linux/include/net/tcp.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   4 *              operating system.  INET is implemented using the  BSD Socket
   5 *              interface as the means of communication with the user level.
   6 *
   7 *              Definitions for the TCP module.
   8 *
   9 * Version:     @(#)tcp.h       1.0.5   05/23/93
  10 *
  11 * Authors:     Ross Biro
  12 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 */
  14#ifndef _TCP_H
  15#define _TCP_H
  16
  17#define FASTRETRANS_DEBUG 1
  18
  19#include <linux/list.h>
  20#include <linux/tcp.h>
  21#include <linux/bug.h>
  22#include <linux/slab.h>
  23#include <linux/cache.h>
  24#include <linux/percpu.h>
  25#include <linux/skbuff.h>
  26#include <linux/cryptohash.h>
  27#include <linux/kref.h>
  28#include <linux/ktime.h>
  29
  30#include <net/inet_connection_sock.h>
  31#include <net/inet_timewait_sock.h>
  32#include <net/inet_hashtables.h>
  33#include <net/checksum.h>
  34#include <net/request_sock.h>
  35#include <net/sock_reuseport.h>
  36#include <net/sock.h>
  37#include <net/snmp.h>
  38#include <net/ip.h>
  39#include <net/tcp_states.h>
  40#include <net/inet_ecn.h>
  41#include <net/dst.h>
  42
  43#include <linux/seq_file.h>
  44#include <linux/memcontrol.h>
  45#include <linux/bpf-cgroup.h>
  46#include <linux/siphash.h>
  47
  48extern struct inet_hashinfo tcp_hashinfo;
  49
  50extern struct percpu_counter tcp_orphan_count;
  51void tcp_time_wait(struct sock *sk, int state, int timeo);
  52
  53#define MAX_TCP_HEADER  (128 + MAX_HEADER)
  54#define MAX_TCP_OPTION_SPACE 40
  55#define TCP_MIN_SND_MSS         48
  56#define TCP_MIN_GSO_SIZE        (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
  57
  58/*
  59 * Never offer a window over 32767 without using window scaling. Some
  60 * poor stacks do signed 16bit maths!
  61 */
  62#define MAX_TCP_WINDOW          32767U
  63
  64/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  65#define TCP_MIN_MSS             88U
  66
  67/* The least MTU to use for probing */
  68#define TCP_BASE_MSS            1024
  69
  70/* probing interval, default to 10 minutes as per RFC4821 */
  71#define TCP_PROBE_INTERVAL      600
  72
  73/* Specify interval when tcp mtu probing will stop */
  74#define TCP_PROBE_THRESHOLD     8
  75
  76/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  77#define TCP_FASTRETRANS_THRESH 3
  78
  79/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  80#define TCP_MAX_QUICKACKS       16U
  81
  82/* Maximal number of window scale according to RFC1323 */
  83#define TCP_MAX_WSCALE          14U
  84
  85/* urg_data states */
  86#define TCP_URG_VALID   0x0100
  87#define TCP_URG_NOTYET  0x0200
  88#define TCP_URG_READ    0x0400
  89
  90#define TCP_RETR1       3       /*
  91                                 * This is how many retries it does before it
  92                                 * tries to figure out if the gateway is
  93                                 * down. Minimal RFC value is 3; it corresponds
  94                                 * to ~3sec-8min depending on RTO.
  95                                 */
  96
  97#define TCP_RETR2       15      /*
  98                                 * This should take at least
  99                                 * 90 minutes to time out.
 100                                 * RFC1122 says that the limit is 100 sec.
 101                                 * 15 is ~13-30min depending on RTO.
 102                                 */
 103
 104#define TCP_SYN_RETRIES  6      /* This is how many retries are done
 105                                 * when active opening a connection.
 106                                 * RFC1122 says the minimum retry MUST
 107                                 * be at least 180secs.  Nevertheless
 108                                 * this value is corresponding to
 109                                 * 63secs of retransmission with the
 110                                 * current initial RTO.
 111                                 */
 112
 113#define TCP_SYNACK_RETRIES 5    /* This is how may retries are done
 114                                 * when passive opening a connection.
 115                                 * This is corresponding to 31secs of
 116                                 * retransmission with the current
 117                                 * initial RTO.
 118                                 */
 119
 120#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 121                                  * state, about 60 seconds     */
 122#define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
 123                                 /* BSD style FIN_WAIT2 deadlock breaker.
 124                                  * It used to be 3min, new value is 60sec,
 125                                  * to combine FIN-WAIT-2 timeout with
 126                                  * TIME-WAIT timer.
 127                                  */
 128
 129#define TCP_DELACK_MAX  ((unsigned)(HZ/5))      /* maximal time to delay before sending an ACK */
 130#if HZ >= 100
 131#define TCP_DELACK_MIN  ((unsigned)(HZ/25))     /* minimal time to delay before sending an ACK */
 132#define TCP_ATO_MIN     ((unsigned)(HZ/25))
 133#else
 134#define TCP_DELACK_MIN  4U
 135#define TCP_ATO_MIN     4U
 136#endif
 137#define TCP_RTO_MAX     ((unsigned)(120*HZ))
 138#define TCP_RTO_MIN     ((unsigned)(HZ/5))
 139#define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
 140#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))     /* RFC6298 2.1 initial RTO value        */
 141#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
 142                                                 * used as a fallback RTO for the
 143                                                 * initial data transmission if no
 144                                                 * valid RTT sample has been acquired,
 145                                                 * most likely due to retrans in 3WHS.
 146                                                 */
 147
 148#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 149                                                         * for local resources.
 150                                                         */
 151#define TCP_KEEPALIVE_TIME      (120*60*HZ)     /* two hours */
 152#define TCP_KEEPALIVE_PROBES    9               /* Max of 9 keepalive probes    */
 153#define TCP_KEEPALIVE_INTVL     (75*HZ)
 154
 155#define MAX_TCP_KEEPIDLE        32767
 156#define MAX_TCP_KEEPINTVL       32767
 157#define MAX_TCP_KEEPCNT         127
 158#define MAX_TCP_SYNCNT          127
 159
 160#define TCP_SYNQ_INTERVAL       (HZ/5)  /* Period of SYNACK timer */
 161
 162#define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
 163#define TCP_PAWS_MSL    60              /* Per-host timestamps are invalidated
 164                                         * after this time. It should be equal
 165                                         * (or greater than) TCP_TIMEWAIT_LEN
 166                                         * to provide reliability equal to one
 167                                         * provided by timewait state.
 168                                         */
 169#define TCP_PAWS_WINDOW 1               /* Replay window for per-host
 170                                         * timestamps. It must be less than
 171                                         * minimal timewait lifetime.
 172                                         */
 173/*
 174 *      TCP option
 175 */
 176
 177#define TCPOPT_NOP              1       /* Padding */
 178#define TCPOPT_EOL              0       /* End of options */
 179#define TCPOPT_MSS              2       /* Segment size negotiating */
 180#define TCPOPT_WINDOW           3       /* Window scaling */
 181#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 182#define TCPOPT_SACK             5       /* SACK Block */
 183#define TCPOPT_TIMESTAMP        8       /* Better RTT estimations/PAWS */
 184#define TCPOPT_MD5SIG           19      /* MD5 Signature (RFC2385) */
 185#define TCPOPT_FASTOPEN         34      /* Fast open (RFC7413) */
 186#define TCPOPT_EXP              254     /* Experimental */
 187/* Magic number to be after the option value for sharing TCP
 188 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 189 */
 190#define TCPOPT_FASTOPEN_MAGIC   0xF989
 191#define TCPOPT_SMC_MAGIC        0xE2D4C3D9
 192
 193/*
 194 *     TCP option lengths
 195 */
 196
 197#define TCPOLEN_MSS            4
 198#define TCPOLEN_WINDOW         3
 199#define TCPOLEN_SACK_PERM      2
 200#define TCPOLEN_TIMESTAMP      10
 201#define TCPOLEN_MD5SIG         18
 202#define TCPOLEN_FASTOPEN_BASE  2
 203#define TCPOLEN_EXP_FASTOPEN_BASE  4
 204#define TCPOLEN_EXP_SMC_BASE   6
 205
 206/* But this is what stacks really send out. */
 207#define TCPOLEN_TSTAMP_ALIGNED          12
 208#define TCPOLEN_WSCALE_ALIGNED          4
 209#define TCPOLEN_SACKPERM_ALIGNED        4
 210#define TCPOLEN_SACK_BASE               2
 211#define TCPOLEN_SACK_BASE_ALIGNED       4
 212#define TCPOLEN_SACK_PERBLOCK           8
 213#define TCPOLEN_MD5SIG_ALIGNED          20
 214#define TCPOLEN_MSS_ALIGNED             4
 215#define TCPOLEN_EXP_SMC_BASE_ALIGNED    8
 216
 217/* Flags in tp->nonagle */
 218#define TCP_NAGLE_OFF           1       /* Nagle's algo is disabled */
 219#define TCP_NAGLE_CORK          2       /* Socket is corked         */
 220#define TCP_NAGLE_PUSH          4       /* Cork is overridden for already queued data */
 221
 222/* TCP thin-stream limits */
 223#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 224
 225/* TCP initial congestion window as per rfc6928 */
 226#define TCP_INIT_CWND           10
 227
 228/* Bit Flags for sysctl_tcp_fastopen */
 229#define TFO_CLIENT_ENABLE       1
 230#define TFO_SERVER_ENABLE       2
 231#define TFO_CLIENT_NO_COOKIE    4       /* Data in SYN w/o cookie option */
 232
 233/* Accept SYN data w/o any cookie option */
 234#define TFO_SERVER_COOKIE_NOT_REQD      0x200
 235
 236/* Force enable TFO on all listeners, i.e., not requiring the
 237 * TCP_FASTOPEN socket option.
