linux/include/linux/mtd/rawnand.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 *  Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
   4 *                        Steven J. Hill <sjhill@realitydiluted.com>
   5 *                        Thomas Gleixner <tglx@linutronix.de>
   6 *
   7 * Info:
   8 *      Contains standard defines and IDs for NAND flash devices
   9 *
  10 * Changelog:
  11 *      See git changelog.
  12 */
  13#ifndef __LINUX_MTD_RAWNAND_H
  14#define __LINUX_MTD_RAWNAND_H
  15
  16#include <linux/mtd/mtd.h>
  17#include <linux/mtd/flashchip.h>
  18#include <linux/mtd/bbm.h>
  19#include <linux/mtd/jedec.h>
  20#include <linux/mtd/nand.h>
  21#include <linux/mtd/onfi.h>
  22#include <linux/mutex.h>
  23#include <linux/of.h>
  24#include <linux/types.h>
  25
  26struct nand_chip;
  27
  28/* The maximum number of NAND chips in an array */
  29#define NAND_MAX_CHIPS          8
  30
  31/*
  32 * Constants for hardware specific CLE/ALE/NCE function
  33 *
  34 * These are bits which can be or'ed to set/clear multiple
  35 * bits in one go.
  36 */
  37/* Select the chip by setting nCE to low */
  38#define NAND_NCE                0x01
  39/* Select the command latch by setting CLE to high */
  40#define NAND_CLE                0x02
  41/* Select the address latch by setting ALE to high */
  42#define NAND_ALE                0x04
  43
  44#define NAND_CTRL_CLE           (NAND_NCE | NAND_CLE)
  45#define NAND_CTRL_ALE           (NAND_NCE | NAND_ALE)
  46#define NAND_CTRL_CHANGE        0x80
  47
  48/*
  49 * Standard NAND flash commands
  50 */
  51#define NAND_CMD_READ0          0
  52#define NAND_CMD_READ1          1
  53#define NAND_CMD_RNDOUT         5
  54#define NAND_CMD_PAGEPROG       0x10
  55#define NAND_CMD_READOOB        0x50
  56#define NAND_CMD_ERASE1         0x60
  57#define NAND_CMD_STATUS         0x70
  58#define NAND_CMD_SEQIN          0x80
  59#define NAND_CMD_RNDIN          0x85
  60#define NAND_CMD_READID         0x90
  61#define NAND_CMD_ERASE2         0xd0
  62#define NAND_CMD_PARAM          0xec
  63#define NAND_CMD_GET_FEATURES   0xee
  64#define NAND_CMD_SET_FEATURES   0xef
  65#define NAND_CMD_RESET          0xff
  66
  67/* Extended commands for large page devices */
  68#define NAND_CMD_READSTART      0x30
  69#define NAND_CMD_RNDOUTSTART    0xE0
  70#define NAND_CMD_CACHEDPROG     0x15
  71
  72#define NAND_CMD_NONE           -1
  73
  74/* Status bits */
  75#define NAND_STATUS_FAIL        0x01
  76#define NAND_STATUS_FAIL_N1     0x02
  77#define NAND_STATUS_TRUE_READY  0x20
  78#define NAND_STATUS_READY       0x40
  79#define NAND_STATUS_WP          0x80
  80
  81#define NAND_DATA_IFACE_CHECK_ONLY      -1
  82
  83/*
  84 * Constants for ECC_MODES
  85 */
  86typedef enum {
  87        NAND_ECC_NONE,
  88        NAND_ECC_SOFT,
  89        NAND_ECC_HW,
  90        NAND_ECC_HW_SYNDROME,
  91        NAND_ECC_HW_OOB_FIRST,
  92        NAND_ECC_ON_DIE,
  93} nand_ecc_modes_t;
  94
  95enum nand_ecc_algo {
  96        NAND_ECC_UNKNOWN,
  97        NAND_ECC_HAMMING,
  98        NAND_ECC_BCH,
  99        NAND_ECC_RS,
 100};
 101
 102/*
 103 * Constants for Hardware ECC
 104 */
 105/* Reset Hardware ECC for read */
 106#define NAND_ECC_READ           0
 107/* Reset Hardware ECC for write */
 108#define NAND_ECC_WRITE          1
 109/* Enable Hardware ECC before syndrome is read back from flash */
 110#define NAND_ECC_READSYN        2
 111
 112/*
 113 * Enable generic NAND 'page erased' check. This check is only done when
 114 * ecc.correct() returns -EBADMSG.
 115 * Set this flag if your implementation does not fix bitflips in erased
 116 * pages and you want to rely on the default implementation.
 117 */
 118#define NAND_ECC_GENERIC_ERASED_CHECK   BIT(0)
 119#define NAND_ECC_MAXIMIZE               BIT(1)
 120
 121/*
 122 * When using software implementation of Hamming, we can specify which byte
 123 * ordering should be used.
 124 */
 125#define NAND_ECC_SOFT_HAMMING_SM_ORDER  BIT(2)
 126
 127/*
 128 * Option constants for bizarre disfunctionality and real
 129 * features.
 130 */
 131/* Buswidth is 16 bit */
 132#define NAND_BUSWIDTH_16        0x00000002
 133/* Chip has cache program function */
 134#define NAND_CACHEPRG           0x00000008
 135/*
 136 * Chip requires ready check on read (for auto-incremented sequential read).
 137 * True only for small page devices; large page devices do not support
 138 * autoincrement.
 139 */
 140#define NAND_NEED_READRDY       0x00000100
 141
 142/* Chip does not allow subpage writes */
 143#define NAND_NO_SUBPAGE_WRITE   0x00000200
 144
 145/* Device is one of 'new' xD cards that expose fake nand command set */
 146#define NAND_BROKEN_XD          0x00000400
 147
 148/* Device behaves just like nand, but is readonly */
 149#define NAND_ROM                0x00000800
 150
 151/* Device supports subpage reads */
 152#define NAND_SUBPAGE_READ       0x00001000
 153
 154/*
 155 * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
 156 * patterns.
 157 */
 158#define NAND_NEED_SCRAMBLING    0x00002000
 159
 160/* Device needs 3rd row address cycle */
 161#define NAND_ROW_ADDR_3         0x00004000
 162
 163/* Options valid for Samsung large page devices */
 164#define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
 165
 166/* Macros to identify the above */
 167#define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))
 168
 169/*
 170 * There are different places where the manufacturer stores the factory bad
 171 * block markers.
 172 *
 173 * Position within the block: Each of these pages needs to be checked for a
 174 * bad block marking pattern.
 175 */
 176#define NAND_BBM_FIRSTPAGE              0x01000000
 177#define NAND_BBM_SECONDPAGE             0x02000000
 178#define NAND_BBM_LASTPAGE               0x04000000
 179
 180/* Position within the OOB data of the page */
 181#define NAND_BBM_POS_SMALL              5
 182#define NAND_BBM_POS_LARGE              0
 183
 184/* Non chip related options */
 185/* This option skips the bbt scan during initialization. */
 186#define NAND_SKIP_BBTSCAN       0x00010000
 187/* Chip may not exist, so silence any errors in scan */
 188#define NAND_SCAN_SILENT_NODEV  0x00040000
 189/*
 190 * Autodetect nand buswidth with readid/onfi.
