linux/include/linux/mmzone.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MMZONE_H
   3#define _LINUX_MMZONE_H
   4
   5#ifndef __ASSEMBLY__
   6#ifndef __GENERATING_BOUNDS_H
   7
   8#include <linux/spinlock.h>
   9#include <linux/list.h>
  10#include <linux/wait.h>
  11#include <linux/bitops.h>
  12#include <linux/cache.h>
  13#include <linux/threads.h>
  14#include <linux/numa.h>
  15#include <linux/init.h>
  16#include <linux/seqlock.h>
  17#include <linux/nodemask.h>
  18#include <linux/pageblock-flags.h>
  19#include <linux/page-flags-layout.h>
  20#include <linux/atomic.h>
  21#include <linux/mm_types.h>
  22#include <linux/page-flags.h>
  23#include <asm/page.h>
  24
  25/* Free memory management - zoned buddy allocator.  */
  26#ifndef CONFIG_FORCE_MAX_ZONEORDER
  27#define MAX_ORDER 11
  28#else
  29#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  30#endif
  31#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  32
  33/*
  34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  35 * costly to service.  That is between allocation orders which should
  36 * coalesce naturally under reasonable reclaim pressure and those which
  37 * will not.
  38 */
  39#define PAGE_ALLOC_COSTLY_ORDER 3
  40
  41enum migratetype {
  42        MIGRATE_UNMOVABLE,
  43        MIGRATE_MOVABLE,
  44        MIGRATE_RECLAIMABLE,
  45        MIGRATE_PCPTYPES,       /* the number of types on the pcp lists */
  46        MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
  47#ifdef CONFIG_CMA
  48        /*
  49         * MIGRATE_CMA migration type is designed to mimic the way
  50         * ZONE_MOVABLE works.  Only movable pages can be allocated
  51         * from MIGRATE_CMA pageblocks and page allocator never
  52         * implicitly change migration type of MIGRATE_CMA pageblock.
  53         *
  54         * The way to use it is to change migratetype of a range of
  55         * pageblocks to MIGRATE_CMA which can be done by
  56         * __free_pageblock_cma() function.  What is important though
  57         * is that a range of pageblocks must be aligned to
  58         * MAX_ORDER_NR_PAGES should biggest page be bigger then
  59         * a single pageblock.
  60         */
  61        MIGRATE_CMA,
  62#endif
  63#ifdef CONFIG_MEMORY_ISOLATION
  64        MIGRATE_ISOLATE,        /* can't allocate from here */
  65#endif
  66        MIGRATE_TYPES
  67};
  68
  69/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
  70extern const char * const migratetype_names[MIGRATE_TYPES];
  71
  72#ifdef CONFIG_CMA
  73#  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  74#  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
  75#else
  76#  define is_migrate_cma(migratetype) false
  77#  define is_migrate_cma_page(_page) false
  78#endif
  79
  80static inline bool is_migrate_movable(int mt)
  81{
  82        return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
  83}
  84
  85#define for_each_migratetype_order(order, type) \
  86        for (order = 0; order < MAX_ORDER; order++) \
  87                for (type = 0; type < MIGRATE_TYPES; type++)
  88
  89extern int page_group_by_mobility_disabled;
  90
  91#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
  92#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
  93
  94#define get_pageblock_migratetype(page)                                 \
  95        get_pfnblock_flags_mask(page, page_to_pfn(page),                \
  96                        PB_migrate_end, MIGRATETYPE_MASK)
  97
  98struct free_area {
  99        struct list_head        free_list[MIGRATE_TYPES];
 100        unsigned long           nr_free;
 101};
 102
 103/* Used for pages not on another list */
 104static inline void add_to_free_area(struct page *page, struct free_area *area,
 105                             int migratetype)
 106{
 107        list_add(&page->lru, &area->free_list[migratetype]);
 108        area->nr_free++;
 109}
 110
 111/* Used for pages not on another list */
 112static inline void add_to_free_area_tail(struct page *page, struct free_area *area,
 113                                  int migratetype)
 114{
 115        list_add_tail(&page->lru, &area->free_list[migratetype]);
 116        area->nr_free++;
 117}
 118
 119#ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR
 120/* Used to preserve page allocation order entropy */
 121void add_to_free_area_random(struct page *page, struct free_area *area,
 122                int migratetype);
 123#else
 124static inline void add_to_free_area_random(struct page *page,
 125                struct free_area *area, int migratetype)
 126{
 127        add_to_free_area(page, area, migratetype);
 128}
 129#endif
 130
 131/* Used for pages which are on another list */
 132static inline void move_to_free_area(struct page *page, struct free_area *area,
 133                             int migratetype)
 134{
 135        list_move(&page->lru, &area->free_list[migratetype]);
 136}
 137
 138static inline struct page *get_page_from_free_area(struct free_area *area,
 139                                            int migratetype)
 140{
 141        return list_first_entry_or_null(&area->free_list[migratetype],
 142                                        struct page, lru);
 143}
 144
 145static inline void del_page_from_free_area(struct page *page,
 146                struct free_area *area)
 147{
 148        list_del(&page->lru);
 149        __ClearPageBuddy(page);
 150        set_page_private(page, 0);
 151        area->nr_free--;
 152}
 153
 154static inline bool free_area_empty(struct free_area *area, int migratetype)
 155{
 156        return list_empty(&area->free_list[migratetype]);
 157}
 158
 159struct pglist_data;
 160
 161/*
 162 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
 163 * So add a wild amount of padding here to ensure that they fall into separate
 164 * cachelines.  There are very few zone structures in the machine, so space
 165 * consumption is not a concern here.