 238 */
 239#define TFO_SERVER_WO_SOCKOPT1  0x400
 240
 241
 242/* sysctl variables for tcp */
 243extern int sysctl_tcp_max_orphans;
 244extern long sysctl_tcp_mem[3];
 245
 246#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
 247#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
 248#define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
 249
 250extern atomic_long_t tcp_memory_allocated;
 251extern struct percpu_counter tcp_sockets_allocated;
 252extern unsigned long tcp_memory_pressure;
 253
 254/* optimized version of sk_under_memory_pressure() for TCP sockets */
 255static inline bool tcp_under_memory_pressure(const struct sock *sk)
 256{
 257        if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 258            mem_cgroup_under_socket_pressure(sk->sk_memcg))
 259                return true;
 260
 261        return tcp_memory_pressure;
 262}
 263/*
 264 * The next routines deal with comparing 32 bit unsigned ints
 265 * and worry about wraparound (automatic with unsigned arithmetic).
 266 */
 267
 268static inline bool before(__u32 seq1, __u32 seq2)
 269{
 270        return (__s32)(seq1-seq2) < 0;
 271}
 272#define after(seq2, seq1)       before(seq1, seq2)
 273
 274/* is s2<=s1<=s3 ? */
 275static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 276{
 277        return seq3 - seq2 >= seq1 - seq2;
 278}
 279
 280static inline bool tcp_out_of_memory(struct sock *sk)
 281{
 282        if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 283            sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 284                return true;
 285        return false;
 286}
 287
 288void sk_forced_mem_schedule(struct sock *sk, int size);
 289
 290static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
 291{
 292        struct percpu_counter *ocp = sk->sk_prot->orphan_count;
 293        int orphans = percpu_counter_read_positive(ocp);
 294
 295        if (orphans << shift > sysctl_tcp_max_orphans) {
 296                orphans = percpu_counter_sum_positive(ocp);
 297                if (orphans << shift > sysctl_tcp_max_orphans)
 298                        return true;
 299        }
 300        return false;
 301}
 302
 303bool tcp_check_oom(struct sock *sk, int shift);
 304
 305
 306extern struct proto tcp_prot;
 307
 308#define TCP_INC_STATS(net, field)       SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 309#define __TCP_INC_STATS(net, field)     __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 310#define TCP_DEC_STATS(net, field)       SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 311#define TCP_ADD_STATS(net, field, val)  SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 312
 313void tcp_tasklet_init(void);
 314
 315int tcp_v4_err(struct sk_buff *skb, u32);
 316
 317void tcp_shutdown(struct sock *sk, int how);
 318
 319int tcp_v4_early_demux(struct sk_buff *skb);
 320int tcp_v4_rcv(struct sk_buff *skb);
 321
 322int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
 323int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 324int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
 325int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
 326                 int flags);
 327int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
 328                        size_t size, int flags);
 329ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
 330                 size_t size, int flags);
 331void tcp_release_cb(struct sock *sk);
 332void tcp_wfree(struct sk_buff *skb);
 333void tcp_write_timer_handler(struct sock *sk);
 334void tcp_delack_timer_handler(struct sock *sk);
 335int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
 336int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 337void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
 338void tcp_rcv_space_adjust(struct sock *sk);
 339int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 340void tcp_twsk_destructor(struct sock *sk);
 341ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 342                        struct pipe_inode_info *pipe, size_t len,
 343                        unsigned int flags);
 344
 345void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
 346static inline void tcp_dec_quickack_mode(struct sock *sk,
 347                                         const unsigned int pkts)
 348{
 349        struct inet_connection_sock *icsk = inet_csk(sk);
 350
 351        if (icsk->icsk_ack.quick) {
 352                if (pkts >= icsk->icsk_ack.quick) {
 353                        icsk->icsk_ack.quick = 0;
 354                        /* Leaving quickack mode we deflate ATO. */
 355                        icsk->icsk_ack.ato   = TCP_ATO_MIN;
 356                } else
 357                        icsk->icsk_ack.quick -= pkts;
 358        }
 359}
 360
 361#define TCP_ECN_OK              1
 362#define TCP_ECN_QUEUE_CWR       2
 363#define TCP_ECN_DEMAND_CWR      4
 364#define TCP_ECN_SEEN            8
 365
 366enum tcp_tw_status {
 367        TCP_TW_SUCCESS = 0,
 368        TCP_TW_RST = 1,
 369        TCP_TW_ACK = 2,
 370        TCP_TW_SYN = 3
 371};
 372
 373
 374enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 375                                              struct sk_buff *skb,
 376                                              const struct tcphdr *th);
 377struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 378                           struct request_sock *req, bool fastopen,
 379                           bool *lost_race);
 380int tcp_child_process(struct sock *parent, struct sock *child,
 381                      struct sk_buff *skb);
 382void tcp_enter_loss(struct sock *sk);
 383void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
 384void tcp_clear_retrans(struct tcp_sock *tp);
 385void tcp_update_metrics(struct sock *sk);
 386void tcp_init_metrics(struct sock *sk);
 387void tcp_metrics_init(void);
 388bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
 389void tcp_close(struct sock *sk, long timeout);
 390void tcp_init_sock(struct sock *sk);
 391void tcp_init_transfer(struct sock *sk, int bpf_op);
 392__poll_t tcp_poll(struct file *file, struct socket *sock,
 393                      struct poll_table_struct *wait);
 394int tcp_getsockopt(struct sock *sk, int level, int optname,
 395                   char __user *optval, int __user *optlen);
 396int tcp_setsockopt(struct sock *sk, int level, int optname,
 397                   char __user *optval, unsigned int optlen);
 398int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
 399                          char __user *optval, int __user *optlen);
 400int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
 401                          char __user *optval, unsigned int optlen);
 402void tcp_set_keepalive(struct sock *sk, int val);
 403void tcp_syn_ack_timeout(const struct request_sock *req);
 404int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
 405                int flags, int *addr_len);
 406int tcp_set_rcvlowat(struct sock *sk, int val);
 407void tcp_data_ready(struct sock *sk);
 408#ifdef CONFIG_MMU
 409int tcp_mmap(struct file *file, struct socket *sock,
 410             struct vm_area_struct *vma);
 411#endif
 412void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
 413                       struct tcp_options_received *opt_rx,
 414                       int estab, struct tcp_fastopen_cookie *foc);
 415const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
 416
 417/*
 418 *      TCP v4 functions exported for the inet6 API
 419 */
 420
 421void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 422void tcp_v4_mtu_reduced(struct sock *sk);
 423void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 424int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 425struct sock *tcp_create_openreq_child(const struct sock *sk,
 426                                      struct request_sock *req,
 427                                      struct sk_buff *skb);
 428void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 429struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 430                                  struct request_sock *req,
 431                                  struct dst_entry *dst,
 432                                  struct request_sock *req_unhash,
 433                                  bool *own_req);
 434int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 435int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 436int tcp_connect(struct sock *sk);
 437enum tcp_synack_type {
 438        TCP_SYNACK_NORMAL,
 439        TCP_SYNACK_FASTOPEN,
 440        TCP_SYNACK_COOKIE,
 441};
 442struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 443                                struct request_sock *req,
 444                                struct tcp_fastopen_cookie *foc,
 445                                enum tcp_synack_type synack_type);
 446int tcp_disconnect(struct sock *sk, int flags);
 447
 448void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 449int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 450void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 451
 452/* From syncookies.c */
 453struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 454                                 struct request_sock *req,
 455                                 struct dst_entry *dst, u32 tsoff);
 456int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
 457                      u32 cookie);
 458struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 459#ifdef CONFIG_SYN_COOKIES
 460
 461/* Syncookies use a monotonic timer which increments every 60 seconds.
 462 * This counter is used both as a hash input and partially encoded into
 463 * the cookie value.  A cookie is only validated further if the delta
 464 * between the current counter value and the encoded one is less than this,
 465 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 466 * the counter advances immediately after a cookie is generated).
 467 */
 468#define MAX_SYNCOOKIE_AGE       2
 469#define TCP_SYNCOOKIE_PERIOD    (60 * HZ)
 470#define TCP_SYNCOOKIE_VALID     (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 471
 472/* syncookies: remember time of last synqueue overflow
 473 * But do not dirty this field too often (once per second is enough)
 474 * It is racy as we do not hold a lock, but race is very minor.
