linux/include/linux/sched/mm.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_SCHED_MM_H
   3#define _LINUX_SCHED_MM_H
   4
   5#include <linux/kernel.h>
   6#include <linux/atomic.h>
   7#include <linux/sched.h>
   8#include <linux/mm_types.h>
   9#include <linux/gfp.h>
  10#include <linux/sync_core.h>
  11
  12/*
  13 * Routines for handling mm_structs
  14 */
  15extern struct mm_struct *mm_alloc(void);
  16
  17/**
  18 * mmgrab() - Pin a &struct mm_struct.
  19 * @mm: The &struct mm_struct to pin.
  20 *
  21 * Make sure that @mm will not get freed even after the owning task
  22 * exits. This doesn't guarantee that the associated address space
  23 * will still exist later on and mmget_not_zero() has to be used before
  24 * accessing it.
  25 *
  26 * This is a preferred way to to pin @mm for a longer/unbounded amount
  27 * of time.
  28 *
  29 * Use mmdrop() to release the reference acquired by mmgrab().
  30 *
  31 * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
  32 * of &mm_struct.mm_count vs &mm_struct.mm_users.
  33 */
  34static inline void mmgrab(struct mm_struct *mm)
  35{
  36        atomic_inc(&mm->mm_count);
  37}
  38
  39extern void __mmdrop(struct mm_struct *mm);
  40
  41static inline void mmdrop(struct mm_struct *mm)
  42{
  43        /*
  44         * The implicit full barrier implied by atomic_dec_and_test() is
  45         * required by the membarrier system call before returning to
  46         * user-space, after storing to rq->curr.
  47         */
  48        if (unlikely(atomic_dec_and_test(&mm->mm_count)))
  49                __mmdrop(mm);
  50}
  51
  52/*
  53 * This has to be called after a get_task_mm()/mmget_not_zero()
  54 * followed by taking the mmap_sem for writing before modifying the
  55 * vmas or anything the coredump pretends not to change from under it.
  56 *
  57 * It also has to be called when mmgrab() is used in the context of
  58 * the process, but then the mm_count refcount is transferred outside
  59 * the context of the process to run down_write() on that pinned mm.
  60 *
  61 * NOTE: find_extend_vma() called from GUP context is the only place
  62 * that can modify the "mm" (notably the vm_start/end) under mmap_sem
  63 * for reading and outside the context of the process, so it is also
  64 * the only case that holds the mmap_sem for reading that must call
  65 * this function. Generally if the mmap_sem is hold for reading
  66 * there's no need of this check after get_task_mm()/mmget_not_zero().
  67 *
  68 * This function can be obsoleted and the check can be removed, after
  69 * the coredump code will hold the mmap_sem for writing before
  70 * invoking the ->core_dump methods.
  71 */
  72static inline bool mmget_still_valid(struct mm_struct *mm)
  73{
  74        return likely(!mm->core_state);
  75}
  76
  77/**
  78 * mmget() - Pin the address space associated with a &struct mm_struct.
  79 * @mm: The address space to pin.
  80 *
  81 * Make sure that the address space of the given &struct mm_struct doesn't
  82 * go away. This does not protect against parts of the address space being
  83 * modified or freed, however.
  84 *
  85 * Never use this function to pin this address space for an
  86 * unbounded/indefinite amount of time.
  87 *
  88 * Use mmput() to release the reference acquired by mmget().
  89 *
  90 * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
  91 * of &mm_struct.mm_count vs &mm_struct.mm_users.
  92 */
  93static inline void mmget(struct mm_struct *mm)
  94{
  95        atomic_inc(&mm->mm_users);
  96}
  97
  98static inline bool mmget_not_zero(struct mm_struct *mm)
  99{
 100        return atomic_inc_not_zero(&mm->mm_users);
 101}
 102
 103/* mmput gets rid of the mappings and all user-space */
 104extern void mmput(struct mm_struct *);
 105#ifdef CONFIG_MMU
 106/* same as above but performs the slow path from the async context. Can
 107 * be called from the atomic context as well
 108 */
 109void mmput_async(struct mm_struct *);
 110#endif
 111
 112/* Grab a reference to a task's mm, if it is not already going away */
 113extern struct mm_struct *get_task_mm(struct task_struct *task);
 114/*
 115 * Grab a reference to a task's mm, if it is not already going away
 116 * and ptrace_may_access with the mode parameter passed to it
 117 * succeeds.