 166 */
 167#if defined(CONFIG_SMP)
 168struct zone_padding {
 169        char x[0];
 170} ____cacheline_internodealigned_in_smp;
 171#define ZONE_PADDING(name)      struct zone_padding name;
 172#else
 173#define ZONE_PADDING(name)
 174#endif
 175
 176#ifdef CONFIG_NUMA
 177enum numa_stat_item {
 178        NUMA_HIT,               /* allocated in intended node */
 179        NUMA_MISS,              /* allocated in non intended node */
 180        NUMA_FOREIGN,           /* was intended here, hit elsewhere */
 181        NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
 182        NUMA_LOCAL,             /* allocation from local node */
 183        NUMA_OTHER,             /* allocation from other node */
 184        NR_VM_NUMA_STAT_ITEMS
 185};
 186#else
 187#define NR_VM_NUMA_STAT_ITEMS 0
 188#endif
 189
 190enum zone_stat_item {
 191        /* First 128 byte cacheline (assuming 64 bit words) */
 192        NR_FREE_PAGES,
 193        NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
 194        NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
 195        NR_ZONE_ACTIVE_ANON,
 196        NR_ZONE_INACTIVE_FILE,
 197        NR_ZONE_ACTIVE_FILE,
 198        NR_ZONE_UNEVICTABLE,
 199        NR_ZONE_WRITE_PENDING,  /* Count of dirty, writeback and unstable pages */
 200        NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
 201        NR_PAGETABLE,           /* used for pagetables */
 202        NR_KERNEL_STACK_KB,     /* measured in KiB */
 203        /* Second 128 byte cacheline */
 204        NR_BOUNCE,
 205#if IS_ENABLED(CONFIG_ZSMALLOC)
 206        NR_ZSPAGES,             /* allocated in zsmalloc */
 207#endif
 208        NR_FREE_CMA_PAGES,
 209        NR_VM_ZONE_STAT_ITEMS };
 210
 211enum node_stat_item {
 212        NR_LRU_BASE,
 213        NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
 214        NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
 215        NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
 216        NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
 217        NR_UNEVICTABLE,         /*  "     "     "   "       "         */
 218        NR_SLAB_RECLAIMABLE,    /* Please do not reorder this item */
 219        NR_SLAB_UNRECLAIMABLE,  /* and this one without looking at
 220                                 * memcg_flush_percpu_vmstats() first. */
 221        NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
 222        NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
 223        WORKINGSET_NODES,
 224        WORKINGSET_REFAULT,
 225        WORKINGSET_ACTIVATE,
 226        WORKINGSET_RESTORE,
 227        WORKINGSET_NODERECLAIM,
 228        NR_ANON_MAPPED, /* Mapped anonymous pages */
 229        NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
 230                           only modified from process context */
 231        NR_FILE_PAGES,
 232        NR_FILE_DIRTY,
 233        NR_WRITEBACK,
 234        NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
 235        NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
 236        NR_SHMEM_THPS,
 237        NR_SHMEM_PMDMAPPED,
 238        NR_ANON_THPS,
 239        NR_UNSTABLE_NFS,        /* NFS unstable pages */
 240        NR_VMSCAN_WRITE,
 241        NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
 242        NR_DIRTIED,             /* page dirtyings since bootup */
 243        NR_WRITTEN,             /* page writings since bootup */
 244        NR_KERNEL_MISC_RECLAIMABLE,     /* reclaimable non-slab kernel pages */
 245        NR_VM_NODE_STAT_ITEMS
 246};
 247
 248/*
 249 * We do arithmetic on the LRU lists in various places in the code,
 250 * so it is important to keep the active lists LRU_ACTIVE higher in
 251 * the array than the corresponding inactive lists, and to keep
 252 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
 253 *
 254 * This has to be kept in sync with the statistics in zone_stat_item
 255 * above and the descriptions in vmstat_text in mm/vmstat.c
 256 */
 257#define LRU_BASE 0
 258#define LRU_ACTIVE 1
 259#define LRU_FILE 2
 260
 261enum lru_list {
 262        LRU_INACTIVE_ANON = LRU_BASE,
 263        LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
 264        LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
 265        LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
 266        LRU_UNEVICTABLE,
 267        NR_LRU_LISTS
 268};
 269
 270#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
 271
 272#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
 273
 274static inline int is_file_lru(enum lru_list lru)
 275{
 276        return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
 277}
 278
 279static inline int is_active_lru(enum lru_list lru)
 280{
 281        return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
 282}
 283
 284struct zone_reclaim_stat {
 285        /*
 286         * The pageout code in vmscan.c keeps track of how many of the
 287         * mem/swap backed and file backed pages are referenced.
 288         * The higher the rotated/scanned ratio, the more valuable
 289         * that cache is.
 290         *
 291         * The anon LRU stats live in [0], file LRU stats in [1]
 292         */
 293        unsigned long           recent_rotated[2];
 294        unsigned long           recent_scanned[2];
 295};
 296
 297struct lruvec {
 298        struct list_head                lists[NR_LRU_LISTS];
 299        struct zone_reclaim_stat        reclaim_stat;
 300        /* Evictions & activations on the inactive file list */
 301        atomic_long_t                   inactive_age;
 302        /* Refaults at the time of last reclaim cycle */
 303        unsigned long                   refaults;
 304#ifdef CONFIG_MEMCG
 305        struct pglist_data *pgdat;
 306#endif
 307};
 308
 309/* Isolate unmapped file */
 310#define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x2)
 311/* Isolate for asynchronous migration */
 312#define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x4)
 313/* Isolate unevictable pages */
 314#define ISOLATE_UNEVICTABLE     ((__force isolate_mode_t)0x8)
 315
 316/* LRU Isolation modes. */
 317typedef unsigned __bitwise isolate_mode_t;
 318
 319enum zone_watermarks {
 320        WMARK_MIN,
 321        WMARK_LOW,
 322        WMARK_HIGH,
 323        NR_WMARK
 324};
 325
 326#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
 327#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
 328#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
 329#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
 330
 331struct per_cpu_pages {
 332        int count;              /* number of pages in the list */
 333        int high;               /* high watermark, emptying needed */
 334        int batch;              /* chunk size for buddy add/remove */
 335
 336        /* Lists of pages, one per migrate type stored on the pcp-lists */
 337        struct list_head lists[MIGRATE_PCPTYPES];
 338};
 339
 340struct per_cpu_pageset {
 341        struct per_cpu_pages pcp;
 342#ifdef CONFIG_NUMA
 343        s8 expire;
 344        u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
 345#endif
 346#ifdef CONFIG_SMP
 347        s8 stat_threshold;
 348        s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
 349#endif
 350};
 351
 352struct per_cpu_nodestat {
 353        s8 stat_threshold;
 354        s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
 355};
 356
 357#endif /* !__GENERATING_BOUNDS.H */
 358
 359enum zone_type {
 360#ifdef CONFIG_ZONE_DMA
 361        /*
 362         * ZONE_DMA is used when there are devices that are not able
 363         * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
 364         * carve out the portion of memory that is needed for these devices.
