture types defined in bits [30..28] */
5335#define FP_MODE_CAPTURE_TYPE_SHIFT 28
5336#define FP_MODE_CAPTURE_TYPE_MASK  (0x7 << FP_MODE_CAPTURE_TYPE_SHIFT)
5337/*
5338 * This enum must remain ordered, if you add new values you must ensure that
5339 * FP_CAPTURE_TYPE_MAX is still the last one.
5340 */
5341enum fp_capture_type {
5342        /* Full blown vendor-defined capture (produces 'frame_size' bytes) */
5343        FP_CAPTURE_VENDOR_FORMAT = 0,
5344        /* Simple raw image capture (produces width x height x bpp bits) */
5345        FP_CAPTURE_SIMPLE_IMAGE = 1,
5346        /* Self test pattern (e.g. checkerboard) */
5347        FP_CAPTURE_PATTERN0 = 2,
5348        /* Self test pattern (e.g. inverted checkerboard) */
5349        FP_CAPTURE_PATTERN1 = 3,
5350        /* Capture for Quality test with fixed contrast */
5351        FP_CAPTURE_QUALITY_TEST = 4,
5352        /* Capture for pixel reset value test */
5353        FP_CAPTURE_RESET_TEST = 5,
5354        FP_CAPTURE_TYPE_MAX,
5355};
5356/* Extracts the capture type from the sensor 'mode' word */
5357#define FP_CAPTURE_TYPE(mode) (((mode) & FP_MODE_CAPTURE_TYPE_MASK) \
5358                                       >> FP_MODE_CAPTURE_TYPE_SHIFT)
5359
5360struct ec_params_fp_mode {
5361        uint32_t mode; /* as defined by FP_MODE_ constants */
5362} __ec_align4;
5363
5364struct ec_response_fp_mode {
5365        uint32_t mode; /* as defined by FP_MODE_ constants */
5366} __ec_align4;
5367
5368/* Retrieve Fingerprint sensor information */
5369#define EC_CMD_FP_INFO 0x0403
5370
5371/* Number of dead pixels detected on the last maintenance */
5372#define FP_ERROR_DEAD_PIXELS(errors) ((errors) & 0x3FF)
5373/* Unknown number of dead pixels detected on the last maintenance */
5374#define FP_ERROR_DEAD_PIXELS_UNKNOWN (0x3FF)
5375/* No interrupt from the sensor */
5376#define FP_ERROR_NO_IRQ    BIT(12)
5377/* SPI communication error */
5378#define FP_ERROR_SPI_COMM  BIT(13)
5379/* Invalid sensor Hardware ID */
5380#define FP_ERROR_BAD_HWID  BIT(14)
5381/* Sensor initialization failed */
5382#define FP_ERROR_INIT_FAIL BIT(15)
5383
5384struct ec_response_fp_info_v0 {
5385        /* Sensor identification */
5386        uint32_t vendor_id;
5387        uint32_t product_id;
5388        uint32_t model_id;
5389        uint32_t version;
5390        /* Image frame characteristics */
5391        uint32_t frame_size;
5392        uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
5393        uint16_t width;
5394        uint16_t height;
5395        uint16_t bpp;
5396        uint16_t errors; /* see FP_ERROR_ flags above */
5397} __ec_align4;
5398
5399struct ec_response_fp_info {
5400        /* Sensor identification */
5401        uint32_t vendor_id;
5402        uint32_t product_id;
5403        uint32_t model_id;
5404        uint32_t version;
5405        /* Image frame characteristics */
5406        uint32_t frame_size;
5407        uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
5408        uint16_t width;
5409        uint16_t height;
5410        uint16_t bpp;
5411        uint16_t errors; /* see FP_ERROR_ flags above */
5412        /* Template/finger current information */
5413        uint32_t template_size;  /* max template size in bytes */
5414        uint16_t template_max;   /* maximum number of fingers/templates */
