linux/include/linux/mm.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MM_H
   3#define _LINUX_MM_H
   4
   5#include <linux/errno.h>
   6
   7#ifdef __KERNEL__
   8
   9#include <linux/mmdebug.h>
  10#include <linux/gfp.h>
  11#include <linux/bug.h>
  12#include <linux/list.h>
  13#include <linux/mmzone.h>
  14#include <linux/rbtree.h>
  15#include <linux/atomic.h>
  16#include <linux/debug_locks.h>
  17#include <linux/mm_types.h>
  18#include <linux/range.h>
  19#include <linux/pfn.h>
  20#include <linux/percpu-refcount.h>
  21#include <linux/bit_spinlock.h>
  22#include <linux/shrinker.h>
  23#include <linux/resource.h>
  24#include <linux/page_ext.h>
  25#include <linux/err.h>
  26#include <linux/page_ref.h>
  27#include <linux/memremap.h>
  28#include <linux/overflow.h>
  29#include <linux/sizes.h>
  30
  31struct mempolicy;
  32struct anon_vma;
  33struct anon_vma_chain;
  34struct file_ra_state;
  35struct user_struct;
  36struct writeback_control;
  37struct bdi_writeback;
  38
  39void init_mm_internals(void);
  40
  41#ifndef CONFIG_NEED_MULTIPLE_NODES      /* Don't use mapnrs, do it properly */
  42extern unsigned long max_mapnr;
  43
  44static inline void set_max_mapnr(unsigned long limit)
  45{
  46        max_mapnr = limit;
  47}
  48#else
  49static inline void set_max_mapnr(unsigned long limit) { }
  50#endif
  51
  52extern atomic_long_t _totalram_pages;
  53static inline unsigned long totalram_pages(void)
  54{
  55        return (unsigned long)atomic_long_read(&_totalram_pages);
  56}
  57
  58static inline void totalram_pages_inc(void)
  59{
  60        atomic_long_inc(&_totalram_pages);
  61}
  62
  63static inline void totalram_pages_dec(void)
  64{
  65        atomic_long_dec(&_totalram_pages);
  66}
  67
  68static inline void totalram_pages_add(long count)
  69{
  70        atomic_long_add(count, &_totalram_pages);
  71}
  72
  73static inline void totalram_pages_set(long val)
  74{
  75        atomic_long_set(&_totalram_pages, val);
  76}
  77
  78extern void * high_memory;
  79extern int page_cluster;
  80
  81#ifdef CONFIG_SYSCTL
  82extern int sysctl_legacy_va_layout;
  83#else
  84#define sysctl_legacy_va_layout 0
  85#endif
  86
  87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  88extern const int mmap_rnd_bits_min;
  89extern const int mmap_rnd_bits_max;
  90extern int mmap_rnd_bits __read_mostly;
  91#endif
  92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  93extern const int mmap_rnd_compat_bits_min;
  94extern const int mmap_rnd_compat_bits_max;
  95extern int mmap_rnd_compat_bits __read_mostly;
  96#endif
  97
  98#include <asm/page.h>
  99#include <asm/pgtable.h>
 100#include <asm/processor.h>
 101
 102/*
 103 * Architectures that support memory tagging (assigning tags to memory regions,
 104 * embedding these tags into addresses that point to these memory regions, and
 105 * checking that the memory and the pointer tags match on memory accesses)
 106 * redefine this macro to strip tags from pointers.
 107 * It's defined as noop for arcitectures that don't support memory tagging.
 108 */
 109#ifndef untagged_addr
 110#define untagged_addr(addr) (addr)
 111#endif
 112
 113#ifndef __pa_symbol
 114#define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
 115#endif
 116
 117#ifndef page_to_virt
 118#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
 119#endif
 120
 121#ifndef lm_alias
 122#define lm_alias(x)     __va(__pa_symbol(x))
 123#endif
 124
 125/*
 126 * To prevent common memory management code establishing
 127 * a zero page mapping on a read fault.
 128 * This macro should be defined within <asm/pgtable.h>.
 129 * s390 does this to prevent multiplexing of hardware bits
 130 * related to the physical page in case of virtualization.
 131 */
 132#ifndef mm_forbids_zeropage
 133#define mm_forbids_zeropage(X)  (0)
 134#endif
 135
 136/*
 137 * On some architectures it is expensive to call memset() for small sizes.
 138 * If an architecture decides to implement their own version of
 139 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
 140 * define their own version of this macro in <asm/pgtable.h>
 141 */
 142#if BITS_PER_LONG == 64
 143/* This function must be updated when the size of struct page grows above 80
 144 * or reduces below 56. The idea that compiler optimizes out switch()
 145 * statement, and only leaves move/store instructions. Also the compiler can
 146 * combine write statments if they are both assignments and can be reordered,
 147 * this can result in several of the writes here being dropped.
 148 */
 149#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
 150static inline void __mm_zero_struct_page(struct page *page)
 151{
 152        unsigned long *_pp = (void *)page;
 153
 154         /* Check that struct page is either 56, 64, 72, or 80 bytes */
 155        BUILD_BUG_ON(sizeof(struct page) & 7);
 156        BUILD_BUG_ON(sizeof(struct page) < 56);
 157        BUILD_BUG_ON(sizeof(struct page) > 80);
 158
 159        switch (sizeof(struct page)) {
 160        case 80:
 161                _pp[9] = 0;     /* fallthrough */
 162        case 72:
 163                _pp[8] = 0;     /* fallthrough */
 164        case 64:
 165                _pp[7] = 0;     /* fallthrough */
 166        case 56:
 167                _pp[6] = 0;
 168                _pp[5] = 0;
 169                _pp[4] = 0;
 170                _pp[3] = 0;
 171                _pp[2] = 0;
 172                _pp[1] = 0;
 173                _pp[0] = 0;
 174        }
 175}
 176#else
 177#define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
 178#endif
 179
 180/*
 181 * Default maximum number of active map areas, this limits the number of vmas
 182 * per mm struct. Users can overwrite this number by sysctl but there is a
 183 * problem.
 184 *
 185 * When a program's coredump is generated as ELF format, a section is created
 186 * per a vma. In ELF, the number of sections is represented in unsigned short.
 187 * This means the number of sections should be smaller than 65535 at coredump.
 188 * Because the kernel adds some informative sections to a image of program at
 189 * generating coredump, we need some margin. The number of extra sections is
 190 * 1-3 now and depends on arch. We use "5" as safe margin, here.
 191 *
 192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
 193 * not a hard limit any more. Although some userspace tools can be surprised by
 194 * that.
 195 */
 196#define MAPCOUNT_ELF_CORE_MARGIN        (5)
 197#define DEFAULT_MAX_MAP_COUNT   (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
 198
 199extern int sysctl_max_map_count;
 200
 201extern unsigned long sysctl_user_reserve_kbytes;
 202extern unsigned long sysctl_admin_reserve_kbytes;
 203
 204extern int sysctl_overcommit_memory;
 205extern int sysctl_overcommit_ratio;
 206extern unsigned long sysctl_overcommit_kbytes;
 207
 208extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
 209                                    size_t *, loff_t *);
 210extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
 211                                    size_t *, loff_t *);
 212
 213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
 214
 215/* to align the pointer to the (next) page boundary */
 216#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
 217
 218/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
 219#define PAGE_ALIGNED(addr)      IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
 220
 221#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
 222
 223/*
 224 * Linux kernel virtual memory manager primitives.
 225 * The idea being to have a "virtual" mm in the same way
 226 * we have a virtual fs - giving a cleaner interface to the
 227 * mm details, and allowing different kinds of memory mappings
 228 * (from shared memory to executable loading to arbitrary
 229 * mmap() functions).
 230 */
 231
 232struct vm_area_struct *vm_area_alloc(struct mm_struct *);
 233struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
 234void vm_area_free(struct vm_area_struct *);
 235
 236#ifndef CONFIG_MMU
 237extern struct rb_root nommu_region_tree;
 238extern struct rw_semaphore nommu_region_sem;
 239
 240extern unsigned int kobjsize(const void *objp);
 241#endif
 242
 243/*
 244 * vm_flags in vm_area_struct, see mm_types.h.
 245 * When changing, update also include/trace/events/mmflags.h
 246 */
 247#define VM_NONE         0x00000000
 248
 249#define VM_READ         0x00000001      /* currently active flags */
 250#define VM_WRITE        0x00000002
 251#define VM_EXEC         0x00000004
 252#define VM_SHARED       0x00000008
 253
 254/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
 255#define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
 256#define VM_MAYWRITE     0x00000020
 257#define VM_MAYEXEC      0x00000040
 258#define VM_MAYSHARE     0x00000080
 259
 260#define VM_GROWSDOWN    0x00000100      /* general info on the segment */
 261#define VM_UFFD_MISSING 0x00000200      /* missing pages tracking */
 262#define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
 263#define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
 264#define VM_UFFD_WP      0x00001000      /* wrprotect pages tracking */
 265
 266#define VM_LOCKED       0x00002000
 267#define VM_IO           0x00004000      /* Memory mapped I/O or similar */
 268
 269                                        /* Used by sys_madvise() */
 270#define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
 271#define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
 272
 273#define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
 274#define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
 275#define VM_LOCKONFAULT  0x00080000      /* Lock the pages covered when they are faulted in */
 276#define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
 277#define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
 278#define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
 279#define VM_SYNC         0x00800000      /* Synchronous page faults */
 280#define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
 281#define VM_WIPEONFORK   0x02000000      /* Wipe VMA contents in child. */
 282#define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
 283
 284#ifdef CONFIG_MEM_SOFT_DIRTY
 285# define VM_SOFTDIRTY   0x08000000      /* Not soft dirty clean area */
 286#else
 287# define VM_SOFTDIRTY   0
 288#endif
 289
 290#define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
 291#define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
 292#define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
 293#define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
 294
 295#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
 296#define VM_HIGH_ARCH_BIT_0      32      /* bit only usable on 64-bit architectures */
 297#define VM_HIGH_ARCH_BIT_1      33      /* bit only usable on 64-bit architectures */
 298#define VM_HIGH_ARCH_BIT_2      34      /* bit only usable on 64-bit architectures */
 299#define VM_HIGH_ARCH_BIT_3      35      /* bit only usable on 64-bit architectures */
 300#define VM_HIGH_ARCH_BIT_4      36      /* bit only usable on 64-bit architectures */
 301#define VM_HIGH_ARCH_0  BIT(VM_HIGH_ARCH_BIT_0)
 302#define VM_HIGH_ARCH_1  BIT(VM_HIGH_ARCH_BIT_1)
 303#define VM_HIGH_ARCH_2  BIT(VM_HIGH_ARCH_BIT_2)
 304#define VM_HIGH_ARCH_3  BIT(VM_HIGH_ARCH_BIT_3)
 305#define VM_HIGH_ARCH_4  BIT(VM_HIGH_ARCH_BIT_4)
 306#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
 307
 308#ifdef CONFIG_ARCH_HAS_PKEYS
 309# define VM_PKEY_SHIFT  VM_HIGH_ARCH_BIT_0
 310# define VM_PKEY_BIT0   VM_HIGH_ARCH_0  /* A protection key is a 4-bit value */
 311# define VM_PKEY_BIT1   VM_HIGH_ARCH_1  /* on x86 and 5-bit value on ppc64   */
 312# define VM_PKEY_BIT2   VM_HIGH_ARCH_2
 313# define VM_PKEY_BIT3   VM_HIGH_ARCH_3
 314#ifdef CONFIG_PPC
 315# define VM_PKEY_BIT4  VM_HIGH_ARCH_4
 316#else
 317# define VM_PKEY_BIT4  0
 318#endif
 319#endif /* CONFIG_ARCH_HAS_PKEYS */
 320
 321#if defined(CONFIG_X86)
 322# define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
 323#elif defined(CONFIG_PPC)
 324# define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
 325#elif defined(CONFIG_PARISC)
 326# define VM_GROWSUP     VM_ARCH_1
 327#elif defined(CONFIG_IA64)
 328# define VM_GROWSUP     VM_ARCH_1
 329#elif defined(CONFIG_SPARC64)
 330# define VM_SPARC_ADI   VM_ARCH_1       /* Uses ADI tag for access control */
 331# define VM_ARCH_CLEAR  VM_SPARC_ADI
 332#elif !defined(CONFIG_MMU)
 333# define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
 334#endif
 335
 336#if defined(CONFIG_X86_INTEL_MPX)
 337/* MPX specific bounds table or bounds directory */
 338# define VM_MPX         VM_HIGH_ARCH_4
 339#else
 340# define VM_MPX         VM_NONE
 341#endif
 342
 343#ifndef VM_GROWSUP
 344# define VM_GROWSUP     VM_NONE
 345#endif
 346
 347/* Bits set in the VMA until the stack is in its final location */
 348#define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
 349
 350#ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
 351#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
 352#endif
 353
 354#ifdef CONFIG_STACK_GROWSUP
 355#define VM_STACK        VM_GROWSUP
 356#else
 357#define VM_STACK        VM_GROWSDOWN
 358#endif
 359
 360#define VM_STACK_FLAGS  (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 361
 362/*
 363 * Special vmas that are non-mergable, non-mlock()able.