 191 * This suppose the driver will configure the hardware in 8 bits mode
 192 * when calling nand_scan_ident, and update its configuration
 193 * before calling nand_scan_tail.
 194 */
 195#define NAND_BUSWIDTH_AUTO      0x00080000
 196/*
 197 * This option could be defined by controller drivers to protect against
 198 * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
 199 */
 200#define NAND_USE_BOUNCE_BUFFER  0x00100000
 201
 202/*
 203 * In case your controller is implementing ->legacy.cmd_ctrl() and is relying
 204 * on the default ->cmdfunc() implementation, you may want to let the core
 205 * handle the tCCS delay which is required when a column change (RNDIN or
 206 * RNDOUT) is requested.
 207 * If your controller already takes care of this delay, you don't need to set
 208 * this flag.
 209 */
 210#define NAND_WAIT_TCCS          0x00200000
 211
 212/*
 213 * Whether the NAND chip is a boot medium. Drivers might use this information
 214 * to select ECC algorithms supported by the boot ROM or similar restrictions.
 215 */
 216#define NAND_IS_BOOT_MEDIUM     0x00400000
 217
 218/*
 219 * Do not try to tweak the timings at runtime. This is needed when the
 220 * controller initializes the timings on itself or when it relies on
 221 * configuration done by the bootloader.
 222 */
 223#define NAND_KEEP_TIMINGS       0x00800000
 224
 225/* Cell info constants */
 226#define NAND_CI_CHIPNR_MSK      0x03
 227#define NAND_CI_CELLTYPE_MSK    0x0C
 228#define NAND_CI_CELLTYPE_SHIFT  2
 229
 230/**
 231 * struct nand_parameters - NAND generic parameters from the parameter page
 232 * @model: Model name
 233 * @supports_set_get_features: The NAND chip supports setting/getting features
 234 * @set_feature_list: Bitmap of features that can be set
 235 * @get_feature_list: Bitmap of features that can be get
 236 * @onfi: ONFI specific parameters
 237 */
 238struct nand_parameters {
 239        /* Generic parameters */
 240        const char *model;
 241        bool supports_set_get_features;
 242        DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
 243        DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);
 244
 245        /* ONFI parameters */
 246        struct onfi_params *onfi;
 247};
 248
 249/* The maximum expected count of bytes in the NAND ID sequence */
 250#define NAND_MAX_ID_LEN 8
 251
 252/**
 253 * struct nand_id - NAND id structure
 254 * @data: buffer containing the id bytes.
 255 * @len: ID length.
 256 */
 257struct nand_id {
 258        u8 data[NAND_MAX_ID_LEN];
 259        int len;
 260};
 261
 262/**
 263 * struct nand_ecc_step_info - ECC step information of ECC engine
 264 * @stepsize: data bytes per ECC step
 265 * @strengths: array of supported strengths
 266 * @nstrengths: number of supported strengths
 267 */
 268struct nand_ecc_step_info {
 269        int stepsize;
 270        const int *strengths;
 271        int nstrengths;
 272};
 273
 274/**
 275 * struct nand_ecc_caps - capability of ECC engine
 276 * @stepinfos: array of ECC step information
 277 * @nstepinfos: number of ECC step information
 278 * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
 279 */
 280struct nand_ecc_caps {
 281        const struct nand_ecc_step_info *stepinfos;
 282        int nstepinfos;
 283        int (*calc_ecc_bytes)(int step_size, int strength);
 284};
 285
 286/* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
 287#define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...)       \
 288static const int __name##_strengths[] = { __VA_ARGS__ };        \
 289static const struct nand_ecc_step_info __name##_stepinfo = {    \
 290        .stepsize = __step,                                     \
 291        .strengths = __name##_strengths,                        \
 292        .nstrengths = ARRAY_SIZE(__name##_strengths),           \
 293};                                                              \
 294static const struct nand_ecc_caps __name = {                    \
 295        .stepinfos = &__name##_stepinfo,                        \
 296        .nstepinfos = 1,                                        \
 297        .calc_ecc_bytes = __calc,                               \
 298}
 299
 300/**
 301 * struct nand_ecc_ctrl - Control structure for ECC
 302 * @mode:       ECC mode
 303 * @algo:       ECC algorithm
 304 * @steps:      number of ECC steps per page
 305 * @size:       data bytes per ECC step
 306 * @bytes:      ECC bytes per step
 307 * @strength:   max number of correctible bits per ECC step
 308 * @total:      total number of ECC bytes per page
 309 * @prepad:     padding information for syndrome based ECC generators
 310 * @postpad:    padding information for syndrome based ECC generators
 311 * @options:    ECC specific options (see NAND_ECC_XXX flags defined above)
 312 * @priv:       pointer to private ECC control data
 313 * @calc_buf:   buffer for calculated ECC, size is oobsize.
 314 * @code_buf:   buffer for ECC read from flash, size is oobsize.
 315 * @hwctl:      function to control hardware ECC generator. Must only
 316 *              be provided if an hardware ECC is available
 317 * @calculate:  function for ECC calculation or readback from ECC hardware
 318 * @correct:    function for ECC correction, matching to ECC generator (sw/hw).
 319 *              Should return a positive number representing the number of
 320 *              corrected bitflips, -EBADMSG if the number of bitflips exceed
 321 *              ECC strength, or any other error code if the error is not
 322 *              directly related to correction.
 323 *              If -EBADMSG is returned the input buffers should be left
 324 *              untouched.
 325 * @read_page_raw:      function to read a raw page without ECC. This function
 326 *                      should hide the specific layout used by the ECC
 327 *                      controller and always return contiguous in-band and
 328 *                      out-of-band data even if they're not stored
 329 *                      contiguously on the NAND chip (e.g.
 330 *                      NAND_ECC_HW_SYNDROME interleaves in-band and
 331 *                      out-of-band data).
 332 * @write_page_raw:     function to write a raw page without ECC. This function
 333 *                      should hide the specific layout used by the ECC
 334 *                      controller and consider the passed data as contiguous
 335 *                      in-band and out-of-band data. ECC controller is
 336 *                      responsible for doing the appropriate transformations
 337 *                      to adapt to its specific layout (e.g.
 338 *                      NAND_ECC_HW_SYNDROME interleaves in-band and
 339 *                      out-of-band data).
 340 * @read_page:  function to read a page according to the ECC generator
 341 *              requirements; returns maximum number of bitflips corrected in
 342 *              any single ECC step, -EIO hw error
 343 * @read_subpage:       function to read parts of the page covered by ECC;
 344 *                      returns same as read_page()
 345 * @write_subpage:      function to write parts of the page covered by ECC.
