linux/include/linux/sched.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_SCHED_H
   3#define _LINUX_SCHED_H
   4
   5/*
   6 * Define 'struct task_struct' and provide the main scheduler
   7 * APIs (schedule(), wakeup variants, etc.)
   8 */
   9
  10#include <uapi/linux/sched.h>
  11
  12#include <asm/current.h>
  13
  14#include <linux/pid.h>
  15#include <linux/sem.h>
  16#include <linux/shm.h>
  17#include <linux/kcov.h>
  18#include <linux/mutex.h>
  19#include <linux/plist.h>
  20#include <linux/hrtimer.h>
  21#include <linux/seccomp.h>
  22#include <linux/nodemask.h>
  23#include <linux/rcupdate.h>
  24#include <linux/refcount.h>
  25#include <linux/resource.h>
  26#include <linux/latencytop.h>
  27#include <linux/sched/prio.h>
  28#include <linux/signal_types.h>
  29#include <linux/mm_types_task.h>
  30#include <linux/task_io_accounting.h>
  31#include <linux/rseq.h>
  32
  33/* task_struct member predeclarations (sorted alphabetically): */
  34struct audit_context;
  35struct backing_dev_info;
  36struct bio_list;
  37struct blk_plug;
  38struct capture_control;
  39struct cfs_rq;
  40struct fs_struct;
  41struct futex_pi_state;
  42struct io_context;
  43struct mempolicy;
  44struct nameidata;
  45struct nsproxy;
  46struct perf_event_context;
  47struct pid_namespace;
  48struct pipe_inode_info;
  49struct rcu_node;
  50struct reclaim_state;
  51struct robust_list_head;
  52struct root_domain;
  53struct rq;
  54struct sched_attr;
  55struct sched_param;
  56struct seq_file;
  57struct sighand_struct;
  58struct signal_struct;
  59struct task_delay_info;
  60struct task_group;
  61
  62/*
  63 * Task state bitmask. NOTE! These bits are also
  64 * encoded in fs/proc/array.c: get_task_state().
  65 *
  66 * We have two separate sets of flags: task->state
  67 * is about runnability, while task->exit_state are
  68 * about the task exiting. Confusing, but this way
  69 * modifying one set can't modify the other one by
  70 * mistake.
  71 */
  72
  73/* Used in tsk->state: */
  74#define TASK_RUNNING                    0x0000
  75#define TASK_INTERRUPTIBLE              0x0001
  76#define TASK_UNINTERRUPTIBLE            0x0002
  77#define __TASK_STOPPED                  0x0004
  78#define __TASK_TRACED                   0x0008
  79/* Used in tsk->exit_state: */
  80#define EXIT_DEAD                       0x0010
  81#define EXIT_ZOMBIE                     0x0020
  82#define EXIT_TRACE                      (EXIT_ZOMBIE | EXIT_DEAD)
  83/* Used in tsk->state again: */
  84#define TASK_PARKED                     0x0040
  85#define TASK_DEAD                       0x0080
  86#define TASK_WAKEKILL                   0x0100
  87#define TASK_WAKING                     0x0200
  88#define TASK_NOLOAD                     0x0400
  89#define TASK_NEW                        0x0800
  90#define TASK_STATE_MAX                  0x1000
  91
  92/* Convenience macros for the sake of set_current_state: */
  93#define TASK_KILLABLE                   (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
  94#define TASK_STOPPED                    (TASK_WAKEKILL | __TASK_STOPPED)
  95#define TASK_TRACED                     (TASK_WAKEKILL | __TASK_TRACED)
  96
  97#define TASK_IDLE                       (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
  98
  99/* Convenience macros for the sake of wake_up(): */
 100#define TASK_NORMAL                     (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 101
 102/* get_task_state(): */
 103#define TASK_REPORT                     (TASK_RUNNING | TASK_INTERRUPTIBLE | \
 104                                         TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 105                                         __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
 106                                         TASK_PARKED)
 107
 108#define task_is_traced(task)            ((task->state & __TASK_TRACED) != 0)
 109
 110#define task_is_stopped(task)           ((task->state & __TASK_STOPPED) != 0)
 111
 112#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 113
 114#define task_contributes_to_load(task)  ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
 115                                         (task->flags & PF_FROZEN) == 0 && \
 116                                         (task->state & TASK_NOLOAD) == 0)
 117
 118#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 119
 120/*
 121 * Special states are those that do not use the normal wait-loop pattern. See
 122 * the comment with set_special_state().
 123 */
 124#define is_special_task_state(state)                            \
 125        ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
 126
 127#define __set_current_state(state_value)                        \
 128        do {                                                    \
 129                WARN_ON_ONCE(is_special_task_state(state_value));\
 130                current->task_state_change = _THIS_IP_;         \
 131                current->state = (state_value);                 \
 132        } while (0)
 133
 134#define set_current_state(state_value)                          \
 135        do {                                                    \
 136                WARN_ON_ONCE(is_special_task_state(state_value));\
 137                current->task_state_change = _THIS_IP_;         \
 138                smp_store_mb(current->state, (state_value));    \
 139        } while (0)
 140
 141#define set_special_state(state_value)                                  \
 142        do {                                                            \
 143                unsigned long flags; /* may shadow */                   \
 144                WARN_ON_ONCE(!is_special_task_state(state_value));      \
 145                raw_spin_lock_irqsave(&current->pi_lock, flags);        \
 146                current->task_state_change = _THIS_IP_;                 \
 147                current->state = (state_value);                         \
 148                raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
 149        } while (0)
 150#else
 151/*
 152 * set_current_state() includes a barrier so that the write of current->state
 153 * is correctly serialised wrt the caller's subsequent test of whether to
 154 * actually sleep:
 155 *
 156 *   for (;;) {
 157 *      set_current_state(TASK_UNINTERRUPTIBLE);
 158 *      if (!need_sleep)
 159 *              break;
 160 *
 161 *      schedule();
 162 *   }
 163 *   __set_current_state(TASK_RUNNING);
 164 *
 165 * If the caller does not need such serialisation (because, for instance, the
 166 * condition test and condition change and wakeup are under the same lock) then
 167 * use __set_current_state().
 168 *
 169 * The above is typically ordered against the wakeup, which does:
 170 *
 171 *   need_sleep = false;
 172 *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
 173 *
 174 * where wake_up_state() executes a full memory barrier before accessing the
 175 * task state.
 176 *
 177 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 178 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 179 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
 180 *
 181 * However, with slightly different timing the wakeup TASK_RUNNING store can
 182 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
 183 * a problem either because that will result in one extra go around the loop
 184 * and our @cond test will save the day.
 185 *
 186 * Also see the comments of try_to_wake_up().
 187 */
 188#define __set_current_state(state_value)                                \
 189        current->state = (state_value)
 190
 191#define set_current_state(state_value)                                  \
 192        smp_store_mb(current->state, (state_value))
 193
 194/*
 195 * set_special_state() should be used for those states when the blocking task
 196 * can not use the regular condition based wait-loop. In that case we must
 197 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
 198 * will not collide with our state change.
 199 */
 200#define set_special_state(state_value)                                  \
 201        do {                                                            \
 202                unsigned long flags; /* may shadow */                   \
 203                raw_spin_lock_irqsave(&current->pi_lock, flags);        \
 204                current->state = (state_value);                         \
 205                raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
 206        } while (0)
 207
 208#endif
 209
 210/* Task command name length: */
 211#define TASK_COMM_LEN                   16
 212
 213extern void scheduler_tick(void);
 214
 215#define MAX_SCHEDULE_TIMEOUT            LONG_MAX
 216
 217extern long schedule_timeout(long timeout);
 218extern long schedule_timeout_interruptible(long timeout);
 219extern long schedule_timeout_killable(long timeout);
 220extern long schedule_timeout_uninterruptible(long timeout);
 221extern long schedule_timeout_idle(long timeout);
 222asmlinkage void schedule(void);
 223extern void schedule_preempt_disabled(void);
 224
 225extern int __must_check io_schedule_prepare(void);
 226extern void io_schedule_finish(int token);
 227extern long io_schedule_timeout(long timeout);
 228extern void io_schedule(void);
 229
 230/**
 231 * struct prev_cputime - snapshot of system and user cputime
 232 * @utime: time spent in user mode
 233 * @stime: time spent in system mode
 234 * @lock: protects the above two fields
 235 *
 236 * Stores previous user/system time values such that we can guarantee
 237 * monotonicity.