 364 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
 365 */
 366#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
 367
 368/* This mask defines which mm->def_flags a process can inherit its parent */
 369#define VM_INIT_DEF_MASK        VM_NOHUGEPAGE
 370
 371/* This mask is used to clear all the VMA flags used by mlock */
 372#define VM_LOCKED_CLEAR_MASK    (~(VM_LOCKED | VM_LOCKONFAULT))
 373
 374/* Arch-specific flags to clear when updating VM flags on protection change */
 375#ifndef VM_ARCH_CLEAR
 376# define VM_ARCH_CLEAR  VM_NONE
 377#endif
 378#define VM_FLAGS_CLEAR  (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
 379
 380/*
 381 * mapping from the currently active vm_flags protection bits (the
 382 * low four bits) to a page protection mask..
 383 */
 384extern pgprot_t protection_map[16];
 385
 386#define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
 387#define FAULT_FLAG_MKWRITE      0x02    /* Fault was mkwrite of existing pte */
 388#define FAULT_FLAG_ALLOW_RETRY  0x04    /* Retry fault if blocking */
 389#define FAULT_FLAG_RETRY_NOWAIT 0x08    /* Don't drop mmap_sem and wait when retrying */
 390#define FAULT_FLAG_KILLABLE     0x10    /* The fault task is in SIGKILL killable region */
 391#define FAULT_FLAG_TRIED        0x20    /* Second try */
 392#define FAULT_FLAG_USER         0x40    /* The fault originated in userspace */
 393#define FAULT_FLAG_REMOTE       0x80    /* faulting for non current tsk/mm */
 394#define FAULT_FLAG_INSTRUCTION  0x100   /* The fault was during an instruction fetch */
 395
 396#define FAULT_FLAG_TRACE \
 397        { FAULT_FLAG_WRITE,             "WRITE" }, \
 398        { FAULT_FLAG_MKWRITE,           "MKWRITE" }, \
 399        { FAULT_FLAG_ALLOW_RETRY,       "ALLOW_RETRY" }, \
 400        { FAULT_FLAG_RETRY_NOWAIT,      "RETRY_NOWAIT" }, \
 401        { FAULT_FLAG_KILLABLE,          "KILLABLE" }, \
 402        { FAULT_FLAG_TRIED,             "TRIED" }, \
 403        { FAULT_FLAG_USER,              "USER" }, \
 404        { FAULT_FLAG_REMOTE,            "REMOTE" }, \
 405        { FAULT_FLAG_INSTRUCTION,       "INSTRUCTION" }
 406
 407/*
 408 * vm_fault is filled by the the pagefault handler and passed to the vma's
 409 * ->fault function. The vma's ->fault is responsible for returning a bitmask
 410 * of VM_FAULT_xxx flags that give details about how the fault was handled.
 411 *
 412 * MM layer fills up gfp_mask for page allocations but fault handler might
 413 * alter it if its implementation requires a different allocation context.
 414 *
 415 * pgoff should be used in favour of virtual_address, if possible.
 416 */
 417struct vm_fault {
 418        struct vm_area_struct *vma;     /* Target VMA */
 419        unsigned int flags;             /* FAULT_FLAG_xxx flags */
 420        gfp_t gfp_mask;                 /* gfp mask to be used for allocations */
 421        pgoff_t pgoff;                  /* Logical page offset based on vma */
 422        unsigned long address;          /* Faulting virtual address */
 423        pmd_t *pmd;                     /* Pointer to pmd entry matching
 424                                         * the 'address' */
 425        pud_t *pud;                     /* Pointer to pud entry matching
 426                                         * the 'address'
 427                                         */
 428        pte_t orig_pte;                 /* Value of PTE at the time of fault */
 429
 430        struct page *cow_page;          /* Page handler may use for COW fault */
 431        struct mem_cgroup *memcg;       /* Cgroup cow_page belongs to */
 432        struct page *page;              /* ->fault handlers should return a
 433                                         * page here, unless VM_FAULT_NOPAGE
 434                                         * is set (which is also implied by
 435                                         * VM_FAULT_ERROR).
 436                                         */
 437        /* These three entries are valid only while holding ptl lock */
 438        pte_t *pte;                     /* Pointer to pte entry matching
 439                                         * the 'address'. NULL if the page
 440                                         * table hasn't been allocated.
 441                                         */
 442        spinlock_t *ptl;                /* Page table lock.
 443                                         * Protects pte page table if 'pte'
 444                                         * is not NULL, otherwise pmd.
 445                                         */
 446        pgtable_t prealloc_pte;         /* Pre-allocated pte page table.
 447                                         * vm_ops->map_pages() calls
 448                                         * alloc_set_pte() from atomic context.
 449                                         * do_fault_around() pre-allocates
 450                                         * page table to avoid allocation from
 451                                         * atomic context.
 452                                         */
 453};
 454
 455/* page entry size for vm->huge_fault() */
 456enum page_entry_size {
 457        PE_SIZE_PTE = 0,
 458        PE_SIZE_PMD,
 459        PE_SIZE_PUD,
 460};
 461
 462/*
 463 * These are the virtual MM functions - opening of an area, closing and
 464 * unmapping it (needed to keep files on disk up-to-date etc), pointer
 465 * to the functions called when a no-page or a wp-page exception occurs.
 466 */
 467struct vm_operations_struct {
 468        void (*open)(struct vm_area_struct * area);
 469        void (*close)(struct vm_area_struct * area);
 470        int (*split)(struct vm_area_struct * area, unsigned long addr);
 471        int (*mremap)(struct vm_area_struct * area);
 472        vm_fault_t (*fault)(struct vm_fault *vmf);
 473        vm_fault_t (*huge_fault)(struct vm_fault *vmf,
 474                        enum page_entry_size pe_size);
 475        void (*map_pages)(struct vm_fault *vmf,
 476                        pgoff_t start_pgoff, pgoff_t end_pgoff);
 477        unsigned long (*pagesize)(struct vm_area_struct * area);
 478
 479        /* notification that a previously read-only page is about to become
 480         * writable, if an error is returned it will cause a SIGBUS */
 481        vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
 482
 483        /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
 484        vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
 485
 486        /* called by access_process_vm when get_user_pages() fails, typically
 487         * for use by special VMAs that can switch between memory and hardware
 488         */
 489        int (*access)(struct vm_area_struct *vma, unsigned long addr,
 490                      void *buf, int len, int write);
 491
 492        /* Called by the /proc/PID/maps code to ask the vma whether it
 493         * has a special name.  Returning non-NULL will also cause this
 494         * vma to be dumped unconditionally. */
 495        const char *(*name)(struct vm_area_struct *vma);
 496
 497#ifdef CONFIG_NUMA
 498        /*
 499         * set_policy() op must add a reference to any non-NULL @new mempolicy
 500         * to hold the policy upon return.  Caller should pass NULL @new to
 501         * remove a policy and fall back to surrounding context--i.e. do not
 502         * install a MPOL_DEFAULT policy, nor the task or system default
 503         * mempolicy.
 504         */
 505        int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
 506
 507        /*
 508         * get_policy() op must add reference [mpol_get()] to any policy at
 509         * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
 510         * in mm/mempolicy.c will do this automatically.
 511         * get_policy() must NOT add a ref if the policy at (vma,addr) is not
 512         * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
 513         * If no [shared/vma] mempolicy exists at the addr, get_policy() op
 514         * must return NULL--i.e., do not "fallback" to task or system default
 515         * policy.
 516         */
 517        struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
 518                                        unsigned long addr);
 519#endif
 520        /*
 521         * Called by vm_normal_page() for special PTEs to find the
 522         * page for @addr.  This is useful if the default behavior
 523         * (using pte_page()) would not find the correct page.
 524         */
 525        struct page *(*find_special_page)(struct vm_area_struct *vma,
 526                                          unsigned long addr);
 527};
 528
 529static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
 530{
 531        static const struct vm_operations_struct dummy_vm_ops = {};
 532
 533        memset(vma, 0, sizeof(*vma));
 534        vma->vm_mm = mm;
 535        vma->vm_ops = &dummy_vm_ops;
 536        INIT_LIST_HEAD(&vma->anon_vma_chain);
 537}
 538
 539static inline void vma_set_anonymous(struct vm_area_struct *vma)
 540{
 541        vma->vm_ops = NULL;
 542}
 543
 544static inline bool vma_is_anonymous(struct vm_area_struct *vma)
 545{
 546        return !vma->vm_ops;
 547}
 548
 549#ifdef CONFIG_SHMEM
 550/*
 551 * The vma_is_shmem is not inline because it is used only by slow
 552 * paths in userfault.
 553 */
 554bool vma_is_shmem(struct vm_area_struct *vma);
 555#else
 556static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
 557#endif
 558
 559int vma_is_stack_for_current(struct vm_area_struct *vma);
 560
 561/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
 562#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
 563
 564struct mmu_gather;
 565struct inode;
 566
 567#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
 568static inline int pmd_devmap(pmd_t pmd)
 569{
 570        return 0;
 571}
 572static inline int pud_devmap(pud_t pud)
 573{
 574        return 0;
 575}
 576static inline int pgd_devmap(pgd_t pgd)
 577{
 578        return 0;
 579}
 580#endif
 581
 582/*
 583 * FIXME: take this include out, include page-flags.h in
 584 * files which need it (119 of them)
 585 */
 586#include <linux/page-flags.h>
 587#include <linux/huge_mm.h>
 588
 589/*
 590 * Methods to modify the page usage count.
 591 *
 592 * What counts for a page usage:
 593 * - cache mapping   (page->mapping)
 594 * - private data    (page->private)
 595 * - page mapped in a task's page tables, each mapping
 596 *   is counted separately
 597 *
 598 * Also, many kernel routines increase the page count before a critical
 599 * routine so they can be sure the page doesn't go away from under them.
 600 */
 601
 602/*
 603 * Drop a ref, return true if the refcount fell to zero (the page has no users)
 604 */
 605static inline int put_page_testzero(struct page *page)
 606{
 607        VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
 608        return page_ref_dec_and_test(page);
 609}
 610
 611/*
 612 * Try to grab a ref unless the page has a refcount of zero, return false if
 613 * that is the case.