 365         * The range is arch specific.
 366         *
 367         * Some examples
 368         *
 369         * Architecture         Limit
 370         * ---------------------------
 371         * parisc, ia64, sparc  <4G
 372         * s390, powerpc        <2G
 373         * arm                  Various
 374         * alpha                Unlimited or 0-16MB.
 375         *
 376         * i386, x86_64 and multiple other arches
 377         *                      <16M.
 378         */
 379        ZONE_DMA,
 380#endif
 381#ifdef CONFIG_ZONE_DMA32
 382        /*
 383         * x86_64 needs two ZONE_DMAs because it supports devices that are
 384         * only able to do DMA to the lower 16M but also 32 bit devices that
 385         * can only do DMA areas below 4G.
 386         */
 387        ZONE_DMA32,
 388#endif
 389        /*
 390         * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
 391         * performed on pages in ZONE_NORMAL if the DMA devices support
 392         * transfers to all addressable memory.
 393         */
 394        ZONE_NORMAL,
 395#ifdef CONFIG_HIGHMEM
 396        /*
 397         * A memory area that is only addressable by the kernel through
 398         * mapping portions into its own address space. This is for example
 399         * used by i386 to allow the kernel to address the memory beyond
 400         * 900MB. The kernel will set up special mappings (page
 401         * table entries on i386) for each page that the kernel needs to
 402         * access.
 403         */
 404        ZONE_HIGHMEM,
 405#endif
 406        ZONE_MOVABLE,
 407#ifdef CONFIG_ZONE_DEVICE
 408        ZONE_DEVICE,
 409#endif
 410        __MAX_NR_ZONES
 411
 412};
 413
 414#ifndef __GENERATING_BOUNDS_H
 415
 416struct zone {
 417        /* Read-mostly fields */
 418
 419        /* zone watermarks, access with *_wmark_pages(zone) macros */
 420        unsigned long _watermark[NR_WMARK];
 421        unsigned long watermark_boost;
 422
 423        unsigned long nr_reserved_highatomic;
 424
 425        /*
 426         * We don't know if the memory that we're going to allocate will be
 427         * freeable or/and it will be released eventually, so to avoid totally
 428         * wasting several GB of ram we must reserve some of the lower zone
 429         * memory (otherwise we risk to run OOM on the lower zones despite
 430         * there being tons of freeable ram on the higher zones).  This array is
 431         * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
 432         * changes.
 433         */
 434        long lowmem_reserve[MAX_NR_ZONES];
 435
 436#ifdef CONFIG_NUMA
 437        int node;
 438#endif
 439        struct pglist_data      *zone_pgdat;
 440        struct per_cpu_pageset __percpu *pageset;
 441
 442#ifndef CONFIG_SPARSEMEM
 443        /*
 444         * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
 445         * In SPARSEMEM, this map is stored in struct mem_section
 446         */
 447        unsigned long           *pageblock_flags;
 448#endif /* CONFIG_SPARSEMEM */
 449
 450        /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
 451        unsigned long           zone_start_pfn;
 452
 453        /*
 454         * spanned_pages is the total pages spanned by the zone, including
 455         * holes, which is calculated as:
 456         *      spanned_pages = zone_end_pfn - zone_start_pfn;
 457         *
 458         * present_pages is physical pages existing within the zone, which
 459         * is calculated as:
 460         *      present_pages = spanned_pages - absent_pages(pages in holes);
 461         *
 462         * managed_pages is present pages managed by the buddy system, which
 463         * is calculated as (reserved_pages includes pages allocated by the
 464         * bootmem allocator):
 465         *      managed_pages = present_pages - reserved_pages;
 466         *
 467         * So present_pages may be used by memory hotplug or memory power
 468         * management logic to figure out unmanaged pages by checking
 469         * (present_pages - managed_pages). And managed_pages should be used
 470         * by page allocator and vm scanner to calculate all kinds of watermarks
 471         * and thresholds.
 472         *
 473         * Locking rules:
 474         *
 475         * zone_start_pfn and spanned_pages are protected by span_seqlock.
 476         * It is a seqlock because it has to be read outside of zone->lock,
 477         * and it is done in the main allocator path.  But, it is written
 478         * quite infrequently.
 479         *
 480         * The span_seq lock is declared along with zone->lock because it is
 481         * frequently read in proximity to zone->lock.  It's good to
 482         * give them a chance of being in the same cacheline.
 483         *
 484         * Write access to present_pages at runtime should be protected by
 485         * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
 486         * present_pages should get_online_mems() to get a stable value.
 487         */
 488        atomic_long_t           managed_pages;
 489        unsigned long           spanned_pages;
 490        unsigned long           present_pages;
 491
 492        const char              *name;
 493
 494#ifdef CONFIG_MEMORY_ISOLATION
 495        /*
 496         * Number of isolated pageblock. It is used to solve incorrect
 497         * freepage counting problem due to racy retrieving migratetype
 498         * of pageblock. Protected by zone->lock.