 238 */
 239struct prev_cputime {
 240#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 241        u64                             utime;
 242        u64                             stime;
 243        raw_spinlock_t                  lock;
 244#endif
 245};
 246
 247/**
 248 * struct task_cputime - collected CPU time counts
 249 * @utime:              time spent in user mode, in nanoseconds
 250 * @stime:              time spent in kernel mode, in nanoseconds
 251 * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
 252 *
 253 * This structure groups together three kinds of CPU time that are tracked for
 254 * threads and thread groups.  Most things considering CPU time want to group
 255 * these counts together and treat all three of them in parallel.
 256 */
 257struct task_cputime {
 258        u64                             utime;
 259        u64                             stime;
 260        unsigned long long              sum_exec_runtime;
 261};
 262
 263/* Alternate field names when used on cache expirations: */
 264#define virt_exp                        utime
 265#define prof_exp                        stime
 266#define sched_exp                       sum_exec_runtime
 267
 268enum vtime_state {
 269        /* Task is sleeping or running in a CPU with VTIME inactive: */
 270        VTIME_INACTIVE = 0,
 271        /* Task runs in userspace in a CPU with VTIME active: */
 272        VTIME_USER,
 273        /* Task runs in kernelspace in a CPU with VTIME active: */
 274        VTIME_SYS,
 275};
 276
 277struct vtime {
 278        seqcount_t              seqcount;
 279        unsigned long long      starttime;
 280        enum vtime_state        state;
 281        u64                     utime;
 282        u64                     stime;
 283        u64                     gtime;
 284};
 285
 286/*
 287 * Utilization clamp constraints.
 288 * @UCLAMP_MIN: Minimum utilization
 289 * @UCLAMP_MAX: Maximum utilization
 290 * @UCLAMP_CNT: Utilization clamp constraints count
 291 */
 292enum uclamp_id {
 293        UCLAMP_MIN = 0,
 294        UCLAMP_MAX,
 295        UCLAMP_CNT
 296};
 297
 298struct sched_info {
 299#ifdef CONFIG_SCHED_INFO
 300        /* Cumulative counters: */
 301
 302        /* # of times we have run on this CPU: */
 303        unsigned long                   pcount;
 304
 305        /* Time spent waiting on a runqueue: */
 306        unsigned long long              run_delay;
 307
 308        /* Timestamps: */
 309
 310        /* When did we last run on a CPU? */
 311        unsigned long long              last_arrival;
 312
 313        /* When were we last queued to run? */
 314        unsigned long long              last_queued;
 315
 316#endif /* CONFIG_SCHED_INFO */
 317};
 318
 319/*
 320 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 321 * has a few: load, load_avg, util_avg, freq, and capacity.
 322 *
 323 * We define a basic fixed point arithmetic range, and then formalize
 324 * all these metrics based on that basic range.
 325 */
 326# define SCHED_FIXEDPOINT_SHIFT         10
 327# define SCHED_FIXEDPOINT_SCALE         (1L << SCHED_FIXEDPOINT_SHIFT)
 328
 329/* Increase resolution of cpu_capacity calculations */
 330# define SCHED_CAPACITY_SHIFT           SCHED_FIXEDPOINT_SHIFT
 331# define SCHED_CAPACITY_SCALE           (1L << SCHED_CAPACITY_SHIFT)
 332
 333struct load_weight {
 334        unsigned long                   weight;
 335        u32                             inv_weight;
 336};
 337
 338/**
 339 * struct util_est - Estimation utilization of FAIR tasks
 340 * @enqueued: instantaneous estimated utilization of a task/cpu
 341 * @ewma:     the Exponential Weighted Moving Average (EWMA)
 342 *            utilization of a task
 343 *
 344 * Support data structure to track an Exponential Weighted Moving Average
 345 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
 346 * average each time a task completes an activation. Sample's weight is chosen
 347 * so that the EWMA will be relatively insensitive to transient changes to the
 348 * task's workload.
 349 *
 350 * The enqueued attribute has a slightly different meaning for tasks and cpus:
 351 * - task:   the task's util_avg at last task dequeue time
 352 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
 353 * Thus, the util_est.enqueued of a task represents the contribution on the
 354 * estimated utilization of the CPU where that task is currently enqueued.
 355 *
 356 * Only for tasks we track a moving average of the past instantaneous
 357 * estimated utilization. This allows to absorb sporadic drops in utilization
 358 * of an otherwise almost periodic task.
 359 */
 360struct util_est {
 361        unsigned int                    enqueued;
 362        unsigned int                    ewma;
 363#define UTIL_EST_WEIGHT_SHIFT           2
 364} __attribute__((__aligned__(sizeof(u64))));
 365
 366/*
 367 * The load_avg/util_avg accumulates an infinite geometric series
 368 * (see __update_load_avg() in kernel/sched/fair.c).
 369 *
 370 * [load_avg definition]
 371 *
 372 *   load_avg = runnable% * scale_load_down(load)
 373 *
 374 * where runnable% is the time ratio that a sched_entity is runnable.
 375 * For cfs_rq, it is the aggregated load_avg of all runnable and
 376 * blocked sched_entities.
 377 *
 378 * [util_avg definition]
 379 *
 380 *   util_avg = running% * SCHED_CAPACITY_SCALE
 381 *
 382 * where running% is the time ratio that a sched_entity is running on
 383 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
 384 * and blocked sched_entities.
 385 *
 386 * load_avg and util_avg don't direcly factor frequency scaling and CPU
 387 * capacity scaling. The scaling is done through the rq_clock_pelt that
 388 * is used for computing those signals (see update_rq_clock_pelt())
 389 *
 390 * N.B., the above ratios (runnable% and running%) themselves are in the
 391 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
 392 * to as large a range as necessary. This is for example reflected by
 393 * util_avg's SCHED_CAPACITY_SCALE.
 394 *
 395 * [Overflow issue]
 396 *
 397 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 398 * with the highest load (=88761), always runnable on a single cfs_rq,
 399 * and should not overflow as the number already hits PID_MAX_LIMIT.
 400 *
 401 * For all other cases (including 32-bit kernels), struct load_weight's
 402 * weight will overflow first before we do, because:
 403 *
 404 *    Max(load_avg) <= Max(load.weight)
 405 *
 406 * Then it is the load_weight's responsibility to consider overflow
 407 * issues.
 408 */
 409struct sched_avg {
 410        u64                             last_update_time;
 411        u64                             load_sum;
 412        u64                             runnable_load_sum;
 413        u32                             util_sum;
 414        u32                             period_contrib;
 415        unsigned long                   load_avg;
 416        unsigned long                   runnable_load_avg;
 417        unsigned long                   util_avg;
 418        struct util_est                 util_est;
 419} ____cacheline_aligned;
 420
 421struct sched_statistics {
 422#ifdef CONFIG_SCHEDSTATS
 423        u64                             wait_start;
 424        u64                             wait_max;
 425        u64                             wait_count;
 426        u64                             wait_sum;
 427        u64                             iowait_count;
 428        u64                             iowait_sum;
 429
 430        u64                             sleep_start;
 431        u64                             sleep_max;
 432        s64                             sum_sleep_runtime;
 433
 434        u64                             block_start;
 435        u64                             block_max;
 436        u64                             exec_max;
 437        u64                             slice_max;
 438
 439        u64                             nr_migrations_cold;
 440        u64                             nr_failed_migrations_affine;
 441        u64                             nr_failed_migrations_running;
 442        u64                             nr_failed_migrations_hot;
 443        u64                             nr_forced_migrations;
 444
 445        u64                             nr_wakeups;
 446        u64                             nr_wakeups_sync;
 447        u64                             nr_wakeups_migrate;
 448        u64                             nr_wakeups_local;
 449        u64                             nr_wakeups_remote;
 450        u64                             nr_wakeups_affine;
 451        u64                             nr_wakeups_affine_attempts;
 452        u64                             nr_wakeups_passive;
 453        u64                             nr_wakeups_idle;
 454#endif
 455};
 456
 457struct sched_entity {
 458        /* For load-balancing: */
 459        struct load_weight              load;
 460        unsigned long                   runnable_weight;
 461        struct rb_node                  run_node;
 462        struct list_head                group_node;
 463        unsigned int                    on_rq;
 464
 465        u64                             exec_start;
 466        u64                             sum_exec_runtime;
 467        u64                             vruntime;
 468        u64                             prev_sum_exec_runtime;
 469
 470        u64                             nr_migrations;
 471
 472        struct sched_statistics         statistics;
 473
 474#ifdef CONFIG_FAIR_GROUP_SCHED
 475        int                             depth;
 476        struct sched_entity             *parent;
 477        /* rq on which this entity is (to be) queued: */
 478        struct cfs_rq                   *cfs_rq;
 479        /* rq "owned" by this entity/group: */
 480        struct cfs_rq                   *my_q;
 481#endif
 482
 483#ifdef CONFIG_SMP
 484        /*
 485         * Per entity load average tracking.