 346 * @write_page: function to write a page according to the ECC generator
 347 *              requirements.
 348 * @write_oob_raw:      function to write chip OOB data without ECC
 349 * @read_oob_raw:       function to read chip OOB data without ECC
 350 * @read_oob:   function to read chip OOB data
 351 * @write_oob:  function to write chip OOB data
 352 */
 353struct nand_ecc_ctrl {
 354        nand_ecc_modes_t mode;
 355        enum nand_ecc_algo algo;
 356        int steps;
 357        int size;
 358        int bytes;
 359        int total;
 360        int strength;
 361        int prepad;
 362        int postpad;
 363        unsigned int options;
 364        void *priv;
 365        u8 *calc_buf;
 366        u8 *code_buf;
 367        void (*hwctl)(struct nand_chip *chip, int mode);
 368        int (*calculate)(struct nand_chip *chip, const uint8_t *dat,
 369                         uint8_t *ecc_code);
 370        int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc,
 371                       uint8_t *calc_ecc);
 372        int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf,
 373                             int oob_required, int page);
 374        int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf,
 375                              int oob_required, int page);
 376        int (*read_page)(struct nand_chip *chip, uint8_t *buf,
 377                         int oob_required, int page);
 378        int (*read_subpage)(struct nand_chip *chip, uint32_t offs,
 379                            uint32_t len, uint8_t *buf, int page);
 380        int (*write_subpage)(struct nand_chip *chip, uint32_t offset,
 381                             uint32_t data_len, const uint8_t *data_buf,
 382                             int oob_required, int page);
 383        int (*write_page)(struct nand_chip *chip, const uint8_t *buf,
 384                          int oob_required, int page);
 385        int (*write_oob_raw)(struct nand_chip *chip, int page);
 386        int (*read_oob_raw)(struct nand_chip *chip, int page);
 387        int (*read_oob)(struct nand_chip *chip, int page);
 388        int (*write_oob)(struct nand_chip *chip, int page);
 389};
 390
 391/**
 392 * struct nand_sdr_timings - SDR NAND chip timings
 393 *
 394 * This struct defines the timing requirements of a SDR NAND chip.
 395 * These information can be found in every NAND datasheets and the timings
 396 * meaning are described in the ONFI specifications:
 397 * www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing
 398 * Parameters)
 399 *
 400 * All these timings are expressed in picoseconds.
 401 *
 402 * @tBERS_max: Block erase time
 403 * @tCCS_min: Change column setup time
 404 * @tPROG_max: Page program time
 405 * @tR_max: Page read time
 406 * @tALH_min: ALE hold time
 407 * @tADL_min: ALE to data loading time
 408 * @tALS_min: ALE setup time
 409 * @tAR_min: ALE to RE# delay
 410 * @tCEA_max: CE# access time
 411 * @tCEH_min: CE# high hold time
 412 * @tCH_min:  CE# hold time
 413 * @tCHZ_max: CE# high to output hi-Z
 414 * @tCLH_min: CLE hold time
 415 * @tCLR_min: CLE to RE# delay
 416 * @tCLS_min: CLE setup time
 417 * @tCOH_min: CE# high to output hold
 418 * @tCS_min: CE# setup time
 419 * @tDH_min: Data hold time
 420 * @tDS_min: Data setup time
 421 * @tFEAT_max: Busy time for Set Features and Get Features
 422 * @tIR_min: Output hi-Z to RE# low
 423 * @tITC_max: Interface and Timing Mode Change time
 424 * @tRC_min: RE# cycle time
 425 * @tREA_max: RE# access time
 426 * @tREH_min: RE# high hold time
 427 * @tRHOH_min: RE# high to output hold
 428 * @tRHW_min: RE# high to WE# low
 429 * @tRHZ_max: RE# high to output hi-Z
 430 * @tRLOH_min: RE# low to output hold
 431 * @tRP_min: RE# pulse width
 432 * @tRR_min: Ready to RE# low (data only)
 433 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
 434 *            rising edge of R/B#.
 435 * @tWB_max: WE# high to SR[6] low
 436 * @tWC_min: WE# cycle time
 437 * @tWH_min: WE# high hold time
 438 * @tWHR_min: WE# high to RE# low
 439 * @tWP_min: WE# pulse width
 440 * @tWW_min: WP# transition to WE# low
 441 */
 442struct nand_sdr_timings {
 443        u64 tBERS_max;
 444        u32 tCCS_min;
 445        u64 tPROG_max;
 446        u64 tR_max;
 447        u32 tALH_min;
 448        u32 tADL_min;
 449        u32 tALS_min;
 450        u32 tAR_min;
 451        u32 tCEA_max;
 452        u32 tCEH_min;
 453        u32 tCH_min;
 454        u32 tCHZ_max;
 455        u32 tCLH_min;
 456        u32 tCLR_min;
 457        u32 tCLS_min;
 458        u32 tCOH_min;
 459        u32 tCS_min;
 460        u32 tDH_min;
 461        u32 tDS_min;
 462        u32 tFEAT_max;
 463        u32 tIR_min;
 464        u32 tITC_max;
 465        u32 tRC_min;
 466        u32 tREA_max;
 467        u32 tREH_min;
 468        u32 tRHOH_min;
 469        u32 tRHW_min;
 470        u32 tRHZ_max;
 471        u32 tRLOH_min;
 472        u32 tRP_min;
 473        u32 tRR_min;
 474        u64 tRST_max;
 475        u32 tWB_max;
 476        u32 tWC_min;
 477        u32 tWH_min;
 478        u32 tWHR_min;
 479        u32 tWP_min;
 480        u32 tWW_min;
 481};
 482
 483/**
 484 * enum nand_data_interface_type - NAND interface timing type
 485 * @NAND_SDR_IFACE:     Single Data Rate interface
 486 */
 487enum nand_data_interface_type {
 488        NAND_SDR_IFACE,
 489};
 490
 491/**
 492 * struct nand_data_interface - NAND interface timing
 493 * @type:        type of the timing
 494 * @timings:     The timing, type according to @type
 495 * @timings.sdr: Use it when @type is %NAND_SDR_IFACE.
