linux/include/linux/xarray.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2#ifndef _LINUX_XARRAY_H
   3#define _LINUX_XARRAY_H
   4/*
   5 * eXtensible Arrays
   6 * Copyright (c) 2017 Microsoft Corporation
   7 * Author: Matthew Wilcox <willy@infradead.org>
   8 *
   9 * See Documentation/core-api/xarray.rst for how to use the XArray.
  10 */
  11
  12#include <linux/bug.h>
  13#include <linux/compiler.h>
  14#include <linux/gfp.h>
  15#include <linux/kconfig.h>
  16#include <linux/kernel.h>
  17#include <linux/rcupdate.h>
  18#include <linux/spinlock.h>
  19#include <linux/types.h>
  20
  21/*
  22 * The bottom two bits of the entry determine how the XArray interprets
  23 * the contents:
  24 *
  25 * 00: Pointer entry
  26 * 10: Internal entry
  27 * x1: Value entry or tagged pointer
  28 *
  29 * Attempting to store internal entries in the XArray is a bug.
  30 *
  31 * Most internal entries are pointers to the next node in the tree.
  32 * The following internal entries have a special meaning:
  33 *
  34 * 0-62: Sibling entries
  35 * 256: Zero entry
  36 * 257: Retry entry
  37 *
  38 * Errors are also represented as internal entries, but use the negative
  39 * space (-4094 to -2).  They're never stored in the slots array; only
  40 * returned by the normal API.
  41 */
  42
  43#define BITS_PER_XA_VALUE       (BITS_PER_LONG - 1)
  44
  45/**
  46 * xa_mk_value() - Create an XArray entry from an integer.
  47 * @v: Value to store in XArray.
  48 *
  49 * Context: Any context.
  50 * Return: An entry suitable for storing in the XArray.
  51 */
  52static inline void *xa_mk_value(unsigned long v)
  53{
  54        WARN_ON((long)v < 0);
  55        return (void *)((v << 1) | 1);
  56}
  57
  58/**
  59 * xa_to_value() - Get value stored in an XArray entry.
  60 * @entry: XArray entry.
  61 *
  62 * Context: Any context.
  63 * Return: The value stored in the XArray entry.
  64 */
  65static inline unsigned long xa_to_value(const void *entry)
  66{
  67        return (unsigned long)entry >> 1;
  68}
  69
  70/**
  71 * xa_is_value() - Determine if an entry is a value.
  72 * @entry: XArray entry.
  73 *
  74 * Context: Any context.
  75 * Return: True if the entry is a value, false if it is a pointer.
  76 */
  77static inline bool xa_is_value(const void *entry)
  78{
  79        return (unsigned long)entry & 1;
  80}
  81
  82/**
  83 * xa_tag_pointer() - Create an XArray entry for a tagged pointer.
  84 * @p: Plain pointer.
  85 * @tag: Tag value (0, 1 or 3).
  86 *
  87 * If the user of the XArray prefers, they can tag their pointers instead
  88 * of storing value entries.  Three tags are available (0, 1 and 3).
  89 * These are distinct from the xa_mark_t as they are not replicated up
  90 * through the array and cannot be searched for.
  91 *
  92 * Context: Any context.
  93 * Return: An XArray entry.
  94 */
  95static inline void *xa_tag_pointer(void *p, unsigned long tag)
  96{
  97        return (void *)((unsigned long)p | tag);
  98}
  99
 100/**
 101 * xa_untag_pointer() - Turn an XArray entry into a plain pointer.
 102 * @entry: XArray entry.
 103 *
 104 * If you have stored a tagged pointer in the XArray, call this function
 105 * to get the untagged version of the pointer.
 106 *
 107 * Context: Any context.
 108 * Return: A pointer.
 109 */
 110static inline void *xa_untag_pointer(void *entry)
 111{
 112        return (void *)((unsigned long)entry & ~3UL);
 113}
 114
 115/**
 116 * xa_pointer_tag() - Get the tag stored in an XArray entry.
 117 * @entry: XArray entry.
 118 *
 119 * If you have stored a tagged pointer in the XArray, call this function
 120 * to get the tag of that pointer.
 121 *
 122 * Context: Any context.
 123 * Return: A tag.
 124 */
 125static inline unsigned int xa_pointer_tag(void *entry)
 126{
 127        return (unsigned long)entry & 3UL;
 128}
 129
 130/*
 131 * xa_mk_internal() - Create an internal entry.
 132 * @v: Value to turn into an internal entry.
 133 *
 134 * Internal entries are used for a number of purposes.  Entries 0-255 are
 135 * used for sibling entries (only 0-62 are used by the current code).  256
 136 * is used for the retry entry.  257 is used for the reserved / zero entry.
 137 * Negative internal entries are used to represent errnos.  Node pointers
 138 * are also tagged as internal entries in some situations.
 139 *
 140 * Context: Any context.
 141 * Return: An XArray internal entry corresponding to this value.
 142 */
 143static inline void *xa_mk_internal(unsigned long v)
 144{
 145        return (void *)((v << 2) | 2);
 146}
 147
 148/*
 149 * xa_to_internal() - Extract the value from an internal entry.
 150 * @entry: XArray entry.
 151 *
 152 * Context: Any context.
 153 * Return: The value which was stored in the internal entry.
 154 */
 155static inline unsigned long xa_to_internal(const void *entry)
 156{
 157        return (unsigned long)entry >> 2;
 158}
 159
 160/*
 161 * xa_is_internal() - Is the entry an internal entry?
 162 * @entry: XArray entry.
 163 *
 164 * Context: Any context.
 165 * Return: %true if the entry is an internal entry.
 166 */
 167static inline bool xa_is_internal(const void *entry)
 168{
 169        return ((unsigned long)entry & 3) == 2;
 170}
 171
 172#define XA_ZERO_ENTRY           xa_mk_internal(257)
 173
 174/**
 175 * xa_is_zero() - Is the entry a zero entry?
 176 * @entry: Entry retrieved from the XArray
 177 *
 178 * The normal API will return NULL as the contents of a slot containing
 179 * a zero entry.  You can only see zero entries by using the advanced API.
 180 *
 181 * Return: %true if the entry is a zero entry.
 182 */
 183static inline bool xa_is_zero(const void *entry)
 184{
 185        return unlikely(entry == XA_ZERO_ENTRY);
 186}
 187
 188/**
 189 * xa_is_err() - Report whether an XArray operation returned an error
 190 * @entry: Result from calling an XArray function
 191 *
 192 * If an XArray operation cannot complete an operation, it will return
 193 * a special value indicating an error.  This function tells you
 194 * whether an error occurred; xa_err() tells you which error occurred.
 195 *
 196 * Context: Any context.
 197 * Return: %true if the entry indicates an error.
 198 */
 199static inline bool xa_is_err(const void *entry)
 200{
 201        return unlikely(xa_is_internal(entry) &&
 202                        entry >= xa_mk_internal(-MAX_ERRNO));
 203}
 204
 205/**
 206 * xa_err() - Turn an XArray result into an errno.
 207 * @entry: Result from calling an XArray function.
 208 *
 209 * If an XArray operation cannot complete an operation, it will return
 210 * a special pointer value which encodes an errno.  This function extracts
 211 * the errno from the pointer value, or returns 0 if the pointer does not
 212 * represent an errno.
 213 *
 214 * Context: Any context.
 215 * Return: A negative errno or 0.
 216 */
 217static inline int xa_err(void *entry)
 218{
 219        /* xa_to_internal() would not do sign extension. */
 220        if (xa_is_err(entry))
 221                return (long)entry >> 2;
 222        return 0;
 223}
 224
 225/**
 226 * struct xa_limit - Represents a range of IDs.
 227 * @min: The lowest ID to allocate (inclusive).
 228 * @max: The maximum ID to allocate (inclusive).
 229 *
 230 * This structure is used either directly or via the XA_LIMIT() macro
 231 * to communicate the range of IDs that are valid for allocation.