 486         *
 487         * Put into separate cache line so it does not
 488         * collide with read-mostly values above.
 489         */
 490        struct sched_avg                avg;
 491#endif
 492};
 493
 494struct sched_rt_entity {
 495        struct list_head                run_list;
 496        unsigned long                   timeout;
 497        unsigned long                   watchdog_stamp;
 498        unsigned int                    time_slice;
 499        unsigned short                  on_rq;
 500        unsigned short                  on_list;
 501
 502        struct sched_rt_entity          *back;
 503#ifdef CONFIG_RT_GROUP_SCHED
 504        struct sched_rt_entity          *parent;
 505        /* rq on which this entity is (to be) queued: */
 506        struct rt_rq                    *rt_rq;
 507        /* rq "owned" by this entity/group: */
 508        struct rt_rq                    *my_q;
 509#endif
 510} __randomize_layout;
 511
 512struct sched_dl_entity {
 513        struct rb_node                  rb_node;
 514
 515        /*
 516         * Original scheduling parameters. Copied here from sched_attr
 517         * during sched_setattr(), they will remain the same until
 518         * the next sched_setattr().
 519         */
 520        u64                             dl_runtime;     /* Maximum runtime for each instance    */
 521        u64                             dl_deadline;    /* Relative deadline of each instance   */
 522        u64                             dl_period;      /* Separation of two instances (period) */
 523        u64                             dl_bw;          /* dl_runtime / dl_period               */
 524        u64                             dl_density;     /* dl_runtime / dl_deadline             */
 525
 526        /*
 527         * Actual scheduling parameters. Initialized with the values above,
 528         * they are continuously updated during task execution. Note that
 529         * the remaining runtime could be < 0 in case we are in overrun.
 530         */
 531        s64                             runtime;        /* Remaining runtime for this instance  */
 532        u64                             deadline;       /* Absolute deadline for this instance  */
 533        unsigned int                    flags;          /* Specifying the scheduler behaviour   */
 534
 535        /*
 536         * Some bool flags:
 537         *
 538         * @dl_throttled tells if we exhausted the runtime. If so, the
 539         * task has to wait for a replenishment to be performed at the
 540         * next firing of dl_timer.
 541         *
 542         * @dl_boosted tells if we are boosted due to DI. If so we are
 543         * outside bandwidth enforcement mechanism (but only until we
 544         * exit the critical section);
 545         *
 546         * @dl_yielded tells if task gave up the CPU before consuming
 547         * all its available runtime during the last job.
 548         *
 549         * @dl_non_contending tells if the task is inactive while still
 550         * contributing to the active utilization. In other words, it
 551         * indicates if the inactive timer has been armed and its handler
 552         * has not been executed yet. This flag is useful to avoid race
 553         * conditions between the inactive timer handler and the wakeup
 554         * code.
 555         *
 556         * @dl_overrun tells if the task asked to be informed about runtime
 557         * overruns.
 558         */
 559        unsigned int                    dl_throttled      : 1;
 560        unsigned int                    dl_boosted        : 1;
 561        unsigned int                    dl_yielded        : 1;
 562        unsigned int                    dl_non_contending : 1;
 563        unsigned int                    dl_overrun        : 1;
 564
 565        /*
 566         * Bandwidth enforcement timer. Each -deadline task has its
 567         * own bandwidth to be enforced, thus we need one timer per task.
 568         */
 569        struct hrtimer                  dl_timer;
 570
 571        /*
 572         * Inactive timer, responsible for decreasing the active utilization
 573         * at the "0-lag time". When a -deadline task blocks, it contributes
 574         * to GRUB's active utilization until the "0-lag time", hence a
 575         * timer is needed to decrease the active utilization at the correct
 576         * time.
 577         */
 578        struct hrtimer inactive_timer;
 579};
 580
 581#ifdef CONFIG_UCLAMP_TASK
 582/* Number of utilization clamp buckets (shorter alias) */
 583#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
 584
 585/*
 586 * Utilization clamp for a scheduling entity
 587 * @value:              clamp value "assigned" to a se
 588 * @bucket_id:          bucket index corresponding to the "assigned" value
 589 * @active:             the se is currently refcounted in a rq's bucket
 590 * @user_defined:       the requested clamp value comes from user-space
 591 *
 592 * The bucket_id is the index of the clamp bucket matching the clamp value
 593 * which is pre-computed and stored to avoid expensive integer divisions from
 594 * the fast path.
 595 *
 596 * The active bit is set whenever a task has got an "effective" value assigned,
 597 * which can be different from the clamp value "requested" from user-space.
 598 * This allows to know a task is refcounted in the rq's bucket corresponding
 599 * to the "effective" bucket_id.
 600 *
 601 * The user_defined bit is set whenever a task has got a task-specific clamp
 602 * value requested from userspace, i.e. the system defaults apply to this task
 603 * just as a restriction. This allows to relax default clamps when a less
 604 * restrictive task-specific value has been requested, thus allowing to
 605 * implement a "nice" semantic. For example, a task running with a 20%
 606 * default boost can still drop its own boosting to 0%.
 607 */
 608struct uclamp_se {
 609        unsigned int value              : bits_per(SCHED_CAPACITY_SCALE);
 610        unsigned int bucket_id          : bits_per(UCLAMP_BUCKETS);
 611        unsigned int active             : 1;
 612        unsigned int user_defined       : 1;
 613};
 614#endif /* CONFIG_UCLAMP_TASK */
 615
 616union rcu_special {
 617        struct {
 618                u8                      blocked;
 619                u8                      need_qs;
 620                u8                      exp_hint; /* Hint for performance. */
 621                u8                      deferred_qs;
 622        } b; /* Bits. */
 623        u32 s; /* Set of bits. */
 624};
 625
 626enum perf_event_task_context {
 627        perf_invalid_context = -1,
 628        perf_hw_context = 0,
 629        perf_sw_context,
 630        perf_nr_task_contexts,
 631};
 632
 633struct wake_q_node {
 634        struct wake_q_node *next;
 635};
 636
 637struct task_struct {
 638#ifdef CONFIG_THREAD_INFO_IN_TASK
 639        /*
 640         * For reasons of header soup (see current_thread_info()), this
 641         * must be the first element of task_struct.
 642         */
 643        struct thread_info              thread_info;
 644#endif
 645        /* -1 unrunnable, 0 runnable, >0 stopped: */
 646        volatile long                   state;
 647
 648        /*
 649         * This begins the randomizable portion of task_struct. Only
 650         * scheduling-critical items should be added above here.
 651         */
 652        randomized_struct_fields_start
 653
 654        void                            *stack;
 655        refcount_t                      usage;
 656        /* Per task flags (PF_*), defined further below: */
 657        unsigned int                    flags;
 658        unsigned int                    ptrace;
 659
 660#ifdef CONFIG_SMP
 661        struct llist_node               wake_entry;
 662        int                             on_cpu;
 663#ifdef CONFIG_THREAD_INFO_IN_TASK
 664        /* Current CPU: */
 665        unsigned int                    cpu;
 666#endif
 667        unsigned int                    wakee_flips;
 668        unsigned long                   wakee_flip_decay_ts;
 669        struct task_struct              *last_wakee;
 670
 671        /*
 672         * recent_used_cpu is initially set as the last CPU used by a task
 673         * that wakes affine another task. Waker/wakee relationships can
 674         * push tasks around a CPU where each wakeup moves to the next one.
 675         * Tracking a recently used CPU allows a quick search for a recently
 676         * used CPU that may be idle.