 499         */
 500        unsigned long           nr_isolate_pageblock;
 501#endif
 502
 503#ifdef CONFIG_MEMORY_HOTPLUG
 504        /* see spanned/present_pages for more description */
 505        seqlock_t               span_seqlock;
 506#endif
 507
 508        int initialized;
 509
 510        /* Write-intensive fields used from the page allocator */
 511        ZONE_PADDING(_pad1_)
 512
 513        /* free areas of different sizes */
 514        struct free_area        free_area[MAX_ORDER];
 515
 516        /* zone flags, see below */
 517        unsigned long           flags;
 518
 519        /* Primarily protects free_area */
 520        spinlock_t              lock;
 521
 522        /* Write-intensive fields used by compaction and vmstats. */
 523        ZONE_PADDING(_pad2_)
 524
 525        /*
 526         * When free pages are below this point, additional steps are taken
 527         * when reading the number of free pages to avoid per-cpu counter
 528         * drift allowing watermarks to be breached
 529         */
 530        unsigned long percpu_drift_mark;
 531
 532#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 533        /* pfn where compaction free scanner should start */
 534        unsigned long           compact_cached_free_pfn;
 535        /* pfn where async and sync compaction migration scanner should start */
 536        unsigned long           compact_cached_migrate_pfn[2];
 537        unsigned long           compact_init_migrate_pfn;
 538        unsigned long           compact_init_free_pfn;
 539#endif
 540
 541#ifdef CONFIG_COMPACTION
 542        /*
 543         * On compaction failure, 1<<compact_defer_shift compactions
 544         * are skipped before trying again. The number attempted since
 545         * last failure is tracked with compact_considered.
 546         */
 547        unsigned int            compact_considered;
 548        unsigned int            compact_defer_shift;
 549        int                     compact_order_failed;
 550#endif
 551
 552#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 553        /* Set to true when the PG_migrate_skip bits should be cleared */
 554        bool                    compact_blockskip_flush;
 555#endif
 556
 557        bool                    contiguous;
 558
 559        ZONE_PADDING(_pad3_)
 560        /* Zone statistics */
 561        atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
 562        atomic_long_t           vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
 563} ____cacheline_internodealigned_in_smp;
 564
 565enum pgdat_flags {
 566        PGDAT_CONGESTED,                /* pgdat has many dirty pages backed by
 567                                         * a congested BDI
 568                                         */
 569        PGDAT_DIRTY,                    /* reclaim scanning has recently found
 570                                         * many dirty file pages at the tail
 571                                         * of the LRU.
 572                                         */
 573        PGDAT_WRITEBACK,                /* reclaim scanning has recently found
 574                                         * many pages under writeback
 575                                         */
 576        PGDAT_RECLAIM_LOCKED,           /* prevents concurrent reclaim */
 577};
 578
 579enum zone_flags {
 580        ZONE_BOOSTED_WATERMARK,         /* zone recently boosted watermarks.
 581                                         * Cleared when kswapd is woken.
 582                                         */
 583};
 584
 585static inline unsigned long zone_managed_pages(struct zone *zone)
 586{
 587        return (unsigned long)atomic_long_read(&zone->managed_pages);
 588}
 589
 590static inline unsigned long zone_end_pfn(const struct zone *zone)
 591{
 592        return zone->zone_start_pfn + zone->spanned_pages;
 593}
 594
 595static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
 596{
 597        return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
 598}
 599
 600static inline bool zone_is_initialized(struct zone *zone)
 601{
 602        return zone->initialized;
 603}
 604
 605static inline bool zone_is_empty(struct zone *zone)
 606{
 607        return zone->spanned_pages == 0;
 608}
 609
 610/*
 611 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
 612 * intersection with the given zone
 613 */
 614static inline bool zone_intersects(struct zone *zone,
 615                unsigned long start_pfn, unsigned long nr_pages)
 616{
 617        if (zone_is_empty(zone))
 618                return false;
 619        if (start_pfn >= zone_end_pfn(zone) ||
 620            start_pfn + nr_pages <= zone->zone_start_pfn)
 621                return false;
 622
 623        return true;
 624}
 625
 626/*
 627 * The "priority" of VM scanning is how much of the queues we will scan in one
 628 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 629 * queues ("queue_length >> 12") during an aging round.
 630 */
 631#define DEF_PRIORITY 12
 632
 633/* Maximum number of zones on a zonelist */
 634#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
 635
 636enum {
 637        ZONELIST_FALLBACK,      /* zonelist with fallback */
 638#ifdef CONFIG_NUMA
 639        /*
 640         * The NUMA zonelists are doubled because we need zonelists that
 641         * restrict the allocations to a single node for __GFP_THISNODE.
 642         */
 643        ZONELIST_NOFALLBACK,    /* zonelist without fallback (__GFP_THISNODE) */
 644#endif
 645        MAX_ZONELISTS
 646};
 647
 648/*
 649 * This struct contains information about a zone in a zonelist. It is stored
 650 * here to avoid dereferences into large structures and lookups of tables
 651 */
 652struct zoneref {
 653        struct zone *zone;      /* Pointer to actual zone */
 654        int zone_idx;           /* zone_idx(zoneref->zone) */
 655};
 656
 657/*
 658 * One allocation request operates on a zonelist. A zonelist
 659 * is a list of zones, the first one is the 'goal' of the
 660 * allocation, the other zones are fallback zones, in decreasing
 661 * priority.
 662 *
 663 * To speed the reading of the zonelist, the zonerefs contain the zone index
 664 * of the entry being read. Helper functions to access information given
 665 * a struct zoneref are
 666 *
 667 * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
 668 * zonelist_zone_idx()  - Return the index of the zone for an entry
 669 * zonelist_node_idx()  - Return the index of the node for an entry
 670 */
 671struct zonelist {
 672        struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
 673};
 674
 675#ifndef CONFIG_DISCONTIGMEM
 676/* The array of struct pages - for discontigmem use pgdat->lmem_map */
 677extern struct page *mem_map;
 678#endif
 679
 680/*
 681 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 682 * it's memory layout. On UMA machines there is a single pglist_data which
 683 * describes the whole memory.