 496 */
 497struct nand_data_interface {
 498        enum nand_data_interface_type type;
 499        union {
 500                struct nand_sdr_timings sdr;
 501        } timings;
 502};
 503
 504/**
 505 * nand_get_sdr_timings - get SDR timing from data interface
 506 * @conf:       The data interface
 507 */
 508static inline const struct nand_sdr_timings *
 509nand_get_sdr_timings(const struct nand_data_interface *conf)
 510{
 511        if (conf->type != NAND_SDR_IFACE)
 512                return ERR_PTR(-EINVAL);
 513
 514        return &conf->timings.sdr;
 515}
 516
 517/**
 518 * struct nand_op_cmd_instr - Definition of a command instruction
 519 * @opcode: the command to issue in one cycle
 520 */
 521struct nand_op_cmd_instr {
 522        u8 opcode;
 523};
 524
 525/**
 526 * struct nand_op_addr_instr - Definition of an address instruction
 527 * @naddrs: length of the @addrs array
 528 * @addrs: array containing the address cycles to issue
 529 */
 530struct nand_op_addr_instr {
 531        unsigned int naddrs;
 532        const u8 *addrs;
 533};
 534
 535/**
 536 * struct nand_op_data_instr - Definition of a data instruction
 537 * @len: number of data bytes to move
 538 * @buf: buffer to fill
 539 * @buf.in: buffer to fill when reading from the NAND chip
 540 * @buf.out: buffer to read from when writing to the NAND chip
 541 * @force_8bit: force 8-bit access
 542 *
 543 * Please note that "in" and "out" are inverted from the ONFI specification
 544 * and are from the controller perspective, so a "in" is a read from the NAND
 545 * chip while a "out" is a write to the NAND chip.
 546 */
 547struct nand_op_data_instr {
 548        unsigned int len;
 549        union {
 550                void *in;
 551                const void *out;
 552        } buf;
 553        bool force_8bit;
 554};
 555
 556/**
 557 * struct nand_op_waitrdy_instr - Definition of a wait ready instruction
 558 * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
 559 */
 560struct nand_op_waitrdy_instr {
 561        unsigned int timeout_ms;
 562};
 563
 564/**
 565 * enum nand_op_instr_type - Definition of all instruction types
 566 * @NAND_OP_CMD_INSTR: command instruction
 567 * @NAND_OP_ADDR_INSTR: address instruction
 568 * @NAND_OP_DATA_IN_INSTR: data in instruction
 569 * @NAND_OP_DATA_OUT_INSTR: data out instruction
 570 * @NAND_OP_WAITRDY_INSTR: wait ready instruction
 571 */
 572enum nand_op_instr_type {
 573        NAND_OP_CMD_INSTR,
 574        NAND_OP_ADDR_INSTR,
 575        NAND_OP_DATA_IN_INSTR,
 576        NAND_OP_DATA_OUT_INSTR,
 577        NAND_OP_WAITRDY_INSTR,
 578};
 579
 580/**
 581 * struct nand_op_instr - Instruction object
 582 * @type: the instruction type
 583 * @ctx:  extra data associated to the instruction. You'll have to use the
 584 *        appropriate element depending on @type
 585 * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR
 586 * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR
 587 * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR
 588 *            or %NAND_OP_DATA_OUT_INSTR
 589 * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR
 590 * @delay_ns: delay the controller should apply after the instruction has been
 591 *            issued on the bus. Most modern controllers have internal timings
 592 *            control logic, and in this case, the controller driver can ignore
 593 *            this field.
 594 */
 595struct nand_op_instr {
 596        enum nand_op_instr_type type;
 597        union {
 598                struct nand_op_cmd_instr cmd;
 599                struct nand_op_addr_instr addr;
 600                struct nand_op_data_instr data;
 601                struct nand_op_waitrdy_instr waitrdy;
 602        } ctx;
 603        unsigned int delay_ns;
 604};
 605
 606/*
 607 * Special handling must be done for the WAITRDY timeout parameter as it usually
 608 * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
 609 * tBERS (during an erase) which all of them are u64 values that cannot be
 610 * divided by usual kernel macros and must be handled with the special
 611 * DIV_ROUND_UP_ULL() macro.
 612 *
 613 * Cast to type of dividend is needed here to guarantee that the result won't
 614 * be an unsigned long long when the dividend is an unsigned long (or smaller),
 615 * which is what the compiler does when it sees ternary operator with 2
 616 * different return types (picks the largest type to make sure there's no
 617 * loss).
 618 */
 619#define __DIVIDE(dividend, divisor) ({                                          \
 620        (__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ?      \
 621                               DIV_ROUND_UP(dividend, divisor) :                \
 622                               DIV_ROUND_UP_ULL(dividend, divisor));            \
 623        })
 624#define PSEC_TO_NSEC(x) __DIVIDE(x, 1000)
 625#define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000)
 626
 627#define NAND_OP_CMD(id, ns)                                             \
 628        {                                                               \
 629                .type = NAND_OP_CMD_INSTR,                              \
 630                .ctx.cmd.opcode = id,                                   \
 631                .delay_ns = ns,                                         \
 632        }
 633
 634#define NAND_OP_ADDR(ncycles, cycles, ns)                               \
 635        {                                                               \
 636                .type = NAND_OP_ADDR_INSTR,                             \
 637                .ctx.addr = {                                           \
 638                        .naddrs = ncycles,                              \
 639                        .addrs = cycles,                                \
 640                },                                                      \
 641                .delay_ns = ns,                                         \
 642        }
 643
 644#define NAND_OP_DATA_IN(l, b, ns)                                       \
 645        {                                                               \
 646                .type = NAND_OP_DATA_IN_INSTR,                          \
 647                .ctx.data = {                                           \
 648                        .len = l,                                       \
 649                        .buf.in = b,                                    \
 650                        .force_8bit = false,                            \
 651                },                                                      \
 652                .delay_ns = ns,                                         \
 653        }
 654
 655#define NAND_OP_DATA_OUT(l, b, ns)                                      \
 656        {                                                               \
 657                .type = NAND_OP_DATA_OUT_INSTR,                         \
 658                .ctx.data = {                                           \
 659                        .len = l,                                       \
 660                        .buf.out = b,                                   \
 661                        .force_8bit = false,                            \
 662                },                                                      \
 663                .delay_ns = ns,                                         \
 664        }
 665
 666#define NAND_OP_8BIT_DATA_IN(l, b, ns)                                  \
 667        {                                                               \
 668                .type = NAND_OP_DATA_IN_INSTR,                          \
 669                .ctx.data = {                                           \
 670                        .len = l,                                       \
 671                        .buf.in = b,                                    \
 672                        .force_8bit = true,                             \
 673                },                                                      \
 674                .delay_ns = ns,                                         \
 675        }
 676
 677#define NAND_OP_8BIT_DATA_OUT(l, b, ns)                                 \
 678        {                                                               \
 679                .type = NAND_OP_DATA_OUT_INSTR,                         \
 680                .ctx.data = {                                           \
 681                        .len = l,                                       \
 682                        .buf.out = b,                                   \
 683                        .force_8bit = true,                             \
 684                },                                                      \
 685                .delay_ns = ns,                                         \
 686        }
 687
 688#define NAND_OP_WAIT_RDY(tout_ms, ns)                                   \
 689        {                                                               \
 690                .type = NAND_OP_WAITRDY_INSTR,                          \
 691                .ctx.waitrdy.timeout_ms = tout_ms,                      \
 692                .delay_ns = ns,                                         \
 693        }
 694
 695/**
 696 * struct nand_subop - a sub operation
 697 * @instrs: array of instructions
 698 * @ninstrs: length of the @instrs array
 699 * @first_instr_start_off: offset to start from for the first instruction
 700 *                         of the sub-operation
 701 * @last_instr_end_off: offset to end at (excluded) for the last instruction
 702 *                      of the sub-operation
 703 *
 704 * Both @first_instr_start_off and @last_instr_end_off only apply to data or
 705 * address instructions.