 677         */
 678        int                             recent_used_cpu;
 679        int                             wake_cpu;
 680#endif
 681        int                             on_rq;
 682
 683        int                             prio;
 684        int                             static_prio;
 685        int                             normal_prio;
 686        unsigned int                    rt_priority;
 687
 688        const struct sched_class        *sched_class;
 689        struct sched_entity             se;
 690        struct sched_rt_entity          rt;
 691#ifdef CONFIG_CGROUP_SCHED
 692        struct task_group               *sched_task_group;
 693#endif
 694        struct sched_dl_entity          dl;
 695
 696#ifdef CONFIG_UCLAMP_TASK
 697        /* Clamp values requested for a scheduling entity */
 698        struct uclamp_se                uclamp_req[UCLAMP_CNT];
 699        /* Effective clamp values used for a scheduling entity */
 700        struct uclamp_se                uclamp[UCLAMP_CNT];
 701#endif
 702
 703#ifdef CONFIG_PREEMPT_NOTIFIERS
 704        /* List of struct preempt_notifier: */
 705        struct hlist_head               preempt_notifiers;
 706#endif
 707
 708#ifdef CONFIG_BLK_DEV_IO_TRACE
 709        unsigned int                    btrace_seq;
 710#endif
 711
 712        unsigned int                    policy;
 713        int                             nr_cpus_allowed;
 714        const cpumask_t                 *cpus_ptr;
 715        cpumask_t                       cpus_mask;
 716
 717#ifdef CONFIG_PREEMPT_RCU
 718        int                             rcu_read_lock_nesting;
 719        union rcu_special               rcu_read_unlock_special;
 720        struct list_head                rcu_node_entry;
 721        struct rcu_node                 *rcu_blocked_node;
 722#endif /* #ifdef CONFIG_PREEMPT_RCU */
 723
 724#ifdef CONFIG_TASKS_RCU
 725        unsigned long                   rcu_tasks_nvcsw;
 726        u8                              rcu_tasks_holdout;
 727        u8                              rcu_tasks_idx;
 728        int                             rcu_tasks_idle_cpu;
 729        struct list_head                rcu_tasks_holdout_list;
 730#endif /* #ifdef CONFIG_TASKS_RCU */
 731
 732        struct sched_info               sched_info;
 733
 734        struct list_head                tasks;
 735#ifdef CONFIG_SMP
 736        struct plist_node               pushable_tasks;
 737        struct rb_node                  pushable_dl_tasks;
 738#endif
 739
 740        struct mm_struct                *mm;
 741        struct mm_struct                *active_mm;
 742
 743        /* Per-thread vma caching: */
 744        struct vmacache                 vmacache;
 745
 746#ifdef SPLIT_RSS_COUNTING
 747        struct task_rss_stat            rss_stat;
 748#endif
 749        int                             exit_state;
 750        int                             exit_code;
 751        int                             exit_signal;
 752        /* The signal sent when the parent dies: */
 753        int                             pdeath_signal;
 754        /* JOBCTL_*, siglock protected: */
 755        unsigned long                   jobctl;
 756
 757        /* Used for emulating ABI behavior of previous Linux versions: */
 758        unsigned int                    personality;
 759
 760        /* Scheduler bits, serialized by scheduler locks: */
 761        unsigned                        sched_reset_on_fork:1;
 762        unsigned                        sched_contributes_to_load:1;
 763        unsigned                        sched_migrated:1;
 764        unsigned                        sched_remote_wakeup:1;
 765#ifdef CONFIG_PSI
 766        unsigned                        sched_psi_wake_requeue:1;
 767#endif
 768
 769        /* Force alignment to the next boundary: */
 770        unsigned                        :0;
 771
 772        /* Unserialized, strictly 'current' */
 773
 774        /* Bit to tell LSMs we're in execve(): */
 775        unsigned                        in_execve:1;
 776        unsigned                        in_iowait:1;
 777#ifndef TIF_RESTORE_SIGMASK
 778        unsigned                        restore_sigmask:1;
 779#endif
 780#ifdef CONFIG_MEMCG
 781        unsigned                        in_user_fault:1;
 782#endif
 783#ifdef CONFIG_COMPAT_BRK
 784        unsigned                        brk_randomized:1;
 785#endif
 786#ifdef CONFIG_CGROUPS
 787        /* disallow userland-initiated cgroup migration */
 788        unsigned                        no_cgroup_migration:1;
 789        /* task is frozen/stopped (used by the cgroup freezer) */
 790        unsigned                        frozen:1;
 791#endif
 792#ifdef CONFIG_BLK_CGROUP
 793        /* to be used once the psi infrastructure lands upstream. */
 794        unsigned                        use_memdelay:1;
 795#endif
 796
 797        unsigned long                   atomic_flags; /* Flags requiring atomic access. */
 798
 799        struct restart_block            restart_block;
 800
 801        pid_t                           pid;
 802        pid_t                           tgid;
 803
 804#ifdef CONFIG_STACKPROTECTOR
 805        /* Canary value for the -fstack-protector GCC feature: */
 806        unsigned long                   stack_canary;
 807#endif
 808        /*
 809         * Pointers to the (original) parent process, youngest child, younger sibling,
 810         * older sibling, respectively.  (p->father can be replaced with
 811         * p->real_parent->pid)
 812         */
 813
 814        /* Real parent process: */
 815        struct task_struct __rcu        *real_parent;
 816
 817        /* Recipient of SIGCHLD, wait4() reports: */
 818        struct task_struct __rcu        *parent;
 819
 820        /*
 821         * Children/sibling form the list of natural children:
 822         */
 823        struct list_head                children;
 824        struct list_head                sibling;
 825        struct task_struct              *group_leader;
 826
 827        /*
 828         * 'ptraced' is the list of tasks this task is using ptrace() on.
 829         *
 830         * This includes both natural children and PTRACE_ATTACH targets.
 831         * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
 832         */
 833        struct list_head                ptraced;
 834        struct list_head                ptrace_entry;
 835
 836        /* PID/PID hash table linkage. */
 837        struct pid                      *thread_pid;
 838        struct hlist_node               pid_links[PIDTYPE_MAX];
 839        struct list_head                thread_group;
 840        struct list_head                thread_node;
 841
 842        struct completion               *vfork_done;
 843
 844        /* CLONE_CHILD_SETTID: */
 845        int __user                      *set_child_tid;
 846
 847        /* CLONE_CHILD_CLEARTID: */
 848        int __user                      *clear_child_tid;
 849
 850        u64                             utime;
 851        u64                             stime;
 852#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 853        u64                             utimescaled;
 854        u64                             stimescaled;
 855#endif
 856        u64                             gtime;
 857        struct prev_cputime             prev_cputime;
 858#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 859        struct vtime                    vtime;
 860#endif
 861
 862#ifdef CONFIG_NO_HZ_FULL
 863        atomic_t                        tick_dep_mask;
 864#endif
 865        /* Context switch counts: */
 866        unsigned long                   nvcsw;
 867        unsigned long                   nivcsw;
 868
 869        /* Monotonic time in nsecs: */
 870        u64                             start_time;
 871
 872        /* Boot based time in nsecs: */
 873        u64                             real_start_time;
 874
 875        /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
 876        unsigned long                   min_flt;
 877        unsigned long                   maj_flt;
 878
 879#ifdef CONFIG_POSIX_TIMERS
 880        struct task_cputime             cputime_expires;
 881        struct list_head                cpu_timers[3];
 882#endif
 883
 884        /* Process credentials: */
 885
 886        /* Tracer's credentials at attach: */
 887        const struct cred __rcu         *ptracer_cred;
 888
 889        /* Objective and real subjective task credentials (COW): */
 890        const struct cred __rcu         *real_cred;
 891
 892        /* Effective (overridable) subjective task credentials (COW): */
 893        const struct cred __rcu         *cred;
 894
 895#ifdef CONFIG_KEYS
 896        /* Cached requested key. */
 897        struct key                      *cached_requested_key;
 898#endif
 899
 900        /*
 901         * executable name, excluding path.