 684 *
 685 * Memory statistics and page replacement data structures are maintained on a
 686 * per-zone basis.
 687 */
 688struct bootmem_data;
 689typedef struct pglist_data {
 690        struct zone node_zones[MAX_NR_ZONES];
 691        struct zonelist node_zonelists[MAX_ZONELISTS];
 692        int nr_zones;
 693#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
 694        struct page *node_mem_map;
 695#ifdef CONFIG_PAGE_EXTENSION
 696        struct page_ext *node_page_ext;
 697#endif
 698#endif
 699#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
 700        /*
 701         * Must be held any time you expect node_start_pfn,
 702         * node_present_pages, node_spanned_pages or nr_zones to stay constant.
 703         *
 704         * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
 705         * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
 706         * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
 707         *
 708         * Nests above zone->lock and zone->span_seqlock
 709         */
 710        spinlock_t node_size_lock;
 711#endif
 712        unsigned long node_start_pfn;
 713        unsigned long node_present_pages; /* total number of physical pages */
 714        unsigned long node_spanned_pages; /* total size of physical page
 715                                             range, including holes */
 716        int node_id;
 717        wait_queue_head_t kswapd_wait;
 718        wait_queue_head_t pfmemalloc_wait;
 719        struct task_struct *kswapd;     /* Protected by
 720                                           mem_hotplug_begin/end() */
 721        int kswapd_order;
 722        enum zone_type kswapd_classzone_idx;
 723
 724        int kswapd_failures;            /* Number of 'reclaimed == 0' runs */
 725
 726#ifdef CONFIG_COMPACTION
 727        int kcompactd_max_order;
 728        enum zone_type kcompactd_classzone_idx;
 729        wait_queue_head_t kcompactd_wait;
 730        struct task_struct *kcompactd;
 731#endif
 732        /*
 733         * This is a per-node reserve of pages that are not available
 734         * to userspace allocations.
 735         */
 736        unsigned long           totalreserve_pages;
 737
 738#ifdef CONFIG_NUMA
 739        /*
 740         * zone reclaim becomes active if more unmapped pages exist.
 741         */
 742        unsigned long           min_unmapped_pages;
 743        unsigned long           min_slab_pages;
 744#endif /* CONFIG_NUMA */
 745
 746        /* Write-intensive fields used by page reclaim */
 747        ZONE_PADDING(_pad1_)
 748        spinlock_t              lru_lock;
 749
 750#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 751        /*
 752         * If memory initialisation on large machines is deferred then this
 753         * is the first PFN that needs to be initialised.
 754         */
 755        unsigned long first_deferred_pfn;
 756#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 757
 758#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 759        spinlock_t split_queue_lock;
 760        struct list_head split_queue;
 761        unsigned long split_queue_len;
 762#endif
 763
 764        /* Fields commonly accessed by the page reclaim scanner */
 765        struct lruvec           lruvec;
 766
 767        unsigned long           flags;
 768
 769        ZONE_PADDING(_pad2_)
 770
 771        /* Per-node vmstats */
 772        struct per_cpu_nodestat __percpu *per_cpu_nodestats;
 773        atomic_long_t           vm_stat[NR_VM_NODE_STAT_ITEMS];
 774} pg_data_t;
 775
 776#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
 777#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
 778#ifdef CONFIG_FLAT_NODE_MEM_MAP
 779#define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
 780#else
 781#define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
 782#endif
 783#define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
 784
 785#define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
 786#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
 787
 788static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
 789{
 790        return &pgdat->lruvec;
 791}
 792
 793static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
 794{
 795        return pgdat->node_start_pfn + pgdat->node_spanned_pages;
 796}
 797
 798static inline bool pgdat_is_empty(pg_data_t *pgdat)
 799{
 800        return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
 801}
 802
 803#include <linux/memory_hotplug.h>
 804
 805void build_all_zonelists(pg_data_t *pgdat);
 806void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
 807                   enum zone_type classzone_idx);
 808bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
 809                         int classzone_idx, unsigned int alloc_flags,
 810                         long free_pages);
 811bool zone_watermark_ok(struct zone *z, unsigned int order,
 812                unsigned long mark, int classzone_idx,
 813                unsigned int alloc_flags);
 814bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
 815                unsigned long mark, int classzone_idx);
 816enum memmap_context {
 817        MEMMAP_EARLY,
 818        MEMMAP_HOTPLUG,
 819};
 820extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
 821                                     unsigned long size);
 822
 823extern void lruvec_init(struct lruvec *lruvec);
 824
 825static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
 826{
 827#ifdef CONFIG_MEMCG
 828        return lruvec->pgdat;
 829#else
 830        return container_of(lruvec, struct pglist_data, lruvec);
 831#endif
 832}
 833
 834extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
 835
 836#ifdef CONFIG_HAVE_MEMORY_PRESENT
 837void memory_present(int nid, unsigned long start, unsigned long end);
 838#else
 839static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
 840#endif
 841
 842#if defined(CONFIG_SPARSEMEM)
 843void memblocks_present(void);
 844#else
 845static inline void memblocks_present(void) {}
 846#endif
 847
 848#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 849int local_memory_node(int node_id);
 850#else
 851static inline int local_memory_node(int node_id) { return node_id; };
 852#endif
 853
 854/*
 855 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 856 */
 857#define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
 858
 859/*
 860 * Returns true if a zone has pages managed by the buddy allocator.
 861 * All the reclaim decisions have to use this function rather than
 862 * populated_zone(). If the whole zone is reserved then we can easily
 863 * end up with populated_zone() && !managed_zone().