 118 */
 119extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
 120/* Remove the current tasks stale references to the old mm_struct */
 121extern void mm_release(struct task_struct *, struct mm_struct *);
 122
 123#ifdef CONFIG_MEMCG
 124extern void mm_update_next_owner(struct mm_struct *mm);
 125#else
 126static inline void mm_update_next_owner(struct mm_struct *mm)
 127{
 128}
 129#endif /* CONFIG_MEMCG */
 130
 131#ifdef CONFIG_MMU
 132extern void arch_pick_mmap_layout(struct mm_struct *mm,
 133                                  struct rlimit *rlim_stack);
 134extern unsigned long
 135arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
 136                       unsigned long, unsigned long);
 137extern unsigned long
 138arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 139                          unsigned long len, unsigned long pgoff,
 140                          unsigned long flags);
 141#else
 142static inline void arch_pick_mmap_layout(struct mm_struct *mm,
 143                                         struct rlimit *rlim_stack) {}
 144#endif
 145
 146static inline bool in_vfork(struct task_struct *tsk)
 147{
 148        bool ret;
 149
 150        /*
 151         * need RCU to access ->real_parent if CLONE_VM was used along with
 152         * CLONE_PARENT.
 153         *
 154         * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
 155         * imply CLONE_VM
 156         *
 157         * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
 158         * ->real_parent is not necessarily the task doing vfork(), so in
 159         * theory we can't rely on task_lock() if we want to dereference it.
 160         *
 161         * And in this case we can't trust the real_parent->mm == tsk->mm
 162         * check, it can be false negative. But we do not care, if init or
 163         * another oom-unkillable task does this it should blame itself.
 164         */
 165        rcu_read_lock();
 166        ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
 167        rcu_read_unlock();
 168
 169        return ret;
 170}
 171
 172/*
 173 * Applies per-task gfp context to the given allocation flags.
 174 * PF_MEMALLOC_NOIO implies GFP_NOIO
 175 * PF_MEMALLOC_NOFS implies GFP_NOFS
 176 * PF_MEMALLOC_NOCMA implies no allocation from CMA region.
 177 */
 178static inline gfp_t current_gfp_context(gfp_t flags)
 179{
 180        if (unlikely(current->flags &
 181                     (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_NOCMA))) {
 182                /*
 183                 * NOIO implies both NOIO and NOFS and it is a weaker context
 184                 * so always make sure it makes precedence
 185                 */
 186                if (current->flags & PF_MEMALLOC_NOIO)
 187                        flags &= ~(__GFP_IO | __GFP_FS);
 188                else if (current->flags & PF_MEMALLOC_NOFS)
 189                        flags &= ~__GFP_FS;
 190#ifdef CONFIG_CMA
 191                if (current->flags & PF_MEMALLOC_NOCMA)
 192                        flags &= ~__GFP_MOVABLE;
 193#endif
 194        }
 195        return flags;
 196}
 197
 198#ifdef CONFIG_LOCKDEP
 199extern void __fs_reclaim_acquire(void);
 200extern void __fs_reclaim_release(void);
 201extern void fs_reclaim_acquire(gfp_t gfp_mask);
 202extern void fs_reclaim_release(gfp_t gfp_mask);
 203#else
 204static inline void __fs_reclaim_acquire(void) { }
 205static inline void __fs_reclaim_release(void) { }
 206static inline void fs_reclaim_acquire(gfp_t gfp_mask) { }
 207static inline void fs_reclaim_release(gfp_t gfp_mask) { }
 208#endif
 209
 210/**
 211 * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope.
 212 *
 213 * This functions marks the beginning of the GFP_NOIO allocation scope.
 214 * All further allocations will implicitly drop __GFP_IO flag and so
 215 * they are safe for the IO critical section from the allocation recursion
 216 * point of view. Use memalloc_noio_restore to end the scope with flags
 217 * returned by this function.
 218 *
 219 * This function is safe to be used from any context.
 220 */
 221static inline unsigned int memalloc_noio_save(void)
 222{
 223        unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
 224        current->flags |= PF_MEMALLOC_NOIO;
 225        return flags;
 226}
 227
 228/**
 229 * memalloc_noio_restore - Ends the implicit GFP_NOIO scope.
 230 * @flags: Flags to restore.
 231 *
 232 * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function.
 233 * Always make sure that that the given flags is the return value from the
 234 * pairing memalloc_noio_save call.
 235 */
 236static inline void memalloc_noio_restore(unsigned int flags)
 237{
 238        current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
 239}
 240
 241/**
 242 * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope.
 243 *
 244 * This functions marks the beginning of the GFP_NOFS allocation scope.