 902         *
 903         * - normally initialized setup_new_exec()
 904         * - access it with [gs]et_task_comm()
 905         * - lock it with task_lock()
 906         */
 907        char                            comm[TASK_COMM_LEN];
 908
 909        struct nameidata                *nameidata;
 910
 911#ifdef CONFIG_SYSVIPC
 912        struct sysv_sem                 sysvsem;
 913        struct sysv_shm                 sysvshm;
 914#endif
 915#ifdef CONFIG_DETECT_HUNG_TASK
 916        unsigned long                   last_switch_count;
 917        unsigned long                   last_switch_time;
 918#endif
 919        /* Filesystem information: */
 920        struct fs_struct                *fs;
 921
 922        /* Open file information: */
 923        struct files_struct             *files;
 924
 925        /* Namespaces: */
 926        struct nsproxy                  *nsproxy;
 927
 928        /* Signal handlers: */
 929        struct signal_struct            *signal;
 930        struct sighand_struct           *sighand;
 931        sigset_t                        blocked;
 932        sigset_t                        real_blocked;
 933        /* Restored if set_restore_sigmask() was used: */
 934        sigset_t                        saved_sigmask;
 935        struct sigpending               pending;
 936        unsigned long                   sas_ss_sp;
 937        size_t                          sas_ss_size;
 938        unsigned int                    sas_ss_flags;
 939
 940        struct callback_head            *task_works;
 941
 942#ifdef CONFIG_AUDIT
 943#ifdef CONFIG_AUDITSYSCALL
 944        struct audit_context            *audit_context;
 945#endif
 946        kuid_t                          loginuid;
 947        unsigned int                    sessionid;
 948#endif
 949        struct seccomp                  seccomp;
 950
 951        /* Thread group tracking: */
 952        u32                             parent_exec_id;
 953        u32                             self_exec_id;
 954
 955        /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
 956        spinlock_t                      alloc_lock;
 957
 958        /* Protection of the PI data structures: */
 959        raw_spinlock_t                  pi_lock;
 960
 961        struct wake_q_node              wake_q;
 962
 963#ifdef CONFIG_RT_MUTEXES
 964        /* PI waiters blocked on a rt_mutex held by this task: */
 965        struct rb_root_cached           pi_waiters;
 966        /* Updated under owner's pi_lock and rq lock */
 967        struct task_struct              *pi_top_task;
 968        /* Deadlock detection and priority inheritance handling: */
 969        struct rt_mutex_waiter          *pi_blocked_on;
 970#endif
 971
 972#ifdef CONFIG_DEBUG_MUTEXES
 973        /* Mutex deadlock detection: */
 974        struct mutex_waiter             *blocked_on;
 975#endif
 976
 977#ifdef CONFIG_TRACE_IRQFLAGS
 978        unsigned int                    irq_events;
 979        unsigned long                   hardirq_enable_ip;
 980        unsigned long                   hardirq_disable_ip;
 981        unsigned int                    hardirq_enable_event;
 982        unsigned int                    hardirq_disable_event;
 983        int                             hardirqs_enabled;
 984        int                             hardirq_context;
 985        unsigned long                   softirq_disable_ip;
 986        unsigned long                   softirq_enable_ip;
 987        unsigned int                    softirq_disable_event;
 988        unsigned int                    softirq_enable_event;
 989        int                             softirqs_enabled;
 990        int                             softirq_context;
 991#endif
 992
 993#ifdef CONFIG_LOCKDEP
 994# define MAX_LOCK_DEPTH                 48UL
 995        u64                             curr_chain_key;
 996        int                             lockdep_depth;
 997        unsigned int                    lockdep_recursion;
 998        struct held_lock                held_locks[MAX_LOCK_DEPTH];
 999#endif
1000
1001#ifdef CONFIG_UBSAN
1002        unsigned int                    in_ubsan;
1003#endif
1004
1005        /* Journalling filesystem info: */
1006        void                            *journal_info;
1007
1008        /* Stacked block device info: */
1009        struct bio_list                 *bio_list;
1010
1011#ifdef CONFIG_BLOCK
1012        /* Stack plugging: */
1013        struct blk_plug                 *plug;
1014#endif
1015
1016        /* VM state: */
1017        struct reclaim_state            *reclaim_state;
1018
1019        struct backing_dev_info         *backing_dev_info;
1020
1021        struct io_context               *io_context;
1022
1023#ifdef CONFIG_COMPACTION
1024        struct capture_control          *capture_control;
1025#endif
1026        /* Ptrace state: */
1027        unsigned long                   ptrace_message;
1028        kernel_siginfo_t                *last_siginfo;
1029
1030        struct task_io_accounting       ioac;
1031#ifdef CONFIG_PSI
1032        /* Pressure stall state */
1033        unsigned int                    psi_flags;
1034#endif
1035#ifdef CONFIG_TASK_XACCT
1036        /* Accumulated RSS usage: */
1037        u64                             acct_rss_mem1;
1038        /* Accumulated virtual memory usage: */
1039        u64                             acct_vm_mem1;
1040        /* stime + utime since last update: */
1041        u64                             acct_timexpd;
1042#endif
1043#ifdef CONFIG_CPUSETS
1044        /* Protected by ->alloc_lock: */
1045        nodemask_t                      mems_allowed;
1046        /* Seqence number to catch updates: */
1047        seqcount_t                      mems_allowed_seq;
1048        int                             cpuset_mem_spread_rotor;
1049        int                             cpuset_slab_spread_rotor;
1050#endif
1051#ifdef CONFIG_CGROUPS
1052        /* Control Group info protected by css_set_lock: */
1053        struct css_set __rcu            *cgroups;
1054        /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1055        struct list_head                cg_list;
1056#endif
1057#ifdef CONFIG_X86_CPU_RESCTRL
1058        u32                             closid;
1059        u32                             rmid;
1060#endif
1061#ifdef CONFIG_FUTEX
1062        struct robust_list_head __user  *robust_list;
1063#ifdef CONFIG_COMPAT
1064        struct compat_robust_list_head __user *compat_robust_list;
1065#endif
1066        struct list_head                pi_state_list;
1067        struct futex_pi_state           *pi_state_cache;
1068#endif
1069#ifdef CONFIG_PERF_EVENTS
1070        struct perf_event_context       *perf_event_ctxp[perf_nr_task_contexts];
1071        struct mutex                    perf_event_mutex;
1072        struct list_head                perf_event_list;
1073#endif
1074#ifdef CONFIG_DEBUG_PREEMPT
1075        unsigned long                   preempt_disable_ip;
1076#endif
1077#ifdef CONFIG_NUMA
1078        /* Protected by alloc_lock: */
1079        struct mempolicy                *mempolicy;
1080        short                           il_prev;
1081        short                           pref_node_fork;
1082#endif
1083#ifdef CONFIG_NUMA_BALANCING
1084        int                             numa_scan_seq;
1085        unsigned int                    numa_scan_period;
1086        unsigned int                    numa_scan_period_max;
1087        int                             numa_preferred_nid;
1088        unsigned long                   numa_migrate_retry;
1089        /* Migration stamp: */
1090        u64                             node_stamp;
1091        u64                             last_task_numa_placement;
1092        u64                             last_sum_exec_runtime;
1093        struct callback_head            numa_work;
1094
1095        /*
1096         * This pointer is only modified for current in syscall and
1097         * pagefault context (and for tasks being destroyed), so it can be read
1098         * from any of the following contexts:
1099         *  - RCU read-side critical section
1100         *  - current->numa_group from everywhere
1101         *  - task's runqueue locked, task not running
1102         */
1103        struct numa_group __rcu         *numa_group;
1104
1105        /*
1106         * numa_faults is an array split into four regions:
1107         * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1108         * in this precise order.
1109         *
1110         * faults_memory: Exponential decaying average of faults on a per-node
1111         * basis. Scheduling placement decisions are made based on these
1112         * counts. The values remain static for the duration of a PTE scan.
1113         * faults_cpu: Track the nodes the process was running on when a NUMA
1114         * hinting fault was incurred.
1115         * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1116         * during the current scan window. When the scan completes, the counts
1117         * in faults_memory and faults_cpu decay and these values are copied.
1118         */
1119        unsigned long                   *numa_faults;
1120        unsigned long                   total_numa_faults;
1121
1122        /*
1123         * numa_faults_locality tracks if faults recorded during the last
1124         * scan window were remote/local or failed to migrate. The task scan
1125         * period is adapted based on the locality of the faults with different
1126         * weights depending on whether they were shared or private faults
1127         */
1128        unsigned long                   numa_faults_locality[3];
1129
1130        unsigned long                   numa_pages_migrated;
1131#endif /* CONFIG_NUMA_BALANCING */
1132
1133#ifdef CONFIG_RSEQ
1134        struct rseq __user *rseq;
1135        u32 rseq_sig;
1136        /*
1137         * RmW on rseq_event_mask must be performed atomically
1138         * with respect to preemption.
1139         */
1140        unsigned long rseq_event_mask;
1141#endif
1142
1143        struct tlbflush_unmap_batch     tlb_ubc;
1144
1145        struct rcu_head                 rcu;
1146
1147        /* Cache last used pipe for splice(): */
1148        struct pipe_inode_info          *splice_pipe;
1149
1150        struct page_frag                task_frag;
1151
1152#ifdef CONFIG_TASK_DELAY_ACCT
1153        struct task_delay_info          *delays;
1154#endif
1155
1156#ifdef CONFIG_FAULT_INJECTION
1157        int                             make_it_fail;
1158        unsigned int                    fail_nth;
1159#endif
1160        /*
1161         * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1162         * balance_dirty_pages() for a dirty throttling pause:
1163         */
1164        int                             nr_dirtied;
1165        int                             nr_dirtied_pause;
1166        /* Start of a write-and-pause period: */
1167        unsigned long                   dirty_paused_when;
1168
1169#ifdef CONFIG_LATENCYTOP
1170        int                             latency_record_count;
1171        struct latency_record           latency_record[LT_SAVECOUNT];
1172#endif
1173        /*
1174         * Time slack values; these are used to round up poll() and
1175         * select() etc timeout values. These are in nanoseconds.
