linux/include/uapi/drm/drm_fourcc.h
<<
>>
Prefs
   1/*
   2 * Copyright 2011 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#ifndef DRM_FOURCC_H
  25#define DRM_FOURCC_H
  26
  27#include "drm.h"
  28
  29#if defined(__cplusplus)
  30extern "C" {
  31#endif
  32
  33/**
  34 * DOC: overview
  35 *
  36 * In the DRM subsystem, framebuffer pixel formats are described using the
  37 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
  38 * fourcc code, a Format Modifier may optionally be provided, in order to
  39 * further describe the buffer's format - for example tiling or compression.
  40 *
  41 * Format Modifiers
  42 * ----------------
  43 *
  44 * Format modifiers are used in conjunction with a fourcc code, forming a
  45 * unique fourcc:modifier pair. This format:modifier pair must fully define the
  46 * format and data layout of the buffer, and should be the only way to describe
  47 * that particular buffer.
  48 *
  49 * Having multiple fourcc:modifier pairs which describe the same layout should
  50 * be avoided, as such aliases run the risk of different drivers exposing
  51 * different names for the same data format, forcing userspace to understand
  52 * that they are aliases.
  53 *
  54 * Format modifiers may change any property of the buffer, including the number
  55 * of planes and/or the required allocation size. Format modifiers are
  56 * vendor-namespaced, and as such the relationship between a fourcc code and a
  57 * modifier is specific to the modifer being used. For example, some modifiers
  58 * may preserve meaning - such as number of planes - from the fourcc code,
  59 * whereas others may not.
  60 *
  61 * Vendors should document their modifier usage in as much detail as
  62 * possible, to ensure maximum compatibility across devices, drivers and
  63 * applications.
  64 *
  65 * The authoritative list of format modifier codes is found in
  66 * `include/uapi/drm/drm_fourcc.h`
  67 */
  68
  69#define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
  70                                 ((__u32)(c) << 16) | ((__u32)(d) << 24))
  71
  72#define DRM_FORMAT_BIG_ENDIAN (1<<31) /* format is big endian instead of little endian */
  73
  74/* Reserve 0 for the invalid format specifier */
  75#define DRM_FORMAT_INVALID      0
  76
  77/* color index */
  78#define DRM_FORMAT_C8           fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
  79
  80/* 8 bpp Red */
  81#define DRM_FORMAT_R8           fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
  82
  83/* 16 bpp Red */
  84#define DRM_FORMAT_R16          fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
  85
  86/* 16 bpp RG */
  87#define DRM_FORMAT_RG88         fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
  88#define DRM_FORMAT_GR88         fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
  89
  90/* 32 bpp RG */
  91#define DRM_FORMAT_RG1616       fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
  92#define DRM_FORMAT_GR1616       fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
  93
  94/* 8 bpp RGB */
  95#define DRM_FORMAT_RGB332       fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
  96#define DRM_FORMAT_BGR233       fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
  97
  98/* 16 bpp RGB */
  99#define DRM_FORMAT_XRGB4444     fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
 100#define DRM_FORMAT_XBGR4444     fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
 101#define DRM_FORMAT_RGBX4444     fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
 102#define DRM_FORMAT_BGRX4444     fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
 103
 104#define DRM_FORMAT_ARGB4444     fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
 105#define DRM_FORMAT_ABGR4444     fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
 106#define DRM_FORMAT_RGBA4444     fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
 107#define DRM_FORMAT_BGRA4444     fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
 108
 109#define DRM_FORMAT_XRGB1555     fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
 110#define DRM_FORMAT_XBGR1555     fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
 111#define DRM_FORMAT_RGBX5551     fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
 112#define DRM_FORMAT_BGRX5551     fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
 113
 114#define DRM_FORMAT_ARGB1555     fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
 115#define DRM_FORMAT_ABGR1555     fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
 116#define DRM_FORMAT_RGBA5551     fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
 117#define DRM_FORMAT_BGRA5551     fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
 118