 706 *
 707 * When an operation cannot be handled as is by the NAND controller, it will
 708 * be split by the parser into sub-operations which will be passed to the
 709 * controller driver.
 710 */
 711struct nand_subop {
 712        const struct nand_op_instr *instrs;
 713        unsigned int ninstrs;
 714        unsigned int first_instr_start_off;
 715        unsigned int last_instr_end_off;
 716};
 717
 718unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
 719                                           unsigned int op_id);
 720unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
 721                                         unsigned int op_id);
 722unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
 723                                           unsigned int op_id);
 724unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
 725                                     unsigned int op_id);
 726
 727/**
 728 * struct nand_op_parser_addr_constraints - Constraints for address instructions
 729 * @maxcycles: maximum number of address cycles the controller can issue in a
 730 *             single step
 731 */
 732struct nand_op_parser_addr_constraints {
 733        unsigned int maxcycles;
 734};
 735
 736/**
 737 * struct nand_op_parser_data_constraints - Constraints for data instructions
 738 * @maxlen: maximum data length that the controller can handle in a single step
 739 */
 740struct nand_op_parser_data_constraints {
 741        unsigned int maxlen;
 742};
 743
 744/**
 745 * struct nand_op_parser_pattern_elem - One element of a pattern
 746 * @type: the instructuction type
 747 * @optional: whether this element of the pattern is optional or mandatory
 748 * @ctx: address or data constraint
 749 * @ctx.addr: address constraint (number of cycles)
 750 * @ctx.data: data constraint (data length)
 751 */
 752struct nand_op_parser_pattern_elem {
 753        enum nand_op_instr_type type;
 754        bool optional;
 755        union {
 756                struct nand_op_parser_addr_constraints addr;
 757                struct nand_op_parser_data_constraints data;
 758        } ctx;
 759};
 760
 761#define NAND_OP_PARSER_PAT_CMD_ELEM(_opt)                       \
 762        {                                                       \
 763                .type = NAND_OP_CMD_INSTR,                      \
 764                .optional = _opt,                               \
 765        }
 766
 767#define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles)          \
 768        {                                                       \
 769                .type = NAND_OP_ADDR_INSTR,                     \
 770                .optional = _opt,                               \
 771                .ctx.addr.maxcycles = _maxcycles,               \
 772        }
 773
 774#define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen)          \
 775        {                                                       \
 776                .type = NAND_OP_DATA_IN_INSTR,                  \
 777                .optional = _opt,                               \
 778                .ctx.data.maxlen = _maxlen,                     \
 779        }
 780
 781#define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen)         \
 782        {                                                       \
 783                .type = NAND_OP_DATA_OUT_INSTR,                 \
 784                .optional = _opt,                               \
 785                .ctx.data.maxlen = _maxlen,                     \
 786        }
 787
 788#define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt)                   \
 789        {                                                       \
 790                .type = NAND_OP_WAITRDY_INSTR,                  \
 791                .optional = _opt,                               \
 792        }
 793
 794/**
 795 * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
 796 * @elems: array of pattern elements
 797 * @nelems: number of pattern elements in @elems array
 798 * @exec: the function that will issue a sub-operation
 799 *
 800 * A pattern is a list of elements, each element reprensenting one instruction
 801 * with its constraints. The pattern itself is used by the core to match NAND
 802 * chip operation with NAND controller operations.
 803 * Once a match between a NAND controller operation pattern and a NAND chip
 804 * operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
 805 * hook is called so that the controller driver can issue the operation on the
 806 * bus.
 807 *
 808 * Controller drivers should declare as many patterns as they support and pass
 809 * this list of patterns (created with the help of the following macro) to
 810 * the nand_op_parser_exec_op() helper.
 811 */
 812struct nand_op_parser_pattern {
 813        const struct nand_op_parser_pattern_elem *elems;
 814        unsigned int nelems;
 815        int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);
 816};
 817
 818#define NAND_OP_PARSER_PATTERN(_exec, ...)                                                      \
 819        {                                                                                       \
 820                .exec = _exec,                                                                  \
 821                .elems = (const struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ },          \
 822                .nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) /      \
 823                          sizeof(struct nand_op_parser_pattern_elem),                           \
 824        }
 825
 826/**
 827 * struct nand_op_parser - NAND controller operation parser descriptor
 828 * @patterns: array of supported patterns
 829 * @npatterns: length of the @patterns array
 830 *
 831 * The parser descriptor is just an array of supported patterns which will be
 832 * iterated by nand_op_parser_exec_op() everytime it tries to execute an
 833 * NAND operation (or tries to determine if a specific operation is supported).
 834 *
 835 * It is worth mentioning that patterns will be tested in their declaration
 836 * order, and the first match will be taken, so it's important to order patterns
 837 * appropriately so that simple/inefficient patterns are placed at the end of
 838 * the list. Usually, this is where you put single instruction patterns.
 839 */
 840struct nand_op_parser {
 841        const struct nand_op_parser_pattern *patterns;
 842        unsigned int npatterns;
 843};
 844
 845#define NAND_OP_PARSER(...)                                                                     \
 846        {                                                                                       \
 847                .patterns = (const struct nand_op_parser_pattern[]) { __VA_ARGS__ },            \
 848                .npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) /        \
 849                             sizeof(struct nand_op_parser_pattern),                             \
 850        }
 851
 852/**
 853 * struct nand_operation - NAND operation descriptor
 854 * @cs: the CS line to select for this NAND operation
 855 * @instrs: array of instructions to execute
 856 * @ninstrs: length of the @instrs array
 857 *
 858 * The actual operation structure that will be passed to chip->exec_op().
 859 */
 860struct nand_operation {
 861        unsigned int cs;
 862        const struct nand_op_instr *instrs;
 863        unsigned int ninstrs;
 864};
 865
 866#define NAND_OPERATION(_cs, _instrs)                            \
 867        {                                                       \
 868                .cs = _cs,                                      \
 869                .instrs = _instrs,                              \
 870                .ninstrs = ARRAY_SIZE(_instrs),                 \
 871        }
 872
 873int nand_op_parser_exec_op(struct nand_chip *chip,
 874                           const struct nand_op_parser *parser,
 875                           const struct nand_operation *op, bool check_only);
 876
 877static inline void nand_op_trace(const char *prefix,
 878                                 const struct nand_op_instr *instr)
 879{
 880#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
 881        switch (instr->type) {
 882        case NAND_OP_CMD_INSTR:
 883                pr_debug("%sCMD      [0x%02x]\n", prefix,
 884                         instr->ctx.cmd.opcode);
 885                break;
 886        case NAND_OP_ADDR_INSTR:
 887                pr_debug("%sADDR     [%d cyc: %*ph]\n", prefix,
 888                         instr->ctx.addr.naddrs,
 889                         instr->ctx.addr.naddrs < 64 ?