5415        uint16_t template_valid; /* number of valid fingers/templates */
5416        uint32_t template_dirty; /* bitmap of templates with MCU side changes */
5417        uint32_t template_version; /* version of the template format */
5418} __ec_align4;
5419
5420/* Get the last captured finger frame or a template content */
5421#define EC_CMD_FP_FRAME 0x0404
5422
5423/* constants defining the 'offset' field which also contains the frame index */
5424#define FP_FRAME_INDEX_SHIFT       28
5425/* Frame buffer where the captured image is stored */
5426#define FP_FRAME_INDEX_RAW_IMAGE    0
5427/* First frame buffer holding a template */
5428#define FP_FRAME_INDEX_TEMPLATE     1
5429#define FP_FRAME_GET_BUFFER_INDEX(offset) ((offset) >> FP_FRAME_INDEX_SHIFT)
5430#define FP_FRAME_OFFSET_MASK       0x0FFFFFFF
5431
5432/* Version of the format of the encrypted templates. */
5433#define FP_TEMPLATE_FORMAT_VERSION 3
5434
5435/* Constants for encryption parameters */
5436#define FP_CONTEXT_NONCE_BYTES 12
5437#define FP_CONTEXT_USERID_WORDS (32 / sizeof(uint32_t))
5438#define FP_CONTEXT_TAG_BYTES 16
5439#define FP_CONTEXT_SALT_BYTES 16
5440#define FP_CONTEXT_TPM_BYTES 32
5441
5442struct ec_fp_template_encryption_metadata {
5443        /*
5444         * Version of the structure format (N=3).
5445         */
5446        uint16_t struct_version;
5447        /* Reserved bytes, set to 0. */
5448        uint16_t reserved;
5449        /*
5450         * The salt is *only* ever used for key derivation. The nonce is unique,
5451         * a different one is used for every message.
5452         */
5453        uint8_t nonce[FP_CONTEXT_NONCE_BYTES];
5454        uint8_t salt[FP_CONTEXT_SALT_BYTES];
5455        uint8_t tag[FP_CONTEXT_TAG_BYTES];
5456};
5457
5458struct ec_params_fp_frame {
5459        /*
5460         * The offset contains the template index or FP_FRAME_INDEX_RAW_IMAGE
5461         * in the high nibble, and the real offset within the frame in
5462         * FP_FRAME_OFFSET_MASK.
5463         */
5464        uint32_t offset;
5465        uint32_t size;
5466} __ec_align4;
5467
5468/* Load a template into the MCU */
5469#define EC_CMD_FP_TEMPLATE 0x0405
5470
5471/* Flag in the 'size' field indicating that the full template has been sent */
5472#define FP_TEMPLATE_COMMIT 0x80000000
5473
5474struct ec_params_fp_template {
5475        uint32_t offset;
5476        uint32_t size;
5477        uint8_t data[];
5478} __ec_align4;
5479
5480/* Clear the current fingerprint user context and set a new one */
5481#define EC_CMD_FP_CONTEXT 0x0406
5482
5483struct ec_params_fp_context {
5484        uint32_t userid[FP_CONTEXT_USERID_WORDS];
5485} __ec_align4;
5486
5487#define EC_CMD_FP_STATS 0x0407
5488
5489#define FPSTATS_CAPTURE_INV  BIT(0)
5490#define FPSTATS_MATCHING_INV BIT(1)
5491
5492struct ec_response_fp_stats {
5493        uint32_t capture_time_us;
5494        uint32_t matching_time_us;
5495        uint32_t overall_time_us;
5496        struct {
5497                uint32_t lo;
5498                uint32_t hi;
5499        } overall_t0;
5500        uint8_t timestamps_invalid;
5501        int8_t template_matched;
5502} __ec_align2;
5503
5504#define EC_CMD_FP_SEED 0x0408
5505struct ec_params_fp_seed {
5506        /*
5507         * Version of the structure format (N=3).