 232 * Two common ranges are predefined for you:
 233 *  * xa_limit_32b      - [0 - UINT_MAX]
 234 *  * xa_limit_31b      - [0 - INT_MAX]
 235 */
 236struct xa_limit {
 237        u32 max;
 238        u32 min;
 239};
 240
 241#define XA_LIMIT(_min, _max) (struct xa_limit) { .min = _min, .max = _max }
 242
 243#define xa_limit_32b    XA_LIMIT(0, UINT_MAX)
 244#define xa_limit_31b    XA_LIMIT(0, INT_MAX)
 245
 246typedef unsigned __bitwise xa_mark_t;
 247#define XA_MARK_0               ((__force xa_mark_t)0U)
 248#define XA_MARK_1               ((__force xa_mark_t)1U)
 249#define XA_MARK_2               ((__force xa_mark_t)2U)
 250#define XA_PRESENT              ((__force xa_mark_t)8U)
 251#define XA_MARK_MAX             XA_MARK_2
 252#define XA_FREE_MARK            XA_MARK_0
 253
 254enum xa_lock_type {
 255        XA_LOCK_IRQ = 1,
 256        XA_LOCK_BH = 2,
 257};
 258
 259/*
 260 * Values for xa_flags.  The radix tree stores its GFP flags in the xa_flags,
 261 * and we remain compatible with that.
 262 */
 263#define XA_FLAGS_LOCK_IRQ       ((__force gfp_t)XA_LOCK_IRQ)
 264#define XA_FLAGS_LOCK_BH        ((__force gfp_t)XA_LOCK_BH)
 265#define XA_FLAGS_TRACK_FREE     ((__force gfp_t)4U)
 266#define XA_FLAGS_ZERO_BUSY      ((__force gfp_t)8U)
 267#define XA_FLAGS_ALLOC_WRAPPED  ((__force gfp_t)16U)
 268#define XA_FLAGS_ACCOUNT        ((__force gfp_t)32U)
 269#define XA_FLAGS_MARK(mark)     ((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \
 270                                                (__force unsigned)(mark)))
 271
 272/* ALLOC is for a normal 0-based alloc.  ALLOC1 is for an 1-based alloc */
 273#define XA_FLAGS_ALLOC  (XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK))
 274#define XA_FLAGS_ALLOC1 (XA_FLAGS_TRACK_FREE | XA_FLAGS_ZERO_BUSY)
 275
 276/**
 277 * struct xarray - The anchor of the XArray.
 278 * @xa_lock: Lock that protects the contents of the XArray.
 279 *
 280 * To use the xarray, define it statically or embed it in your data structure.
 281 * It is a very small data structure, so it does not usually make sense to
 282 * allocate it separately and keep a pointer to it in your data structure.
 283 *
 284 * You may use the xa_lock to protect your own data structures as well.
 285 */
 286/*
 287 * If all of the entries in the array are NULL, @xa_head is a NULL pointer.
 288 * If the only non-NULL entry in the array is at index 0, @xa_head is that
 289 * entry.  If any other entry in the array is non-NULL, @xa_head points
 290 * to an @xa_node.
 291 */
 292struct xarray {
 293        spinlock_t      xa_lock;
 294/* private: The rest of the data structure is not to be used directly. */
 295        gfp_t           xa_flags;
 296        void __rcu *    xa_head;
 297};
 298
 299#define XARRAY_INIT(name, flags) {                              \
 300        .xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock),          \
 301        .xa_flags = flags,                                      \
 302        .xa_head = NULL,                                        \
 303}
 304
 305/**
 306 * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags.
 307 * @name: A string that names your XArray.
 308 * @flags: XA_FLAG values.
 309 *
 310 * This is intended for file scope definitions of XArrays.  It declares
 311 * and initialises an empty XArray with the chosen name and flags.  It is
 312 * equivalent to calling xa_init_flags() on the array, but it does the
 313 * initialisation at compiletime instead of runtime.
 314 */
 315#define DEFINE_XARRAY_FLAGS(name, flags)                                \
 316        struct xarray name = XARRAY_INIT(name, flags)
 317
 318/**
 319 * DEFINE_XARRAY() - Define an XArray.
 320 * @name: A string that names your XArray.
 321 *
 322 * This is intended for file scope definitions of XArrays.  It declares
 323 * and initialises an empty XArray with the chosen name.  It is equivalent
 324 * to calling xa_init() on the array, but it does the initialisation at
 325 * compiletime instead of runtime.
 326 */
 327#define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0)
 328
 329/**
 330 * DEFINE_XARRAY_ALLOC() - Define an XArray which allocates IDs starting at 0.
 331 * @name: A string that names your XArray.
 332 *
 333 * This is intended for file scope definitions of allocating XArrays.
 334 * See also DEFINE_XARRAY().
 335 */
 336#define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC)
 337
 338/**
 339 * DEFINE_XARRAY_ALLOC1() - Define an XArray which allocates IDs starting at 1.
 340 * @name: A string that names your XArray.
 341 *
 342 * This is intended for file scope definitions of allocating XArrays.
 343 * See also DEFINE_XARRAY().
 344 */
 345#define DEFINE_XARRAY_ALLOC1(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC1)
 346
 347void *xa_load(struct xarray *, unsigned long index);
 348void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
 349void *xa_erase(struct xarray *, unsigned long index);
 350void *xa_store_range(struct xarray *, unsigned long first, unsigned long last,
 351                        void *entry, gfp_t);
 352bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t);
 353void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
 354void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
 355void *xa_find(struct xarray *xa, unsigned long *index,
 356                unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
 357void *xa_find_after(struct xarray *xa, unsigned long *index,
 358                unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
 359unsigned int xa_extract(struct xarray *, void **dst, unsigned long start,
 360                unsigned long max, unsigned int n, xa_mark_t);
 361void xa_destroy(struct xarray *);
 362
 363/**
 364 * xa_init_flags() - Initialise an empty XArray with flags.
 365 * @xa: XArray.
 366 * @flags: XA_FLAG values.
 367 *
 368 * If you need to initialise an XArray with special flags (eg you need
 369 * to take the lock from interrupt context), use this function instead
 370 * of xa_init().
 371 *
 372 * Context: Any context.
 373 */
 374static inline void xa_init_flags(struct xarray *xa, gfp_t flags)
 375{
 376        spin_lock_init(&xa->xa_lock);
 377        xa->xa_flags = flags;
 378        xa->xa_head = NULL;
 379}
 380
 381/**
 382 * xa_init() - Initialise an empty XArray.
 383 * @xa: XArray.
 384 *
 385 * An empty XArray is full of NULL entries.
 386 *
 387 * Context: Any context.
 388 */
 389static inline void xa_init(struct xarray *xa)
 390{
 391        xa_init_flags(xa, 0);
 392}
 393
 394/**
 395 * xa_empty() - Determine if an array has any present entries.
 396 * @xa: XArray.
 397 *
 398 * Context: Any context.
 399 * Return: %true if the array contains only NULL pointers.
 400 */
 401static inline bool xa_empty(const struct xarray *xa)
 402{
 403        return xa->xa_head == NULL;
 404}
 405
 406/**
 407 * xa_marked() - Inquire whether any entry in this array has a mark set
 408 * @xa: Array
 409 * @mark: Mark value
 410 *
 411 * Context: Any context.
 412 * Return: %true if any entry has this mark set.
 413 */
 414static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark)
 415{
 416        return xa->xa_flags & XA_FLAGS_MARK(mark);
 417}
 418
 419/**
 420 * xa_for_each_start() - Iterate over a portion of an XArray.
 421 * @xa: XArray.
 422 * @index: Index of @entry.
 423 * @entry: Entry retrieved from array.
 424 * @start: First index to retrieve from array.
 425 *
 426 * During the iteration, @entry will have the value of the entry stored
 427 * in @xa at @index.  You may modify @index during the iteration if you
 428 * want to skip or reprocess indices.  It is safe to modify the array
 429 * during the iteration.  At the end of the iteration, @entry will be set
 430 * to NULL and @index will have a value less than or equal to max.
 431 *
 432 * xa_for_each_start() is O(n.log(n)) while xas_for_each() is O(n).  You have
 433 * to handle your own locking with xas_for_each(), and if you have to unlock
 434 * after each iteration, it will also end up being O(n.log(n)).
 435 * xa_for_each_start() will spin if it hits a retry entry; if you intend to
 436 * see retry entries, you should use the xas_for_each() iterator instead.
 437 * The xas_for_each() iterator will expand into more inline code than
 438 * xa_for_each_start().
 439 *
 440 * Context: Any context.  Takes and releases the RCU lock.