 614 * This can be called when MMU is off so it must not access
 615 * any of the virtual mappings.
 616 */
 617static inline int get_page_unless_zero(struct page *page)
 618{
 619        return page_ref_add_unless(page, 1, 0);
 620}
 621
 622extern int page_is_ram(unsigned long pfn);
 623
 624enum {
 625        REGION_INTERSECTS,
 626        REGION_DISJOINT,
 627        REGION_MIXED,
 628};
 629
 630int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
 631                      unsigned long desc);
 632
 633/* Support for virtually mapped pages */
 634struct page *vmalloc_to_page(const void *addr);
 635unsigned long vmalloc_to_pfn(const void *addr);
 636
 637/*
 638 * Determine if an address is within the vmalloc range
 639 *
 640 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
 641 * is no special casing required.
 642 */
 643static inline bool is_vmalloc_addr(const void *x)
 644{
 645#ifdef CONFIG_MMU
 646        unsigned long addr = (unsigned long)x;
 647
 648        return addr >= VMALLOC_START && addr < VMALLOC_END;
 649#else
 650        return false;
 651#endif
 652}
 653
 654#ifndef is_ioremap_addr
 655#define is_ioremap_addr(x) is_vmalloc_addr(x)
 656#endif
 657
 658#ifdef CONFIG_MMU
 659extern int is_vmalloc_or_module_addr(const void *x);
 660#else
 661static inline int is_vmalloc_or_module_addr(const void *x)
 662{
 663        return 0;
 664}
 665#endif
 666
 667extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
 668static inline void *kvmalloc(size_t size, gfp_t flags)
 669{
 670        return kvmalloc_node(size, flags, NUMA_NO_NODE);
 671}
 672static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
 673{
 674        return kvmalloc_node(size, flags | __GFP_ZERO, node);
 675}
 676static inline void *kvzalloc(size_t size, gfp_t flags)
 677{
 678        return kvmalloc(size, flags | __GFP_ZERO);
 679}
 680
 681static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
 682{
 683        size_t bytes;
 684
 685        if (unlikely(check_mul_overflow(n, size, &bytes)))
 686                return NULL;
 687
 688        return kvmalloc(bytes, flags);
 689}
 690
 691static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
 692{
 693        return kvmalloc_array(n, size, flags | __GFP_ZERO);
 694}
 695
 696extern void kvfree(const void *addr);
 697
 698static inline atomic_t *compound_mapcount_ptr(struct page *page)
 699{
 700        return &page[1].compound_mapcount;
 701}
 702
 703static inline int compound_mapcount(struct page *page)
 704{
 705        VM_BUG_ON_PAGE(!PageCompound(page), page);
 706        page = compound_head(page);
 707        return atomic_read(compound_mapcount_ptr(page)) + 1;
 708}
 709
 710/*
 711 * The atomic page->_mapcount, starts from -1: so that transitions
 712 * both from it and to it can be tracked, using atomic_inc_and_test
 713 * and atomic_add_negative(-1).
 714 */
 715static inline void page_mapcount_reset(struct page *page)
 716{
 717        atomic_set(&(page)->_mapcount, -1);
 718}
 719
 720int __page_mapcount(struct page *page);
 721
 722static inline int page_mapcount(struct page *page)
 723{
 724        VM_BUG_ON_PAGE(PageSlab(page), page);
 725
 726        if (unlikely(PageCompound(page)))
 727                return __page_mapcount(page);
 728        return atomic_read(&page->_mapcount) + 1;
 729}
 730
 731#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 732int total_mapcount(struct page *page);
 733int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
 734#else
 735static inline int total_mapcount(struct page *page)
 736{
 737        return page_mapcount(page);
 738}
 739static inline int page_trans_huge_mapcount(struct page *page,
 740                                           int *total_mapcount)
 741{
 742        int mapcount = page_mapcount(page);
 743        if (total_mapcount)
 744                *total_mapcount = mapcount;
 745        return mapcount;
 746}
 747#endif
 748
 749static inline struct page *virt_to_head_page(const void *x)
 750{
 751        struct page *page = virt_to_page(x);
 752
 753        return compound_head(page);
 754}
 755
 756void __put_page(struct page *page);
 757
 758void put_pages_list(struct list_head *pages);
 759
 760void split_page(struct page *page, unsigned int order);
 761
 762/*
 763 * Compound pages have a destructor function.  Provide a
 764 * prototype for that function and accessor functions.
 765 * These are _only_ valid on the head of a compound page.
 766 */
 767typedef void compound_page_dtor(struct page *);
 768
 769/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
 770enum compound_dtor_id {
 771        NULL_COMPOUND_DTOR,
 772        COMPOUND_PAGE_DTOR,
 773#ifdef CONFIG_HUGETLB_PAGE
 774        HUGETLB_PAGE_DTOR,
 775#endif
 776#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 777        TRANSHUGE_PAGE_DTOR,
 778#endif
 779        NR_COMPOUND_DTORS,
 780};
 781extern compound_page_dtor * const compound_page_dtors[];
 782
 783static inline void set_compound_page_dtor(struct page *page,
 784                enum compound_dtor_id compound_dtor)
 785{
 786        VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
 787        page[1].compound_dtor = compound_dtor;
 788}
 789
 790static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
 791{
 792        VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
 793        return compound_page_dtors[page[1].compound_dtor];
 794}
 795
 796static inline unsigned int compound_order(struct page *page)
 797{
 798        if (!PageHead(page))
 799                return 0;
 800        return page[1].compound_order;
 801}
 802
 803static inline void set_compound_order(struct page *page, unsigned int order)
 804{
 805        page[1].compound_order = order;
 806}
 807
 808void free_compound_page(struct page *page);
 809
 810#ifdef CONFIG_MMU
 811/*
 812 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 813 * servicing faults for write access.  In the normal case, do always want
 814 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 815 * that do not have writing enabled, when used by access_process_vm.
 816 */
 817static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
 818{
 819        if (likely(vma->vm_flags & VM_WRITE))
 820                pte = pte_mkwrite(pte);
 821        return pte;
 822}
 823
 824vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
 825                struct page *page);
 826vm_fault_t finish_fault(struct vm_fault *vmf);
 827vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
 828#endif
 829
 830/*
 831 * Multiple processes may "see" the same page. E.g. for untouched
 832 * mappings of /dev/null, all processes see the same page full of
 833 * zeroes, and text pages of executables and shared libraries have
 834 * only one copy in memory, at most, normally.
 835 *
 836 * For the non-reserved pages, page_count(page) denotes a reference count.
 837 *   page_count() == 0 means the page is free. page->lru is then used for
 838 *   freelist management in the buddy allocator.
 839 *   page_count() > 0  means the page has been allocated.
 840 *
 841 * Pages are allocated by the slab allocator in order to provide memory
 842 * to kmalloc and kmem_cache_alloc. In this case, the management of the
 843 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
 844 * unless a particular usage is carefully commented. (the responsibility of
 845 * freeing the kmalloc memory is the caller's, of course).
 846 *
 847 * A page may be used by anyone else who does a __get_free_page().
 848 * In this case, page_count still tracks the references, and should only
 849 * be used through the normal accessor functions. The top bits of page->flags
 850 * and page->virtual store page management information, but all other fields
 851 * are unused and could be used privately, carefully. The management of this
 852 * page is the responsibility of the one who allocated it, and those who have
 853 * subsequently been given references to it.
 854 *
 855 * The other pages (we may call them "pagecache pages") are completely
 856 * managed by the Linux memory manager: I/O, buffers, swapping etc.
 857 * The following discussion applies only to them.
 858 *
 859 * A pagecache page contains an opaque `private' member, which belongs to the
 860 * page's address_space. Usually, this is the address of a circular list of
 861 * the page's disk buffers. PG_private must be set to tell the VM to call
 862 * into the filesystem to release these pages.
 863 *
 864 * A page may belong to an inode's memory mapping. In this case, page->mapping
 865 * is the pointer to the inode, and page->index is the file offset of the page,
 866 * in units of PAGE_SIZE.
 867 *
 868 * If pagecache pages are not associated with an inode, they are said to be
 869 * anonymous pages. These may become associated with the swapcache, and in that
 870 * case PG_swapcache is set, and page->private is an offset into the swapcache.
 871 *
 872 * In either case (swapcache or inode backed), the pagecache itself holds one
 873 * reference to the page. Setting PG_private should also increment the
 874 * refcount. The each user mapping also has a reference to the page.
 875 *
 876 * The pagecache pages are stored in a per-mapping radix tree, which is
 877 * rooted at mapping->i_pages, and indexed by offset.
 878 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
 879 * lists, we instead now tag pages as dirty/writeback in the radix tree.
 880 *
 881 * All pagecache pages may be subject to I/O:
 882 * - inode pages may need to be read from disk,
 883 * - inode pages which have been modified and are MAP_SHARED may need
 884 *   to be written back to the inode on disk,
 885 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
 886 *   modified may need to be swapped out to swap space and (later) to be read
 887 *   back into memory.
 888 */
 889
 890/*
 891 * The zone field is never updated after free_area_init_core()
 892 * sets it, so none of the operations on it need to be atomic.
 893 */
 894
 895/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
 896#define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
 897#define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
 898#define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
 899#define LAST_CPUPID_PGOFF       (ZONES_PGOFF - LAST_CPUPID_WIDTH)
 900#define KASAN_TAG_PGOFF         (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
 901
 902/*
 903 * Define the bit shifts to access each section.  For non-existent
 904 * sections we define the shift as 0; that plus a 0 mask ensures
 905 * the compiler will optimise away reference to them.
 906 */
 907#define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
 908#define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
 909#define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
 910#define LAST_CPUPID_PGSHIFT     (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
 911#define KASAN_TAG_PGSHIFT       (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
 912
 913/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
 914#ifdef NODE_NOT_IN_PAGE_FLAGS
 915#define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
 916#define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
 917                                                SECTIONS_PGOFF : ZONES_PGOFF)
 918#else
 919#define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
 920#define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
 921                                                NODES_PGOFF : ZONES_PGOFF)
 922#endif
 923
 924#define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
 925
 926#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 927#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 928#endif
 929
 930#define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
 931#define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
 932#define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
 933#define LAST_CPUPID_MASK        ((1UL << LAST_CPUPID_SHIFT) - 1)
 934#define KASAN_TAG_MASK          ((1UL << KASAN_TAG_WIDTH) - 1)
 935#define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
 936
 937static inline enum zone_type page_zonenum(const struct page *page)
 938{
 939        return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
 940}
 941
 942#ifdef CONFIG_ZONE_DEVICE
 943static inline bool is_zone_device_page(const struct page *page)
 944{
 945        return page_zonenum(page) == ZONE_DEVICE;
 946}
 947extern void memmap_init_zone_device(struct zone *, unsigned long,
 948                                    unsigned long, struct dev_pagemap *);
 949#else
 950static inline bool is_zone_device_page(const struct page *page)
 951{
 952        return false;
 953}
 954#endif
 955
 956#ifdef CONFIG_DEV_PAGEMAP_OPS
 957void __put_devmap_managed_page(struct page *page);
 958DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
 959static inline bool put_devmap_managed_page(struct page *page)
 960{
 961        if (!static_branch_unlikely(&devmap_managed_key))
 962                return false;
 963        if (!is_zone_device_page(page))
 964                return false;
 965        switch (page->pgmap->type) {
 966        case MEMORY_DEVICE_PRIVATE:
 967        case MEMORY_DEVICE_FS_DAX:
 968                __put_devmap_managed_page(page);
 969                return true;
 970        default:
 971                break;
 972        }
 973        return false;
 974}
 975
 976#else /* CONFIG_DEV_PAGEMAP_OPS */
 977static inline bool put_devmap_managed_page(struct page *page)
 978{
 979        return false;
 980}
 981#endif /* CONFIG_DEV_PAGEMAP_OPS */
 982
 983static inline bool is_device_private_page(const struct page *page)
 984{
 985        return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
 986                IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
 987                is_zone_device_page(page) &&
 988                page->pgmap->type == MEMORY_DEVICE_PRIVATE;
 989}
 990
 991static inline bool is_pci_p2pdma_page(const struct page *page)
 992{
 993        return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
 994                IS_ENABLED(CONFIG_PCI_P2PDMA) &&
 995                is_zone_device_page(page) &&
 996                page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
 997}
 998
 999/* 127: arbitrary random number, small enough to assemble well */
1000#define page_ref_zero_or_close_to_overflow(page) \
1001        ((unsigned int) page_ref_count(page) + 127u <= 127u)
1002
1003static inline void get_page(struct page *page)
1004{
1005        page = compound_head(page);
1006        /*
1007         * Getting a normal page or the head of a compound page
1008         * requires to already have an elevated page->_refcount.