5508         */
5509        uint16_t struct_version;
5510        /* Reserved bytes, set to 0. */
5511        uint16_t reserved;
5512        /* Seed from the TPM. */
5513        uint8_t seed[FP_CONTEXT_TPM_BYTES];
5514} __ec_align4;
5515
5516/*****************************************************************************/
5517/* Touchpad MCU commands: range 0x0500-0x05FF */
5518
5519/* Perform touchpad self test */
5520#define EC_CMD_TP_SELF_TEST 0x0500
5521
5522/* Get number of frame types, and the size of each type */
5523#define EC_CMD_TP_FRAME_INFO 0x0501
5524
5525struct ec_response_tp_frame_info {
5526        uint32_t n_frames;
5527        uint32_t frame_sizes[0];
5528} __ec_align4;
5529
5530/* Create a snapshot of current frame readings */
5531#define EC_CMD_TP_FRAME_SNAPSHOT 0x0502
5532
5533/* Read the frame */
5534#define EC_CMD_TP_FRAME_GET 0x0503
5535
5536struct ec_params_tp_frame_get {
5537        uint32_t frame_index;
5538        uint32_t offset;
5539        uint32_t size;
5540} __ec_align4;
5541
5542/*****************************************************************************/
5543/* EC-EC communication commands: range 0x0600-0x06FF */
5544
5545#define EC_COMM_TEXT_MAX 8
5546
5547/*
5548 * Get battery static information, i.e. information that never changes, or
5549 * very infrequently.
5550 */
5551#define EC_CMD_BATTERY_GET_STATIC 0x0600
5552
5553/**
5554 * struct ec_params_battery_static_info - Battery static info parameters
5555 * @index: Battery index.
5556 */
5557struct ec_params_battery_static_info {
5558        uint8_t index;
5559} __ec_align_size1;
5560
5561/**
5562 * struct ec_response_battery_static_info - Battery static info response
5563 * @design_capacity: Battery Design Capacity (mAh)
5564 * @design_voltage: Battery Design Voltage (mV)
5565 * @manufacturer: Battery Manufacturer String
5566 * @model: Battery Model Number String
5567 * @serial: Battery Serial Number String
5568 * @type: Battery Type String
5569 * @cycle_count: Battery Cycle Count
5570 */
5571struct ec_response_battery_static_info {
5572        uint16_t design_capacity;
5573        uint16_t design_voltage;
5574        char manufacturer[EC_COMM_TEXT_MAX];
5575        char model[EC_COMM_TEXT_MAX];
5576        char serial[EC_COMM_TEXT_MAX];
5577        char type[EC_COMM_TEXT_MAX];
5578        /* TODO(crbug.com/795991): Consider moving to dynamic structure. */
5579        uint32_t cycle_count;
5580} __ec_align4;
5581
5582/*
5583 * Get battery dynamic information, i.e. information that is likely to change
5584 * every time it is read.
5585 */
5586#define EC_CMD_BATTERY_GET_DYNAMIC 0x0601
5587
5588/**
5589 * struct ec_params_battery_dynamic_info - Battery dynamic info parameters
5590 * @index: Battery index.
5591 */
5592struct ec_params_battery_dynamic_info {
5593        uint8_t index;
5594} __ec_align_size1;
5595
5596/**
5597 * struct ec_response_battery_dynamic_info - Battery dynamic info response
5598 * @actual_voltage: Battery voltage (mV)
5599 * @actual_current: Battery current (mA); negative=discharging
5600 * @remaining_capacity: Remaining capacity (mAh)
5601 * @full_capacity: Capacity (mAh, might change occasionally)
5602 * @flags: Flags, see EC_BATT_FLAG_*
5603 * @desired_voltage: Charging voltage desired by battery (mV)
5604 * @desired_current: Charging current desired by battery (mA)
5605 */
5606struct ec_response_battery_dynamic_info {
5607        int16_t actual_voltage;
5608        int16_t actual_current;
5609        int16_t remaining_capacity;
5610        int16_t full_capacity;
5611        int16_t flags;
5612        int16_t desired_voltage;
5613        int16_t desired_current;
5614} __ec_align2;
5615
5616/*
5617 * Control charger chip. Used to control charger chip on the slave.