 475 */
 476static inline void tcp_synq_overflow(const struct sock *sk)
 477{
 478        unsigned int last_overflow;
 479        unsigned int now = jiffies;
 480
 481        if (sk->sk_reuseport) {
 482                struct sock_reuseport *reuse;
 483
 484                reuse = rcu_dereference(sk->sk_reuseport_cb);
 485                if (likely(reuse)) {
 486                        last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 487                        if (time_after32(now, last_overflow + HZ))
 488                                WRITE_ONCE(reuse->synq_overflow_ts, now);
 489                        return;
 490                }
 491        }
 492
 493        last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
 494        if (time_after32(now, last_overflow + HZ))
 495                tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
 496}
 497
 498/* syncookies: no recent synqueue overflow on this listening socket? */
 499static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 500{
 501        unsigned int last_overflow;
 502        unsigned int now = jiffies;
 503
 504        if (sk->sk_reuseport) {
 505                struct sock_reuseport *reuse;
 506
 507                reuse = rcu_dereference(sk->sk_reuseport_cb);
 508                if (likely(reuse)) {
 509                        last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 510                        return time_after32(now, last_overflow +
 511                                            TCP_SYNCOOKIE_VALID);
 512                }
 513        }
 514
 515        last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
 516        return time_after32(now, last_overflow + TCP_SYNCOOKIE_VALID);
 517}
 518
 519static inline u32 tcp_cookie_time(void)
 520{
 521        u64 val = get_jiffies_64();
 522
 523        do_div(val, TCP_SYNCOOKIE_PERIOD);
 524        return val;
 525}
 526
 527u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 528                              u16 *mssp);
 529__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 530u64 cookie_init_timestamp(struct request_sock *req);
 531bool cookie_timestamp_decode(const struct net *net,
 532                             struct tcp_options_received *opt);
 533bool cookie_ecn_ok(const struct tcp_options_received *opt,
 534                   const struct net *net, const struct dst_entry *dst);
 535
 536/* From net/ipv6/syncookies.c */
 537int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
 538                      u32 cookie);
 539struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 540
 541u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 542                              const struct tcphdr *th, u16 *mssp);
 543__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 544#endif
 545/* tcp_output.c */
 546
 547void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 548                               int nonagle);
 549int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 550int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 551void tcp_retransmit_timer(struct sock *sk);
 552void tcp_xmit_retransmit_queue(struct sock *);
 553void tcp_simple_retransmit(struct sock *);
 554void tcp_enter_recovery(struct sock *sk, bool ece_ack);
 555int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 556enum tcp_queue {
 557        TCP_FRAG_IN_WRITE_QUEUE,
 558        TCP_FRAG_IN_RTX_QUEUE,
 559};
 560int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
 561                 struct sk_buff *skb, u32 len,
 562                 unsigned int mss_now, gfp_t gfp);
 563
 564void tcp_send_probe0(struct sock *);
 565void tcp_send_partial(struct sock *);
 566int tcp_write_wakeup(struct sock *, int mib);
 567void tcp_send_fin(struct sock *sk);
 568void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 569int tcp_send_synack(struct sock *);
 570void tcp_push_one(struct sock *, unsigned int mss_now);
 571void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
 572void tcp_send_ack(struct sock *sk);
 573void tcp_send_delayed_ack(struct sock *sk);
 574void tcp_send_loss_probe(struct sock *sk);
 575bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
 576void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 577                             const struct sk_buff *next_skb);
 578
 579/* tcp_input.c */
 580void tcp_rearm_rto(struct sock *sk);
 581void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 582void tcp_reset(struct sock *sk);
 583void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
 584void tcp_fin(struct sock *sk);
 585
 586/* tcp_timer.c */
 587void tcp_init_xmit_timers(struct sock *);
 588static inline void tcp_clear_xmit_timers(struct sock *sk)
 589{
 590        if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
 591                __sock_put(sk);
 592
 593        if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
 594                __sock_put(sk);
 595
 596        inet_csk_clear_xmit_timers(sk);
 597}
 598
 599unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 600unsigned int tcp_current_mss(struct sock *sk);
 601
 602/* Bound MSS / TSO packet size with the half of the window */
 603static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 604{
 605        int cutoff;
 606
 607        /* When peer uses tiny windows, there is no use in packetizing
 608         * to sub-MSS pieces for the sake of SWS or making sure there
 609         * are enough packets in the pipe for fast recovery.
 610         *
 611         * On the other hand, for extremely large MSS devices, handling
 612         * smaller than MSS windows in this way does make sense.
 613         */
 614        if (tp->max_window > TCP_MSS_DEFAULT)
 615                cutoff = (tp->max_window >> 1);
 616        else
 617                cutoff = tp->max_window;
 618
 619        if (cutoff && pktsize > cutoff)
 620                return max_t(int, cutoff, 68U - tp->tcp_header_len);
 621        else
 622                return pktsize;
 623}
 624
 625/* tcp.c */
 626void tcp_get_info(struct sock *, struct tcp_info *);
 627
 628/* Read 'sendfile()'-style from a TCP socket */
 629int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 630                  sk_read_actor_t recv_actor);
 631
 632void tcp_initialize_rcv_mss(struct sock *sk);
 633
 634int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 635int tcp_mss_to_mtu(struct sock *sk, int mss);
 636void tcp_mtup_init(struct sock *sk);
 637void tcp_init_buffer_space(struct sock *sk);
 638
 639static inline void tcp_bound_rto(const struct sock *sk)
 640{
 641        if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 642                inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 643}
 644
 645static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 646{
 647        return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 648}
 649
 650static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 651{
 652        tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 653                               ntohl(TCP_FLAG_ACK) |
 654                               snd_wnd);
 655}
 656
 657static inline void tcp_fast_path_on(struct tcp_sock *tp)
 658{
 659        __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 660}
 661
 662static inline void tcp_fast_path_check(struct sock *sk)
 663{
 664        struct tcp_sock *tp = tcp_sk(sk);
 665
 666        if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 667            tp->rcv_wnd &&
 668            atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 669            !tp->urg_data)
 670                tcp_fast_path_on(tp);
 671}
 672
 673/* Compute the actual rto_min value */
 674static inline u32 tcp_rto_min(struct sock *sk)
 675{
 676        const struct dst_entry *dst = __sk_dst_get(sk);
 677        u32 rto_min = TCP_RTO_MIN;
 678
 679        if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 680                rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 681        return rto_min;
 682}
 683
 684static inline u32 tcp_rto_min_us(struct sock *sk)
 685{
 686        return jiffies_to_usecs(tcp_rto_min(sk));
 687}
 688
 689static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 690{
 691        return dst_metric_locked(dst, RTAX_CC_ALGO);
 692}
 693
 694/* Minimum RTT in usec. ~0 means not available. */
 695static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 696{
 697        return minmax_get(&tp->rtt_min);
 698}
 699
 700/* Compute the actual receive window we are currently advertising.
 701 * Rcv_nxt can be after the window if our peer push more data
 702 * than the offered window.
 703 */
 704static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 705{
 706        s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 707
 708        if (win < 0)
 709                win = 0;
 710        return (u32) win;
 711}
 712
 713/* Choose a new window, without checks for shrinking, and without
 714 * scaling applied to the result.  The caller does these things
 715 * if necessary.  This is a "raw" window selection.
 716 */
 717u32 __tcp_select_window(struct sock *sk);
 718
 719void tcp_send_window_probe(struct sock *sk);
 720
 721/* TCP uses 32bit jiffies to save some space.
 722 * Note that this is different from tcp_time_stamp, which
 723 * historically has been the same until linux-4.13.
 724 */
 725#define tcp_jiffies32 ((u32)jiffies)
 726
 727/*
 728 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 729 * It is no longer tied to jiffies, but to 1 ms clock.
 730 * Note: double check if you want to use tcp_jiffies32 instead of this.
 731 */
 732#define TCP_TS_HZ       1000
 733
 734static inline u64 tcp_clock_ns(void)
 735{
 736        return ktime_get_ns();
 737}
 738
 739static inline u64 tcp_clock_us(void)
 740{
 741        return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
 742}
 743
 744/* This should only be used in contexts where tp->tcp_mstamp is up to date */
 745static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
 746{
 747        return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
 748}
 749
 750/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
 751static inline u32 tcp_time_stamp_raw(void)
 752{
 753        return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
 754}
 755
 756void tcp_mstamp_refresh(struct tcp_sock *tp);
 757
 758static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
 759{
 760        return max_t(s64, t1 - t0, 0);
 761}
 762
 763static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
 764{
 765        return div_u64(skb->skb_mstamp_ns, NSEC_PER_SEC / TCP_TS_HZ);
 766}
 767
 768/* provide the departure time in us unit */
 769static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
 770{
 771        return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
 772}
 773
 774
 775#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 776
 777#define TCPHDR_FIN 0x01
 778#define TCPHDR_SYN 0x02
 779#define TCPHDR_RST 0x04
 780#define TCPHDR_PSH 0x08
 781#define TCPHDR_ACK 0x10
 782#define TCPHDR_URG 0x20
 783#define TCPHDR_ECE 0x40
 784#define TCPHDR_CWR 0x80
 785
 786#define TCPHDR_SYN_ECN  (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 787
 788/* This is what the send packet queuing engine uses to pass
 789 * TCP per-packet control information to the transmission code.
 790 * We also store the host-order sequence numbers in here too.