1009         */
1010        VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1011        page_ref_inc(page);
1012}
1013
1014static inline __must_check bool try_get_page(struct page *page)
1015{
1016        page = compound_head(page);
1017        if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1018                return false;
1019        page_ref_inc(page);
1020        return true;
1021}
1022
1023static inline void put_page(struct page *page)
1024{
1025        page = compound_head(page);
1026
1027        /*
1028         * For devmap managed pages we need to catch refcount transition from
1029         * 2 to 1, when refcount reach one it means the page is free and we
1030         * need to inform the device driver through callback. See
1031         * include/linux/memremap.h and HMM for details.
1032         */
1033        if (put_devmap_managed_page(page))
1034                return;
1035
1036        if (put_page_testzero(page))
1037                __put_page(page);
1038}
1039
1040/**
1041 * put_user_page() - release a gup-pinned page
1042 * @page:            pointer to page to be released
1043 *
1044 * Pages that were pinned via get_user_pages*() must be released via
1045 * either put_user_page(), or one of the put_user_pages*() routines
1046 * below. This is so that eventually, pages that are pinned via
1047 * get_user_pages*() can be separately tracked and uniquely handled. In
1048 * particular, interactions with RDMA and filesystems need special
1049 * handling.
1050 *
1051 * put_user_page() and put_page() are not interchangeable, despite this early
1052 * implementation that makes them look the same. put_user_page() calls must
1053 * be perfectly matched up with get_user_page() calls.
1054 */
1055static inline void put_user_page(struct page *page)
1056{
1057        put_page(page);
1058}
1059
1060void put_user_pages_dirty(struct page **pages, unsigned long npages);
1061void put_user_pages_dirty_lock(struct page **pages, unsigned long npages);
1062void put_user_pages(struct page **pages, unsigned long npages);
1063
1064#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1065#define SECTION_IN_PAGE_FLAGS
1066#endif
1067
1068/*
1069 * The identification function is mainly used by the buddy allocator for
1070 * determining if two pages could be buddies. We are not really identifying
1071 * the zone since we could be using the section number id if we do not have
1072 * node id available in page flags.
1073 * We only guarantee that it will return the same value for two combinable
1074 * pages in a zone.
1075 */
1076static inline int page_zone_id(struct page *page)
1077{
1078        return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1079}
1080
1081#ifdef NODE_NOT_IN_PAGE_FLAGS
1082extern int page_to_nid(const struct page *page);
1083#else
1084static inline int page_to_nid(const struct page *page)
1085{
1086        struct page *p = (struct page *)page;
1087
1088        return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1089}
1090#endif
1091
1092#ifdef CONFIG_NUMA_BALANCING
1093static inline int cpu_pid_to_cpupid(int cpu, int pid)
1094{
1095        return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1096}
1097
1098static inline int cpupid_to_pid(int cpupid)
1099{
1100        return cpupid & LAST__PID_MASK;
1101}
1102
1103static inline int cpupid_to_cpu(int cpupid)
1104{
1105        return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1106}
1107
1108static inline int cpupid_to_nid(int cpupid)
1109{
1110        return cpu_to_node(cpupid_to_cpu(cpupid));
1111}
1112
1113static inline bool cpupid_pid_unset(int cpupid)
1114{
1115        return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1116}
1117
1118static inline bool cpupid_cpu_unset(int cpupid)
1119{
1120        return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1121}
1122
1123static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1124{
1125        return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1126}
1127
1128#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1129#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1130static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1131{
1132        return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1133}
1134
1135static inline int page_cpupid_last(struct page *page)
1136{
1137        return page->_last_cpupid;
1138}
1139static inline void page_cpupid_reset_last(struct page *page)
1140{
1141        page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1142}
1143#else
1144static inline int page_cpupid_last(struct page *page)
1145{
1146        return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1147}
1148
1149extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1150
1151static inline void page_cpupid_reset_last(struct page *page)
1152{
1153        page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1154}
1155#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1156#else /* !CONFIG_NUMA_BALANCING */
1157static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1158{
1159        return page_to_nid(page); /* XXX */
1160}
1161
1162static inline int page_cpupid_last(struct page *page)
1163{
1164        return page_to_nid(page); /* XXX */
1165}
1166
1167static inline int cpupid_to_nid(int cpupid)
1168{
1169        return -1;
1170}
1171
1172static inline int cpupid_to_pid(int cpupid)
1173{
1174        return -1;
1175}
1176
1177static inline int cpupid_to_cpu(int cpupid)
1178{
1179        return -1;
1180}
1181
1182static inline int cpu_pid_to_cpupid(int nid, int pid)
1183{
1184        return -1;
1185}
1186
1187static inline bool cpupid_pid_unset(int cpupid)
1188{
1189        return 1;
1190}
1191
1192static inline void page_cpupid_reset_last(struct page *page)
1193{
1194}
1195
1196static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1197{
1198        return false;
1199}
1200#endif /* CONFIG_NUMA_BALANCING */
1201
1202#ifdef CONFIG_KASAN_SW_TAGS
1203static inline u8 page_kasan_tag(const struct page *page)
1204{
1205        return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1206}
1207
1208static inline void page_kasan_tag_set(struct page *page, u8 tag)
1209{
1210        page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1211        page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1212}
1213
1214static inline void page_kasan_tag_reset(struct page *page)
1215{
1216        page_kasan_tag_set(page, 0xff);
1217}
1218#else
1219static inline u8 page_kasan_tag(const struct page *page)
1220{
1221        return 0xff;
1222}
1223
1224static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1225static inline void page_kasan_tag_reset(struct page *page) { }
1226#endif
1227
1228static inline struct zone *page_zone(const struct page *page)
1229{
1230        return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1231}
1232
1233static inline pg_data_t *page_pgdat(const struct page *page)
1234{
1235        return NODE_DATA(page_to_nid(page));
1236}
1237
1238#ifdef SECTION_IN_PAGE_FLAGS
1239static inline void set_page_section(struct page *page, unsigned long section)
1240{
1241        page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1242        page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1243}
1244
1245static inline unsigned long page_to_section(const struct page *page)
1246{
1247        return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1248}
1249#endif
1250
1251static inline void set_page_zone(struct page *page, enum zone_type zone)
1252{
1253        page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1254        page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1255}
1256
1257static inline void set_page_node(struct page *page, unsigned long node)
1258{
1259        page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1260        page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1261}
1262
1263static inline void set_page_links(struct page *page, enum zone_type zone,
1264        unsigned long node, unsigned long pfn)
1265{
1266        set_page_zone(page, zone);
1267        set_page_node(page, node);
1268#ifdef SECTION_IN_PAGE_FLAGS
1269        set_page_section(page, pfn_to_section_nr(pfn));
1270#endif
1271}
1272
1273#ifdef CONFIG_MEMCG
1274static inline struct mem_cgroup *page_memcg(struct page *page)
1275{
1276        return page->mem_cgroup;
1277}
1278static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1279{
1280        WARN_ON_ONCE(!rcu_read_lock_held());
1281        return READ_ONCE(page->mem_cgroup);
1282}
1283#else
1284static inline struct mem_cgroup *page_memcg(struct page *page)
1285{
1286        return NULL;
1287}
1288static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1289{
1290        WARN_ON_ONCE(!rcu_read_lock_held());
1291        return NULL;
1292}
1293#endif
1294
1295/*
1296 * Some inline functions in vmstat.h depend on page_zone()
1297 */
1298#include <linux/vmstat.h>
1299
1300static __always_inline void *lowmem_page_address(const struct page *page)
1301{
1302        return page_to_virt(page);
1303}
1304
1305#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1306#define HASHED_PAGE_VIRTUAL
1307#endif
1308
1309#if defined(WANT_PAGE_VIRTUAL)
1310static inline void *page_address(const struct page *page)
1311{
1312        return page->virtual;
1313}
1314static inline void set_page_address(struct page *page, void *address)
1315{
1316        page->virtual = address;
1317}
1318#define page_address_init()  do { } while(0)
1319#endif
1320
1321#if defined(HASHED_PAGE_VIRTUAL)
1322void *page_address(const struct page *page);
1323void set_page_address(struct page *page, void *virtual);
1324void page_address_init(void);
1325#endif
1326
1327#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1328#define page_address(page) lowmem_page_address(page)
1329#define set_page_address(page, address)  do { } while(0)
1330#define page_address_init()  do { } while(0)
1331#endif
1332
1333extern void *page_rmapping(struct page *page);
1334extern struct anon_vma *page_anon_vma(struct page *page);
1335extern struct address_space *page_mapping(struct page *page);
1336
1337extern struct address_space *__page_file_mapping(struct page *);
1338
1339static inline
1340struct address_space *page_file_mapping(struct page *page)
1341{
1342        if (unlikely(PageSwapCache(page)))
1343                return __page_file_mapping(page);
1344
1345        return page->mapping;
1346}
1347
1348extern pgoff_t __page_file_index(struct page *page);
1349
1350/*
1351 * Return the pagecache index of the passed page.  Regular pagecache pages
1352 * use ->index whereas swapcache pages use swp_offset(->private)
1353 */
1354static inline pgoff_t page_index(struct page *page)
1355{
1356        if (unlikely(PageSwapCache(page)))
1357                return __page_file_index(page);
1358        return page->index;
1359}
1360
1361bool page_mapped(struct page *page);
1362struct address_space *page_mapping(struct page *page);
1363struct address_space *page_mapping_file(struct page *page);
1364
1365/*
1366 * Return true only if the page has been allocated with
1367 * ALLOC_NO_WATERMARKS and the low watermark was not
1368 * met implying that the system is under some pressure.
1369 */
1370static inline bool page_is_pfmemalloc(struct page *page)
1371{
1372        /*
1373         * Page index cannot be this large so this must be
1374         * a pfmemalloc page.
1375         */
1376        return page->index == -1UL;
1377}
1378
1379/*
1380 * Only to be called by the page allocator on a freshly allocated
1381 * page.
1382 */
1383static inline void set_page_pfmemalloc(struct page *page)
1384{
1385        page->index = -1UL;
1386}
1387
1388static inline void clear_page_pfmemalloc(struct page *page)
1389{
1390        page->index = 0;
1391}
1392
1393/*
1394 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1395 */
1396extern void pagefault_out_of_memory(void);
1397
1398#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
1399
1400/*
1401 * Flags passed to show_mem() and show_free_areas() to suppress output in
1402 * various contexts.