 864 */
 865static inline bool managed_zone(struct zone *zone)
 866{
 867        return zone_managed_pages(zone);
 868}
 869
 870/* Returns true if a zone has memory */
 871static inline bool populated_zone(struct zone *zone)
 872{
 873        return zone->present_pages;
 874}
 875
 876#ifdef CONFIG_NUMA
 877static inline int zone_to_nid(struct zone *zone)
 878{
 879        return zone->node;
 880}
 881
 882static inline void zone_set_nid(struct zone *zone, int nid)
 883{
 884        zone->node = nid;
 885}
 886#else
 887static inline int zone_to_nid(struct zone *zone)
 888{
 889        return 0;
 890}
 891
 892static inline void zone_set_nid(struct zone *zone, int nid) {}
 893#endif
 894
 895extern int movable_zone;
 896
 897#ifdef CONFIG_HIGHMEM
 898static inline int zone_movable_is_highmem(void)
 899{
 900#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 901        return movable_zone == ZONE_HIGHMEM;
 902#else
 903        return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
 904#endif
 905}
 906#endif
 907
 908static inline int is_highmem_idx(enum zone_type idx)
 909{
 910#ifdef CONFIG_HIGHMEM
 911        return (idx == ZONE_HIGHMEM ||
 912                (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
 913#else
 914        return 0;
 915#endif
 916}
 917
 918/**
 919 * is_highmem - helper function to quickly check if a struct zone is a
 920 *              highmem zone or not.  This is an attempt to keep references
 921 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 922 * @zone - pointer to struct zone variable
 923 */
 924static inline int is_highmem(struct zone *zone)
 925{
 926#ifdef CONFIG_HIGHMEM
 927        return is_highmem_idx(zone_idx(zone));
 928#else
 929        return 0;
 930#endif
 931}
 932
 933/* These two functions are used to setup the per zone pages min values */
 934struct ctl_table;
 935int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
 936                                        void __user *, size_t *, loff_t *);
 937int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
 938                                        void __user *, size_t *, loff_t *);
 939int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
 940                                        void __user *, size_t *, loff_t *);
 941extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
 942int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
 943                                        void __user *, size_t *, loff_t *);
 944int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
 945                                        void __user *, size_t *, loff_t *);
 946int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
 947                        void __user *, size_t *, loff_t *);
 948int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
 949                        void __user *, size_t *, loff_t *);
 950
 951extern int numa_zonelist_order_handler(struct ctl_table *, int,
 952                        void __user *, size_t *, loff_t *);
 953extern char numa_zonelist_order[];
 954#define NUMA_ZONELIST_ORDER_LEN 16
 955
 956#ifndef CONFIG_NEED_MULTIPLE_NODES
 957
 958extern struct pglist_data contig_page_data;
 959#define NODE_DATA(nid)          (&contig_page_data)
 960#define NODE_MEM_MAP(nid)       mem_map
 961
 962#else /* CONFIG_NEED_MULTIPLE_NODES */
 963
 964#include <asm/mmzone.h>
 965
 966#endif /* !CONFIG_NEED_MULTIPLE_NODES */
 967
 968extern struct pglist_data *first_online_pgdat(void);
 969extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
 970extern struct zone *next_zone(struct zone *zone);
 971
 972/**
 973 * for_each_online_pgdat - helper macro to iterate over all online nodes
 974 * @pgdat - pointer to a pg_data_t variable
 975 */
 976#define for_each_online_pgdat(pgdat)                    \
 977        for (pgdat = first_online_pgdat();              \
 978             pgdat;                                     \
 979             pgdat = next_online_pgdat(pgdat))
 980/**
 981 * for_each_zone - helper macro to iterate over all memory zones
 982 * @zone - pointer to struct zone variable
 983 *
 984 * The user only needs to declare the zone variable, for_each_zone
 985 * fills it in.
 986 */
 987#define for_each_zone(zone)                             \
 988        for (zone = (first_online_pgdat())->node_zones; \
 989             zone;                                      \
 990             zone = next_zone(zone))
 991
 992#define for_each_populated_zone(zone)                   \
 993        for (zone = (first_online_pgdat())->node_zones; \
 994             zone;                                      \
 995             zone = next_zone(zone))                    \
 996                if (!populated_zone(zone))              \
 997                        ; /* do nothing */              \
 998                else
 999
1000static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1001{
1002        return zoneref->zone;
1003}
1004
1005static inline int zonelist_zone_idx(struct zoneref *zoneref)
1006{
1007        return zoneref->zone_idx;
1008}
1009
1010static inline int zonelist_node_idx(struct zoneref *zoneref)
1011{
1012        return zone_to_nid(zoneref->zone);
1013}
1014
1015struct zoneref *__next_zones_zonelist(struct zoneref *z,
1016                                        enum zone_type highest_zoneidx,
1017                                        nodemask_t *nodes);
1018
1019/**
1020 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1021 * @z - The cursor used as a starting point for the search
1022 * @highest_zoneidx - The zone index of the highest zone to return
1023 * @nodes - An optional nodemask to filter the zonelist with
1024 *
1025 * This function returns the next zone at or below a given zone index that is
1026 * within the allowed nodemask using a cursor as the starting point for the
1027 * search. The zoneref returned is a cursor that represents the current zone
1028 * being examined. It should be advanced by one before calling
1029 * next_zones_zonelist again.
1030 */
1031static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1032                                        enum zone_type highest_zoneidx,
1033                                        nodemask_t *nodes)
1034{
1035        if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1036                return z;
1037        return __next_zones_zonelist(z, highest_zoneidx, nodes);
1038}
1039
1040/**
1041 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1042 * @zonelist - The zonelist to search for a suitable zone
1043 * @highest_zoneidx - The zone index of the highest zone to return
1044 * @nodes - An optional nodemask to filter the zonelist with
1045 * @return - Zoneref pointer for the first suitable zone found (see below)
1046 *
1047 * This function returns the first zone at or below a given zone index that is
1048 * within the allowed nodemask. The zoneref returned is a cursor that can be
1049 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1050 * one before calling.