 245 * All further allocations will implicitly drop __GFP_FS flag and so
 246 * they are safe for the FS critical section from the allocation recursion
 247 * point of view. Use memalloc_nofs_restore to end the scope with flags
 248 * returned by this function.
 249 *
 250 * This function is safe to be used from any context.
 251 */
 252static inline unsigned int memalloc_nofs_save(void)
 253{
 254        unsigned int flags = current->flags & PF_MEMALLOC_NOFS;
 255        current->flags |= PF_MEMALLOC_NOFS;
 256        return flags;
 257}
 258
 259/**
 260 * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope.
 261 * @flags: Flags to restore.
 262 *
 263 * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function.
 264 * Always make sure that that the given flags is the return value from the
 265 * pairing memalloc_nofs_save call.
 266 */
 267static inline void memalloc_nofs_restore(unsigned int flags)
 268{
 269        current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags;
 270}
 271
 272static inline unsigned int memalloc_noreclaim_save(void)
 273{
 274        unsigned int flags = current->flags & PF_MEMALLOC;
 275        current->flags |= PF_MEMALLOC;
 276        return flags;
 277}
 278
 279static inline void memalloc_noreclaim_restore(unsigned int flags)
 280{
 281        current->flags = (current->flags & ~PF_MEMALLOC) | flags;
 282}
 283
 284#ifdef CONFIG_CMA
 285static inline unsigned int memalloc_nocma_save(void)
 286{
 287        unsigned int flags = current->flags & PF_MEMALLOC_NOCMA;
 288
 289        current->flags |= PF_MEMALLOC_NOCMA;
 290        return flags;
 291}
 292
 293static inline void memalloc_nocma_restore(unsigned int flags)
 294{
 295        current->flags = (current->flags & ~PF_MEMALLOC_NOCMA) | flags;
 296}
 297#else
 298static inline unsigned int memalloc_nocma_save(void)
 299{
 300        return 0;
 301}
 302
 303static inline void memalloc_nocma_restore(unsigned int flags)
 304{
 305}
 306#endif
 307
 308#ifdef CONFIG_MEMCG
 309/**
 310 * memalloc_use_memcg - Starts the remote memcg charging scope.
 311 * @memcg: memcg to charge.
 312 *
 313 * This function marks the beginning of the remote memcg charging scope. All the
 314 * __GFP_ACCOUNT allocations till the end of the scope will be charged to the
 315 * given memcg.
 316 *
 317 * NOTE: This function is not nesting safe.
 318 */
 319static inline void memalloc_use_memcg(struct mem_cgroup *memcg)
 320{
 321        WARN_ON_ONCE(current->active_memcg);
 322        current->active_memcg = memcg;
 323}
 324
 325/**
 326 * memalloc_unuse_memcg - Ends the remote memcg charging scope.
 327 *
 328 * This function marks the end of the remote memcg charging scope started by
 329 * memalloc_use_memcg().
 330 */
 331static inline void memalloc_unuse_memcg(void)
 332{
 333        current->active_memcg = NULL;
 334}
 335#else
 336static inline void memalloc_use_memcg(struct mem_cgroup *memcg)
 337{
 338}
 339
 340static inline void memalloc_unuse_memcg(void)
 341{
 342}
 343#endif
 344
 345#ifdef CONFIG_MEMBARRIER
 346enum {
 347        MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY                = (1U << 0),
 348        MEMBARRIER_STATE_PRIVATE_EXPEDITED                      = (1U << 1),
 349        MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY                 = (1U << 2),
 350        MEMBARRIER_STATE_GLOBAL_EXPEDITED                       = (1U << 3),
 351        MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY      = (1U << 4),
 352        MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE            = (1U << 5),
 353};
 354
 355enum {
 356        MEMBARRIER_FLAG_SYNC_CORE       = (1U << 0),
 357};
 358
 359#ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
 360#include <asm/membarrier.h>
 361#endif
 362
 363static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
 364{
 365        if (likely(!(atomic_read(&mm->membarrier_state) &
 366                     MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE)))
 367                return;
 368        sync_core_before_usermode();
 369}
 370
 371static inline void membarrier_execve(struct task_struct *t)
 372{
 373        atomic_set(&t->mm->membarrier_state, 0);
 374}
 375#else
 376#ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
 377static inline void membarrier_arch_switch_mm(struct mm_struct *prev,
 378                                             struct mm_struct *next,
 379                                             struct task_struct *tsk)
 380{
 381}
 382#endif
 383static inline void membarrier_execve(struct task_struct *t)
 384{
 385}
 386static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
 387{
 388}
 389#endif
 390
 391#endif /* _LINUX_SCHED_MM_H */
 392