1403 */
1404#define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
1405
1406extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1407
1408extern bool can_do_mlock(void);
1409extern int user_shm_lock(size_t, struct user_struct *);
1410extern void user_shm_unlock(size_t, struct user_struct *);
1411
1412/*
1413 * Parameter block passed down to zap_pte_range in exceptional cases.
1414 */
1415struct zap_details {
1416        struct address_space *check_mapping;    /* Check page->mapping if set */
1417        pgoff_t first_index;                    /* Lowest page->index to unmap */
1418        pgoff_t last_index;                     /* Highest page->index to unmap */
1419};
1420
1421struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1422                             pte_t pte);
1423struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1424                                pmd_t pmd);
1425
1426void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1427                  unsigned long size);
1428void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1429                    unsigned long size);
1430void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1431                unsigned long start, unsigned long end);
1432
1433/**
1434 * mm_walk - callbacks for walk_page_range
1435 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1436 *             this handler should only handle pud_trans_huge() puds.
1437 *             the pmd_entry or pte_entry callbacks will be used for
1438 *             regular PUDs.
1439 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1440 *             this handler is required to be able to handle
1441 *             pmd_trans_huge() pmds.  They may simply choose to
1442 *             split_huge_page() instead of handling it explicitly.
1443 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1444 * @pte_hole: if set, called for each hole at all levels
1445 * @hugetlb_entry: if set, called for each hugetlb entry
1446 * @test_walk: caller specific callback function to determine whether
1447 *             we walk over the current vma or not. Returning 0
1448 *             value means "do page table walk over the current vma,"
1449 *             and a negative one means "abort current page table walk
1450 *             right now." 1 means "skip the current vma."
1451 * @mm:        mm_struct representing the target process of page table walk
1452 * @vma:       vma currently walked (NULL if walking outside vmas)
1453 * @private:   private data for callbacks' usage
1454 *
1455 * (see the comment on walk_page_range() for more details)
1456 */
1457struct mm_walk {
1458        int (*pud_entry)(pud_t *pud, unsigned long addr,
1459                         unsigned long next, struct mm_walk *walk);
1460        int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1461                         unsigned long next, struct mm_walk *walk);
1462        int (*pte_entry)(pte_t *pte, unsigned long addr,
1463                         unsigned long next, struct mm_walk *walk);
1464        int (*pte_hole)(unsigned long addr, unsigned long next,
1465                        struct mm_walk *walk);
1466        int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1467                             unsigned long addr, unsigned long next,
1468                             struct mm_walk *walk);
1469        int (*test_walk)(unsigned long addr, unsigned long next,
1470                        struct mm_walk *walk);
1471        struct mm_struct *mm;
1472        struct vm_area_struct *vma;
1473        void *private;
1474};
1475
1476struct mmu_notifier_range;
1477
1478int walk_page_range(unsigned long addr, unsigned long end,
1479                struct mm_walk *walk);
1480int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1481void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1482                unsigned long end, unsigned long floor, unsigned long ceiling);
1483int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1484                        struct vm_area_struct *vma);
1485int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1486                   struct mmu_notifier_range *range,
1487                   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1488int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1489        unsigned long *pfn);
1490int follow_phys(struct vm_area_struct *vma, unsigned long address,
1491                unsigned int flags, unsigned long *prot, resource_size_t *phys);
1492int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1493                        void *buf, int len, int write);
1494
1495extern void truncate_pagecache(struct inode *inode, loff_t new);
1496extern void truncate_setsize(struct inode *inode, loff_t newsize);
1497void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1498void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1499int truncate_inode_page(struct address_space *mapping, struct page *page);
1500int generic_error_remove_page(struct address_space *mapping, struct page *page);
1501int invalidate_inode_page(struct page *page);
1502
1503#ifdef CONFIG_MMU
1504extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1505                        unsigned long address, unsigned int flags);
1506extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1507                            unsigned long address, unsigned int fault_flags,
1508                            bool *unlocked);
1509void unmap_mapping_pages(struct address_space *mapping,
1510                pgoff_t start, pgoff_t nr, bool even_cows);
1511void unmap_mapping_range(struct address_space *mapping,
1512                loff_t const holebegin, loff_t const holelen, int even_cows);
1513#else
1514static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1515                unsigned long address, unsigned int flags)
1516{
1517        /* should never happen if there's no MMU */
1518        BUG();
1519        return VM_FAULT_SIGBUS;
1520}
1521static inline int fixup_user_fault(struct task_struct *tsk,
1522                struct mm_struct *mm, unsigned long address,
1523                unsigned int fault_flags, bool *unlocked)
1524{
1525        /* should never happen if there's no MMU */
1526        BUG();
1527        return -EFAULT;
1528}
1529static inline void unmap_mapping_pages(struct address_space *mapping,
1530                pgoff_t start, pgoff_t nr, bool even_cows) { }
1531static inline void unmap_mapping_range(struct address_space *mapping,
1532                loff_t const holebegin, loff_t const holelen, int even_cows) { }
1533#endif
1534
1535static inline void unmap_shared_mapping_range(struct address_space *mapping,
1536                loff_t const holebegin, loff_t const holelen)
1537{
1538        unmap_mapping_range(mapping, holebegin, holelen, 0);
1539}
1540
1541extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1542                void *buf, int len, unsigned int gup_flags);
1543extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1544                void *buf, int len, unsigned int gup_flags);
1545extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1546                unsigned long addr, void *buf, int len, unsigned int gup_flags);
1547
1548long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1549                            unsigned long start, unsigned long nr_pages,
1550                            unsigned int gup_flags, struct page **pages,
1551                            struct vm_area_struct **vmas, int *locked);
1552long get_user_pages(unsigned long start, unsigned long nr_pages,
1553                            unsigned int gup_flags, struct page **pages,
1554                            struct vm_area_struct **vmas);
1555long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1556                    unsigned int gup_flags, struct page **pages, int *locked);
1557long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1558                    struct page **pages, unsigned int gup_flags);
1559
1560int get_user_pages_fast(unsigned long start, int nr_pages,
1561                        unsigned int gup_flags, struct page **pages);
1562
1563int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1564int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1565                        struct task_struct *task, bool bypass_rlim);
1566
1567/* Container for pinned pfns / pages */
1568struct frame_vector {
1569        unsigned int nr_allocated;      /* Number of frames we have space for */
1570        unsigned int nr_frames; /* Number of frames stored in ptrs array */
1571        bool got_ref;           /* Did we pin pages by getting page ref? */
1572        bool is_pfns;           /* Does array contain pages or pfns? */
1573        void *ptrs[0];          /* Array of pinned pfns / pages. Use
1574                                 * pfns_vector_pages() or pfns_vector_pfns()
1575                                 * for access */
1576};
1577
1578struct frame_vector *frame_vector_create(unsigned int nr_frames);
1579void frame_vector_destroy(struct frame_vector *vec);
1580int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1581                     unsigned int gup_flags, struct frame_vector *vec);
1582void put_vaddr_frames(struct frame_vector *vec);
1583int frame_vector_to_pages(struct frame_vector *vec);
1584void frame_vector_to_pfns(struct frame_vector *vec);
1585
1586static inline unsigned int frame_vector_count(struct frame_vector *vec)
1587{
1588        return vec->nr_frames;
1589}
1590
1591static inline struct page **frame_vector_pages(struct frame_vector *vec)
1592{
1593        if (vec->is_pfns) {
1594                int err = frame_vector_to_pages(vec);
1595
1596                if (err)
1597                        return ERR_PTR(err);
1598        }
1599        return (struct page **)(vec->ptrs);
1600}
1601
1602static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1603{
1604        if (!vec->is_pfns)
1605                frame_vector_to_pfns(vec);
1606        return (unsigned long *)(vec->ptrs);
1607}
1608
1609struct kvec;
1610int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1611                        struct page **pages);
1612int get_kernel_page(unsigned long start, int write, struct page **pages);
1613struct page *get_dump_page(unsigned long addr);
1614
1615extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1616extern void do_invalidatepage(struct page *page, unsigned int offset,
1617                              unsigned int length);
1618
1619void __set_page_dirty(struct page *, struct address_space *, int warn);
1620int __set_page_dirty_nobuffers(struct page *page);
1621int __set_page_dirty_no_writeback(struct page *page);
1622int redirty_page_for_writepage(struct writeback_control *wbc,
1623                                struct page *page);
1624void account_page_dirtied(struct page *page, struct address_space *mapping);
1625void account_page_cleaned(struct page *page, struct address_space *mapping,
1626                          struct bdi_writeback *wb);
1627int set_page_dirty(struct page *page);
1628int set_page_dirty_lock(struct page *page);
1629void __cancel_dirty_page(struct page *page);
1630static inline void cancel_dirty_page(struct page *page)
1631{
1632        /* Avoid atomic ops, locking, etc. when not actually needed. */
1633        if (PageDirty(page))
1634                __cancel_dirty_page(page);
1635}
1636int clear_page_dirty_for_io(struct page *page);
1637
1638int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1639
1640extern unsigned long move_page_tables(struct vm_area_struct *vma,
1641                unsigned long old_addr, struct vm_area_struct *new_vma,
1642                unsigned long new_addr, unsigned long len,
1643                bool need_rmap_locks);
1644extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1645                              unsigned long end, pgprot_t newprot,
1646                              int dirty_accountable, int prot_numa);
1647extern int mprotect_fixup(struct vm_area_struct *vma,
1648                          struct vm_area_struct **pprev, unsigned long start,
1649                          unsigned long end, unsigned long newflags);
1650
1651/*
1652 * doesn't attempt to fault and will return short.
1653 */
1654int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1655                          struct page **pages);
1656/*
1657 * per-process(per-mm_struct) statistics.
1658 */
1659static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1660{
1661        long val = atomic_long_read(&mm->rss_stat.count[member]);
1662
1663#ifdef SPLIT_RSS_COUNTING
1664        /*
1665         * counter is updated in asynchronous manner and may go to minus.
1666         * But it's never be expected number for users.