 791 * This is 44 bytes if IPV6 is enabled.
 792 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 793 */
 794struct tcp_skb_cb {
 795        __u32           seq;            /* Starting sequence number     */
 796        __u32           end_seq;        /* SEQ + FIN + SYN + datalen    */
 797        union {
 798                /* Note : tcp_tw_isn is used in input path only
 799                 *        (isn chosen by tcp_timewait_state_process())
 800                 *
 801                 *        tcp_gso_segs/size are used in write queue only,
 802                 *        cf tcp_skb_pcount()/tcp_skb_mss()
 803                 */
 804                __u32           tcp_tw_isn;
 805                struct {
 806                        u16     tcp_gso_segs;
 807                        u16     tcp_gso_size;
 808                };
 809        };
 810        __u8            tcp_flags;      /* TCP header flags. (tcp[13])  */
 811
 812        __u8            sacked;         /* State flags for SACK.        */
 813#define TCPCB_SACKED_ACKED      0x01    /* SKB ACK'd by a SACK block    */
 814#define TCPCB_SACKED_RETRANS    0x02    /* SKB retransmitted            */
 815#define TCPCB_LOST              0x04    /* SKB is lost                  */
 816#define TCPCB_TAGBITS           0x07    /* All tag bits                 */
 817#define TCPCB_REPAIRED          0x10    /* SKB repaired (no skb_mstamp_ns)      */
 818#define TCPCB_EVER_RETRANS      0x80    /* Ever retransmitted frame     */
 819#define TCPCB_RETRANS           (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 820                                TCPCB_REPAIRED)
 821
 822        __u8            ip_dsfield;     /* IPv4 tos or IPv6 dsfield     */
 823        __u8            txstamp_ack:1,  /* Record TX timestamp for ack? */
 824                        eor:1,          /* Is skb MSG_EOR marked? */
 825                        has_rxtstamp:1, /* SKB has a RX timestamp       */
 826                        unused:5;
 827        __u32           ack_seq;        /* Sequence number ACK'd        */
 828        union {
 829                struct {
 830                        /* There is space for up to 24 bytes */
 831                        __u32 in_flight:30,/* Bytes in flight at transmit */
 832                              is_app_limited:1, /* cwnd not fully used? */
 833                              unused:1;
 834                        /* pkts S/ACKed so far upon tx of skb, incl retrans: */
 835                        __u32 delivered;
 836                        /* start of send pipeline phase */
 837                        u64 first_tx_mstamp;
 838                        /* when we reached the "delivered" count */
 839                        u64 delivered_mstamp;
 840                } tx;   /* only used for outgoing skbs */
 841                union {
 842                        struct inet_skb_parm    h4;
 843#if IS_ENABLED(CONFIG_IPV6)
 844                        struct inet6_skb_parm   h6;
 845#endif
 846                } header;       /* For incoming skbs */
 847                struct {
 848                        __u32 flags;
 849                        struct sock *sk_redir;
 850                        void *data_end;
 851                } bpf;
 852        };
 853};
 854
 855#define TCP_SKB_CB(__skb)       ((struct tcp_skb_cb *)&((__skb)->cb[0]))
 856
 857static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
 858{
 859        TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
 860}
 861
 862static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
 863{
 864        return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
 865}
 866
 867static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
 868{
 869        return TCP_SKB_CB(skb)->bpf.sk_redir;
 870}
 871
 872static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
 873{
 874        TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
 875}
 876
 877#if IS_ENABLED(CONFIG_IPV6)
 878/* This is the variant of inet6_iif() that must be used by TCP,
 879 * as TCP moves IP6CB into a different location in skb->cb[]
 880 */
 881static inline int tcp_v6_iif(const struct sk_buff *skb)
 882{
 883        return TCP_SKB_CB(skb)->header.h6.iif;
 884}
 885
 886static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
 887{
 888        bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
 889
 890        return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
 891}
 892
 893/* TCP_SKB_CB reference means this can not be used from early demux */
 894static inline int tcp_v6_sdif(const struct sk_buff *skb)
 895{
 896#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 897        if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
 898                return TCP_SKB_CB(skb)->header.h6.iif;
 899#endif
 900        return 0;
 901}
 902#endif
 903
 904static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
 905{
 906#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 907        if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
 908            skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
 909                return true;
 910#endif
 911        return false;
 912}
 913
 914/* TCP_SKB_CB reference means this can not be used from early demux */
 915static inline int tcp_v4_sdif(struct sk_buff *skb)
 916{
 917#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 918        if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
 919                return TCP_SKB_CB(skb)->header.h4.iif;
 920#endif
 921        return 0;
 922}
 923
 924/* Due to TSO, an SKB can be composed of multiple actual
 925 * packets.  To keep these tracked properly, we use this.
 926 */
 927static inline int tcp_skb_pcount(const struct sk_buff *skb)
 928{
 929        return TCP_SKB_CB(skb)->tcp_gso_segs;
 930}
 931
 932static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
 933{
 934        TCP_SKB_CB(skb)->tcp_gso_segs = segs;
 935}
 936
 937static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
 938{
 939        TCP_SKB_CB(skb)->tcp_gso_segs += segs;
 940}
 941
 942/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
 943static inline int tcp_skb_mss(const struct sk_buff *skb)
 944{
 945        return TCP_SKB_CB(skb)->tcp_gso_size;
 946}
 947
 948static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
 949{
 950        return likely(!TCP_SKB_CB(skb)->eor);
 951}
 952
 953/* Events passed to congestion control interface */
 954enum tcp_ca_event {
 955        CA_EVENT_TX_START,      /* first transmit when no packets in flight */
 956        CA_EVENT_CWND_RESTART,  /* congestion window restart */
 957        CA_EVENT_COMPLETE_CWR,  /* end of congestion recovery */
 958        CA_EVENT_LOSS,          /* loss timeout */
 959        CA_EVENT_ECN_NO_CE,     /* ECT set, but not CE marked */
 960        CA_EVENT_ECN_IS_CE,     /* received CE marked IP packet */
 961};
 962
 963/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
 964enum tcp_ca_ack_event_flags {
 965        CA_ACK_SLOWPATH         = (1 << 0),     /* In slow path processing */
 966        CA_ACK_WIN_UPDATE       = (1 << 1),     /* ACK updated window */
 967        CA_ACK_ECE              = (1 << 2),     /* ECE bit is set on ack */
 968};
 969
 970/*
 971 * Interface for adding new TCP congestion control handlers
 972 */
 973#define TCP_CA_NAME_MAX 16
 974#define TCP_CA_MAX      128
 975#define TCP_CA_BUF_MAX  (TCP_CA_NAME_MAX*TCP_CA_MAX)
 976
 977#define TCP_CA_UNSPEC   0
 978
 979/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
 980#define TCP_CONG_NON_RESTRICTED 0x1
 981/* Requires ECN/ECT set on all packets */
 982#define TCP_CONG_NEEDS_ECN      0x2
 983
 984union tcp_cc_info;
 985
 986struct ack_sample {
 987        u32 pkts_acked;
 988        s32 rtt_us;
 989        u32 in_flight;
 990};
 991
 992/* A rate sample measures the number of (original/retransmitted) data
 993 * packets delivered "delivered" over an interval of time "interval_us".
 994 * The tcp_rate.c code fills in the rate sample, and congestion
 995 * control modules that define a cong_control function to run at the end
 996 * of ACK processing can optionally chose to consult this sample when
 997 * setting cwnd and pacing rate.
 998 * A sample is invalid if "delivered" or "interval_us" is negative.