 119#define DRM_FORMAT_RGB565       fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
 120#define DRM_FORMAT_BGR565       fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
 121
 122/* 24 bpp RGB */
 123#define DRM_FORMAT_RGB888       fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
 124#define DRM_FORMAT_BGR888       fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
 125
 126/* 32 bpp RGB */
 127#define DRM_FORMAT_XRGB8888     fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
 128#define DRM_FORMAT_XBGR8888     fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
 129#define DRM_FORMAT_RGBX8888     fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
 130#define DRM_FORMAT_BGRX8888     fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
 131
 132#define DRM_FORMAT_ARGB8888     fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
 133#define DRM_FORMAT_ABGR8888     fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
 134#define DRM_FORMAT_RGBA8888     fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
 135#define DRM_FORMAT_BGRA8888     fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
 136
 137#define DRM_FORMAT_XRGB2101010  fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
 138#define DRM_FORMAT_XBGR2101010  fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
 139#define DRM_FORMAT_RGBX1010102  fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
 140#define DRM_FORMAT_BGRX1010102  fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
 141
 142#define DRM_FORMAT_ARGB2101010  fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
 143#define DRM_FORMAT_ABGR2101010  fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
 144#define DRM_FORMAT_RGBA1010102  fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
 145#define DRM_FORMAT_BGRA1010102  fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
 146
 147/*
 148 * Floating point 64bpp RGB
 149 * IEEE 754-2008 binary16 half-precision float
 150 * [15:0] sign:exponent:mantissa 1:5:10
 151 */
 152#define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
 153#define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
 154
 155#define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
 156#define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
 157
 158/* packed YCbCr */
 159#define DRM_FORMAT_YUYV         fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
 160#define DRM_FORMAT_YVYU         fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
 161#define DRM_FORMAT_UYVY         fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
 162#define DRM_FORMAT_VYUY         fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
 163
 164#define DRM_FORMAT_AYUV         fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
 165#define DRM_FORMAT_XYUV8888     fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
 166#define DRM_FORMAT_VUY888       fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
 167#define DRM_FORMAT_VUY101010    fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
 168
 169/*
 170 * packed Y2xx indicate for each component, xx valid data occupy msb
 171 * 16-xx padding occupy lsb
 172 */
 173#define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
 174#define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
 175#define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
 176
 177/*
 178 * packed Y4xx indicate for each component, xx valid data occupy msb
 179 * 16-xx padding occupy lsb except Y410
 180 */
 181#define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
 182#define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
 183#define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
 184
 185#define DRM_FORMAT_XVYU2101010  fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
 186#define DRM_FORMAT_XVYU12_16161616      fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
 187#define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
 188
 189/*
 190 * packed YCbCr420 2x2 tiled formats
 191 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
 192 */
 193/* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
 194#define DRM_FORMAT_Y0L0         fourcc_code('Y', '0', 'L', '0')
 195/* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
 196#define DRM_FORMAT_X0L0         fourcc_code('X', '0', 'L', '0')
 197
 198/* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
 199#define DRM_FORMAT_Y0L2         fourcc_code('Y', '0', 'L', '2')
 200/* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
 201#define DRM_FORMAT_X0L2         fourcc_code('X', '0', 'L', '2')
 202
 203/*
 204 * 1-plane YUV 4:2:0
 205 * In these formats, the component ordering is specified (Y, followed by U
 206 * then V), but the exact Linear layout is undefined.
 207 * These formats can only be used with a non-Linear modifier.