1667         */
1668        if (val < 0)
1669                val = 0;
1670#endif
1671        return (unsigned long)val;
1672}
1673
1674static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1675{
1676        atomic_long_add(value, &mm->rss_stat.count[member]);
1677}
1678
1679static inline void inc_mm_counter(struct mm_struct *mm, int member)
1680{
1681        atomic_long_inc(&mm->rss_stat.count[member]);
1682}
1683
1684static inline void dec_mm_counter(struct mm_struct *mm, int member)
1685{
1686        atomic_long_dec(&mm->rss_stat.count[member]);
1687}
1688
1689/* Optimized variant when page is already known not to be PageAnon */
1690static inline int mm_counter_file(struct page *page)
1691{
1692        if (PageSwapBacked(page))
1693                return MM_SHMEMPAGES;
1694        return MM_FILEPAGES;
1695}
1696
1697static inline int mm_counter(struct page *page)
1698{
1699        if (PageAnon(page))
1700                return MM_ANONPAGES;
1701        return mm_counter_file(page);
1702}
1703
1704static inline unsigned long get_mm_rss(struct mm_struct *mm)
1705{
1706        return get_mm_counter(mm, MM_FILEPAGES) +
1707                get_mm_counter(mm, MM_ANONPAGES) +
1708                get_mm_counter(mm, MM_SHMEMPAGES);
1709}
1710
1711static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1712{
1713        return max(mm->hiwater_rss, get_mm_rss(mm));
1714}
1715
1716static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1717{
1718        return max(mm->hiwater_vm, mm->total_vm);
1719}
1720
1721static inline void update_hiwater_rss(struct mm_struct *mm)
1722{
1723        unsigned long _rss = get_mm_rss(mm);
1724
1725        if ((mm)->hiwater_rss < _rss)
1726                (mm)->hiwater_rss = _rss;
1727}
1728
1729static inline void update_hiwater_vm(struct mm_struct *mm)
1730{
1731        if (mm->hiwater_vm < mm->total_vm)
1732                mm->hiwater_vm = mm->total_vm;
1733}
1734
1735static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1736{
1737        mm->hiwater_rss = get_mm_rss(mm);
1738}
1739
1740static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1741                                         struct mm_struct *mm)
1742{
1743        unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1744
1745        if (*maxrss < hiwater_rss)
1746                *maxrss = hiwater_rss;
1747}
1748
1749#if defined(SPLIT_RSS_COUNTING)
1750void sync_mm_rss(struct mm_struct *mm);
1751#else
1752static inline void sync_mm_rss(struct mm_struct *mm)
1753{
1754}
1755#endif
1756
1757#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1758static inline int pte_devmap(pte_t pte)
1759{
1760        return 0;
1761}
1762#endif
1763
1764int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1765
1766extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1767                               spinlock_t **ptl);
1768static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1769                                    spinlock_t **ptl)
1770{
1771        pte_t *ptep;
1772        __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1773        return ptep;
1774}
1775
1776#ifdef __PAGETABLE_P4D_FOLDED
1777static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1778                                                unsigned long address)
1779{
1780        return 0;
1781}
1782#else
1783int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1784#endif
1785
1786#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1787static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1788                                                unsigned long address)
1789{
1790        return 0;
1791}
1792static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1793static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1794
1795#else
1796int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1797
1798static inline void mm_inc_nr_puds(struct mm_struct *mm)
1799{
1800        if (mm_pud_folded(mm))
1801                return;
1802        atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1803}
1804
1805static inline void mm_dec_nr_puds(struct mm_struct *mm)
1806{
1807        if (mm_pud_folded(mm))
1808                return;
1809        atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1810}
1811#endif
1812
1813#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1814static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1815                                                unsigned long address)
1816{
1817        return 0;
1818}
1819
1820static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1821static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1822
1823#else
1824int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1825
1826static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1827{
1828        if (mm_pmd_folded(mm))
1829                return;
1830        atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1831}
1832
1833static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1834{
1835        if (mm_pmd_folded(mm))
1836                return;
1837        atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1838}
1839#endif
1840
1841#ifdef CONFIG_MMU
1842static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1843{
1844        atomic_long_set(&mm->pgtables_bytes, 0);
1845}
1846
1847static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1848{
1849        return atomic_long_read(&mm->pgtables_bytes);
1850}
1851
1852static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1853{
1854        atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1855}
1856
1857static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1858{
1859        atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1860}
1861#else
1862
1863static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1864static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1865{
1866        return 0;
1867}
1868
1869static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1870static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1871#endif
1872
1873int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1874int __pte_alloc_kernel(pmd_t *pmd);
1875
1876/*
1877 * The following ifdef needed to get the 4level-fixup.h header to work.
1878 * Remove it when 4level-fixup.h has been removed.
1879 */
1880#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1881
1882#ifndef __ARCH_HAS_5LEVEL_HACK
1883static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1884                unsigned long address)
1885{
1886        return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1887                NULL : p4d_offset(pgd, address);
1888}
1889
1890static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1891                unsigned long address)
1892{
1893        return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1894                NULL : pud_offset(p4d, address);
1895}
1896#endif /* !__ARCH_HAS_5LEVEL_HACK */
1897
1898static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1899{
1900        return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1901                NULL: pmd_offset(pud, address);
1902}
1903#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1904
1905#if USE_SPLIT_PTE_PTLOCKS
1906#if ALLOC_SPLIT_PTLOCKS
1907void __init ptlock_cache_init(void);
1908extern bool ptlock_alloc(struct page *page);
1909extern void ptlock_free(struct page *page);
1910
1911static inline spinlock_t *ptlock_ptr(struct page *page)
1912{
1913        return page->ptl;
1914}
1915#else /* ALLOC_SPLIT_PTLOCKS */
1916static inline void ptlock_cache_init(void)
1917{
1918}
1919
1920static inline bool ptlock_alloc(struct page *page)
1921{
1922        return true;
1923}
1924
1925static inline void ptlock_free(struct page *page)
1926{
1927}
1928
1929static inline spinlock_t *ptlock_ptr(struct page *page)
1930{
1931        return &page->ptl;
1932}
1933#endif /* ALLOC_SPLIT_PTLOCKS */
1934
1935static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1936{
1937        return ptlock_ptr(pmd_page(*pmd));
1938}
1939
1940static inline bool ptlock_init(struct page *page)
1941{
1942        /*
1943         * prep_new_page() initialize page->private (and therefore page->ptl)
1944         * with 0. Make sure nobody took it in use in between.
1945         *
1946         * It can happen if arch try to use slab for page table allocation:
1947         * slab code uses page->slab_cache, which share storage with page->ptl.
1948         */
1949        VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1950        if (!ptlock_alloc(page))
1951                return false;
1952        spin_lock_init(ptlock_ptr(page));
1953        return true;
1954}
1955
1956#else   /* !USE_SPLIT_PTE_PTLOCKS */
1957/*
1958 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1959 */
1960static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1961{
1962        return &mm->page_table_lock;
1963}
1964static inline void ptlock_cache_init(void) {}
1965static inline bool ptlock_init(struct page *page) { return true; }
1966static inline void ptlock_free(struct page *page) {}
1967#endif /* USE_SPLIT_PTE_PTLOCKS */
1968
1969static inline void pgtable_init(void)
1970{
1971        ptlock_cache_init();
1972        pgtable_cache_init();
1973}
1974
1975static inline bool pgtable_page_ctor(struct page *page)
1976{
1977        if (!ptlock_init(page))
1978                return false;
1979        __SetPageTable(page);
1980        inc_zone_page_state(page, NR_PAGETABLE);
1981        return true;
1982}
1983
1984static inline void pgtable_page_dtor(struct page *page)
1985{
1986        ptlock_free(page);
1987        __ClearPageTable(page);
1988        dec_zone_page_state(page, NR_PAGETABLE);
1989}
1990
1991#define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1992({                                                      \
1993        spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1994        pte_t *__pte = pte_offset_map(pmd, address);    \
1995        *(ptlp) = __ptl;                                \
1996        spin_lock(__ptl);                               \
1997        __pte;                                          \
1998})
1999
2000#define pte_unmap_unlock(pte, ptl)      do {            \
2001        spin_unlock(ptl);                               \
2002        pte_unmap(pte);                                 \
2003} while (0)
2004
2005#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2006
2007#define pte_alloc_map(mm, pmd, address)                 \
2008        (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2009
2010#define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
2011        (pte_alloc(mm, pmd) ?                   \
2012                 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2013
2014#define pte_alloc_kernel(pmd, address)                  \
2015        ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2016                NULL: pte_offset_kernel(pmd, address))
2017
2018#if USE_SPLIT_PMD_PTLOCKS
2019
2020static struct page *pmd_to_page(pmd_t *pmd)
2021{
2022        unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2023        return virt_to_page((void *)((unsigned long) pmd & mask));
2024}
2025
2026static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2027{
2028        return ptlock_ptr(pmd_to_page(pmd));
2029}
2030
2031static inline bool pgtable_pmd_page_ctor(struct page *page)
2032{
2033#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2034        page->pmd_huge_pte = NULL;
2035#endif
2036        return ptlock_init(page);
2037}
2038
2039static inline void pgtable_pmd_page_dtor(struct page *page)
2040{
2041#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2042        VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2043#endif
2044        ptlock_free(page);
2045}
2046
2047#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2048
2049#else
2050
2051static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2052{
2053        return &mm->page_table_lock;
2054}
2055
2056static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2057static inline void pgtable_pmd_page_dtor(struct page *page) {}
2058
2059#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2060
2061#endif
2062
2063static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2064{
2065        spinlock_t *ptl = pmd_lockptr(mm, pmd);
2066        spin_lock(ptl);
2067        return ptl;
2068}
2069
2070/*
2071 * No scalability reason to split PUD locks yet, but follow the same pattern
2072 * as the PMD locks to make it easier if we decide to.  The VM should not be
2073 * considered ready to switch to split PUD locks yet; there may be places
2074 * which need to be converted from page_table_lock.
2075 */
2076static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2077{
2078        return &mm->page_table_lock;
2079}
2080
2081static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2082{
2083        spinlock_t *ptl = pud_lockptr(mm, pud);
2084
2085        spin_lock(ptl);
2086        return ptl;
2087}
2088
2089extern void __init pagecache_init(void);
2090extern void free_area_init(unsigned long * zones_size);
2091extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2092                unsigned long zone_start_pfn, unsigned long *zholes_size);
2093extern void free_initmem(void);
2094
2095/*
2096 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2097 * into the buddy system. The freed pages will be poisoned with pattern
2098 * "poison" if it's within range [0, UCHAR_MAX].
2099 * Return pages freed into the buddy system.
2100 */
2101extern unsigned long free_reserved_area(void *start, void *end,
2102                                        int poison, const char *s);
2103
2104#ifdef  CONFIG_HIGHMEM
2105/*
2106 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2107 * and totalram_pages.
2108 */
2109extern void free_highmem_page(struct page *page);
2110#endif
2111
2112extern void adjust_managed_page_count(struct page *page, long count);
2113extern void mem_init_print_info(const char *str);
2114
2115extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2116
2117/* Free the reserved page into the buddy system, so it gets managed. */
2118static inline void __free_reserved_page(struct page *page)
2119{
2120        ClearPageReserved(page);
2121        init_page_count(page);
2122        __free_page(page);
2123}
2124
2125static inline void free_reserved_page(struct page *page)
2126{
2127        __free_reserved_page(page);
2128        adjust_managed_page_count(page, 1);
2129}
2130
2131static inline void mark_page_reserved(struct page *page)
2132{
2133        SetPageReserved(page);
2134        adjust_managed_page_count(page, -1);
2135}
2136
2137/*
2138 * Default method to free all the __init memory into the buddy system.
2139 * The freed pages will be poisoned with pattern "poison" if it's within
2140 * range [0, UCHAR_MAX].
2141 * Return pages freed into the buddy system.
2142 */
2143static inline unsigned long free_initmem_default(int poison)
2144{
2145        extern char __init_begin[], __init_end[];
2146
2147        return free_reserved_area(&__init_begin, &__init_end,
2148                                  poison, "unused kernel");
2149}
2150
2151static inline unsigned long get_num_physpages(void)
2152{
2153        int nid;
2154        unsigned long phys_pages = 0;
2155
2156        for_each_online_node(nid)
2157                phys_pages += node_present_pages(nid);
2158
2159        return phys_pages;
2160}
2161
2162#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2163/*
2164 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2165 * zones, allocate the backing mem_map and account for memory holes in a more
2166 * architecture independent manner. This is a substitute for creating the
2167 * zone_sizes[] and zholes_size[] arrays and passing them to
2168 * free_area_init_node()
2169 *
2170 * An architecture is expected to register range of page frames backed by
2171 * physical memory with memblock_add[_node]() before calling
2172 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2173 * usage, an architecture is expected to do something like
2174 *
2175 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2176 *                                                       max_highmem_pfn};
2177 * for_each_valid_physical_page_range()
2178 *      memblock_add_node(base, size, nid)
2179 * free_area_init_nodes(max_zone_pfns);
2180 *
2181 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2182 * registered physical page range.  Similarly
2183 * sparse_memory_present_with_active_regions() calls memory_present() for
2184 * each range when SPARSEMEM is enabled.