1176         */
1177        u64                             timer_slack_ns;
1178        u64                             default_timer_slack_ns;
1179
1180#ifdef CONFIG_KASAN
1181        unsigned int                    kasan_depth;
1182#endif
1183
1184#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1185        /* Index of current stored address in ret_stack: */
1186        int                             curr_ret_stack;
1187        int                             curr_ret_depth;
1188
1189        /* Stack of return addresses for return function tracing: */
1190        struct ftrace_ret_stack         *ret_stack;
1191
1192        /* Timestamp for last schedule: */
1193        unsigned long long              ftrace_timestamp;
1194
1195        /*
1196         * Number of functions that haven't been traced
1197         * because of depth overrun:
1198         */
1199        atomic_t                        trace_overrun;
1200
1201        /* Pause tracing: */
1202        atomic_t                        tracing_graph_pause;
1203#endif
1204
1205#ifdef CONFIG_TRACING
1206        /* State flags for use by tracers: */
1207        unsigned long                   trace;
1208
1209        /* Bitmask and counter of trace recursion: */
1210        unsigned long                   trace_recursion;
1211#endif /* CONFIG_TRACING */
1212
1213#ifdef CONFIG_KCOV
1214        /* Coverage collection mode enabled for this task (0 if disabled): */
1215        unsigned int                    kcov_mode;
1216
1217        /* Size of the kcov_area: */
1218        unsigned int                    kcov_size;
1219
1220        /* Buffer for coverage collection: */
1221        void                            *kcov_area;
1222
1223        /* KCOV descriptor wired with this task or NULL: */
1224        struct kcov                     *kcov;
1225#endif
1226
1227#ifdef CONFIG_MEMCG
1228        struct mem_cgroup               *memcg_in_oom;
1229        gfp_t                           memcg_oom_gfp_mask;
1230        int                             memcg_oom_order;
1231
1232        /* Number of pages to reclaim on returning to userland: */
1233        unsigned int                    memcg_nr_pages_over_high;
1234
1235        /* Used by memcontrol for targeted memcg charge: */
1236        struct mem_cgroup               *active_memcg;
1237#endif
1238
1239#ifdef CONFIG_BLK_CGROUP
1240        struct request_queue            *throttle_queue;
1241#endif
1242
1243#ifdef CONFIG_UPROBES
1244        struct uprobe_task              *utask;
1245#endif
1246#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1247        unsigned int                    sequential_io;
1248        unsigned int                    sequential_io_avg;
1249#endif
1250#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1251        unsigned long                   task_state_change;
1252#endif
1253        int                             pagefault_disabled;
1254#ifdef CONFIG_MMU
1255        struct task_struct              *oom_reaper_list;
1256#endif
1257#ifdef CONFIG_VMAP_STACK
1258        struct vm_struct                *stack_vm_area;
1259#endif
1260#ifdef CONFIG_THREAD_INFO_IN_TASK
1261        /* A live task holds one reference: */
1262        refcount_t                      stack_refcount;
1263#endif
1264#ifdef CONFIG_LIVEPATCH
1265        int patch_state;
1266#endif
1267#ifdef CONFIG_SECURITY
1268        /* Used by LSM modules for access restriction: */
1269        void                            *security;
1270#endif
1271
1272#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1273        unsigned long                   lowest_stack;
1274        unsigned long                   prev_lowest_stack;
1275#endif
1276
1277        /*
1278         * New fields for task_struct should be added above here, so that
1279         * they are included in the randomized portion of task_struct.
1280         */
1281        randomized_struct_fields_end
1282
1283        /* CPU-specific state of this task: */
1284        struct thread_struct            thread;
1285
1286        /*
1287         * WARNING: on x86, 'thread_struct' contains a variable-sized
1288         * structure.  It *MUST* be at the end of 'task_struct'.
1289         *
1290         * Do not put anything below here!
1291         */
1292};
1293
1294static inline struct pid *task_pid(struct task_struct *task)
1295{
1296        return task->thread_pid;
1297}
1298
1299/*
1300 * the helpers to get the task's different pids as they are seen
1301 * from various namespaces
1302 *
1303 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1304 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1305 *                     current.
1306 * task_xid_nr_ns()  : id seen from the ns specified;
1307 *
1308 * see also pid_nr() etc in include/linux/pid.h
1309 */
1310pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1311
1312static inline pid_t task_pid_nr(struct task_struct *tsk)
1313{
1314        return tsk->pid;
1315}
1316
1317static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1318{
1319        return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1320}
1321
1322static inline pid_t task_pid_vnr(struct task_struct *tsk)
1323{
1324        return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1325}
1326
1327
1328static inline pid_t task_tgid_nr(struct task_struct *tsk)
1329{
1330        return tsk->tgid;
1331}
1332
1333/**
1334 * pid_alive - check that a task structure is not stale
1335 * @p: Task structure to be checked.
1336 *
1337 * Test if a process is not yet dead (at most zombie state)
1338 * If pid_alive fails, then pointers within the task structure
1339 * can be stale and must not be dereferenced.
1340 *
1341 * Return: 1 if the process is alive. 0 otherwise.
1342 */
1343static inline int pid_alive(const struct task_struct *p)
1344{
1345        return p->thread_pid != NULL;
1346}
1347
1348static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1349{
1350        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1351}
1352
1353static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1354{
1355        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1356}
1357
1358
1359static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1360{
1361        return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1362}
1363
1364static inline pid_t task_session_vnr(struct task_struct *tsk)
1365{
1366        return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1367}
1368
1369static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1370{
1371        return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1372}
1373
1374static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1375{
1376        return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1377}
1378
1379static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1380{
1381        pid_t pid = 0;
1382
1383        rcu_read_lock();
1384        if (pid_alive(tsk))
1385                pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1386        rcu_read_unlock();
1387
1388        return pid;
1389}
1390
1391static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1392{
1393        return task_ppid_nr_ns(tsk, &init_pid_ns);
1394}
1395
1396/* Obsolete, do not use: */
1397static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1398{
1399        return task_pgrp_nr_ns(tsk, &init_pid_ns);
1400}
1401
1402#define TASK_REPORT_IDLE        (TASK_REPORT + 1)
1403#define TASK_REPORT_MAX         (TASK_REPORT_IDLE << 1)
1404
1405static inline unsigned int task_state_index(struct task_struct *tsk)
1406{
1407        unsigned int tsk_state = READ_ONCE(tsk->state);
1408        unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1409
1410        BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1411
1412        if (tsk_state == TASK_IDLE)
1413                state = TASK_REPORT_IDLE;
1414
1415        return fls(state);
1416}
1417
1418static inline char task_index_to_char(unsigned int state)
1419{
1420        static const char state_char[] = "RSDTtXZPI";
1421
1422        BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1423
1424        return state_char[state];
1425}
1426
1427static inline char task_state_to_char(struct task_struct *tsk)
1428{
1429        return task_index_to_char(task_state_index(tsk));
1430}
1431
1432/**
1433 * is_global_init - check if a task structure is init. Since init
1434 * is free to have sub-threads we need to check tgid.
1435 * @tsk: Task structure to be checked.
1436 *
1437 * Check if a task structure is the first user space task the kernel created.
1438 *
1439 * Return: 1 if the task structure is init. 0 otherwise.