 999 */
1000struct rate_sample {
1001        u64  prior_mstamp; /* starting timestamp for interval */
1002        u32  prior_delivered;   /* tp->delivered at "prior_mstamp" */
1003        s32  delivered;         /* number of packets delivered over interval */
1004        long interval_us;       /* time for tp->delivered to incr "delivered" */
1005        u32 snd_interval_us;    /* snd interval for delivered packets */
1006        u32 rcv_interval_us;    /* rcv interval for delivered packets */
1007        long rtt_us;            /* RTT of last (S)ACKed packet (or -1) */
1008        int  losses;            /* number of packets marked lost upon ACK */
1009        u32  acked_sacked;      /* number of packets newly (S)ACKed upon ACK */
1010        u32  prior_in_flight;   /* in flight before this ACK */
1011        bool is_app_limited;    /* is sample from packet with bubble in pipe? */
1012        bool is_retrans;        /* is sample from retransmission? */
1013        bool is_ack_delayed;    /* is this (likely) a delayed ACK? */
1014};
1015
1016struct tcp_congestion_ops {
1017        struct list_head        list;
1018        u32 key;
1019        u32 flags;
1020
1021        /* initialize private data (optional) */
1022        void (*init)(struct sock *sk);
1023        /* cleanup private data  (optional) */
1024        void (*release)(struct sock *sk);
1025
1026        /* return slow start threshold (required) */
1027        u32 (*ssthresh)(struct sock *sk);
1028        /* do new cwnd calculation (required) */
1029        void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1030        /* call before changing ca_state (optional) */
1031        void (*set_state)(struct sock *sk, u8 new_state);
1032        /* call when cwnd event occurs (optional) */
1033        void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1034        /* call when ack arrives (optional) */
1035        void (*in_ack_event)(struct sock *sk, u32 flags);
1036        /* new value of cwnd after loss (required) */
1037        u32  (*undo_cwnd)(struct sock *sk);
1038        /* hook for packet ack accounting (optional) */
1039        void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1040        /* override sysctl_tcp_min_tso_segs */
1041        u32 (*min_tso_segs)(struct sock *sk);
1042        /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1043        u32 (*sndbuf_expand)(struct sock *sk);
1044        /* call when packets are delivered to update cwnd and pacing rate,
1045         * after all the ca_state processing. (optional)
1046         */
1047        void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1048        /* get info for inet_diag (optional) */
1049        size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1050                           union tcp_cc_info *info);
1051
1052        char            name[TCP_CA_NAME_MAX];
1053        struct module   *owner;
1054};
1055
1056int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1057void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1058
1059void tcp_assign_congestion_control(struct sock *sk);
1060void tcp_init_congestion_control(struct sock *sk);
1061void tcp_cleanup_congestion_control(struct sock *sk);
1062int tcp_set_default_congestion_control(struct net *net, const char *name);
1063void tcp_get_default_congestion_control(struct net *net, char *name);
1064void tcp_get_available_congestion_control(char *buf, size_t len);
1065void tcp_get_allowed_congestion_control(char *buf, size_t len);
1066int tcp_set_allowed_congestion_control(char *allowed);
1067int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1068                               bool reinit, bool cap_net_admin);
1069u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1070void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1071
1072u32 tcp_reno_ssthresh(struct sock *sk);
1073u32 tcp_reno_undo_cwnd(struct sock *sk);
1074void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1075extern struct tcp_congestion_ops tcp_reno;
1076
1077struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1078u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1079#ifdef CONFIG_INET
1080char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1081#else
1082static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1083{
1084        return NULL;
1085}
1086#endif
1087
1088static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1089{
1090        const struct inet_connection_sock *icsk = inet_csk(sk);
1091
1092        return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1093}
1094
1095static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1096{
1097        struct inet_connection_sock *icsk = inet_csk(sk);
1098
1099        if (icsk->icsk_ca_ops->set_state)
1100                icsk->icsk_ca_ops->set_state(sk, ca_state);
1101        icsk->icsk_ca_state = ca_state;
1102}
1103
1104static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1105{
1106        const struct inet_connection_sock *icsk = inet_csk(sk);
1107
1108        if (icsk->icsk_ca_ops->cwnd_event)
1109                icsk->icsk_ca_ops->cwnd_event(sk, event);
1110}
1111
1112/* From tcp_rate.c */
1113void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1114void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1115                            struct rate_sample *rs);
1116void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1117                  bool is_sack_reneg, struct rate_sample *rs);
1118void tcp_rate_check_app_limited(struct sock *sk);
1119
1120/* These functions determine how the current flow behaves in respect of SACK
1121 * handling. SACK is negotiated with the peer, and therefore it can vary
1122 * between different flows.
1123 *
1124 * tcp_is_sack - SACK enabled
1125 * tcp_is_reno - No SACK
1126 */
1127static inline int tcp_is_sack(const struct tcp_sock *tp)
1128{
1129        return likely(tp->rx_opt.sack_ok);
1130}
1131
1132static inline bool tcp_is_reno(const struct tcp_sock *tp)
1133{
1134        return !tcp_is_sack(tp);
1135}
1136
1137static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1138{
1139        return tp->sacked_out + tp->lost_out;
1140}
1141
1142/* This determines how many packets are "in the network" to the best
1143 * of our knowledge.  In many cases it is conservative, but where
1144 * detailed information is available from the receiver (via SACK
1145 * blocks etc.) we can make more aggressive calculations.
1146 *
1147 * Use this for decisions involving congestion control, use just
1148 * tp->packets_out to determine if the send queue is empty or not.
1149 *
1150 * Read this equation as:
1151 *
1152 *      "Packets sent once on transmission queue" MINUS
1153 *      "Packets left network, but not honestly ACKed yet" PLUS
1154 *      "Packets fast retransmitted"
1155 */
1156static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1157{
1158        return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1159}
1160
1161#define TCP_INFINITE_SSTHRESH   0x7fffffff
1162
1163static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1164{
1165        return tp->snd_cwnd < tp->snd_ssthresh;
1166}
1167
1168static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1169{
1170        return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1171}
1172
1173static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1174{
1175        return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1176               (1 << inet_csk(sk)->icsk_ca_state);
1177}
1178
1179/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1180 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1181 * ssthresh.
1182 */
1183static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1184{
1185        const struct tcp_sock *tp = tcp_sk(sk);
1186
1187        if (tcp_in_cwnd_reduction(sk))
1188                return tp->snd_ssthresh;
1189        else
1190                return max(tp->snd_ssthresh,
1191                           ((tp->snd_cwnd >> 1) +
1192                            (tp->snd_cwnd >> 2)));
1193}
1194
1195/* Use define here intentionally to get WARN_ON location shown at the caller */
1196#define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1197
1198void tcp_enter_cwr(struct sock *sk);
1199__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1200
1201/* The maximum number of MSS of available cwnd for which TSO defers
1202 * sending if not using sysctl_tcp_tso_win_divisor.
1203 */
1204static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1205{
1206        return 3;
1207}
1208
1209/* Returns end sequence number of the receiver's advertised window */
1210static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1211{
1212        return tp->snd_una + tp->snd_wnd;
1213}
1214
1215/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1216 * flexible approach. The RFC suggests cwnd should not be raised unless
1217 * it was fully used previously. And that's exactly what we do in
1218 * congestion avoidance mode. But in slow start we allow cwnd to grow
1219 * as long as the application has used half the cwnd.
1220 * Example :
1221 *    cwnd is 10 (IW10), but application sends 9 frames.
1222 *    We allow cwnd to reach 18 when all frames are ACKed.
1223 * This check is safe because it's as aggressive as slow start which already
1224 * risks 100% overshoot. The advantage is that we discourage application to
1225 * either send more filler packets or data to artificially blow up the cwnd
1226 * usage, and allow application-limited process to probe bw more aggressively.
1227 */
1228static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1229{
1230        const struct tcp_sock *tp = tcp_sk(sk);
1231
1232        /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1233        if (tcp_in_slow_start(tp))
1234                return tp->snd_cwnd < 2 * tp->max_packets_out;
1235
1236        return tp->is_cwnd_limited;
1237}
1238
1239/* BBR congestion control needs pacing.
1240 * Same remark for SO_MAX_PACING_RATE.
1241 * sch_fq packet scheduler is efficiently handling pacing,
1242 * but is not always installed/used.
1243 * Return true if TCP stack should pace packets itself.
1244 */
1245static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1246{
1247        return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1248}
1249
1250/* Return in jiffies the delay before one skb is sent.
1251 * If @skb is NULL, we look at EDT for next packet being sent on the socket.
1252 */
1253static inline unsigned long tcp_pacing_delay(const struct sock *sk,
1254                                             const struct sk_buff *skb)
1255{
1256        s64 pacing_delay = skb ? skb->tstamp : tcp_sk(sk)->tcp_wstamp_ns;
1257
1258        pacing_delay -= tcp_sk(sk)->tcp_clock_cache;
1259
1260        return pacing_delay > 0 ? nsecs_to_jiffies(pacing_delay) : 0;
1261}
1262
1263static inline void tcp_reset_xmit_timer(struct sock *sk,
1264                                        const int what,
1265                                        unsigned long when,
1266                                        const unsigned long max_when,
1267                                        const struct sk_buff *skb)
1268{
1269        inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk, skb),
1270                                  max_when);
1271}
1272
1273/* Something is really bad, we could not queue an additional packet,
1274 * because qdisc is full or receiver sent a 0 window, or we are paced.