1051 *
1052 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1053 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1054 * update due to cpuset modification.
1055 */
1056static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1057                                        enum zone_type highest_zoneidx,
1058                                        nodemask_t *nodes)
1059{
1060        return next_zones_zonelist(zonelist->_zonerefs,
1061                                                        highest_zoneidx, nodes);
1062}
1063
1064/**
1065 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1066 * @zone - The current zone in the iterator
1067 * @z - The current pointer within zonelist->zones being iterated
1068 * @zlist - The zonelist being iterated
1069 * @highidx - The zone index of the highest zone to return
1070 * @nodemask - Nodemask allowed by the allocator
1071 *
1072 * This iterator iterates though all zones at or below a given zone index and
1073 * within a given nodemask
1074 */
1075#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1076        for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);       \
1077                zone;                                                   \
1078                z = next_zones_zonelist(++z, highidx, nodemask),        \
1079                        zone = zonelist_zone(z))
1080
1081#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1082        for (zone = z->zone;    \
1083                zone;                                                   \
1084                z = next_zones_zonelist(++z, highidx, nodemask),        \
1085                        zone = zonelist_zone(z))
1086
1087
1088/**
1089 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1090 * @zone - The current zone in the iterator
1091 * @z - The current pointer within zonelist->zones being iterated
1092 * @zlist - The zonelist being iterated
1093 * @highidx - The zone index of the highest zone to return
1094 *
1095 * This iterator iterates though all zones at or below a given zone index.
1096 */
1097#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1098        for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1099
1100#ifdef CONFIG_SPARSEMEM
1101#include <asm/sparsemem.h>
1102#endif
1103
1104#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1105        !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1106static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1107{
1108        BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1109        return 0;
1110}
1111#endif
1112
1113#ifdef CONFIG_FLATMEM
1114#define pfn_to_nid(pfn)         (0)
1115#endif
1116
1117#ifdef CONFIG_SPARSEMEM
1118
1119/*
1120 * SECTION_SHIFT                #bits space required to store a section #
1121 *
1122 * PA_SECTION_SHIFT             physical address to/from section number
1123 * PFN_SECTION_SHIFT            pfn to/from section number
1124 */
1125#define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
1126#define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
1127
1128#define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
1129
1130#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1131#define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
1132
1133#define SECTION_BLOCKFLAGS_BITS \
1134        ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1135
1136#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1137#error Allocator MAX_ORDER exceeds SECTION_SIZE
1138#endif
1139
1140static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1141{
1142        return pfn >> PFN_SECTION_SHIFT;
1143}
1144static inline unsigned long section_nr_to_pfn(unsigned long sec)
1145{
1146        return sec << PFN_SECTION_SHIFT;
1147}
1148
1149#define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1150#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1151
1152#define SUBSECTION_SHIFT 21
1153
1154#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1155#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1156#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1157
1158#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1159#error Subsection size exceeds section size
1160#else
1161#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1162#endif
1163
1164#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1165#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1166
1167struct mem_section_usage {
1168        DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1169        /* See declaration of similar field in struct zone */
1170        unsigned long pageblock_flags[0];
1171};
1172
1173void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1174
1175struct page;
1176struct page_ext;
1177struct mem_section {
1178        /*
1179         * This is, logically, a pointer to an array of struct
1180         * pages.  However, it is stored with some other magic.
1181         * (see sparse.c::sparse_init_one_section())
1182         *
1183         * Additionally during early boot we encode node id of
1184         * the location of the section here to guide allocation.
1185         * (see sparse.c::memory_present())
1186         *
1187         * Making it a UL at least makes someone do a cast
1188         * before using it wrong.
1189         */
1190        unsigned long section_mem_map;
1191
1192        struct mem_section_usage *usage;
1193#ifdef CONFIG_PAGE_EXTENSION
1194        /*
1195         * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1196         * section. (see page_ext.h about this.)
1197         */
1198        struct page_ext *page_ext;
1199        unsigned long pad;
1200#endif
1201        /*
1202         * WARNING: mem_section must be a power-of-2 in size for the
1203         * calculation and use of SECTION_ROOT_MASK to make sense.
1204         */
1205};
1206
1207#ifdef CONFIG_SPARSEMEM_EXTREME
1208#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1209#else
1210#define SECTIONS_PER_ROOT       1
1211#endif
1212
1213#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1214#define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1215#define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
1216
1217#ifdef CONFIG_SPARSEMEM_EXTREME
1218extern struct mem_section **mem_section;
1219#else
1220extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1221#endif
1222
1223static inline unsigned long *section_to_usemap(struct mem_section *ms)
1224{
1225        return ms->usage->pageblock_flags;
1226}
1227
1228static inline struct mem_section *__nr_to_section(unsigned long nr)
1229{
1230#ifdef CONFIG_SPARSEMEM_EXTREME
1231        if (!mem_section)
1232                return NULL;
1233#endif
1234        if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1235                return NULL;
1236        return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1237}
1238extern unsigned long __section_nr(struct mem_section *ms);
1239extern size_t mem_section_usage_size(void);
1240
1241/*
1242 * We use the lower bits of the mem_map pointer to store
1243 * a little bit of information.  The pointer is calculated
1244 * as mem_map - section_nr_to_pfn(pnum).  The result is
1245 * aligned to the minimum alignment of the two values:
1246 *   1. All mem_map arrays are page-aligned.
1247 *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1248 *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1249 *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1250 *      worst combination is powerpc with 256k pages,
1251 *      which results in PFN_SECTION_SHIFT equal 6.
1252 * To sum it up, at least 6 bits are available.