 441 */
 442#define xa_for_each_start(xa, index, entry, start)                      \
 443        for (index = start,                                             \
 444             entry = xa_find(xa, &index, ULONG_MAX, XA_PRESENT);        \
 445             entry;                                                     \
 446             entry = xa_find_after(xa, &index, ULONG_MAX, XA_PRESENT))
 447
 448/**
 449 * xa_for_each() - Iterate over present entries in an XArray.
 450 * @xa: XArray.
 451 * @index: Index of @entry.
 452 * @entry: Entry retrieved from array.
 453 *
 454 * During the iteration, @entry will have the value of the entry stored
 455 * in @xa at @index.  You may modify @index during the iteration if you want
 456 * to skip or reprocess indices.  It is safe to modify the array during the
 457 * iteration.  At the end of the iteration, @entry will be set to NULL and
 458 * @index will have a value less than or equal to max.
 459 *
 460 * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n).  You have
 461 * to handle your own locking with xas_for_each(), and if you have to unlock
 462 * after each iteration, it will also end up being O(n.log(n)).  xa_for_each()
 463 * will spin if it hits a retry entry; if you intend to see retry entries,
 464 * you should use the xas_for_each() iterator instead.  The xas_for_each()
 465 * iterator will expand into more inline code than xa_for_each().
 466 *
 467 * Context: Any context.  Takes and releases the RCU lock.
 468 */
 469#define xa_for_each(xa, index, entry) \
 470        xa_for_each_start(xa, index, entry, 0)
 471
 472/**
 473 * xa_for_each_marked() - Iterate over marked entries in an XArray.
 474 * @xa: XArray.
 475 * @index: Index of @entry.
 476 * @entry: Entry retrieved from array.
 477 * @filter: Selection criterion.
 478 *
 479 * During the iteration, @entry will have the value of the entry stored
 480 * in @xa at @index.  The iteration will skip all entries in the array
 481 * which do not match @filter.  You may modify @index during the iteration
 482 * if you want to skip or reprocess indices.  It is safe to modify the array
 483 * during the iteration.  At the end of the iteration, @entry will be set to
 484 * NULL and @index will have a value less than or equal to max.
 485 *
 486 * xa_for_each_marked() is O(n.log(n)) while xas_for_each_marked() is O(n).
 487 * You have to handle your own locking with xas_for_each(), and if you have
 488 * to unlock after each iteration, it will also end up being O(n.log(n)).
 489 * xa_for_each_marked() will spin if it hits a retry entry; if you intend to
 490 * see retry entries, you should use the xas_for_each_marked() iterator
 491 * instead.  The xas_for_each_marked() iterator will expand into more inline
 492 * code than xa_for_each_marked().
 493 *
 494 * Context: Any context.  Takes and releases the RCU lock.
 495 */
 496#define xa_for_each_marked(xa, index, entry, filter) \
 497        for (index = 0, entry = xa_find(xa, &index, ULONG_MAX, filter); \
 498             entry; entry = xa_find_after(xa, &index, ULONG_MAX, filter))
 499
 500#define xa_trylock(xa)          spin_trylock(&(xa)->xa_lock)
 501#define xa_lock(xa)             spin_lock(&(xa)->xa_lock)
 502#define xa_unlock(xa)           spin_unlock(&(xa)->xa_lock)
 503#define xa_lock_bh(xa)          spin_lock_bh(&(xa)->xa_lock)
 504#define xa_unlock_bh(xa)        spin_unlock_bh(&(xa)->xa_lock)
 505#define xa_lock_irq(xa)         spin_lock_irq(&(xa)->xa_lock)
 506#define xa_unlock_irq(xa)       spin_unlock_irq(&(xa)->xa_lock)
 507#define xa_lock_irqsave(xa, flags) \
 508                                spin_lock_irqsave(&(xa)->xa_lock, flags)
 509#define xa_unlock_irqrestore(xa, flags) \
 510                                spin_unlock_irqrestore(&(xa)->xa_lock, flags)
 511
 512/*
 513 * Versions of the normal API which require the caller to hold the
 514 * xa_lock.  If the GFP flags allow it, they will drop the lock to
 515 * allocate memory, then reacquire it afterwards.  These functions
 516 * may also re-enable interrupts if the XArray flags indicate the
 517 * locking should be interrupt safe.
 518 */
 519void *__xa_erase(struct xarray *, unsigned long index);
 520void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
 521void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old,
 522                void *entry, gfp_t);
 523int __must_check __xa_insert(struct xarray *, unsigned long index,
 524                void *entry, gfp_t);
 525int __must_check __xa_alloc(struct xarray *, u32 *id, void *entry,
 526                struct xa_limit, gfp_t);
 527int __must_check __xa_alloc_cyclic(struct xarray *, u32 *id, void *entry,
 528                struct xa_limit, u32 *next, gfp_t);
 529void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
 530void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
 531
 532/**
 533 * xa_store_bh() - Store this entry in the XArray.
 534 * @xa: XArray.
 535 * @index: Index into array.
 536 * @entry: New entry.
 537 * @gfp: Memory allocation flags.
 538 *
 539 * This function is like calling xa_store() except it disables softirqs
 540 * while holding the array lock.
 541 *
 542 * Context: Any context.  Takes and releases the xa_lock while
 543 * disabling softirqs.
 544 * Return: The entry which used to be at this index.
 545 */
 546static inline void *xa_store_bh(struct xarray *xa, unsigned long index,
 547                void *entry, gfp_t gfp)
 548{
 549        void *curr;
 550
 551        xa_lock_bh(xa);
 552        curr = __xa_store(xa, index, entry, gfp);
 553        xa_unlock_bh(xa);
 554
 555        return curr;
 556}
 557
 558/**
 559 * xa_store_irq() - Store this entry in the XArray.
 560 * @xa: XArray.
 561 * @index: Index into array.
 562 * @entry: New entry.
 563 * @gfp: Memory allocation flags.
 564 *
 565 * This function is like calling xa_store() except it disables interrupts
 566 * while holding the array lock.
 567 *
 568 * Context: Process context.  Takes and releases the xa_lock while
 569 * disabling interrupts.
 570 * Return: The entry which used to be at this index.
 571 */
 572static inline void *xa_store_irq(struct xarray *xa, unsigned long index,
 573                void *entry, gfp_t gfp)
 574{
 575        void *curr;
 576
 577        xa_lock_irq(xa);
 578        curr = __xa_store(xa, index, entry, gfp);
 579        xa_unlock_irq(xa);
 580
 581        return curr;
 582}
 583
 584/**
 585 * xa_erase_bh() - Erase this entry from the XArray.
 586 * @xa: XArray.
 587 * @index: Index of entry.
 588 *
 589 * After this function returns, loading from @index will return %NULL.
 590 * If the index is part of a multi-index entry, all indices will be erased
 591 * and none of the entries will be part of a multi-index entry.
 592 *
 593 * Context: Any context.  Takes and releases the xa_lock while
 594 * disabling softirqs.
 595 * Return: The entry which used to be at this index.
 596 */
 597static inline void *xa_erase_bh(struct xarray *xa, unsigned long index)
 598{
 599        void *entry;
 600
 601        xa_lock_bh(xa);
 602        entry = __xa_erase(xa, index);
 603        xa_unlock_bh(xa);
 604
 605        return entry;
 606}
 607
 608/**
 609 * xa_erase_irq() - Erase this entry from the XArray.
 610 * @xa: XArray.
 611 * @index: Index of entry.
 612 *
 613 * After this function returns, loading from @index will return %NULL.
 614 * If the index is part of a multi-index entry, all indices will be erased
 615 * and none of the entries will be part of a multi-index entry.
 616 *
 617 * Context: Process context.  Takes and releases the xa_lock while
 618 * disabling interrupts.
 619 * Return: The entry which used to be at this index.
 620 */
 621static inline void *xa_erase_irq(struct xarray *xa, unsigned long index)
 622{
 623        void *entry;
 624
 625        xa_lock_irq(xa);
 626        entry = __xa_erase(xa, index);
 627        xa_unlock_irq(xa);
 628
 629        return entry;
 630}
 631
 632/**
 633 * xa_cmpxchg() - Conditionally replace an entry in the XArray.
 634 * @xa: XArray.
 635 * @index: Index into array.
 636 * @old: Old value to test against.
 637 * @entry: New value to place in array.
 638 * @gfp: Memory allocation flags.
 639 *
 640 * If the entry at @index is the same as @old, replace it with @entry.
 641 * If the return value is equal to @old, then the exchange was successful.