1440 */
1441static inline int is_global_init(struct task_struct *tsk)
1442{
1443        return task_tgid_nr(tsk) == 1;
1444}
1445
1446extern struct pid *cad_pid;
1447
1448/*
1449 * Per process flags
1450 */
1451#define PF_IDLE                 0x00000002      /* I am an IDLE thread */
1452#define PF_EXITING              0x00000004      /* Getting shut down */
1453#define PF_EXITPIDONE           0x00000008      /* PI exit done on shut down */
1454#define PF_VCPU                 0x00000010      /* I'm a virtual CPU */
1455#define PF_WQ_WORKER            0x00000020      /* I'm a workqueue worker */
1456#define PF_FORKNOEXEC           0x00000040      /* Forked but didn't exec */
1457#define PF_MCE_PROCESS          0x00000080      /* Process policy on mce errors */
1458#define PF_SUPERPRIV            0x00000100      /* Used super-user privileges */
1459#define PF_DUMPCORE             0x00000200      /* Dumped core */
1460#define PF_SIGNALED             0x00000400      /* Killed by a signal */
1461#define PF_MEMALLOC             0x00000800      /* Allocating memory */
1462#define PF_NPROC_EXCEEDED       0x00001000      /* set_user() noticed that RLIMIT_NPROC was exceeded */
1463#define PF_USED_MATH            0x00002000      /* If unset the fpu must be initialized before use */
1464#define PF_USED_ASYNC           0x00004000      /* Used async_schedule*(), used by module init */
1465#define PF_NOFREEZE             0x00008000      /* This thread should not be frozen */
1466#define PF_FROZEN               0x00010000      /* Frozen for system suspend */
1467#define PF_KSWAPD               0x00020000      /* I am kswapd */
1468#define PF_MEMALLOC_NOFS        0x00040000      /* All allocation requests will inherit GFP_NOFS */
1469#define PF_MEMALLOC_NOIO        0x00080000      /* All allocation requests will inherit GFP_NOIO */
1470#define PF_LESS_THROTTLE        0x00100000      /* Throttle me less: I clean memory */
1471#define PF_KTHREAD              0x00200000      /* I am a kernel thread */
1472#define PF_RANDOMIZE            0x00400000      /* Randomize virtual address space */
1473#define PF_SWAPWRITE            0x00800000      /* Allowed to write to swap */
1474#define PF_MEMSTALL             0x01000000      /* Stalled due to lack of memory */
1475#define PF_UMH                  0x02000000      /* I'm an Usermodehelper process */
1476#define PF_NO_SETAFFINITY       0x04000000      /* Userland is not allowed to meddle with cpus_mask */
1477#define PF_MCE_EARLY            0x08000000      /* Early kill for mce process policy */
1478#define PF_MEMALLOC_NOCMA       0x10000000      /* All allocation request will have _GFP_MOVABLE cleared */
1479#define PF_FREEZER_SKIP         0x40000000      /* Freezer should not count it as freezable */
1480#define PF_SUSPEND_TASK         0x80000000      /* This thread called freeze_processes() and should not be frozen */
1481
1482/*
1483 * Only the _current_ task can read/write to tsk->flags, but other
1484 * tasks can access tsk->flags in readonly mode for example
1485 * with tsk_used_math (like during threaded core dumping).
1486 * There is however an exception to this rule during ptrace
1487 * or during fork: the ptracer task is allowed to write to the
1488 * child->flags of its traced child (same goes for fork, the parent
1489 * can write to the child->flags), because we're guaranteed the
1490 * child is not running and in turn not changing child->flags
1491 * at the same time the parent does it.
1492 */
1493#define clear_stopped_child_used_math(child)    do { (child)->flags &= ~PF_USED_MATH; } while (0)
1494#define set_stopped_child_used_math(child)      do { (child)->flags |= PF_USED_MATH; } while (0)
1495#define clear_used_math()                       clear_stopped_child_used_math(current)
1496#define set_used_math()                         set_stopped_child_used_math(current)
1497
1498#define conditional_stopped_child_used_math(condition, child) \
1499        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1500
1501#define conditional_used_math(condition)        conditional_stopped_child_used_math(condition, current)
1502
1503#define copy_to_stopped_child_used_math(child) \
1504        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1505
1506/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1507#define tsk_used_math(p)                        ((p)->flags & PF_USED_MATH)
1508#define used_math()                             tsk_used_math(current)
1509
1510static inline bool is_percpu_thread(void)
1511{
1512#ifdef CONFIG_SMP
1513        return (current->flags & PF_NO_SETAFFINITY) &&
1514                (current->nr_cpus_allowed  == 1);
1515#else
1516        return true;
1517#endif
1518}
1519
1520/* Per-process atomic flags. */
1521#define PFA_NO_NEW_PRIVS                0       /* May not gain new privileges. */
1522#define PFA_SPREAD_PAGE                 1       /* Spread page cache over cpuset */
1523#define PFA_SPREAD_SLAB                 2       /* Spread some slab caches over cpuset */
1524#define PFA_SPEC_SSB_DISABLE            3       /* Speculative Store Bypass disabled */
1525#define PFA_SPEC_SSB_FORCE_DISABLE      4       /* Speculative Store Bypass force disabled*/
1526#define PFA_SPEC_IB_DISABLE             5       /* Indirect branch speculation restricted */
1527#define PFA_SPEC_IB_FORCE_DISABLE       6       /* Indirect branch speculation permanently restricted */
1528#define PFA_SPEC_SSB_NOEXEC             7       /* Speculative Store Bypass clear on execve() */
1529
1530#define TASK_PFA_TEST(name, func)                                       \
1531        static inline bool task_##func(struct task_struct *p)           \
1532        { return test_bit(PFA_##name, &p->atomic_flags); }
1533
1534#define TASK_PFA_SET(name, func)                                        \
1535        static inline void task_set_##func(struct task_struct *p)       \
1536        { set_bit(PFA_##name, &p->atomic_flags); }
1537
1538#define TASK_PFA_CLEAR(name, func)                                      \
1539        static inline void task_clear_##func(struct task_struct *p)     \
1540        { clear_bit(PFA_##name, &p->atomic_flags); }
1541
1542TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1543TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1544
1545TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1546TASK_PFA_SET(SPREAD_PAGE, spread_page)
1547TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1548
1549TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1550TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1551TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1552
1553TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1554TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1555TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1556
1557TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1558TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1559TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1560
1561TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1562TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1563
1564TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1565TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1566TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1567
1568TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1569TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1570
1571static inline void
1572current_restore_flags(unsigned long orig_flags, unsigned long flags)
1573{
1574        current->flags &= ~flags;
1575        current->flags |= orig_flags & flags;
1576}
1577
1578extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1579extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1580#ifdef CONFIG_SMP
1581extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1582extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1583#else
1584static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1585{
1586}
1587static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1588{
1589        if (!cpumask_test_cpu(0, new_mask))
1590                return -EINVAL;
1591        return 0;
1592}
1593#endif
1594
1595extern int yield_to(struct task_struct *p, bool preempt);
1596extern void set_user_nice(struct task_struct *p, long nice);
1597extern int task_prio(const struct task_struct *p);
1598
1599/**
1600 * task_nice - return the nice value of a given task.
1601 * @p: the task in question.
1602 *
1603 * Return: The nice value [ -20 ... 0 ... 19 ].
1604 */
1605static inline int task_nice(const struct task_struct *p)
1606{
1607        return PRIO_TO_NICE((p)->static_prio);
1608}
1609
1610extern int can_nice(const struct task_struct *p, const int nice);
1611extern int task_curr(const struct task_struct *p);
1612extern int idle_cpu(int cpu);
1613extern int available_idle_cpu(int cpu);
1614extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1615extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1616extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1617extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1618extern struct task_struct *idle_task(int cpu);
1619
1620/**
1621 * is_idle_task - is the specified task an idle task?
1622 * @p: the task in question.
1623 *
1624 * Return: 1 if @p is an idle task. 0 otherwise.
1625 */
1626static inline bool is_idle_task(const struct task_struct *p)
1627{
1628        return !!(p->flags & PF_IDLE);
1629}
1630
1631extern struct task_struct *curr_task(int cpu);
1632extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1633
1634void yield(void);
1635
1636union thread_union {
1637#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1638        struct task_struct task;
1639#endif
1640#ifndef CONFIG_THREAD_INFO_IN_TASK
1641        struct thread_info thread_info;
1642#endif
1643        unsigned long stack[THREAD_SIZE/sizeof(long)];
1644};
1645
1646#ifndef CONFIG_THREAD_INFO_IN_TASK
1647extern struct thread_info init_thread_info;
1648#endif
1649
1650extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1651
1652#ifdef CONFIG_THREAD_INFO_IN_TASK
1653static inline struct thread_info *task_thread_info(struct task_struct *task)
1654{
1655        return &task->thread_info;
1656}
1657#elif !defined(__HAVE_THREAD_FUNCTIONS)
1658# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1659#endif
1660
1661/*
1662 * find a task by one of its numerical ids
1663 *
1664 * find_task_by_pid_ns():
1665 *      finds a task by its pid in the specified namespace
1666 * find_task_by_vpid():
1667 *      finds a task by its virtual pid
1668 *
1669 * see also find_vpid() etc in include/linux/pid.h
1670 */
1671
1672extern struct task_struct *find_task_by_vpid(pid_t nr);
1673extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1674
1675/*
1676 * find a task by its virtual pid and get the task struct
1677 */
1678extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1679
1680extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1681extern int wake_up_process(struct task_struct *tsk);
1682extern void wake_up_new_task(struct task_struct *tsk);
1683
1684#ifdef CONFIG_SMP
1685extern void kick_process(struct task_struct *tsk);
1686#else
1687static inline void kick_process(struct task_struct *tsk) { }
1688#endif
1689
1690extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1691
1692static inline void set_task_comm(struct task_struct *tsk, const char *from)
1693{
1694        __set_task_comm(tsk, from, false);
1695}
1696
1697extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1698#define get_task_comm(buf, tsk) ({                      \
1699        BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);     \
1700        __get_task_comm(buf, sizeof(buf), tsk);         \
1701})
1702
1703#ifdef CONFIG_SMP
1704void scheduler_ipi(void);
1705extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1706#else
1707static inline void scheduler_ipi(void) { }
1708static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1709{
1710        return 1;
1711}
1712#endif
1713
1714/*
1715 * Set thread flags in other task's structures.