 890                         instr->ctx.addr.naddrs : 64,
 891                         instr->ctx.addr.addrs);
 892                break;
 893        case NAND_OP_DATA_IN_INSTR:
 894                pr_debug("%sDATA_IN  [%d B%s]\n", prefix,
 895                         instr->ctx.data.len,
 896                         instr->ctx.data.force_8bit ?
 897                         ", force 8-bit" : "");
 898                break;
 899        case NAND_OP_DATA_OUT_INSTR:
 900                pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
 901                         instr->ctx.data.len,
 902                         instr->ctx.data.force_8bit ?
 903                         ", force 8-bit" : "");
 904                break;
 905        case NAND_OP_WAITRDY_INSTR:
 906                pr_debug("%sWAITRDY  [max %d ms]\n", prefix,
 907                         instr->ctx.waitrdy.timeout_ms);
 908                break;
 909        }
 910#endif
 911}
 912
 913/**
 914 * struct nand_controller_ops - Controller operations
 915 *
 916 * @attach_chip: this method is called after the NAND detection phase after
 917 *               flash ID and MTD fields such as erase size, page size and OOB
 918 *               size have been set up. ECC requirements are available if
 919 *               provided by the NAND chip or device tree. Typically used to
 920 *               choose the appropriate ECC configuration and allocate
 921 *               associated resources.
 922 *               This hook is optional.
 923 * @detach_chip: free all resources allocated/claimed in
 924 *               nand_controller_ops->attach_chip().
 925 *               This hook is optional.
 926 * @exec_op:     controller specific method to execute NAND operations.
 927 *               This method replaces chip->legacy.cmdfunc(),
 928 *               chip->legacy.{read,write}_{buf,byte,word}(),
 929 *               chip->legacy.dev_ready() and chip->legacy.waifunc().
 930 * @setup_data_interface: setup the data interface and timing. If
 931 *                        chipnr is set to %NAND_DATA_IFACE_CHECK_ONLY this
 932 *                        means the configuration should not be applied but
 933 *                        only checked.
 934 *                        This hook is optional.
 935 */
 936struct nand_controller_ops {
 937        int (*attach_chip)(struct nand_chip *chip);
 938        void (*detach_chip)(struct nand_chip *chip);
 939        int (*exec_op)(struct nand_chip *chip,
 940                       const struct nand_operation *op,
 941                       bool check_only);
 942        int (*setup_data_interface)(struct nand_chip *chip, int chipnr,
 943                                    const struct nand_data_interface *conf);
 944};
 945
 946/**
 947 * struct nand_controller - Structure used to describe a NAND controller
 948 *
 949 * @lock:               lock used to serialize accesses to the NAND controller
 950 * @ops:                NAND controller operations.
 951 */
 952struct nand_controller {
 953        struct mutex lock;
 954        const struct nand_controller_ops *ops;
 955};
 956
 957static inline void nand_controller_init(struct nand_controller *nfc)
 958{
 959        mutex_init(&nfc->lock);
 960}
 961
 962/**
 963 * struct nand_legacy - NAND chip legacy fields/hooks
 964 * @IO_ADDR_R: address to read the 8 I/O lines of the flash device
 965 * @IO_ADDR_W: address to write the 8 I/O lines of the flash device
 966 * @select_chip: select/deselect a specific target/die
 967 * @read_byte: read one byte from the chip
 968 * @write_byte: write a single byte to the chip on the low 8 I/O lines
 969 * @write_buf: write data from the buffer to the chip
 970 * @read_buf: read data from the chip into the buffer
 971 * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used
 972 *            to write command and address
 973 * @cmdfunc: hardware specific function for writing commands to the chip.
 974 * @dev_ready: hardware specific function for accessing device ready/busy line.
 975 *             If set to NULL no access to ready/busy is available and the
 976 *             ready/busy information is read from the chip status register.
 977 * @waitfunc: hardware specific function for wait on ready.
 978 * @block_bad: check if a block is bad, using OOB markers
 979 * @block_markbad: mark a block bad
 980 * @set_features: set the NAND chip features
 981 * @get_features: get the NAND chip features
 982 * @chip_delay: chip dependent delay for transferring data from array to read
 983 *              regs (tR).
 984 * @dummy_controller: dummy controller implementation for drivers that can
 985 *                    only control a single chip
 986 *
 987 * If you look at this structure you're already wrong. These fields/hooks are
 988 * all deprecated.
 989 */
 990struct nand_legacy {
 991        void __iomem *IO_ADDR_R;
 992        void __iomem *IO_ADDR_W;
 993        void (*select_chip)(struct nand_chip *chip, int cs);
 994        u8 (*read_byte)(struct nand_chip *chip);
 995        void (*write_byte)(struct nand_chip *chip, u8 byte);
 996        void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len);
 997        void (*read_buf)(struct nand_chip *chip, u8 *buf, int len);
 998        void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl);
 999        void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column,
1000                        int page_addr);
1001        int (*dev_ready)(struct nand_chip *chip);
1002        int (*waitfunc)(struct nand_chip *chip);
1003        int (*block_bad)(struct nand_chip *chip, loff_t ofs);
1004        int (*block_markbad)(struct nand_chip *chip, loff_t ofs);
1005        int (*set_features)(struct nand_chip *chip, int feature_addr,
1006                            u8 *subfeature_para);
1007        int (*get_features)(struct nand_chip *chip, int feature_addr,
1008                            u8 *subfeature_para);
1009        int chip_delay;
1010        struct nand_controller dummy_controller;
1011};
1012
1013/**
1014 * struct nand_chip - NAND Private Flash Chip Data
1015 * @base:               Inherit from the generic NAND device
1016 * @legacy:             All legacy fields/hooks. If you develop a new driver,
1017 *                      don't even try to use any of these fields/hooks, and if
1018 *                      you're modifying an existing driver that is using those
1019 *                      fields/hooks, you should consider reworking the driver
1020 *                      avoid using them.
1021 * @setup_read_retry:   [FLASHSPECIFIC] flash (vendor) specific function for
1022 *                      setting the read-retry mode. Mostly needed for MLC NAND.
1023 * @ecc:                [BOARDSPECIFIC] ECC control structure
1024 * @buf_align:          minimum buffer alignment required by a platform
1025 * @oob_poi:            "poison value buffer," used for laying out OOB data
1026 *                      before writing
1027 * @page_shift:         [INTERN] number of address bits in a page (column
1028 *                      address bits).
1029 * @phys_erase_shift:   [INTERN] number of address bits in a physical eraseblock
1030 * @bbt_erase_shift:    [INTERN] number of address bits in a bbt entry
1031 * @chip_shift:         [INTERN] number of address bits in one chip
1032 * @options:            [BOARDSPECIFIC] various chip options. They can partly
1033 *                      be set to inform nand_scan about special functionality.