 642 *
 643 * Context: Any context.  Takes and releases the xa_lock.  May sleep
 644 * if the @gfp flags permit.
 645 * Return: The old value at this index or xa_err() if an error happened.
 646 */
 647static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index,
 648                        void *old, void *entry, gfp_t gfp)
 649{
 650        void *curr;
 651
 652        xa_lock(xa);
 653        curr = __xa_cmpxchg(xa, index, old, entry, gfp);
 654        xa_unlock(xa);
 655
 656        return curr;
 657}
 658
 659/**
 660 * xa_cmpxchg_bh() - Conditionally replace an entry in the XArray.
 661 * @xa: XArray.
 662 * @index: Index into array.
 663 * @old: Old value to test against.
 664 * @entry: New value to place in array.
 665 * @gfp: Memory allocation flags.
 666 *
 667 * This function is like calling xa_cmpxchg() except it disables softirqs
 668 * while holding the array lock.
 669 *
 670 * Context: Any context.  Takes and releases the xa_lock while
 671 * disabling softirqs.  May sleep if the @gfp flags permit.
 672 * Return: The old value at this index or xa_err() if an error happened.
 673 */
 674static inline void *xa_cmpxchg_bh(struct xarray *xa, unsigned long index,
 675                        void *old, void *entry, gfp_t gfp)
 676{
 677        void *curr;
 678
 679        xa_lock_bh(xa);
 680        curr = __xa_cmpxchg(xa, index, old, entry, gfp);
 681        xa_unlock_bh(xa);
 682
 683        return curr;
 684}
 685
 686/**
 687 * xa_cmpxchg_irq() - Conditionally replace an entry in the XArray.
 688 * @xa: XArray.
 689 * @index: Index into array.
 690 * @old: Old value to test against.
 691 * @entry: New value to place in array.
 692 * @gfp: Memory allocation flags.
 693 *
 694 * This function is like calling xa_cmpxchg() except it disables interrupts
 695 * while holding the array lock.
 696 *
 697 * Context: Process context.  Takes and releases the xa_lock while
 698 * disabling interrupts.  May sleep if the @gfp flags permit.
 699 * Return: The old value at this index or xa_err() if an error happened.
 700 */
 701static inline void *xa_cmpxchg_irq(struct xarray *xa, unsigned long index,
 702                        void *old, void *entry, gfp_t gfp)
 703{
 704        void *curr;
 705
 706        xa_lock_irq(xa);
 707        curr = __xa_cmpxchg(xa, index, old, entry, gfp);
 708        xa_unlock_irq(xa);
 709
 710        return curr;
 711}
 712
 713/**
 714 * xa_insert() - Store this entry in the XArray unless another entry is
 715 *                      already present.
 716 * @xa: XArray.
 717 * @index: Index into array.
 718 * @entry: New entry.
 719 * @gfp: Memory allocation flags.
 720 *
 721 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
 722 * if no entry is present.  Inserting will fail if a reserved entry is
 723 * present, even though loading from this index will return NULL.
 724 *
 725 * Context: Any context.  Takes and releases the xa_lock.  May sleep if
 726 * the @gfp flags permit.
 727 * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
 728 * -ENOMEM if memory could not be allocated.
 729 */
 730static inline int __must_check xa_insert(struct xarray *xa,
 731                unsigned long index, void *entry, gfp_t gfp)
 732{
 733        int err;
 734
 735        xa_lock(xa);
 736        err = __xa_insert(xa, index, entry, gfp);
 737        xa_unlock(xa);
 738
 739        return err;
 740}
 741
 742/**
 743 * xa_insert_bh() - Store this entry in the XArray unless another entry is
 744 *                      already present.
 745 * @xa: XArray.
 746 * @index: Index into array.
 747 * @entry: New entry.
 748 * @gfp: Memory allocation flags.
 749 *
 750 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
 751 * if no entry is present.  Inserting will fail if a reserved entry is
 752 * present, even though loading from this index will return NULL.
 753 *
 754 * Context: Any context.  Takes and releases the xa_lock while
 755 * disabling softirqs.  May sleep if the @gfp flags permit.
 756 * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
 757 * -ENOMEM if memory could not be allocated.
 758 */
 759static inline int __must_check xa_insert_bh(struct xarray *xa,
 760                unsigned long index, void *entry, gfp_t gfp)
 761{
 762        int err;
 763
 764        xa_lock_bh(xa);
 765        err = __xa_insert(xa, index, entry, gfp);
 766        xa_unlock_bh(xa);
 767
 768        return err;
 769}
 770
 771/**
 772 * xa_insert_irq() - Store this entry in the XArray unless another entry is
 773 *                      already present.
 774 * @xa: XArray.
 775 * @index: Index into array.
 776 * @entry: New entry.
 777 * @gfp: Memory allocation flags.
 778 *
 779 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
 780 * if no entry is present.  Inserting will fail if a reserved entry is
 781 * present, even though loading from this index will return NULL.
 782 *
 783 * Context: Process context.  Takes and releases the xa_lock while
 784 * disabling interrupts.  May sleep if the @gfp flags permit.
 785 * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
 786 * -ENOMEM if memory could not be allocated.
 787 */
 788static inline int __must_check xa_insert_irq(struct xarray *xa,
 789                unsigned long index, void *entry, gfp_t gfp)
 790{
 791        int err;
 792
 793        xa_lock_irq(xa);
 794        err = __xa_insert(xa, index, entry, gfp);
 795        xa_unlock_irq(xa);
 796
 797        return err;
 798}
 799
 800/**
 801 * xa_alloc() - Find somewhere to store this entry in the XArray.
 802 * @xa: XArray.
 803 * @id: Pointer to ID.
 804 * @entry: New entry.
 805 * @limit: Range of ID to allocate.
 806 * @gfp: Memory allocation flags.
 807 *
 808 * Finds an empty entry in @xa between @limit.min and @limit.max,
 809 * stores the index into the @id pointer, then stores the entry at
 810 * that index.  A concurrent lookup will not see an uninitialised @id.
 811 *
 812 * Context: Any context.  Takes and releases the xa_lock.  May sleep if
 813 * the @gfp flags permit.
 814 * Return: 0 on success, -ENOMEM if memory could not be allocated or
 815 * -EBUSY if there are no free entries in @limit.
 816 */
 817static inline __must_check int xa_alloc(struct xarray *xa, u32 *id,
 818                void *entry, struct xa_limit limit, gfp_t gfp)
 819{
 820        int err;
 821
 822        xa_lock(xa);
 823        err = __xa_alloc(xa, id, entry, limit, gfp);
 824        xa_unlock(xa);
 825
 826        return err;
 827}
 828
 829/**
 830 * xa_alloc_bh() - Find somewhere to store this entry in the XArray.
 831 * @xa: XArray.
 832 * @id: Pointer to ID.
 833 * @entry: New entry.
 834 * @limit: Range of ID to allocate.
 835 * @gfp: Memory allocation flags.
 836 *
 837 * Finds an empty entry in @xa between @limit.min and @limit.max,
 838 * stores the index into the @id pointer, then stores the entry at
 839 * that index.  A concurrent lookup will not see an uninitialised @id.
 840 *
 841 * Context: Any context.  Takes and releases the xa_lock while
 842 * disabling softirqs.  May sleep if the @gfp flags permit.
 843 * Return: 0 on success, -ENOMEM if memory could not be allocated or
 844 * -EBUSY if there are no free entries in @limit.
 845 */
 846static inline int __must_check xa_alloc_bh(struct xarray *xa, u32 *id,
 847                void *entry, struct xa_limit limit, gfp_t gfp)
 848{
 849        int err;
 850
 851        xa_lock_bh(xa);
 852        err = __xa_alloc(xa, id, entry, limit, gfp);
 853        xa_unlock_bh(xa);
 854
 855        return err;
 856}
 857
 858/**
 859 * xa_alloc_irq() - Find somewhere to store this entry in the XArray.
 860 * @xa: XArray.
 861 * @id: Pointer to ID.
 862 * @entry: New entry.
 863 * @limit: Range of ID to allocate.
 864 * @gfp: Memory allocation flags.
 865 *
 866 * Finds an empty entry in @xa between @limit.min and @limit.max,
 867 * stores the index into the @id pointer, then stores the entry at
 868 * that index.  A concurrent lookup will not see an uninitialised @id.