1253 */
1254#define SECTION_MARKED_PRESENT  (1UL<<0)
1255#define SECTION_HAS_MEM_MAP     (1UL<<1)
1256#define SECTION_IS_ONLINE       (1UL<<2)
1257#define SECTION_IS_EARLY        (1UL<<3)
1258#define SECTION_MAP_LAST_BIT    (1UL<<4)
1259#define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
1260#define SECTION_NID_SHIFT       3
1261
1262static inline struct page *__section_mem_map_addr(struct mem_section *section)
1263{
1264        unsigned long map = section->section_mem_map;
1265        map &= SECTION_MAP_MASK;
1266        return (struct page *)map;
1267}
1268
1269static inline int present_section(struct mem_section *section)
1270{
1271        return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1272}
1273
1274static inline int present_section_nr(unsigned long nr)
1275{
1276        return present_section(__nr_to_section(nr));
1277}
1278
1279static inline int valid_section(struct mem_section *section)
1280{
1281        return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1282}
1283
1284static inline int early_section(struct mem_section *section)
1285{
1286        return (section && (section->section_mem_map & SECTION_IS_EARLY));
1287}
1288
1289static inline int valid_section_nr(unsigned long nr)
1290{
1291        return valid_section(__nr_to_section(nr));
1292}
1293
1294static inline int online_section(struct mem_section *section)
1295{
1296        return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1297}
1298
1299static inline int online_section_nr(unsigned long nr)
1300{
1301        return online_section(__nr_to_section(nr));
1302}
1303
1304#ifdef CONFIG_MEMORY_HOTPLUG
1305void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1306#ifdef CONFIG_MEMORY_HOTREMOVE
1307void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1308#endif
1309#endif
1310
1311static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1312{
1313        return __nr_to_section(pfn_to_section_nr(pfn));
1314}
1315
1316extern unsigned long __highest_present_section_nr;
1317
1318static inline int subsection_map_index(unsigned long pfn)
1319{
1320        return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1321}
1322
1323#ifdef CONFIG_SPARSEMEM_VMEMMAP
1324static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1325{
1326        int idx = subsection_map_index(pfn);
1327
1328        return test_bit(idx, ms->usage->subsection_map);
1329}
1330#else
1331static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1332{
1333        return 1;
1334}
1335#endif
1336
1337#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1338static inline int pfn_valid(unsigned long pfn)
1339{
1340        struct mem_section *ms;
1341
1342        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1343                return 0;
1344        ms = __nr_to_section(pfn_to_section_nr(pfn));
1345        if (!valid_section(ms))
1346                return 0;
1347        /*
1348         * Traditionally early sections always returned pfn_valid() for
1349         * the entire section-sized span.
1350         */
1351        return early_section(ms) || pfn_section_valid(ms, pfn);
1352}
1353#endif
1354
1355static inline int pfn_present(unsigned long pfn)
1356{
1357        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1358                return 0;
1359        return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1360}
1361
1362/*
1363 * These are _only_ used during initialisation, therefore they
1364 * can use __initdata ...  They could have names to indicate
1365 * this restriction.
1366 */
1367#ifdef CONFIG_NUMA
1368#define pfn_to_nid(pfn)                                                 \
1369({                                                                      \
1370        unsigned long __pfn_to_nid_pfn = (pfn);                         \
1371        page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
1372})
1373#else
1374#define pfn_to_nid(pfn)         (0)
1375#endif
1376
1377#define early_pfn_valid(pfn)    pfn_valid(pfn)
1378void sparse_init(void);
1379#else
1380#define sparse_init()   do {} while (0)
1381#define sparse_index_init(_sec, _nid)  do {} while (0)
1382#define pfn_present pfn_valid
1383#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1384#endif /* CONFIG_SPARSEMEM */
1385
1386/*
1387 * During memory init memblocks map pfns to nids. The search is expensive and
1388 * this caches recent lookups. The implementation of __early_pfn_to_nid
1389 * may treat start/end as pfns or sections.
1390 */
1391struct mminit_pfnnid_cache {
1392        unsigned long last_start;
1393        unsigned long last_end;
1394        int last_nid;
1395};
1396
1397#ifndef early_pfn_valid
1398#define early_pfn_valid(pfn)    (1)
1399#endif
1400
1401void memory_present(int nid, unsigned long start, unsigned long end);
1402
1403/*
1404 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1405 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1406 * pfn_valid_within() should be used in this case; we optimise this away
1407 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1408 */
1409#ifdef CONFIG_HOLES_IN_ZONE
1410#define pfn_valid_within(pfn) pfn_valid(pfn)
1411#else
1412#define pfn_valid_within(pfn) (1)
1413#endif
1414
1415#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1416/*
1417 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1418 * associated with it or not. This means that a struct page exists for this
1419 * pfn. The caller cannot assume the page is fully initialized in general.
1420 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1421 * will ensure the struct page is fully online and initialized. Special pages
1422 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1423 *
1424 * In FLATMEM, it is expected that holes always have valid memmap as long as
1425 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1426 * that a valid section has a memmap for the entire section.
1427 *
1428 * However, an ARM, and maybe other embedded architectures in the future
1429 * free memmap backing holes to save memory on the assumption the memmap is
1430 * never used. The page_zone linkages are then broken even though pfn_valid()
1431 * returns true. A walker of the full memmap must then do this additional
1432 * check to ensure the memmap they are looking at is sane by making sure
1433 * the zone and PFN linkages are still valid. This is expensive, but walkers
1434 * of the full memmap are extremely rare.
1435 */
1436bool memmap_valid_within(unsigned long pfn,
1437                                        struct page *page, struct zone *zone);
1438#else
1439static inline bool memmap_valid_within(unsigned long pfn,
1440                                        struct page *page, struct zone *zone)
1441{
1442        return true;
1443}
1444#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1445
1446#endif /* !__GENERATING_BOUNDS.H */
1447#endif /* !__ASSEMBLY__ */
1448#endif /* _LINUX_MMZONE_H */
1449