2185 *
2186 * See mm/page_alloc.c for more information on each function exposed by
2187 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2188 */
2189extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2190unsigned long node_map_pfn_alignment(void);
2191unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2192                                                unsigned long end_pfn);
2193extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2194                                                unsigned long end_pfn);
2195extern void get_pfn_range_for_nid(unsigned int nid,
2196                        unsigned long *start_pfn, unsigned long *end_pfn);
2197extern unsigned long find_min_pfn_with_active_regions(void);
2198extern void free_bootmem_with_active_regions(int nid,
2199                                                unsigned long max_low_pfn);
2200extern void sparse_memory_present_with_active_regions(int nid);
2201
2202#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2203
2204#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2205    !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2206static inline int __early_pfn_to_nid(unsigned long pfn,
2207                                        struct mminit_pfnnid_cache *state)
2208{
2209        return 0;
2210}
2211#else
2212/* please see mm/page_alloc.c */
2213extern int __meminit early_pfn_to_nid(unsigned long pfn);
2214/* there is a per-arch backend function. */
2215extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2216                                        struct mminit_pfnnid_cache *state);
2217#endif
2218
2219#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2220void zero_resv_unavail(void);
2221#else
2222static inline void zero_resv_unavail(void) {}
2223#endif
2224
2225extern void set_dma_reserve(unsigned long new_dma_reserve);
2226extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2227                enum memmap_context, struct vmem_altmap *);
2228extern void setup_per_zone_wmarks(void);
2229extern int __meminit init_per_zone_wmark_min(void);
2230extern void mem_init(void);
2231extern void __init mmap_init(void);
2232extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2233extern long si_mem_available(void);
2234extern void si_meminfo(struct sysinfo * val);
2235extern void si_meminfo_node(struct sysinfo *val, int nid);
2236#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2237extern unsigned long arch_reserved_kernel_pages(void);
2238#endif
2239
2240extern __printf(3, 4)
2241void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2242
2243extern void setup_per_cpu_pageset(void);
2244
2245extern void zone_pcp_update(struct zone *zone);
2246extern void zone_pcp_reset(struct zone *zone);
2247
2248/* page_alloc.c */
2249extern int min_free_kbytes;
2250extern int watermark_boost_factor;
2251extern int watermark_scale_factor;
2252
2253/* nommu.c */
2254extern atomic_long_t mmap_pages_allocated;
2255extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2256
2257/* interval_tree.c */
2258void vma_interval_tree_insert(struct vm_area_struct *node,
2259                              struct rb_root_cached *root);
2260void vma_interval_tree_insert_after(struct vm_area_struct *node,
2261                                    struct vm_area_struct *prev,
2262                                    struct rb_root_cached *root);
2263void vma_interval_tree_remove(struct vm_area_struct *node,
2264                              struct rb_root_cached *root);
2265struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2266                                unsigned long start, unsigned long last);
2267struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2268                                unsigned long start, unsigned long last);
2269
2270#define vma_interval_tree_foreach(vma, root, start, last)               \
2271        for (vma = vma_interval_tree_iter_first(root, start, last);     \
2272             vma; vma = vma_interval_tree_iter_next(vma, start, last))
2273
2274void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2275                                   struct rb_root_cached *root);
2276void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2277                                   struct rb_root_cached *root);
2278struct anon_vma_chain *
2279anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2280                                  unsigned long start, unsigned long last);
2281struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2282        struct anon_vma_chain *node, unsigned long start, unsigned long last);
2283#ifdef CONFIG_DEBUG_VM_RB
2284void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2285#endif
2286
2287#define anon_vma_interval_tree_foreach(avc, root, start, last)           \
2288        for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2289             avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2290
2291/* mmap.c */
2292extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2293extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2294        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2295        struct vm_area_struct *expand);
2296static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2297        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2298{
2299        return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2300}
2301extern struct vm_area_struct *vma_merge(struct mm_struct *,
2302        struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2303        unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2304        struct mempolicy *, struct vm_userfaultfd_ctx);
2305extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2306extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2307        unsigned long addr, int new_below);
2308extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2309        unsigned long addr, int new_below);
2310extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2311extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2312        struct rb_node **, struct rb_node *);
2313extern void unlink_file_vma(struct vm_area_struct *);
2314extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2315        unsigned long addr, unsigned long len, pgoff_t pgoff,
2316        bool *need_rmap_locks);
2317extern void exit_mmap(struct mm_struct *);
2318
2319static inline int check_data_rlimit(unsigned long rlim,
2320                                    unsigned long new,
2321                                    unsigned long start,
2322                                    unsigned long end_data,
2323                                    unsigned long start_data)
2324{
2325        if (rlim < RLIM_INFINITY) {
2326                if (((new - start) + (end_data - start_data)) > rlim)
2327                        return -ENOSPC;
2328        }
2329
2330        return 0;
2331}
2332
2333extern int mm_take_all_locks(struct mm_struct *mm);
2334extern void mm_drop_all_locks(struct mm_struct *mm);
2335
2336extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2337extern struct file *get_mm_exe_file(struct mm_struct *mm);
2338extern struct file *get_task_exe_file(struct task_struct *task);
2339
2340extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2341extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2342
2343extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2344                                   const struct vm_special_mapping *sm);
2345extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2346                                   unsigned long addr, unsigned long len,
2347                                   unsigned long flags,
2348                                   const struct vm_special_mapping *spec);
2349/* This is an obsolete alternative to _install_special_mapping. */
2350extern int install_special_mapping(struct mm_struct *mm,
2351                                   unsigned long addr, unsigned long len,
2352                                   unsigned long flags, struct page **pages);
2353
2354extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2355
2356extern unsigned long mmap_region(struct file *file, unsigned long addr,
2357        unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2358        struct list_head *uf);
2359extern unsigned long do_mmap(struct file *file, unsigned long addr,
2360        unsigned long len, unsigned long prot, unsigned long flags,
2361        vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2362        struct list_head *uf);
2363extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2364                       struct list_head *uf, bool downgrade);
2365extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2366                     struct list_head *uf);
2367
2368static inline unsigned long
2369do_mmap_pgoff(struct file *file, unsigned long addr,
2370        unsigned long len, unsigned long prot, unsigned long flags,
2371        unsigned long pgoff, unsigned long *populate,
2372        struct list_head *uf)
2373{
2374        return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2375}
2376
2377#ifdef CONFIG_MMU
2378extern int __mm_populate(unsigned long addr, unsigned long len,
2379                         int ignore_errors);
2380static inline void mm_populate(unsigned long addr, unsigned long len)
2381{
2382        /* Ignore errors */
2383        (void) __mm_populate(addr, len, 1);
2384}
2385#else
2386static inline void mm_populate(unsigned long addr, unsigned long len) {}
2387#endif
2388
2389/* These take the mm semaphore themselves */
2390extern int __must_check vm_brk(unsigned long, unsigned long);
2391extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2392extern int vm_munmap(unsigned long, size_t);
2393extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2394        unsigned long, unsigned long,
2395        unsigned long, unsigned long);
2396
2397struct vm_unmapped_area_info {
2398#define VM_UNMAPPED_AREA_TOPDOWN 1
2399        unsigned long flags;
2400        unsigned long length;
2401        unsigned long low_limit;
2402        unsigned long high_limit;
2403        unsigned long align_mask;
2404        unsigned long align_offset;
2405};
2406
2407extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2408extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2409
2410/*
2411 * Search for an unmapped address range.
2412 *
2413 * We are looking for a range that:
2414 * - does not intersect with any VMA;
2415 * - is contained within the [low_limit, high_limit) interval;
2416 * - is at least the desired size.
2417 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2418 */
2419static inline unsigned long
2420vm_unmapped_area(struct vm_unmapped_area_info *info)
2421{
2422        if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2423                return unmapped_area_topdown(info);
2424        else
2425                return unmapped_area(info);
2426}
2427
2428/* truncate.c */
2429extern void truncate_inode_pages(struct address_space *, loff_t);
2430extern void truncate_inode_pages_range(struct address_space *,
2431                                       loff_t lstart, loff_t lend);
2432extern void truncate_inode_pages_final(struct address_space *);
2433
2434/* generic vm_area_ops exported for stackable file systems */
2435extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2436extern void filemap_map_pages(struct vm_fault *vmf,
2437                pgoff_t start_pgoff, pgoff_t end_pgoff);
2438extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2439
2440/* mm/page-writeback.c */
2441int __must_check write_one_page(struct page *page);
2442void task_dirty_inc(struct task_struct *tsk);
2443
2444/* readahead.c */
2445#define VM_READAHEAD_PAGES      (SZ_128K / PAGE_SIZE)
2446
2447int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2448                        pgoff_t offset, unsigned long nr_to_read);
2449
2450void page_cache_sync_readahead(struct address_space *mapping,
2451                               struct file_ra_state *ra,
2452                               struct file *filp,
2453                               pgoff_t offset,
2454                               unsigned long size);
2455
2456void page_cache_async_readahead(struct address_space *mapping,
2457                                struct file_ra_state *ra,
2458                                struct file *filp,
2459                                struct page *pg,
2460                                pgoff_t offset,
2461                                unsigned long size);
2462
2463extern unsigned long stack_guard_gap;
2464/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2465extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2466
2467/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2468extern int expand_downwards(struct vm_area_struct *vma,
2469                unsigned long address);
2470#if VM_GROWSUP
2471extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2472#else
2473  #define expand_upwards(vma, address) (0)
2474#endif
2475
2476/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2477extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2478extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2479                                             struct vm_area_struct **pprev);
2480
2481/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2482   NULL if none.  Assume start_addr < end_addr. */
2483static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2484{
2485        struct vm_area_struct * vma = find_vma(mm,start_addr);
2486
2487        if (vma && end_addr <= vma->vm_start)
2488                vma = NULL;
2489        return vma;
2490}
2491
2492static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2493{
2494        unsigned long vm_start = vma->vm_start;
2495
2496        if (vma->vm_flags & VM_GROWSDOWN) {
2497                vm_start -= stack_guard_gap;
2498                if (vm_start > vma->vm_start)
2499                        vm_start = 0;
2500        }
2501        return vm_start;
2502}
2503
2504static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2505{
2506        unsigned long vm_end = vma->vm_end;
2507
2508        if (vma->vm_flags & VM_GROWSUP) {
2509                vm_end += stack_guard_gap;
2510                if (vm_end < vma->vm_end)
2511                        vm_end = -PAGE_SIZE;
2512        }
2513        return vm_end;
2514}
2515
2516static inline unsigned long vma_pages(struct vm_area_struct *vma)
2517{
2518        return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2519}
2520
2521/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2522static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2523                                unsigned long vm_start, unsigned long vm_end)
2524{
2525        struct vm_area_struct *vma = find_vma(mm, vm_start);
2526
2527        if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2528                vma = NULL;
2529
2530        return vma;
2531}
2532
2533static inline bool range_in_vma(struct vm_area_struct *vma,
2534                                unsigned long start, unsigned long end)
2535{
2536        return (vma && vma->vm_start <= start && end <= vma->vm_end);
2537}
2538
2539#ifdef CONFIG_MMU
2540pgprot_t vm_get_page_prot(unsigned long vm_flags);
2541void vma_set_page_prot(struct vm_area_struct *vma);
2542#else
2543static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2544{
2545        return __pgprot(0);
2546}
2547static inline void vma_set_page_prot(struct vm_area_struct *vma)
2548{
2549        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2550}
2551#endif
2552
2553#ifdef CONFIG_NUMA_BALANCING
2554unsigned long change_prot_numa(struct vm_area_struct *vma,
2555                        unsigned long start, unsigned long end);
2556#endif
2557
2558struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2559int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2560                        unsigned long pfn, unsigned long size, pgprot_t);
2561int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2562int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2563                                unsigned long num);
2564int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2565                                unsigned long num);
2566vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2567                        unsigned long pfn);
2568vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2569                        unsigned long pfn, pgprot_t pgprot);
2570vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2571                        pfn_t pfn);
2572vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2573                unsigned long addr, pfn_t pfn);
2574int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2575
2576static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2577                                unsigned long addr, struct page *page)
2578{
2579        int err = vm_insert_page(vma, addr, page);
2580
2581        if (err == -ENOMEM)
2582                return VM_FAULT_OOM;
2583        if (err < 0 && err != -EBUSY)
2584                return VM_FAULT_SIGBUS;
2585
2586        return VM_FAULT_NOPAGE;
2587}
2588
2589static inline vm_fault_t vmf_error(int err)
2590{
2591        if (err == -ENOMEM)
2592                return VM_FAULT_OOM;
2593        return VM_FAULT_SIGBUS;
2594}
2595
2596struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2597                         unsigned int foll_flags);
2598
2599#define FOLL_WRITE      0x01    /* check pte is writable */
2600#define FOLL_TOUCH      0x02    /* mark page accessed */
2601#define FOLL_GET        0x04    /* do get_page on page */
2602#define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
2603#define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
2604#define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
2605                                 * and return without waiting upon it */
2606#define FOLL_POPULATE   0x40    /* fault in page */
2607#define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
2608#define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
2609#define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
2610#define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
2611#define FOLL_TRIED      0x800   /* a retry, previous pass started an IO */
2612#define FOLL_MLOCK      0x1000  /* lock present pages */
2613#define FOLL_REMOTE     0x2000  /* we are working on non-current tsk/mm */
2614#define FOLL_COW        0x4000  /* internal GUP flag */
2615#define FOLL_ANON       0x8000  /* don't do file mappings */
2616#define FOLL_LONGTERM   0x10000 /* mapping lifetime is indefinite: see below */
2617
2618/*
2619 * NOTE on FOLL_LONGTERM:
2620 *
2621 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2622 * period _often_ under userspace control.  This is contrasted with
2623 * iov_iter_get_pages() where usages which are transient.