 869 *
 870 * Context: Process context.  Takes and releases the xa_lock while
 871 * disabling interrupts.  May sleep if the @gfp flags permit.
 872 * Return: 0 on success, -ENOMEM if memory could not be allocated or
 873 * -EBUSY if there are no free entries in @limit.
 874 */
 875static inline int __must_check xa_alloc_irq(struct xarray *xa, u32 *id,
 876                void *entry, struct xa_limit limit, gfp_t gfp)
 877{
 878        int err;
 879
 880        xa_lock_irq(xa);
 881        err = __xa_alloc(xa, id, entry, limit, gfp);
 882        xa_unlock_irq(xa);
 883
 884        return err;
 885}
 886
 887/**
 888 * xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
 889 * @xa: XArray.
 890 * @id: Pointer to ID.
 891 * @entry: New entry.
 892 * @limit: Range of allocated ID.
 893 * @next: Pointer to next ID to allocate.
 894 * @gfp: Memory allocation flags.
 895 *
 896 * Finds an empty entry in @xa between @limit.min and @limit.max,
 897 * stores the index into the @id pointer, then stores the entry at
 898 * that index.  A concurrent lookup will not see an uninitialised @id.
 899 * The search for an empty entry will start at @next and will wrap
 900 * around if necessary.
 901 *
 902 * Context: Any context.  Takes and releases the xa_lock.  May sleep if
 903 * the @gfp flags permit.
 904 * Return: 0 if the allocation succeeded without wrapping.  1 if the
 905 * allocation succeeded after wrapping, -ENOMEM if memory could not be
 906 * allocated or -EBUSY if there are no free entries in @limit.
 907 */
 908static inline int xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
 909                struct xa_limit limit, u32 *next, gfp_t gfp)
 910{
 911        int err;
 912
 913        xa_lock(xa);
 914        err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
 915        xa_unlock(xa);
 916
 917        return err;
 918}
 919
 920/**
 921 * xa_alloc_cyclic_bh() - Find somewhere to store this entry in the XArray.
 922 * @xa: XArray.
 923 * @id: Pointer to ID.
 924 * @entry: New entry.
 925 * @limit: Range of allocated ID.
 926 * @next: Pointer to next ID to allocate.
 927 * @gfp: Memory allocation flags.
 928 *
 929 * Finds an empty entry in @xa between @limit.min and @limit.max,
 930 * stores the index into the @id pointer, then stores the entry at
 931 * that index.  A concurrent lookup will not see an uninitialised @id.
 932 * The search for an empty entry will start at @next and will wrap
 933 * around if necessary.
 934 *
 935 * Context: Any context.  Takes and releases the xa_lock while
 936 * disabling softirqs.  May sleep if the @gfp flags permit.
 937 * Return: 0 if the allocation succeeded without wrapping.  1 if the
 938 * allocation succeeded after wrapping, -ENOMEM if memory could not be
 939 * allocated or -EBUSY if there are no free entries in @limit.
 940 */
 941static inline int xa_alloc_cyclic_bh(struct xarray *xa, u32 *id, void *entry,
 942                struct xa_limit limit, u32 *next, gfp_t gfp)
 943{
 944        int err;
 945
 946        xa_lock_bh(xa);
 947        err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
 948        xa_unlock_bh(xa);
 949
 950        return err;
 951}
 952
 953/**
 954 * xa_alloc_cyclic_irq() - Find somewhere to store this entry in the XArray.
 955 * @xa: XArray.
 956 * @id: Pointer to ID.
 957 * @entry: New entry.
 958 * @limit: Range of allocated ID.
 959 * @next: Pointer to next ID to allocate.
 960 * @gfp: Memory allocation flags.
 961 *
 962 * Finds an empty entry in @xa between @limit.min and @limit.max,
 963 * stores the index into the @id pointer, then stores the entry at
 964 * that index.  A concurrent lookup will not see an uninitialised @id.
 965 * The search for an empty entry will start at @next and will wrap
 966 * around if necessary.
 967 *
 968 * Context: Process context.  Takes and releases the xa_lock while
 969 * disabling interrupts.  May sleep if the @gfp flags permit.
 970 * Return: 0 if the allocation succeeded without wrapping.  1 if the
 971 * allocation succeeded after wrapping, -ENOMEM if memory could not be
 972 * allocated or -EBUSY if there are no free entries in @limit.
 973 */
 974static inline int xa_alloc_cyclic_irq(struct xarray *xa, u32 *id, void *entry,
 975                struct xa_limit limit, u32 *next, gfp_t gfp)
 976{
 977        int err;
 978
 979        xa_lock_irq(xa);
 980        err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
 981        xa_unlock_irq(xa);
 982
 983        return err;
 984}
 985
 986/**
 987 * xa_reserve() - Reserve this index in the XArray.
 988 * @xa: XArray.
 989 * @index: Index into array.
 990 * @gfp: Memory allocation flags.
 991 *
 992 * Ensures there is somewhere to store an entry at @index in the array.
 993 * If there is already something stored at @index, this function does
 994 * nothing.  If there was nothing there, the entry is marked as reserved.
 995 * Loading from a reserved entry returns a %NULL pointer.
 996 *
 997 * If you do not use the entry that you have reserved, call xa_release()
 998 * or xa_erase() to free any unnecessary memory.
 999 *
1000 * Context: Any context.  Takes and releases the xa_lock.
1001 * May sleep if the @gfp flags permit.
1002 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1003 */
1004static inline __must_check
1005int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp)
1006{
1007        return xa_err(xa_cmpxchg(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1008}
1009
1010/**
1011 * xa_reserve_bh() - Reserve this index in the XArray.
1012 * @xa: XArray.
1013 * @index: Index into array.
1014 * @gfp: Memory allocation flags.
1015 *
1016 * A softirq-disabling version of xa_reserve().
1017 *
1018 * Context: Any context.  Takes and releases the xa_lock while
1019 * disabling softirqs.
1020 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1021 */
1022static inline __must_check
1023int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp)
1024{
1025        return xa_err(xa_cmpxchg_bh(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1026}
1027
1028/**
1029 * xa_reserve_irq() - Reserve this index in the XArray.
1030 * @xa: XArray.
1031 * @index: Index into array.
1032 * @gfp: Memory allocation flags.
1033 *
1034 * An interrupt-disabling version of xa_reserve().
1035 *
1036 * Context: Process context.  Takes and releases the xa_lock while
1037 * disabling interrupts.
1038 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1039 */
1040static inline __must_check
1041int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp)
1042{
1043        return xa_err(xa_cmpxchg_irq(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1044}
1045
1046/**
1047 * xa_release() - Release a reserved entry.
1048 * @xa: XArray.
1049 * @index: Index of entry.
1050 *
1051 * After calling xa_reserve(), you can call this function to release the
1052 * reservation.  If the entry at @index has been stored to, this function
1053 * will do nothing.
1054 */
1055static inline void xa_release(struct xarray *xa, unsigned long index)
1056{
1057        xa_cmpxchg(xa, index, XA_ZERO_ENTRY, NULL, 0);
1058}
1059
1060/* Everything below here is the Advanced API.  Proceed with caution. */
1061
1062/*
1063 * The xarray is constructed out of a set of 'chunks' of pointers.  Choosing
1064 * the best chunk size requires some tradeoffs.  A power of two recommends
1065 * itself so that we can walk the tree based purely on shifts and masks.
1066 * Generally, the larger the better; as the number of slots per level of the
1067 * tree increases, the less tall the tree needs to be.  But that needs to be
1068 * balanced against the memory consumption of each node.  On a 64-bit system,
1069 * xa_node is currently 576 bytes, and we get 7 of them per 4kB page.  If we
1070 * doubled the number of slots per node, we'd get only 3 nodes per 4kB page.
1071 */
1072#ifndef XA_CHUNK_SHIFT
1073#define XA_CHUNK_SHIFT          (CONFIG_BASE_SMALL ? 4 : 6)
1074#endif
1075#define XA_CHUNK_SIZE           (1UL << XA_CHUNK_SHIFT)
1076#define XA_CHUNK_MASK           (XA_CHUNK_SIZE - 1)
1077#define XA_MAX_MARKS            3
1078#define XA_MARK_LONGS           DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG)
1079
1080/*
1081 * @count is the count of every non-NULL element in the ->slots array
1082 * whether that is a value entry, a retry entry, a user pointer,
1083 * a sibling entry or a pointer to the next level of the tree.