1275 * We do not want to add fuel to the fire, or abort too early,
1276 * so make sure the timer we arm now is at least 200ms in the future,
1277 * regardless of current icsk_rto value (as it could be ~2ms)
1278 */
1279static inline unsigned long tcp_probe0_base(const struct sock *sk)
1280{
1281        return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1282}
1283
1284/* Variant of inet_csk_rto_backoff() used for zero window probes */
1285static inline unsigned long tcp_probe0_when(const struct sock *sk,
1286                                            unsigned long max_when)
1287{
1288        u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1289
1290        return (unsigned long)min_t(u64, when, max_when);
1291}
1292
1293static inline void tcp_check_probe_timer(struct sock *sk)
1294{
1295        if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1296                tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1297                                     tcp_probe0_base(sk), TCP_RTO_MAX,
1298                                     NULL);
1299}
1300
1301static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1302{
1303        tp->snd_wl1 = seq;
1304}
1305
1306static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1307{
1308        tp->snd_wl1 = seq;
1309}
1310
1311/*
1312 * Calculate(/check) TCP checksum
1313 */
1314static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1315                                   __be32 daddr, __wsum base)
1316{
1317        return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1318}
1319
1320static inline bool tcp_checksum_complete(struct sk_buff *skb)
1321{
1322        return !skb_csum_unnecessary(skb) &&
1323                __skb_checksum_complete(skb);
1324}
1325
1326bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1327int tcp_filter(struct sock *sk, struct sk_buff *skb);
1328void tcp_set_state(struct sock *sk, int state);
1329void tcp_done(struct sock *sk);
1330int tcp_abort(struct sock *sk, int err);
1331
1332static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1333{
1334        rx_opt->dsack = 0;
1335        rx_opt->num_sacks = 0;
1336}
1337
1338u32 tcp_default_init_rwnd(u32 mss);
1339void tcp_cwnd_restart(struct sock *sk, s32 delta);
1340
1341static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1342{
1343        const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1344        struct tcp_sock *tp = tcp_sk(sk);
1345        s32 delta;
1346
1347        if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1348            ca_ops->cong_control)
1349                return;
1350        delta = tcp_jiffies32 - tp->lsndtime;
1351        if (delta > inet_csk(sk)->icsk_rto)
1352                tcp_cwnd_restart(sk, delta);
1353}
1354
1355/* Determine a window scaling and initial window to offer. */
1356void tcp_select_initial_window(const struct sock *sk, int __space,
1357                               __u32 mss, __u32 *rcv_wnd,
1358                               __u32 *window_clamp, int wscale_ok,
1359                               __u8 *rcv_wscale, __u32 init_rcv_wnd);
1360
1361static inline int tcp_win_from_space(const struct sock *sk, int space)
1362{
1363        int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1364
1365        return tcp_adv_win_scale <= 0 ?
1366                (space>>(-tcp_adv_win_scale)) :
1367                space - (space>>tcp_adv_win_scale);
1368}
1369
1370/* Note: caller must be prepared to deal with negative returns */
1371static inline int tcp_space(const struct sock *sk)
1372{
1373        return tcp_win_from_space(sk, sk->sk_rcvbuf - sk->sk_backlog.len -
1374                                  atomic_read(&sk->sk_rmem_alloc));
1375}
1376
1377static inline int tcp_full_space(const struct sock *sk)
1378{
1379        return tcp_win_from_space(sk, sk->sk_rcvbuf);
1380}
1381
1382extern void tcp_openreq_init_rwin(struct request_sock *req,
1383                                  const struct sock *sk_listener,
1384                                  const struct dst_entry *dst);
1385
1386void tcp_enter_memory_pressure(struct sock *sk);
1387void tcp_leave_memory_pressure(struct sock *sk);
1388
1389static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1390{
1391        struct net *net = sock_net((struct sock *)tp);
1392
1393        return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1394}
1395
1396static inline int keepalive_time_when(const struct tcp_sock *tp)
1397{
1398        struct net *net = sock_net((struct sock *)tp);
1399
1400        return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1401}
1402
1403static inline int keepalive_probes(const struct tcp_sock *tp)
1404{
1405        struct net *net = sock_net((struct sock *)tp);
1406
1407        return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1408}
1409
1410static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1411{
1412        const struct inet_connection_sock *icsk = &tp->inet_conn;
1413
1414        return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1415                          tcp_jiffies32 - tp->rcv_tstamp);
1416}
1417
1418static inline int tcp_fin_time(const struct sock *sk)
1419{
1420        int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1421        const int rto = inet_csk(sk)->icsk_rto;
1422
1423        if (fin_timeout < (rto << 2) - (rto >> 1))
1424                fin_timeout = (rto << 2) - (rto >> 1);
1425
1426        return fin_timeout;
1427}
1428
1429static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1430                                  int paws_win)
1431{
1432        if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1433                return true;
1434        if (unlikely(!time_before32(ktime_get_seconds(),
1435                                    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1436                return true;
1437        /*
1438         * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1439         * then following tcp messages have valid values. Ignore 0 value,
1440         * or else 'negative' tsval might forbid us to accept their packets.
1441         */
1442        if (!rx_opt->ts_recent)
1443                return true;
1444        return false;
1445}
1446
1447static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1448                                   int rst)
1449{
1450        if (tcp_paws_check(rx_opt, 0))
1451                return false;
1452
1453        /* RST segments are not recommended to carry timestamp,
1454           and, if they do, it is recommended to ignore PAWS because
1455           "their cleanup function should take precedence over timestamps."
1456           Certainly, it is mistake. It is necessary to understand the reasons
1457           of this constraint to relax it: if peer reboots, clock may go
1458           out-of-sync and half-open connections will not be reset.
1459           Actually, the problem would be not existing if all
1460           the implementations followed draft about maintaining clock
1461           via reboots. Linux-2.2 DOES NOT!
1462
1463           However, we can relax time bounds for RST segments to MSL.
1464         */
1465        if (rst && !time_before32(ktime_get_seconds(),
1466                                  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1467                return false;
1468        return true;
1469}
1470
1471bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1472                          int mib_idx, u32 *last_oow_ack_time);
1473
1474static inline void tcp_mib_init(struct net *net)
1475{
1476        /* See RFC 2012 */
1477        TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1478        TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1479        TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1480        TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1481}
1482
1483/* from STCP */
1484static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1485{
1486        tp->lost_skb_hint = NULL;
1487}
1488
1489static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1490{
1491        tcp_clear_retrans_hints_partial(tp);
1492        tp->retransmit_skb_hint = NULL;
1493}
1494
1495union tcp_md5_addr {
1496        struct in_addr  a4;
1497#if IS_ENABLED(CONFIG_IPV6)
1498        struct in6_addr a6;
1499#endif
1500};
1501
1502/* - key database */
1503struct tcp_md5sig_key {
1504        struct hlist_node       node;
1505        u8                      keylen;
1506        u8                      family; /* AF_INET or AF_INET6 */
1507        union tcp_md5_addr      addr;
1508        u8                      prefixlen;
1509        u8                      key[TCP_MD5SIG_MAXKEYLEN];
1510        struct rcu_head         rcu;
1511};
1512
1513/* - sock block */
1514struct tcp_md5sig_info {
1515        struct hlist_head       head;
1516        struct rcu_head         rcu;
1517};
1518
1519/* - pseudo header */
1520struct tcp4_pseudohdr {
1521        __be32          saddr;
1522        __be32          daddr;
1523        __u8            pad;
1524        __u8            protocol;
1525        __be16          len;
1526};
1527
1528struct tcp6_pseudohdr {
1529        struct in6_addr saddr;
1530        struct in6_addr daddr;
1531        __be32          len;
1532        __be32          protocol;       /* including padding */
1533};
1534
1535union tcp_md5sum_block {
1536        struct tcp4_pseudohdr ip4;
1537#if IS_ENABLED(CONFIG_IPV6)
1538        struct tcp6_pseudohdr ip6;
1539#endif
1540};
1541
1542/* - pool: digest algorithm, hash description and scratch buffer */
1543struct tcp_md5sig_pool {
1544        struct ahash_request    *md5_req;
1545        void                    *scratch;
1546};
1547
1548/* - functions */
1549int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1550                        const struct sock *sk, const struct sk_buff *skb);
1551int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1552                   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1553                   gfp_t gfp);
1554int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1555                   int family, u8 prefixlen);
1556struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1557                                         const struct sock *addr_sk);
1558
1559#ifdef CONFIG_TCP_MD5SIG
1560#include <linux/jump_label.h>
1561extern struct static_key_false tcp_md5_needed;
1562struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk,
1563                                           const union tcp_md5_addr *addr,
1564                                           int family);
1565static inline struct tcp_md5sig_key *
1566tcp_md5_do_lookup(const struct sock *sk,
1567                  const union tcp_md5_addr *addr,
1568                  int family)
1569{
1570        if (!static_branch_unlikely(&tcp_md5_needed))
1571                return NULL;
1572        return __tcp_md5_do_lookup(sk, addr, family);
1573}
1574
1575#define tcp_twsk_md5_key(twsk)  ((twsk)->tw_md5_key)
1576#else
1577static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1578                                         const union tcp_md5_addr *addr,
1579                                         int family)
1580{
1581        return NULL;
1582}
1583#define tcp_twsk_md5_key(twsk)  NULL
1584#endif
1585
1586bool tcp_alloc_md5sig_pool(void);
1587
1588struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1589static inline void tcp_put_md5sig_pool(void)
1590{
1591        local_bh_enable();
1592}
1593
1594int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1595                          unsigned int header_len);
1596int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1597                     const struct tcp_md5sig_key *key);
1598
1599/* From tcp_fastopen.c */
1600void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1601                            struct tcp_fastopen_cookie *cookie);
1602void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1603                            struct tcp_fastopen_cookie *cookie, bool syn_lost,
1604                            u16 try_exp);
1605struct tcp_fastopen_request {
1606        /* Fast Open cookie. Size 0 means a cookie request */
1607        struct tcp_fastopen_cookie      cookie;
1608        struct msghdr                   *data;  /* data in MSG_FASTOPEN */
1609        size_t                          size;
1610        int                             copied; /* queued in tcp_connect() */
1611        struct ubuf_info                *uarg;
1612};
1613void tcp_free_fastopen_req(struct tcp_sock *tp);
1614void tcp_fastopen_destroy_cipher(struct sock *sk);
1615void tcp_fastopen_ctx_destroy(struct net *net);
1616int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1617                              void *primary_key, void *backup_key);
1618void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1619struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1620                              struct request_sock *req,
1621                              struct tcp_fastopen_cookie *foc,
1622                              const struct dst_entry *dst);
1623void tcp_fastopen_init_key_once(struct net *net);
1624bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1625                             struct tcp_fastopen_cookie *cookie);
1626bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1627#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1628#define TCP_FASTOPEN_KEY_MAX 2
1629#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1630        (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1631
1632/* Fastopen key context */
1633struct tcp_fastopen_context {
1634        siphash_key_t   key[TCP_FASTOPEN_KEY_MAX];
1635        int             num;
1636        struct rcu_head rcu;
1637};
1638
1639extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1640void tcp_fastopen_active_disable(struct sock *sk);
1641bool tcp_fastopen_active_should_disable(struct sock *sk);
1642void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1643void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1644
1645/* Caller needs to wrap with rcu_read_(un)lock() */
1646static inline
1647struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1648{
1649        struct tcp_fastopen_context *ctx;
1650
1651        ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1652        if (!ctx)
1653                ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1654        return ctx;
1655}
1656
1657static inline
1658bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1659                               const struct tcp_fastopen_cookie *orig)
1660{
1661        if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1662            orig->len == foc->len &&
1663            !memcmp(orig->val, foc->val, foc->len))
1664                return true;
1665        return false;
1666}
1667
1668static inline
1669int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1670{
1671        return ctx->num;
1672}
1673
1674/* Latencies incurred by various limits for a sender. They are
1675 * chronograph-like stats that are mutually exclusive.