1716 * See asm/thread_info.h for TIF_xxxx flags available:
1717 */
1718static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1719{
1720        set_ti_thread_flag(task_thread_info(tsk), flag);
1721}
1722
1723static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1724{
1725        clear_ti_thread_flag(task_thread_info(tsk), flag);
1726}
1727
1728static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1729                                          bool value)
1730{
1731        update_ti_thread_flag(task_thread_info(tsk), flag, value);
1732}
1733
1734static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1735{
1736        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1737}
1738
1739static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1740{
1741        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1742}
1743
1744static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1745{
1746        return test_ti_thread_flag(task_thread_info(tsk), flag);
1747}
1748
1749static inline void set_tsk_need_resched(struct task_struct *tsk)
1750{
1751        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1752}
1753
1754static inline void clear_tsk_need_resched(struct task_struct *tsk)
1755{
1756        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1757}
1758
1759static inline int test_tsk_need_resched(struct task_struct *tsk)
1760{
1761        return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1762}
1763
1764/*
1765 * cond_resched() and cond_resched_lock(): latency reduction via
1766 * explicit rescheduling in places that are safe. The return
1767 * value indicates whether a reschedule was done in fact.
1768 * cond_resched_lock() will drop the spinlock before scheduling,
1769 */
1770#ifndef CONFIG_PREEMPT
1771extern int _cond_resched(void);
1772#else
1773static inline int _cond_resched(void) { return 0; }
1774#endif
1775
1776#define cond_resched() ({                       \
1777        ___might_sleep(__FILE__, __LINE__, 0);  \
1778        _cond_resched();                        \
1779})
1780
1781extern int __cond_resched_lock(spinlock_t *lock);
1782
1783#define cond_resched_lock(lock) ({                              \
1784        ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1785        __cond_resched_lock(lock);                              \
1786})
1787
1788static inline void cond_resched_rcu(void)
1789{
1790#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1791        rcu_read_unlock();
1792        cond_resched();
1793        rcu_read_lock();
1794#endif
1795}
1796
1797/*
1798 * Does a critical section need to be broken due to another
1799 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1800 * but a general need for low latency)
1801 */
1802static inline int spin_needbreak(spinlock_t *lock)
1803{
1804#ifdef CONFIG_PREEMPT
1805        return spin_is_contended(lock);
1806#else
1807        return 0;
1808#endif
1809}
1810
1811static __always_inline bool need_resched(void)
1812{
1813        return unlikely(tif_need_resched());
1814}
1815
1816/*
1817 * Wrappers for p->thread_info->cpu access. No-op on UP.
1818 */
1819#ifdef CONFIG_SMP
1820
1821static inline unsigned int task_cpu(const struct task_struct *p)
1822{
1823#ifdef CONFIG_THREAD_INFO_IN_TASK
1824        return READ_ONCE(p->cpu);
1825#else
1826        return READ_ONCE(task_thread_info(p)->cpu);
1827#endif
1828}
1829
1830extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1831
1832#else
1833
1834static inline unsigned int task_cpu(const struct task_struct *p)
1835{
1836        return 0;
1837}
1838
1839static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1840{
1841}
1842
1843#endif /* CONFIG_SMP */
1844
1845/*
1846 * In order to reduce various lock holder preemption latencies provide an
1847 * interface to see if a vCPU is currently running or not.
1848 *
1849 * This allows us to terminate optimistic spin loops and block, analogous to
1850 * the native optimistic spin heuristic of testing if the lock owner task is
1851 * running or not.
1852 */
1853#ifndef vcpu_is_preempted
1854# define vcpu_is_preempted(cpu) false
1855#endif
1856
1857extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1858extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1859
1860#ifndef TASK_SIZE_OF
1861#define TASK_SIZE_OF(tsk)       TASK_SIZE
1862#endif
1863
1864#ifdef CONFIG_RSEQ
1865
1866/*
1867 * Map the event mask on the user-space ABI enum rseq_cs_flags
1868 * for direct mask checks.
1869 */
1870enum rseq_event_mask_bits {
1871        RSEQ_EVENT_PREEMPT_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1872        RSEQ_EVENT_SIGNAL_BIT   = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1873        RSEQ_EVENT_MIGRATE_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1874};
1875
1876enum rseq_event_mask {
1877        RSEQ_EVENT_PREEMPT      = (1U << RSEQ_EVENT_PREEMPT_BIT),
1878        RSEQ_EVENT_SIGNAL       = (1U << RSEQ_EVENT_SIGNAL_BIT),
1879        RSEQ_EVENT_MIGRATE      = (1U << RSEQ_EVENT_MIGRATE_BIT),
1880};
1881
1882static inline void rseq_set_notify_resume(struct task_struct *t)
1883{
1884        if (t->rseq)
1885                set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1886}
1887
1888void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1889
1890static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1891                                             struct pt_regs *regs)
1892{
1893        if (current->rseq)
1894                __rseq_handle_notify_resume(ksig, regs);
1895}
1896
1897static inline void rseq_signal_deliver(struct ksignal *ksig,
1898                                       struct pt_regs *regs)
1899{
1900        preempt_disable();
1901        __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1902        preempt_enable();
1903        rseq_handle_notify_resume(ksig, regs);
1904}
1905
1906/* rseq_preempt() requires preemption to be disabled. */
1907static inline void rseq_preempt(struct task_struct *t)
1908{
1909        __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1910        rseq_set_notify_resume(t);
1911}
1912
1913/* rseq_migrate() requires preemption to be disabled. */
1914static inline void rseq_migrate(struct task_struct *t)
1915{
1916        __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1917        rseq_set_notify_resume(t);
1918}
1919
1920/*
1921 * If parent process has a registered restartable sequences area, the
1922 * child inherits. Only applies when forking a process, not a thread.
1923 */
1924static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1925{
1926        if (clone_flags & CLONE_THREAD) {
1927                t->rseq = NULL;
1928                t->rseq_sig = 0;
1929                t->rseq_event_mask = 0;
1930        } else {
1931                t->rseq = current->rseq;
1932                t->rseq_sig = current->rseq_sig;
1933                t->rseq_event_mask = current->rseq_event_mask;
1934        }
1935}
1936
1937static inline void rseq_execve(struct task_struct *t)
1938{
1939        t->rseq = NULL;
1940        t->rseq_sig = 0;
1941        t->rseq_event_mask = 0;
1942}
1943
1944#else
1945
1946static inline void rseq_set_notify_resume(struct task_struct *t)
1947{
1948}
1949static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1950                                             struct pt_regs *regs)
1951{
1952}
1953static inline void rseq_signal_deliver(struct ksignal *ksig,
1954                                       struct pt_regs *regs)
1955{
1956}
1957static inline void rseq_preempt(struct task_struct *t)
1958{
1959}
1960static inline void rseq_migrate(struct task_struct *t)
1961{
1962}
1963static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1964{
1965}
1966static inline void rseq_execve(struct task_struct *t)
1967{
1968}
1969
1970#endif
1971
1972void __exit_umh(struct task_struct *tsk);
1973
1974static inline void exit_umh(struct task_struct *tsk)
1975{
1976        if (unlikely(tsk->flags & PF_UMH))
1977                __exit_umh(tsk);
1978}
1979
1980#ifdef CONFIG_DEBUG_RSEQ
1981
1982void rseq_syscall(struct pt_regs *regs);
1983
1984#else
1985
1986static inline void rseq_syscall(struct pt_regs *regs)
1987{
1988}
1989
1990#endif
1991
1992const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
1993char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
1994int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
1995
1996const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
1997const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
1998const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
1999
2000int sched_trace_rq_cpu(struct rq *rq);
2001
2002const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2003
2004#endif
2005