2624 *
2625 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2626 * lifetime enforced by the filesystem and we need guarantees that longterm
2627 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2628 * the filesystem.  Ideas for this coordination include revoking the longterm
2629 * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2630 * added after the problem with filesystems was found FS DAX VMAs are
2631 * specifically failed.  Filesystem pages are still subject to bugs and use of
2632 * FOLL_LONGTERM should be avoided on those pages.
2633 *
2634 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2635 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2636 * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2637 * is due to an incompatibility with the FS DAX check and
2638 * FAULT_FLAG_ALLOW_RETRY
2639 *
2640 * In the CMA case: longterm pins in a CMA region would unnecessarily fragment
2641 * that region.  And so CMA attempts to migrate the page before pinning when
2642 * FOLL_LONGTERM is specified.
2643 */
2644
2645static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2646{
2647        if (vm_fault & VM_FAULT_OOM)
2648                return -ENOMEM;
2649        if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2650                return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2651        if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2652                return -EFAULT;
2653        return 0;
2654}
2655
2656typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2657extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2658                               unsigned long size, pte_fn_t fn, void *data);
2659
2660
2661#ifdef CONFIG_PAGE_POISONING
2662extern bool page_poisoning_enabled(void);
2663extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2664#else
2665static inline bool page_poisoning_enabled(void) { return false; }
2666static inline void kernel_poison_pages(struct page *page, int numpages,
2667                                        int enable) { }
2668#endif
2669
2670#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2671DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2672#else
2673DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2674#endif
2675static inline bool want_init_on_alloc(gfp_t flags)
2676{
2677        if (static_branch_unlikely(&init_on_alloc) &&
2678            !page_poisoning_enabled())
2679                return true;
2680        return flags & __GFP_ZERO;
2681}
2682
2683#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2684DECLARE_STATIC_KEY_TRUE(init_on_free);
2685#else
2686DECLARE_STATIC_KEY_FALSE(init_on_free);
2687#endif
2688static inline bool want_init_on_free(void)
2689{
2690        return static_branch_unlikely(&init_on_free) &&
2691               !page_poisoning_enabled();
2692}
2693
2694#ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
2695DECLARE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
2696#else
2697DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2698#endif
2699
2700static inline bool debug_pagealloc_enabled(void)
2701{
2702        if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2703                return false;
2704
2705        return static_branch_unlikely(&_debug_pagealloc_enabled);
2706}
2707
2708#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2709extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2710
2711static inline void
2712kernel_map_pages(struct page *page, int numpages, int enable)
2713{
2714        __kernel_map_pages(page, numpages, enable);
2715}
2716#ifdef CONFIG_HIBERNATION
2717extern bool kernel_page_present(struct page *page);
2718#endif  /* CONFIG_HIBERNATION */
2719#else   /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2720static inline void
2721kernel_map_pages(struct page *page, int numpages, int enable) {}
2722#ifdef CONFIG_HIBERNATION
2723static inline bool kernel_page_present(struct page *page) { return true; }
2724#endif  /* CONFIG_HIBERNATION */
2725#endif  /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2726
2727#ifdef __HAVE_ARCH_GATE_AREA
2728extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2729extern int in_gate_area_no_mm(unsigned long addr);
2730extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2731#else
2732static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2733{
2734        return NULL;
2735}
2736static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2737static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2738{
2739        return 0;
2740}
2741#endif  /* __HAVE_ARCH_GATE_AREA */
2742
2743extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2744
2745#ifdef CONFIG_SYSCTL
2746extern int sysctl_drop_caches;
2747int drop_caches_sysctl_handler(struct ctl_table *, int,
2748                                        void __user *, size_t *, loff_t *);
2749#endif
2750
2751void drop_slab(void);
2752void drop_slab_node(int nid);
2753
2754#ifndef CONFIG_MMU
2755#define randomize_va_space 0
2756#else
2757extern int randomize_va_space;
2758#endif
2759
2760const char * arch_vma_name(struct vm_area_struct *vma);
2761#ifdef CONFIG_MMU
2762void print_vma_addr(char *prefix, unsigned long rip);
2763#else
2764static inline void print_vma_addr(char *prefix, unsigned long rip)
2765{
2766}
2767#endif
2768
2769void *sparse_buffer_alloc(unsigned long size);
2770struct page * __populate_section_memmap(unsigned long pfn,
2771                unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
2772pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2773p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2774pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2775pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2776pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2777void *vmemmap_alloc_block(unsigned long size, int node);
2778struct vmem_altmap;
2779void *vmemmap_alloc_block_buf(unsigned long size, int node);
2780void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2781void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2782int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2783                               int node);
2784int vmemmap_populate(unsigned long start, unsigned long end, int node,
2785                struct vmem_altmap *altmap);
2786void vmemmap_populate_print_last(void);
2787#ifdef CONFIG_MEMORY_HOTPLUG
2788void vmemmap_free(unsigned long start, unsigned long end,
2789                struct vmem_altmap *altmap);
2790#endif
2791void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2792                                  unsigned long nr_pages);
2793
2794enum mf_flags {
2795        MF_COUNT_INCREASED = 1 << 0,
2796        MF_ACTION_REQUIRED = 1 << 1,
2797        MF_MUST_KILL = 1 << 2,
2798        MF_SOFT_OFFLINE = 1 << 3,
2799};
2800extern int memory_failure(unsigned long pfn, int flags);
2801extern void memory_failure_queue(unsigned long pfn, int flags);
2802extern int unpoison_memory(unsigned long pfn);
2803extern int get_hwpoison_page(struct page *page);
2804#define put_hwpoison_page(page) put_page(page)
2805extern int sysctl_memory_failure_early_kill;
2806extern int sysctl_memory_failure_recovery;
2807extern void shake_page(struct page *p, int access);
2808extern atomic_long_t num_poisoned_pages __read_mostly;
2809extern int soft_offline_page(struct page *page, int flags);
2810
2811
2812/*
2813 * Error handlers for various types of pages.
2814 */
2815enum mf_result {
2816        MF_IGNORED,     /* Error: cannot be handled */
2817        MF_FAILED,      /* Error: handling failed */
2818        MF_DELAYED,     /* Will be handled later */
2819        MF_RECOVERED,   /* Successfully recovered */
2820};
2821
2822enum mf_action_page_type {
2823        MF_MSG_KERNEL,
2824        MF_MSG_KERNEL_HIGH_ORDER,
2825        MF_MSG_SLAB,
2826        MF_MSG_DIFFERENT_COMPOUND,
2827        MF_MSG_POISONED_HUGE,
2828        MF_MSG_HUGE,
2829        MF_MSG_FREE_HUGE,
2830        MF_MSG_NON_PMD_HUGE,
2831        MF_MSG_UNMAP_FAILED,
2832        MF_MSG_DIRTY_SWAPCACHE,
2833        MF_MSG_CLEAN_SWAPCACHE,
2834        MF_MSG_DIRTY_MLOCKED_LRU,
2835        MF_MSG_CLEAN_MLOCKED_LRU,
2836        MF_MSG_DIRTY_UNEVICTABLE_LRU,
2837        MF_MSG_CLEAN_UNEVICTABLE_LRU,
2838        MF_MSG_DIRTY_LRU,
2839        MF_MSG_CLEAN_LRU,
2840        MF_MSG_TRUNCATED_LRU,
2841        MF_MSG_BUDDY,
2842        MF_MSG_BUDDY_2ND,
2843        MF_MSG_DAX,
2844        MF_MSG_UNKNOWN,
2845};
2846
2847#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2848extern void clear_huge_page(struct page *page,
2849                            unsigned long addr_hint,
2850                            unsigned int pages_per_huge_page);
2851extern void copy_user_huge_page(struct page *dst, struct page *src,
2852                                unsigned long addr_hint,
2853                                struct vm_area_struct *vma,
2854                                unsigned int pages_per_huge_page);
2855extern long copy_huge_page_from_user(struct page *dst_page,
2856                                const void __user *usr_src,
2857                                unsigned int pages_per_huge_page,
2858                                bool allow_pagefault);
2859#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2860
2861#ifdef CONFIG_DEBUG_PAGEALLOC
2862extern unsigned int _debug_guardpage_minorder;
2863DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
2864
2865static inline unsigned int debug_guardpage_minorder(void)
2866{
2867        return _debug_guardpage_minorder;
2868}
2869
2870static inline bool debug_guardpage_enabled(void)
2871{
2872        return static_branch_unlikely(&_debug_guardpage_enabled);
2873}
2874
2875static inline bool page_is_guard(struct page *page)
2876{
2877        if (!debug_guardpage_enabled())
2878                return false;
2879
2880        return PageGuard(page);
2881}
2882#else
2883static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2884static inline bool debug_guardpage_enabled(void) { return false; }
2885static inline bool page_is_guard(struct page *page) { return false; }
2886#endif /* CONFIG_DEBUG_PAGEALLOC */
2887
2888#if MAX_NUMNODES > 1
2889void __init setup_nr_node_ids(void);
2890#else
2891static inline void setup_nr_node_ids(void) {}
2892#endif
2893
2894#endif /* __KERNEL__ */
2895#endif /* _LINUX_MM_H */
2896