1084 * @nr_values is the count of every element in ->slots which is
1085 * either a value entry or a sibling of a value entry.
1086 */
1087struct xa_node {
1088        unsigned char   shift;          /* Bits remaining in each slot */
1089        unsigned char   offset;         /* Slot offset in parent */
1090        unsigned char   count;          /* Total entry count */
1091        unsigned char   nr_values;      /* Value entry count */
1092        struct xa_node __rcu *parent;   /* NULL at top of tree */
1093        struct xarray   *array;         /* The array we belong to */
1094        union {
1095                struct list_head private_list;  /* For tree user */
1096                struct rcu_head rcu_head;       /* Used when freeing node */
1097        };
1098        void __rcu      *slots[XA_CHUNK_SIZE];
1099        union {
1100                unsigned long   tags[XA_MAX_MARKS][XA_MARK_LONGS];
1101                unsigned long   marks[XA_MAX_MARKS][XA_MARK_LONGS];
1102        };
1103};
1104
1105void xa_dump(const struct xarray *);
1106void xa_dump_node(const struct xa_node *);
1107
1108#ifdef XA_DEBUG
1109#define XA_BUG_ON(xa, x) do {                                   \
1110                if (x) {                                        \
1111                        xa_dump(xa);                            \
1112                        BUG();                                  \
1113                }                                               \
1114        } while (0)
1115#define XA_NODE_BUG_ON(node, x) do {                            \
1116                if (x) {                                        \
1117                        if (node) xa_dump_node(node);           \
1118                        BUG();                                  \
1119                }                                               \
1120        } while (0)
1121#else
1122#define XA_BUG_ON(xa, x)        do { } while (0)
1123#define XA_NODE_BUG_ON(node, x) do { } while (0)
1124#endif
1125
1126/* Private */
1127static inline void *xa_head(const struct xarray *xa)
1128{
1129        return rcu_dereference_check(xa->xa_head,
1130                                                lockdep_is_held(&xa->xa_lock));
1131}
1132
1133/* Private */
1134static inline void *xa_head_locked(const struct xarray *xa)
1135{
1136        return rcu_dereference_protected(xa->xa_head,
1137                                                lockdep_is_held(&xa->xa_lock));
1138}
1139
1140/* Private */
1141static inline void *xa_entry(const struct xarray *xa,
1142                                const struct xa_node *node, unsigned int offset)
1143{
1144        XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
1145        return rcu_dereference_check(node->slots[offset],
1146                                                lockdep_is_held(&xa->xa_lock));
1147}
1148
1149/* Private */
1150static inline void *xa_entry_locked(const struct xarray *xa,
1151                                const struct xa_node *node, unsigned int offset)
1152{
1153        XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
1154        return rcu_dereference_protected(node->slots[offset],
1155                                                lockdep_is_held(&xa->xa_lock));
1156}
1157
1158/* Private */
1159static inline struct xa_node *xa_parent(const struct xarray *xa,
1160                                        const struct xa_node *node)
1161{
1162        return rcu_dereference_check(node->parent,
1163                                                lockdep_is_held(&xa->xa_lock));
1164}
1165
1166/* Private */
1167static inline struct xa_node *xa_parent_locked(const struct xarray *xa,
1168                                        const struct xa_node *node)
1169{
1170        return rcu_dereference_protected(node->parent,
1171                                                lockdep_is_held(&xa->xa_lock));
1172}
1173
1174/* Private */
1175static inline void *xa_mk_node(const struct xa_node *node)
1176{
1177        return (void *)((unsigned long)node | 2);
1178}
1179
1180/* Private */
1181static inline struct xa_node *xa_to_node(const void *entry)
1182{
1183        return (struct xa_node *)((unsigned long)entry - 2);
1184}
1185
1186/* Private */
1187static inline bool xa_is_node(const void *entry)
1188{
1189        return xa_is_internal(entry) && (unsigned long)entry > 4096;
1190}
1191
1192/* Private */
1193static inline void *xa_mk_sibling(unsigned int offset)
1194{
1195        return xa_mk_internal(offset);
1196}
1197
1198/* Private */
1199static inline unsigned long xa_to_sibling(const void *entry)
1200{
1201        return xa_to_internal(entry);
1202}
1203
1204/**
1205 * xa_is_sibling() - Is the entry a sibling entry?
1206 * @entry: Entry retrieved from the XArray
1207 *
1208 * Return: %true if the entry is a sibling entry.
1209 */
1210static inline bool xa_is_sibling(const void *entry)
1211{
1212        return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) &&
1213                (entry < xa_mk_sibling(XA_CHUNK_SIZE - 1));
1214}
1215
1216#define XA_RETRY_ENTRY          xa_mk_internal(256)
1217
1218/**
1219 * xa_is_retry() - Is the entry a retry entry?
1220 * @entry: Entry retrieved from the XArray
1221 *
1222 * Return: %true if the entry is a retry entry.
1223 */
1224static inline bool xa_is_retry(const void *entry)
1225{
1226        return unlikely(entry == XA_RETRY_ENTRY);
1227}
1228
1229/**
1230 * xa_is_advanced() - Is the entry only permitted for the advanced API?
1231 * @entry: Entry to be stored in the XArray.
1232 *
1233 * Return: %true if the entry cannot be stored by the normal API.
1234 */
1235static inline bool xa_is_advanced(const void *entry)
1236{
1237        return xa_is_internal(entry) && (entry <= XA_RETRY_ENTRY);
1238}
1239
1240/**
1241 * typedef xa_update_node_t - A callback function from the XArray.
1242 * @node: The node which is being processed
1243 *
1244 * This function is called every time the XArray updates the count of
1245 * present and value entries in a node.  It allows advanced users to
1246 * maintain the private_list in the node.
1247 *
1248 * Context: The xa_lock is held and interrupts may be disabled.
1249 *          Implementations should not drop the xa_lock, nor re-enable
1250 *          interrupts.
1251 */
1252typedef void (*xa_update_node_t)(struct xa_node *node);
1253
1254/*
1255 * The xa_state is opaque to its users.  It contains various different pieces
1256 * of state involved in the current operation on the XArray.  It should be
1257 * declared on the stack and passed between the various internal routines.
1258 * The various elements in it should not be accessed directly, but only
1259 * through the provided accessor functions.  The below documentation is for
1260 * the benefit of those working on the code, not for users of the XArray.
1261 *
1262 * @xa_node usually points to the xa_node containing the slot we're operating
1263 * on (and @xa_offset is the offset in the slots array).  If there is a
1264 * single entry in the array at index 0, there are no allocated xa_nodes to
1265 * point to, and so we store %NULL in @xa_node.  @xa_node is set to
1266 * the value %XAS_RESTART if the xa_state is not walked to the correct
1267 * position in the tree of nodes for this operation.  If an error occurs
1268 * during an operation, it is set to an %XAS_ERROR value.  If we run off the
1269 * end of the allocated nodes, it is set to %XAS_BOUNDS.
1270 */
1271struct xa_state {
1272        struct xarray *xa;
1273        unsigned long xa_index;
1274        unsigned char xa_shift;
1275        unsigned char xa_sibs;
1276        unsigned char xa_offset;
1277        unsigned char xa_pad;           /* Helps gcc generate better code */
1278        struct xa_node *xa_node;
1279        struct xa_node *xa_alloc;
1280        xa_update_node_t xa_update;
1281};
1282
1283/*
1284 * We encode errnos in the xas->xa_node.  If an error has happened, we need to
1285 * drop the lock to fix it, and once we've done so the xa_state is invalid.
1286 */
1287#define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL))
1288#define XAS_BOUNDS      ((struct xa_node *)1UL)
1289#define XAS_RESTART     ((struct xa_node *)3UL)
1290
1291#define __XA_STATE(array, index, shift, sibs)  {        \
1292        .xa = array,                                    \
1293        .xa_index = index,                              \
1294        .xa_shift = shift,                              \
1295        .xa_sibs = sibs,                                \
1296        .xa_offset = 0,                                 \
1297        .xa_pad = 0,                                    \
1298        .xa_node = XAS_RESTART,                         \
1299        .xa_alloc = NULL,                               \
1300        .xa_update = NULL                               \
1301}
1302
1303/**
1304 * XA_STATE() - Declare an XArray operation state.
1305 * @name: Name of this operation state (usually xas).
1306 * @array: Array to operate on.