5618 */
5619#define EC_CMD_CHARGER_CONTROL 0x0602
5620
5621/**
5622 * struct ec_params_charger_control - Charger control parameters
5623 * @max_current: Charger current (mA). Positive to allow base to draw up to
5624 *     max_current and (possibly) charge battery, negative to request current
5625 *     from base (OTG).
5626 * @otg_voltage: Voltage (mV) to use in OTG mode, ignored if max_current is
5627 *     >= 0.
5628 * @allow_charging: Allow base battery charging (only makes sense if
5629 *     max_current > 0).
5630 */
5631struct ec_params_charger_control {
5632        int16_t max_current;
5633        uint16_t otg_voltage;
5634        uint8_t allow_charging;
5635} __ec_align_size1;
5636
5637/*****************************************************************************/
5638/*
5639 * Reserve a range of host commands for board-specific, experimental, or
5640 * special purpose features. These can be (re)used without updating this file.
5641 *
5642 * CAUTION: Don't go nuts with this. Shipping products should document ALL
5643 * their EC commands for easier development, testing, debugging, and support.
5644 *
5645 * All commands MUST be #defined to be 4-digit UPPER CASE hex values
5646 * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
5647 *
5648 * In your experimental code, you may want to do something like this:
5649 *
5650 *   #define EC_CMD_MAGIC_FOO 0x0000
5651 *   #define EC_CMD_MAGIC_BAR 0x0001
5652 *   #define EC_CMD_MAGIC_HEY 0x0002
5653 *
5654 *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_FOO, magic_foo_handler,
5655 *      EC_VER_MASK(0);
5656 *
5657 *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_BAR, magic_bar_handler,
5658 *      EC_VER_MASK(0);
5659 *
5660 *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_HEY, magic_hey_handler,
5661 *      EC_VER_MASK(0);
5662 */
5663#define EC_CMD_BOARD_SPECIFIC_BASE 0x3E00
5664#define EC_CMD_BOARD_SPECIFIC_LAST 0x3FFF
5665
5666/*
5667 * Given the private host command offset, calculate the true private host
5668 * command value.
5669 */
5670#define EC_PRIVATE_HOST_COMMAND_VALUE(command) \
5671        (EC_CMD_BOARD_SPECIFIC_BASE + (command))
5672
5673/*****************************************************************************/
5674/*
5675 * Passthru commands
5676 *
5677 * Some platforms have sub-processors chained to each other.  For example.
5678 *
5679 *     AP <--> EC <--> PD MCU
5680 *
5681 * The top 2 bits of the command number are used to indicate which device the
5682 * command is intended for.  Device 0 is always the device receiving the
5683 * command; other device mapping is board-specific.
5684 *
5685 * When a device receives a command to be passed to a sub-processor, it passes
5686 * it on with the device number set back to 0.  This allows the sub-processor
5687 * to remain blissfully unaware of whether the command originated on the next
5688 * device up the chain, or was passed through from the AP.
5689 *
5690 * In the above example, if the AP wants to send command 0x0002 to the PD MCU,
5691 *     AP sends command 0x4002 to the EC
5692 *     EC sends command 0x0002 to the PD MCU
5693 *     EC forwards PD MCU response back to the AP
5694 */
5695
5696/* Offset and max command number for sub-device n */
5697#define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
5698#define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
5699
5700/*****************************************************************************/
5701/*
5702 * Deprecated constants. These constants have been renamed for clarity. The
5703 * meaning and size has not changed. Programs that use the old names should
5704 * switch to the new names soon, as the old names may not be carried forward
5705 * forever.
5706 */
5707#define EC_HOST_PARAM_SIZE      EC_PROTO2_MAX_PARAM_SIZE
5708#define EC_LPC_ADDR_OLD_PARAM   EC_HOST_CMD_REGION1
5709#define EC_OLD_PARAM_SIZE       EC_HOST_CMD_REGION_SIZE
5710
5711
5712
5713#endif  /* __CROS_EC_COMMANDS_H */
5714