1034 *                      See the defines for further explanation.
1035 * @bbt_options:        [INTERN] bad block specific options. All options used
1036 *                      here must come from bbm.h. By default, these options
1037 *                      will be copied to the appropriate nand_bbt_descr's.
1038 * @badblockpos:        [INTERN] position of the bad block marker in the oob
1039 *                      area.
1040 * @badblockbits:       [INTERN] minimum number of set bits in a good block's
1041 *                      bad block marker position; i.e., BBM == 11110111b is
1042 *                      not bad when badblockbits == 7
1043 * @onfi_timing_mode_default: [INTERN] default ONFI timing mode. This field is
1044 *                            set to the actually used ONFI mode if the chip is
1045 *                            ONFI compliant or deduced from the datasheet if
1046 *                            the NAND chip is not ONFI compliant.
1047 * @pagemask:           [INTERN] page number mask = number of (pages / chip) - 1
1048 * @data_buf:           [INTERN] buffer for data, size is (page size + oobsize).
1049 * @pagecache:          Structure containing page cache related fields
1050 * @pagecache.bitflips: Number of bitflips of the cached page
1051 * @pagecache.page:     Page number currently in the cache. -1 means no page is
1052 *                      currently cached
1053 * @subpagesize:        [INTERN] holds the subpagesize
1054 * @id:                 [INTERN] holds NAND ID
1055 * @parameters:         [INTERN] holds generic parameters under an easily
1056 *                      readable form.
1057 * @data_interface:     [INTERN] NAND interface timing information
1058 * @cur_cs:             currently selected target. -1 means no target selected,
1059 *                      otherwise we should always have cur_cs >= 0 &&
1060 *                      cur_cs < nanddev_ntargets(). NAND Controller drivers
1061 *                      should not modify this value, but they're allowed to
1062 *                      read it.
1063 * @read_retries:       [INTERN] the number of read retry modes supported
1064 * @lock:               lock protecting the suspended field. Also used to
1065 *                      serialize accesses to the NAND device.
1066 * @suspended:          set to 1 when the device is suspended, 0 when it's not.
1067 * @bbt:                [INTERN] bad block table pointer
1068 * @bbt_td:             [REPLACEABLE] bad block table descriptor for flash
1069 *                      lookup.
1070 * @bbt_md:             [REPLACEABLE] bad block table mirror descriptor
1071 * @badblock_pattern:   [REPLACEABLE] bad block scan pattern used for initial
1072 *                      bad block scan.
1073 * @controller:         [REPLACEABLE] a pointer to a hardware controller
1074 *                      structure which is shared among multiple independent
1075 *                      devices.
1076 * @priv:               [OPTIONAL] pointer to private chip data
1077 * @manufacturer:       [INTERN] Contains manufacturer information
1078 * @manufacturer.desc:  [INTERN] Contains manufacturer's description
1079 * @manufacturer.priv:  [INTERN] Contains manufacturer private information
1080 */
1081
1082struct nand_chip {
1083        struct nand_device base;
1084
1085        struct nand_legacy legacy;
1086
1087        int (*setup_read_retry)(struct nand_chip *chip, int retry_mode);
1088
1089        unsigned int options;
1090        unsigned int bbt_options;
1091
1092        int page_shift;
1093        int phys_erase_shift;
1094        int bbt_erase_shift;
1095        int chip_shift;
1096        int pagemask;
1097        u8 *data_buf;
1098
1099        struct {
1100                unsigned int bitflips;
1101                int page;
1102        } pagecache;
1103
1104        int subpagesize;
1105        int onfi_timing_mode_default;
1106        unsigned int badblockpos;
1107        int badblockbits;
1108
1109        struct nand_id id;
1110        struct nand_parameters parameters;
1111
1112        struct nand_data_interface data_interface;
1113
1114        int cur_cs;
1115
1116        int read_retries;
1117
1118        struct mutex lock;
1119        unsigned int suspended : 1;
1120
1121        uint8_t *oob_poi;
1122        struct nand_controller *controller;
1123
1124        struct nand_ecc_ctrl ecc;
1125        unsigned long buf_align;
1126
1127        uint8_t *bbt;
1128        struct nand_bbt_descr *bbt_td;
1129        struct nand_bbt_descr *bbt_md;
1130
1131        struct nand_bbt_descr *badblock_pattern;
1132
1133        void *priv;
1134
1135        struct {
1136                const struct nand_manufacturer *desc;
1137                void *priv;
1138        } manufacturer;
1139};
1140
1141extern const struct mtd_ooblayout_ops nand_ooblayout_sp_ops;
1142extern const struct mtd_ooblayout_ops nand_ooblayout_lp_ops;
1143
1144static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
1145{
1146        return container_of(mtd, struct nand_chip, base.mtd);
1147}
1148
1149static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
1150{
1151        return &chip->base.mtd;
1152}
1153
1154static inline void *nand_get_controller_data(struct nand_chip *chip)
1155{
1156        return chip->priv;
1157}
1158
1159static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
1160{
1161        chip->priv = priv;
1162}
1163
1164static inline void nand_set_manufacturer_data(struct nand_chip *chip,
1165                                              void *priv)
1166{
1167        chip->manufacturer.priv = priv;
1168}
1169
1170static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
1171{
1172        return chip->manufacturer.priv;
1173}
1174
1175static inline void nand_set_flash_node(struct nand_chip *chip,
1176                                       struct device_node *np)
1177{
1178        mtd_set_of_node(nand_to_mtd(chip), np);
1179}
1180
1181static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
1182{
1183        return mtd_get_of_node(nand_to_mtd(chip));
1184}
1185
1186/*
1187 * A helper for defining older NAND chips where the second ID byte fully
1188 * defined the chip, including the geometry (chip size, eraseblock size, page
1189 * size). All these chips have 512 bytes NAND page size.
1190 */
1191#define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts)          \
1192        { .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \
1193          .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) }
1194
1195/*
1196 * A helper for defining newer chips which report their page size and
1197 * eraseblock size via the extended ID bytes.
1198 *
1199 * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
1200 * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
1201 * device ID now only represented a particular total chip size (and voltage,
1202 * buswidth), and the page size, eraseblock size, and OOB size could vary while
1203 * using the same device ID.
1204 */
1205#define EXTENDED_ID_NAND(nm, devid, chipsz, opts)                      \
1206        { .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \
1207          .options = (opts) }
1208
1209#define NAND_ECC_INFO(_strength, _step) \
1210                        { .strength_ds = (_strength), .step_ds = (_step) }
1211#define NAND_ECC_STRENGTH(type)         ((type)->ecc.strength_ds)
1212#define NAND_ECC_STEP(type)             ((type)->ecc.step_ds)
1213
1214/**
1215 * struct nand_flash_dev - NAND Flash Device ID Structure
1216 * @name: a human-readable name of the NAND chip
1217 * @dev_id: the device ID (the second byte of the full chip ID array)
1218 * @mfr_id: manufecturer ID part of the full chip ID array (refers the same
1219 *          memory address as ``id[0]``)
1220 * @dev_id: device ID part of the full chip ID array (refers the same memory
1221 *          address as ``id[1]``)
1222 * @id: full device ID array
1223 * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
1224 *            well as the eraseblock size) is determined from the extended NAND
1225 *            chip ID array)
1226 * @chipsize: total chip size in MiB
1227 * @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
1228 * @options: stores various chip bit options
1229 * @id_len: The valid length of the @id.