1307 * @index: Initial index of interest.
1308 *
1309 * Declare and initialise an xa_state on the stack.
1310 */
1311#define XA_STATE(name, array, index)                            \
1312        struct xa_state name = __XA_STATE(array, index, 0, 0)
1313
1314/**
1315 * XA_STATE_ORDER() - Declare an XArray operation state.
1316 * @name: Name of this operation state (usually xas).
1317 * @array: Array to operate on.
1318 * @index: Initial index of interest.
1319 * @order: Order of entry.
1320 *
1321 * Declare and initialise an xa_state on the stack.  This variant of
1322 * XA_STATE() allows you to specify the 'order' of the element you
1323 * want to operate on.`
1324 */
1325#define XA_STATE_ORDER(name, array, index, order)               \
1326        struct xa_state name = __XA_STATE(array,                \
1327                        (index >> order) << order,              \
1328                        order - (order % XA_CHUNK_SHIFT),       \
1329                        (1U << (order % XA_CHUNK_SHIFT)) - 1)
1330
1331#define xas_marked(xas, mark)   xa_marked((xas)->xa, (mark))
1332#define xas_trylock(xas)        xa_trylock((xas)->xa)
1333#define xas_lock(xas)           xa_lock((xas)->xa)
1334#define xas_unlock(xas)         xa_unlock((xas)->xa)
1335#define xas_lock_bh(xas)        xa_lock_bh((xas)->xa)
1336#define xas_unlock_bh(xas)      xa_unlock_bh((xas)->xa)
1337#define xas_lock_irq(xas)       xa_lock_irq((xas)->xa)
1338#define xas_unlock_irq(xas)     xa_unlock_irq((xas)->xa)
1339#define xas_lock_irqsave(xas, flags) \
1340                                xa_lock_irqsave((xas)->xa, flags)
1341#define xas_unlock_irqrestore(xas, flags) \
1342                                xa_unlock_irqrestore((xas)->xa, flags)
1343
1344/**
1345 * xas_error() - Return an errno stored in the xa_state.
1346 * @xas: XArray operation state.
1347 *
1348 * Return: 0 if no error has been noted.  A negative errno if one has.
1349 */
1350static inline int xas_error(const struct xa_state *xas)
1351{
1352        return xa_err(xas->xa_node);
1353}
1354
1355/**
1356 * xas_set_err() - Note an error in the xa_state.
1357 * @xas: XArray operation state.
1358 * @err: Negative error number.
1359 *
1360 * Only call this function with a negative @err; zero or positive errors
1361 * will probably not behave the way you think they should.  If you want
1362 * to clear the error from an xa_state, use xas_reset().
1363 */
1364static inline void xas_set_err(struct xa_state *xas, long err)
1365{
1366        xas->xa_node = XA_ERROR(err);
1367}
1368
1369/**
1370 * xas_invalid() - Is the xas in a retry or error state?
1371 * @xas: XArray operation state.
1372 *
1373 * Return: %true if the xas cannot be used for operations.
1374 */
1375static inline bool xas_invalid(const struct xa_state *xas)
1376{
1377        return (unsigned long)xas->xa_node & 3;
1378}
1379
1380/**
1381 * xas_valid() - Is the xas a valid cursor into the array?
1382 * @xas: XArray operation state.
1383 *
1384 * Return: %true if the xas can be used for operations.
1385 */
1386static inline bool xas_valid(const struct xa_state *xas)
1387{
1388        return !xas_invalid(xas);
1389}
1390
1391/**
1392 * xas_is_node() - Does the xas point to a node?
1393 * @xas: XArray operation state.
1394 *
1395 * Return: %true if the xas currently references a node.
1396 */
1397static inline bool xas_is_node(const struct xa_state *xas)
1398{
1399        return xas_valid(xas) && xas->xa_node;
1400}
1401
1402/* True if the pointer is something other than a node */
1403static inline bool xas_not_node(struct xa_node *node)
1404{
1405        return ((unsigned long)node & 3) || !node;
1406}
1407
1408/* True if the node represents RESTART or an error */
1409static inline bool xas_frozen(struct xa_node *node)
1410{
1411        return (unsigned long)node & 2;
1412}
1413
1414/* True if the node represents head-of-tree, RESTART or BOUNDS */
1415static inline bool xas_top(struct xa_node *node)
1416{
1417        return node <= XAS_RESTART;
1418}
1419
1420/**
1421 * xas_reset() - Reset an XArray operation state.
1422 * @xas: XArray operation state.
1423 *
1424 * Resets the error or walk state of the @xas so future walks of the
1425 * array will start from the root.  Use this if you have dropped the
1426 * xarray lock and want to reuse the xa_state.
1427 *
1428 * Context: Any context.
1429 */
1430static inline void xas_reset(struct xa_state *xas)
1431{
1432        xas->xa_node = XAS_RESTART;
1433}
1434
1435/**
1436 * xas_retry() - Retry the operation if appropriate.
1437 * @xas: XArray operation state.
1438 * @entry: Entry from xarray.
1439 *
1440 * The advanced functions may sometimes return an internal entry, such as
1441 * a retry entry or a zero entry.  This function sets up the @xas to restart
1442 * the walk from the head of the array if needed.
1443 *
1444 * Context: Any context.
1445 * Return: true if the operation needs to be retried.
1446 */
1447static inline bool xas_retry(struct xa_state *xas, const void *entry)
1448{
1449        if (xa_is_zero(entry))
1450                return true;
1451        if (!xa_is_retry(entry))
1452                return false;
1453        xas_reset(xas);
1454        return true;
1455}
1456
1457void *xas_load(struct xa_state *);
1458void *xas_store(struct xa_state *, void *entry);
1459void *xas_find(struct xa_state *, unsigned long max);
1460void *xas_find_conflict(struct xa_state *);
1461
1462bool xas_get_mark(const struct xa_state *, xa_mark_t);
1463void xas_set_mark(const struct xa_state *, xa_mark_t);
1464void xas_clear_mark(const struct xa_state *, xa_mark_t);
1465void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t);
1466void xas_init_marks(const struct xa_state *);
1467
1468bool xas_nomem(struct xa_state *, gfp_t);
1469void xas_pause(struct xa_state *);
1470
1471void xas_create_range(struct xa_state *);
1472
1473/**
1474 * xas_reload() - Refetch an entry from the xarray.
1475 * @xas: XArray operation state.
1476 *
1477 * Use this function to check that a previously loaded entry still has
1478 * the same value.  This is useful for the lockless pagecache lookup where
1479 * we walk the array with only the RCU lock to protect us, lock the page,
1480 * then check that the page hasn't moved since we looked it up.
1481 *
1482 * The caller guarantees that @xas is still valid.  If it may be in an
1483 * error or restart state, call xas_load() instead.
1484 *
1485 * Return: The entry at this location in the xarray.
1486 */
1487static inline void *xas_reload(struct xa_state *xas)
1488{
1489        struct xa_node *node = xas->xa_node;
1490
1491        if (node)
1492                return xa_entry(xas->xa, node, xas->xa_offset);
1493        return xa_head(xas->xa);
1494}
1495
1496/**
1497 * xas_set() - Set up XArray operation state for a different index.
1498 * @xas: XArray operation state.
1499 * @index: New index into the XArray.
1500 *
1501 * Move the operation state to refer to a different index.  This will
1502 * have the effect of starting a walk from the top; see xas_next()
1503 * to move to an adjacent index.
1504 */
1505static inline void xas_set(struct xa_state *xas, unsigned long index)
1506{
1507        xas->xa_index = index;
1508        xas->xa_node = XAS_RESTART;
1509}
1510
1511/**
1512 * xas_set_order() - Set up XArray operation state for a multislot entry.
1513 * @xas: XArray operation state.
1514 * @index: Target of the operation.
1515 * @order: Entry occupies 2^@order indices.
1516 */
1517static inline void xas_set_order(struct xa_state *xas, unsigned long index,
1518                                        unsigned int order)
1519{
1520#ifdef CONFIG_XARRAY_MULTI
1521        xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0;
1522        xas->xa_shift = order - (order % XA_CHUNK_SHIFT);
1523        xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1524        xas->xa_node = XAS_RESTART;
1525#else
1526        BUG_ON(order > 0);
1527        xas_set(xas, index);
1528#endif
1529}
1530
1531/**
1532 * xas_set_update() - Set up XArray operation state for a callback.