1676 */
1677enum tcp_chrono {
1678        TCP_CHRONO_UNSPEC,
1679        TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1680        TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1681        TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1682        __TCP_CHRONO_MAX,
1683};
1684
1685void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1686void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1687
1688/* This helper is needed, because skb->tcp_tsorted_anchor uses
1689 * the same memory storage than skb->destructor/_skb_refdst
1690 */
1691static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1692{
1693        skb->destructor = NULL;
1694        skb->_skb_refdst = 0UL;
1695}
1696
1697#define tcp_skb_tsorted_save(skb) {             \
1698        unsigned long _save = skb->_skb_refdst; \
1699        skb->_skb_refdst = 0UL;
1700
1701#define tcp_skb_tsorted_restore(skb)            \
1702        skb->_skb_refdst = _save;               \
1703}
1704
1705void tcp_write_queue_purge(struct sock *sk);
1706
1707static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1708{
1709        return skb_rb_first(&sk->tcp_rtx_queue);
1710}
1711
1712static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1713{
1714        return skb_rb_last(&sk->tcp_rtx_queue);
1715}
1716
1717static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1718{
1719        return skb_peek(&sk->sk_write_queue);
1720}
1721
1722static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1723{
1724        return skb_peek_tail(&sk->sk_write_queue);
1725}
1726
1727#define tcp_for_write_queue_from_safe(skb, tmp, sk)                     \
1728        skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1729
1730static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1731{
1732        return skb_peek(&sk->sk_write_queue);
1733}
1734
1735static inline bool tcp_skb_is_last(const struct sock *sk,
1736                                   const struct sk_buff *skb)
1737{
1738        return skb_queue_is_last(&sk->sk_write_queue, skb);
1739}
1740
1741static inline bool tcp_write_queue_empty(const struct sock *sk)
1742{
1743        return skb_queue_empty(&sk->sk_write_queue);
1744}
1745
1746static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1747{
1748        return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1749}
1750
1751static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1752{
1753        return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1754}
1755
1756static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1757{
1758        __skb_queue_tail(&sk->sk_write_queue, skb);
1759
1760        /* Queue it, remembering where we must start sending. */
1761        if (sk->sk_write_queue.next == skb)
1762                tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1763}
1764
1765/* Insert new before skb on the write queue of sk.  */
1766static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1767                                                  struct sk_buff *skb,
1768                                                  struct sock *sk)
1769{
1770        __skb_queue_before(&sk->sk_write_queue, skb, new);
1771}
1772
1773static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1774{
1775        tcp_skb_tsorted_anchor_cleanup(skb);
1776        __skb_unlink(skb, &sk->sk_write_queue);
1777}
1778
1779void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1780
1781static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1782{
1783        tcp_skb_tsorted_anchor_cleanup(skb);
1784        rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1785}
1786
1787static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1788{
1789        list_del(&skb->tcp_tsorted_anchor);
1790        tcp_rtx_queue_unlink(skb, sk);
1791        sk_wmem_free_skb(sk, skb);
1792}
1793
1794static inline void tcp_push_pending_frames(struct sock *sk)
1795{
1796        if (tcp_send_head(sk)) {
1797                struct tcp_sock *tp = tcp_sk(sk);
1798
1799                __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1800        }
1801}
1802
1803/* Start sequence of the skb just after the highest skb with SACKed
1804 * bit, valid only if sacked_out > 0 or when the caller has ensured
1805 * validity by itself.
1806 */
1807static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1808{
1809        if (!tp->sacked_out)
1810                return tp->snd_una;
1811
1812        if (tp->highest_sack == NULL)
1813                return tp->snd_nxt;
1814
1815        return TCP_SKB_CB(tp->highest_sack)->seq;
1816}
1817
1818static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1819{
1820        tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1821}
1822
1823static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1824{
1825        return tcp_sk(sk)->highest_sack;
1826}
1827
1828static inline void tcp_highest_sack_reset(struct sock *sk)
1829{
1830        tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1831}
1832
1833/* Called when old skb is about to be deleted and replaced by new skb */
1834static inline void tcp_highest_sack_replace(struct sock *sk,
1835                                            struct sk_buff *old,
1836                                            struct sk_buff *new)
1837{
1838        if (old == tcp_highest_sack(sk))
1839                tcp_sk(sk)->highest_sack = new;
1840}
1841
1842/* This helper checks if socket has IP_TRANSPARENT set */
1843static inline bool inet_sk_transparent(const struct sock *sk)
1844{
1845        switch (sk->sk_state) {
1846        case TCP_TIME_WAIT:
1847                return inet_twsk(sk)->tw_transparent;
1848        case TCP_NEW_SYN_RECV:
1849                return inet_rsk(inet_reqsk(sk))->no_srccheck;
1850        }
1851        return inet_sk(sk)->transparent;
1852}
1853
1854/* Determines whether this is a thin stream (which may suffer from
1855 * increased latency). Used to trigger latency-reducing mechanisms.
1856 */
1857static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1858{
1859        return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1860}
1861
1862/* /proc */
1863enum tcp_seq_states {
1864        TCP_SEQ_STATE_LISTENING,
1865        TCP_SEQ_STATE_ESTABLISHED,
1866};
1867
1868void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1869void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1870void tcp_seq_stop(struct seq_file *seq, void *v);
1871
1872struct tcp_seq_afinfo {
1873        sa_family_t                     family;
1874};
1875
1876struct tcp_iter_state {
1877        struct seq_net_private  p;
1878        enum tcp_seq_states     state;
1879        struct sock             *syn_wait_sk;
1880        int                     bucket, offset, sbucket, num;
1881        loff_t                  last_pos;
1882};
1883
1884extern struct request_sock_ops tcp_request_sock_ops;
1885extern struct request_sock_ops tcp6_request_sock_ops;
1886
1887void tcp_v4_destroy_sock(struct sock *sk);
1888
1889struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1890                                netdev_features_t features);
1891struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1892int tcp_gro_complete(struct sk_buff *skb);
1893
1894void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1895
1896static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1897{
1898        struct net *net = sock_net((struct sock *)tp);
1899        return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1900}
1901
1902/* @wake is one when sk_stream_write_space() calls us.
1903 * This sends EPOLLOUT only if notsent_bytes is half the limit.
1904 * This mimics the strategy used in sock_def_write_space().