1230 * @oobsize: OOB size
1231 * @ecc: ECC correctability and step information from the datasheet.
1232 * @ecc.strength_ds: The ECC correctability from the datasheet, same as the
1233 *                   @ecc_strength_ds in nand_chip{}.
1234 * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
1235 *               @ecc_step_ds in nand_chip{}, also from the datasheet.
1236 *               For example, the "4bit ECC for each 512Byte" can be set with
1237 *               NAND_ECC_INFO(4, 512).
1238 * @onfi_timing_mode_default: the default ONFI timing mode entered after a NAND
1239 *                            reset. Should be deduced from timings described
1240 *                            in the datasheet.
1241 *
1242 */
1243struct nand_flash_dev {
1244        char *name;
1245        union {
1246                struct {
1247                        uint8_t mfr_id;
1248                        uint8_t dev_id;
1249                };
1250                uint8_t id[NAND_MAX_ID_LEN];
1251        };
1252        unsigned int pagesize;
1253        unsigned int chipsize;
1254        unsigned int erasesize;
1255        unsigned int options;
1256        uint16_t id_len;
1257        uint16_t oobsize;
1258        struct {
1259                uint16_t strength_ds;
1260                uint16_t step_ds;
1261        } ecc;
1262        int onfi_timing_mode_default;
1263};
1264
1265int nand_create_bbt(struct nand_chip *chip);
1266
1267/*
1268 * Check if it is a SLC nand.
1269 * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
1270 * We do not distinguish the MLC and TLC now.
1271 */
1272static inline bool nand_is_slc(struct nand_chip *chip)
1273{
1274        WARN(nanddev_bits_per_cell(&chip->base) == 0,
1275             "chip->bits_per_cell is used uninitialized\n");
1276        return nanddev_bits_per_cell(&chip->base) == 1;
1277}
1278
1279/**
1280 * Check if the opcode's address should be sent only on the lower 8 bits
1281 * @command: opcode to check
1282 */
1283static inline int nand_opcode_8bits(unsigned int command)
1284{
1285        switch (command) {
1286        case NAND_CMD_READID:
1287        case NAND_CMD_PARAM:
1288        case NAND_CMD_GET_FEATURES:
1289        case NAND_CMD_SET_FEATURES:
1290                return 1;
1291        default:
1292                break;
1293        }
1294        return 0;
1295}
1296
1297int nand_check_erased_ecc_chunk(void *data, int datalen,
1298                                void *ecc, int ecclen,
1299                                void *extraoob, int extraooblen,
1300                                int threshold);
1301
1302int nand_ecc_choose_conf(struct nand_chip *chip,
1303                         const struct nand_ecc_caps *caps, int oobavail);
1304
1305/* Default write_oob implementation */
1306int nand_write_oob_std(struct nand_chip *chip, int page);
1307
1308/* Default read_oob implementation */
1309int nand_read_oob_std(struct nand_chip *chip, int page);
1310
1311/* Stub used by drivers that do not support GET/SET FEATURES operations */
1312int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
1313                                  u8 *subfeature_param);
1314
1315/* Default read_page_raw implementation */
1316int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
1317                       int page);
1318
1319/* Default write_page_raw implementation */
1320int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1321                        int oob_required, int page);
1322
1323/* Reset and initialize a NAND device */
1324int nand_reset(struct nand_chip *chip, int chipnr);
1325
1326/* NAND operation helpers */
1327int nand_reset_op(struct nand_chip *chip);
1328int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1329                   unsigned int len);
1330int nand_status_op(struct nand_chip *chip, u8 *status);
1331int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
1332int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1333                      unsigned int offset_in_page, void *buf, unsigned int len);
1334int nand_change_read_column_op(struct nand_chip *chip,
1335                               unsigned int offset_in_page, void *buf,
1336                               unsigned int len, bool force_8bit);
1337int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1338                     unsigned int offset_in_page, void *buf, unsigned int len);
1339int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1340                            unsigned int offset_in_page, const void *buf,
1341                            unsigned int len);
1342int nand_prog_page_end_op(struct nand_chip *chip);
1343int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1344                      unsigned int offset_in_page, const void *buf,
1345                      unsigned int len);
1346int nand_change_write_column_op(struct nand_chip *chip,
1347                                unsigned int offset_in_page, const void *buf,
1348                                unsigned int len, bool force_8bit);
1349int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1350                      bool force_8bit);
1351int nand_write_data_op(struct nand_chip *chip, const void *buf,
1352                       unsigned int len, bool force_8bit);
1353
1354/* Scan and identify a NAND device */
1355int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips,
1356                       struct nand_flash_dev *ids);
1357
1358static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips)
1359{
1360        return nand_scan_with_ids(chip, max_chips, NULL);
1361}
1362
1363/* Internal helper for board drivers which need to override command function */
1364void nand_wait_ready(struct nand_chip *chip);
1365
1366/*
1367 * Free resources held by the NAND device, must be called on error after a
1368 * sucessful nand_scan().
1369 */
1370void nand_cleanup(struct nand_chip *chip);
1371/* Unregister the MTD device and calls nand_cleanup() */
1372void nand_release(struct nand_chip *chip);
1373
1374/*
1375 * External helper for controller drivers that have to implement the WAITRDY
1376 * instruction and have no physical pin to check it.
1377 */
1378int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);
1379struct gpio_desc;
1380int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
1381                      unsigned long timeout_ms);
1382
1383/* Select/deselect a NAND target. */
1384void nand_select_target(struct nand_chip *chip, unsigned int cs);
1385void nand_deselect_target(struct nand_chip *chip);
1386
1387/**
1388 * nand_get_data_buf() - Get the internal page buffer
1389 * @chip: NAND chip object
1390 *
1391 * Returns the pre-allocated page buffer after invalidating the cache. This
1392 * function should be used by drivers that do not want to allocate their own
1393 * bounce buffer and still need such a buffer for specific operations (most
1394 * commonly when reading OOB data only).
1395 *
1396 * Be careful to never call this function in the write/write_oob path, because
1397 * the core may have placed the data to be written out in this buffer.
1398 *
1399 * Return: pointer to the page cache buffer
1400 */
1401static inline void *nand_get_data_buf(struct nand_chip *chip)
1402{
1403        chip->pagecache.page = -1;
1404
1405        return chip->data_buf;
1406}
1407
1408#endif /* __LINUX_MTD_RAWNAND_H */
1409