1533 * @xas: XArray operation state.
1534 * @update: Function to call when updating a node.
1535 *
1536 * The XArray can notify a caller after it has updated an xa_node.
1537 * This is advanced functionality and is only needed by the page cache.
1538 */
1539static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update)
1540{
1541        xas->xa_update = update;
1542}
1543
1544/**
1545 * xas_next_entry() - Advance iterator to next present entry.
1546 * @xas: XArray operation state.
1547 * @max: Highest index to return.
1548 *
1549 * xas_next_entry() is an inline function to optimise xarray traversal for
1550 * speed.  It is equivalent to calling xas_find(), and will call xas_find()
1551 * for all the hard cases.
1552 *
1553 * Return: The next present entry after the one currently referred to by @xas.
1554 */
1555static inline void *xas_next_entry(struct xa_state *xas, unsigned long max)
1556{
1557        struct xa_node *node = xas->xa_node;
1558        void *entry;
1559
1560        if (unlikely(xas_not_node(node) || node->shift ||
1561                        xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)))
1562                return xas_find(xas, max);
1563
1564        do {
1565                if (unlikely(xas->xa_index >= max))
1566                        return xas_find(xas, max);
1567                if (unlikely(xas->xa_offset == XA_CHUNK_MASK))
1568                        return xas_find(xas, max);
1569                entry = xa_entry(xas->xa, node, xas->xa_offset + 1);
1570                if (unlikely(xa_is_internal(entry)))
1571                        return xas_find(xas, max);
1572                xas->xa_offset++;
1573                xas->xa_index++;
1574        } while (!entry);
1575
1576        return entry;
1577}
1578
1579/* Private */
1580static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance,
1581                xa_mark_t mark)
1582{
1583        unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark];
1584        unsigned int offset = xas->xa_offset;
1585
1586        if (advance)
1587                offset++;
1588        if (XA_CHUNK_SIZE == BITS_PER_LONG) {
1589                if (offset < XA_CHUNK_SIZE) {
1590                        unsigned long data = *addr & (~0UL << offset);
1591                        if (data)
1592                                return __ffs(data);
1593                }
1594                return XA_CHUNK_SIZE;
1595        }
1596
1597        return find_next_bit(addr, XA_CHUNK_SIZE, offset);
1598}
1599
1600/**
1601 * xas_next_marked() - Advance iterator to next marked entry.
1602 * @xas: XArray operation state.
1603 * @max: Highest index to return.
1604 * @mark: Mark to search for.
1605 *
1606 * xas_next_marked() is an inline function to optimise xarray traversal for
1607 * speed.  It is equivalent to calling xas_find_marked(), and will call
1608 * xas_find_marked() for all the hard cases.
1609 *
1610 * Return: The next marked entry after the one currently referred to by @xas.
1611 */
1612static inline void *xas_next_marked(struct xa_state *xas, unsigned long max,
1613                                                                xa_mark_t mark)
1614{
1615        struct xa_node *node = xas->xa_node;
1616        unsigned int offset;
1617
1618        if (unlikely(xas_not_node(node) || node->shift))
1619                return xas_find_marked(xas, max, mark);
1620        offset = xas_find_chunk(xas, true, mark);
1621        xas->xa_offset = offset;
1622        xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset;
1623        if (xas->xa_index > max)
1624                return NULL;
1625        if (offset == XA_CHUNK_SIZE)
1626                return xas_find_marked(xas, max, mark);
1627        return xa_entry(xas->xa, node, offset);
1628}
1629
1630/*
1631 * If iterating while holding a lock, drop the lock and reschedule
1632 * every %XA_CHECK_SCHED loops.
1633 */
1634enum {
1635        XA_CHECK_SCHED = 4096,
1636};
1637
1638/**
1639 * xas_for_each() - Iterate over a range of an XArray.
1640 * @xas: XArray operation state.
1641 * @entry: Entry retrieved from the array.
1642 * @max: Maximum index to retrieve from array.
1643 *
1644 * The loop body will be executed for each entry present in the xarray
1645 * between the current xas position and @max.  @entry will be set to
1646 * the entry retrieved from the xarray.  It is safe to delete entries
1647 * from the array in the loop body.  You should hold either the RCU lock
1648 * or the xa_lock while iterating.  If you need to drop the lock, call
1649 * xas_pause() first.
1650 */
1651#define xas_for_each(xas, entry, max) \
1652        for (entry = xas_find(xas, max); entry; \
1653             entry = xas_next_entry(xas, max))
1654
1655/**
1656 * xas_for_each_marked() - Iterate over a range of an XArray.
1657 * @xas: XArray operation state.
1658 * @entry: Entry retrieved from the array.
1659 * @max: Maximum index to retrieve from array.
1660 * @mark: Mark to search for.
1661 *
1662 * The loop body will be executed for each marked entry in the xarray
1663 * between the current xas position and @max.  @entry will be set to
1664 * the entry retrieved from the xarray.  It is safe to delete entries
1665 * from the array in the loop body.  You should hold either the RCU lock
1666 * or the xa_lock while iterating.  If you need to drop the lock, call
1667 * xas_pause() first.
1668 */
1669#define xas_for_each_marked(xas, entry, max, mark) \
1670        for (entry = xas_find_marked(xas, max, mark); entry; \
1671             entry = xas_next_marked(xas, max, mark))
1672
1673/**
1674 * xas_for_each_conflict() - Iterate over a range of an XArray.
1675 * @xas: XArray operation state.
1676 * @entry: Entry retrieved from the array.
1677 *
1678 * The loop body will be executed for each entry in the XArray that lies
1679 * within the range specified by @xas.  If the loop completes successfully,
1680 * any entries that lie in this range will be replaced by @entry.  The caller
1681 * may break out of the loop; if they do so, the contents of the XArray will
1682 * be unchanged.  The operation may fail due to an out of memory condition.
1683 * The caller may also call xa_set_err() to exit the loop while setting an
1684 * error to record the reason.
1685 */
1686#define xas_for_each_conflict(xas, entry) \
1687        while ((entry = xas_find_conflict(xas)))
1688
1689void *__xas_next(struct xa_state *);
1690void *__xas_prev(struct xa_state *);
1691
1692/**
1693 * xas_prev() - Move iterator to previous index.
1694 * @xas: XArray operation state.
1695 *
1696 * If the @xas was in an error state, it will remain in an error state
1697 * and this function will return %NULL.  If the @xas has never been walked,
1698 * it will have the effect of calling xas_load().  Otherwise one will be
1699 * subtracted from the index and the state will be walked to the correct
1700 * location in the array for the next operation.
1701 *
1702 * If the iterator was referencing index 0, this function wraps
1703 * around to %ULONG_MAX.
1704 *
1705 * Return: The entry at the new index.  This may be %NULL or an internal
1706 * entry.
1707 */
1708static inline void *xas_prev(struct xa_state *xas)
1709{
1710        struct xa_node *node = xas->xa_node;
1711
1712        if (unlikely(xas_not_node(node) || node->shift ||
1713                                xas->xa_offset == 0))
1714                return __xas_prev(xas);
1715
1716        xas->xa_index--;
1717        xas->xa_offset--;
1718        return xa_entry(xas->xa, node, xas->xa_offset);
1719}
1720
1721/**
1722 * xas_next() - Move state to next index.
1723 * @xas: XArray operation state.
1724 *
1725 * If the @xas was in an error state, it will remain in an error state
1726 * and this function will return %NULL.  If the @xas has never been walked,
1727 * it will have the effect of calling xas_load().  Otherwise one will be
1728 * added to the index and the state will be walked to the correct
1729 * location in the array for the next operation.
1730 *
1731 * If the iterator was referencing index %ULONG_MAX, this function wraps
1732 * around to 0.
1733 *
1734 * Return: The entry at the new index.  This may be %NULL or an internal
1735 * entry.
1736 */
1737static inline void *xas_next(struct xa_state *xas)
1738{
1739        struct xa_node *node = xas->xa_node;
1740
1741        if (unlikely(xas_not_node(node) || node->shift ||
1742                                xas->xa_offset == XA_CHUNK_MASK))
1743                return __xas_next(xas);
1744
1745        xas->xa_index++;
1746        xas->xa_offset++;
1747        return xa_entry(xas->xa, node, xas->xa_offset);
1748}
1749
1750#endif /* _LINUX_XARRAY_H */
1751