1905 */
1906static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1907{
1908        const struct tcp_sock *tp = tcp_sk(sk);
1909        u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1910
1911        return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1912}
1913
1914#ifdef CONFIG_PROC_FS
1915int tcp4_proc_init(void);
1916void tcp4_proc_exit(void);
1917#endif
1918
1919int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1920int tcp_conn_request(struct request_sock_ops *rsk_ops,
1921                     const struct tcp_request_sock_ops *af_ops,
1922                     struct sock *sk, struct sk_buff *skb);
1923
1924/* TCP af-specific functions */
1925struct tcp_sock_af_ops {
1926#ifdef CONFIG_TCP_MD5SIG
1927        struct tcp_md5sig_key   *(*md5_lookup) (const struct sock *sk,
1928                                                const struct sock *addr_sk);
1929        int             (*calc_md5_hash)(char *location,
1930                                         const struct tcp_md5sig_key *md5,
1931                                         const struct sock *sk,
1932                                         const struct sk_buff *skb);
1933        int             (*md5_parse)(struct sock *sk,
1934                                     int optname,
1935                                     char __user *optval,
1936                                     int optlen);
1937#endif
1938};
1939
1940struct tcp_request_sock_ops {
1941        u16 mss_clamp;
1942#ifdef CONFIG_TCP_MD5SIG
1943        struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1944                                                 const struct sock *addr_sk);
1945        int             (*calc_md5_hash) (char *location,
1946                                          const struct tcp_md5sig_key *md5,
1947                                          const struct sock *sk,
1948                                          const struct sk_buff *skb);
1949#endif
1950        void (*init_req)(struct request_sock *req,
1951                         const struct sock *sk_listener,
1952                         struct sk_buff *skb);
1953#ifdef CONFIG_SYN_COOKIES
1954        __u32 (*cookie_init_seq)(const struct sk_buff *skb,
1955                                 __u16 *mss);
1956#endif
1957        struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1958                                       const struct request_sock *req);
1959        u32 (*init_seq)(const struct sk_buff *skb);
1960        u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1961        int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1962                           struct flowi *fl, struct request_sock *req,
1963                           struct tcp_fastopen_cookie *foc,
1964                           enum tcp_synack_type synack_type);
1965};
1966
1967#ifdef CONFIG_SYN_COOKIES
1968static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1969                                         const struct sock *sk, struct sk_buff *skb,
1970                                         __u16 *mss)
1971{
1972        tcp_synq_overflow(sk);
1973        __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1974        return ops->cookie_init_seq(skb, mss);
1975}
1976#else
1977static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1978                                         const struct sock *sk, struct sk_buff *skb,
1979                                         __u16 *mss)
1980{
1981        return 0;
1982}
1983#endif
1984
1985int tcpv4_offload_init(void);
1986
1987void tcp_v4_init(void);
1988void tcp_init(void);
1989
1990/* tcp_recovery.c */
1991void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
1992void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
1993extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
1994                                u32 reo_wnd);
1995extern void tcp_rack_mark_lost(struct sock *sk);
1996extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1997                             u64 xmit_time);
1998extern void tcp_rack_reo_timeout(struct sock *sk);
1999extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2000
2001/* At how many usecs into the future should the RTO fire? */
2002static inline s64 tcp_rto_delta_us(const struct sock *sk)
2003{
2004        const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2005        u32 rto = inet_csk(sk)->icsk_rto;
2006        u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2007
2008        return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2009}
2010
2011/*
2012 * Save and compile IPv4 options, return a pointer to it
2013 */
2014static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2015                                                         struct sk_buff *skb)
2016{
2017        const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2018        struct ip_options_rcu *dopt = NULL;
2019
2020        if (opt->optlen) {
2021                int opt_size = sizeof(*dopt) + opt->optlen;
2022
2023                dopt = kmalloc(opt_size, GFP_ATOMIC);
2024                if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2025                        kfree(dopt);
2026                        dopt = NULL;
2027                }
2028        }
2029        return dopt;
2030}
2031
2032/* locally generated TCP pure ACKs have skb->truesize == 2
2033 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2034 * This is much faster than dissecting the packet to find out.
2035 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2036 */
2037static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2038{
2039        return skb->truesize == 2;
2040}
2041
2042static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2043{
2044        skb->truesize = 2;
2045}
2046
2047static inline int tcp_inq(struct sock *sk)
2048{
2049        struct tcp_sock *tp = tcp_sk(sk);
2050        int answ;
2051
2052        if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2053                answ = 0;
2054        } else if (sock_flag(sk, SOCK_URGINLINE) ||
2055                   !tp->urg_data ||
2056                   before(tp->urg_seq, tp->copied_seq) ||
2057                   !before(tp->urg_seq, tp->rcv_nxt)) {
2058
2059                answ = tp->rcv_nxt - tp->copied_seq;
2060
2061                /* Subtract 1, if FIN was received */
2062                if (answ && sock_flag(sk, SOCK_DONE))
2063                        answ--;
2064        } else {
2065                answ = tp->urg_seq - tp->copied_seq;
2066        }
2067
2068        return answ;
2069}
2070
2071int tcp_peek_len(struct socket *sock);
2072
2073static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2074{
2075        u16 segs_in;
2076
2077        segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2078        tp->segs_in += segs_in;
2079        if (skb->len > tcp_hdrlen(skb))
2080                tp->data_segs_in += segs_in;
2081}
2082
2083/*
2084 * TCP listen path runs lockless.
2085 * We forced "struct sock" to be const qualified to make sure
2086 * we don't modify one of its field by mistake.
2087 * Here, we increment sk_drops which is an atomic_t, so we can safely
2088 * make sock writable again.
2089 */
2090static inline void tcp_listendrop(const struct sock *sk)
2091{
2092        atomic_inc(&((struct sock *)sk)->sk_drops);
2093        __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2094}
2095
2096enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2097
2098/*
2099 * Interface for adding Upper Level Protocols over TCP
2100 */
2101
2102#define TCP_ULP_NAME_MAX        16
2103#define TCP_ULP_MAX             128
2104#define TCP_ULP_BUF_MAX         (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2105
2106struct tcp_ulp_ops {
2107        struct list_head        list;
2108
2109        /* initialize ulp */
2110        int (*init)(struct sock *sk);
2111        /* update ulp */
2112        void (*update)(struct sock *sk, struct proto *p);
2113        /* cleanup ulp */
2114        void (*release)(struct sock *sk);
2115
2116        char            name[TCP_ULP_NAME_MAX];
2117        struct module   *owner;
2118};
2119int tcp_register_ulp(struct tcp_ulp_ops *type);
2120void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2121int tcp_set_ulp(struct sock *sk, const char *name);
2122void tcp_get_available_ulp(char *buf, size_t len);
2123void tcp_cleanup_ulp(struct sock *sk);
2124void tcp_update_ulp(struct sock *sk, struct proto *p);
2125
2126#define MODULE_ALIAS_TCP_ULP(name)                              \
2127        __MODULE_INFO(alias, alias_userspace, name);            \
2128        __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2129
2130struct sk_msg;
2131struct sk_psock;
2132
2133int tcp_bpf_init(struct sock *sk);
2134void tcp_bpf_reinit(struct sock *sk);
2135int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2136                          int flags);
2137int tcp_bpf_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2138                    int nonblock, int flags, int *addr_len);
2139int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2140                      struct msghdr *msg, int len, int flags);
2141
2142/* Call BPF_SOCK_OPS program that returns an int. If the return value
2143 * is < 0, then the BPF op failed (for example if the loaded BPF
2144 * program does not support the chosen operation or there is no BPF
2145 * program loaded).
2146 */
2147#ifdef CONFIG_BPF
2148static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2149{
2150        struct bpf_sock_ops_kern sock_ops;
2151        int ret;
2152
2153        memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2154        if (sk_fullsock(sk)) {
2155                sock_ops.is_fullsock = 1;
2156                sock_owned_by_me(sk);
2157        }
2158
2159        sock_ops.sk = sk;
2160        sock_ops.op = op;
2161        if (nargs > 0)
2162                memcpy(sock_ops.args, args, nargs * sizeof(*args));
2163
2164        ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2165        if (ret == 0)
2166                ret = sock_ops.reply;
2167        else
2168                ret = -1;
2169        return ret;
2170}
2171
2172static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2173{
2174        u32 args[2] = {arg1, arg2};
2175
2176        return tcp_call_bpf(sk, op, 2, args);
2177}
2178
2179static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2180                                    u32 arg3)
2181{
2182        u32 args[3] = {arg1, arg2, arg3};
2183
2184        return tcp_call_bpf(sk, op, 3, args);
2185}
2186
2187#else
2188static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2189{
2190        return -EPERM;
2191}
2192
2193static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2194{
2195        return -EPERM;
2196}
2197
2198static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2199                                    u32 arg3)
2200{
2201        return -EPERM;
2202}
2203
2204#endif
2205
2206static inline u32 tcp_timeout_init(struct sock *sk)
2207{
2208        int timeout;
2209
2210        timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2211
2212        if (timeout <= 0)
2213                timeout = TCP_TIMEOUT_INIT;
2214        return timeout;
2215}
2216
2217static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2218{
2219        int rwnd;
2220
2221        rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2222
2223        if (rwnd < 0)
2224                rwnd = 0;
2225        return rwnd;
2226}
2227
2228static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2229{
2230        return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2231}
2232
2233static inline void tcp_bpf_rtt(struct sock *sk)
2234{
2235        if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2236                tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2237}
2238
2239#if IS_ENABLED(CONFIG_SMC)
2240extern struct static_key_false tcp_have_smc;
2241#endif
2242
2243#if IS_ENABLED(CONFIG_TLS_DEVICE)
2244void clean_acked_data_enable(struct inet_connection_sock *icsk,
2245                             void (*cad)(struct sock *sk, u32 ack_seq));
2246void clean_acked_data_disable(struct inet_connection_sock *icsk);
2247void clean_acked_data_flush(void);
2248#endif
2249
2250DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2251static inline void tcp_add_tx_delay(struct sk_buff *skb,
2252                                    const struct tcp_sock *tp)
2253{
2254        if (static_branch_unlikely(&tcp_tx_delay_enabled))
2255                skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2256}
2257
2258/* Compute Earliest Departure Time for some control packets
2259 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2260 */
2261static inline u64 tcp_transmit_time(const struct sock *sk)
2262{
2263        if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2264                u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2265                        tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2266
2267                return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2268        }
2269        return 0;
2270}
2271
2272#endif  /* _TCP_H */
2273