 208 */
 209#define DRM_FORMAT_YUV420_8BIT  fourcc_code('Y', 'U', '0', '8')
 210#define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0')
 211
 212/*
 213 * 2 plane RGB + A
 214 * index 0 = RGB plane, same format as the corresponding non _A8 format has
 215 * index 1 = A plane, [7:0] A
 216 */
 217#define DRM_FORMAT_XRGB8888_A8  fourcc_code('X', 'R', 'A', '8')
 218#define DRM_FORMAT_XBGR8888_A8  fourcc_code('X', 'B', 'A', '8')
 219#define DRM_FORMAT_RGBX8888_A8  fourcc_code('R', 'X', 'A', '8')
 220#define DRM_FORMAT_BGRX8888_A8  fourcc_code('B', 'X', 'A', '8')
 221#define DRM_FORMAT_RGB888_A8    fourcc_code('R', '8', 'A', '8')
 222#define DRM_FORMAT_BGR888_A8    fourcc_code('B', '8', 'A', '8')
 223#define DRM_FORMAT_RGB565_A8    fourcc_code('R', '5', 'A', '8')
 224#define DRM_FORMAT_BGR565_A8    fourcc_code('B', '5', 'A', '8')
 225
 226/*
 227 * 2 plane YCbCr
 228 * index 0 = Y plane, [7:0] Y
 229 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
 230 * or
 231 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
 232 */
 233#define DRM_FORMAT_NV12         fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
 234#define DRM_FORMAT_NV21         fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
 235#define DRM_FORMAT_NV16         fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
 236#define DRM_FORMAT_NV61         fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
 237#define DRM_FORMAT_NV24         fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
 238#define DRM_FORMAT_NV42         fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
 239
 240/*
 241 * 2 plane YCbCr MSB aligned
 242 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
 243 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
 244 */
 245#define DRM_FORMAT_P210         fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
 246
 247/*
 248 * 2 plane YCbCr MSB aligned
 249 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
 250 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
 251 */
 252#define DRM_FORMAT_P010         fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
 253
 254/*
 255 * 2 plane YCbCr MSB aligned
 256 * index 0 = Y plane, [15:0] Y:x [12:4] little endian
 257 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
 258 */
 259#define DRM_FORMAT_P012         fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
 260
 261/*
 262 * 2 plane YCbCr MSB aligned
 263 * index 0 = Y plane, [15:0] Y little endian
 264 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
 265 */
 266#define DRM_FORMAT_P016         fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
 267
 268/*
 269 * 3 plane YCbCr
 270 * index 0: Y plane, [7:0] Y
 271 * index 1: Cb plane, [7:0] Cb
 272 * index 2: Cr plane, [7:0] Cr
 273 * or
 274 * index 1: Cr plane, [7:0] Cr
 275 * index 2: Cb plane, [7:0] Cb
 276 */
 277#define DRM_FORMAT_YUV410       fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
 278#define DRM_FORMAT_YVU410       fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
 279#define DRM_FORMAT_YUV411       fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
 280#define DRM_FORMAT_YVU411       fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
 281#define DRM_FORMAT_YUV420       fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
 282#define DRM_FORMAT_YVU420       fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
 283#define DRM_FORMAT_YUV422       fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
 284#define DRM_FORMAT_YVU422       fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
 285#define DRM_FORMAT_YUV444       fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
 286#define DRM_FORMAT_YVU444       fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
 287
 288
 289/*
 290 * Format Modifiers:
 291 *
 292 * Format modifiers describe, typically, a re-ordering or modification
 293 * of the data in a plane of an FB.  This can be used to express tiled/
 294 * swizzled formats, or compression, or a combination of the two.
 295 *
 296 * The upper 8 bits of the format modifier are a vendor-id as assigned
 297 * below.  The lower 56 bits are assigned as vendor sees fit.
 298 */
 299
 300/* Vendor Ids: */
 301#define DRM_FORMAT_MOD_NONE           0
 302#define DRM_FORMAT_MOD_VENDOR_NONE    0
 303#define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
 304#define DRM_FORMAT_MOD_VENDOR_AMD     0x02
 305#define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
 306#define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
 307#define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
 308#define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
 309#define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
 310#define DRM_FORMAT_MOD_VENDOR_ARM     0x08
 311#define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
 312
 313/* add more to the end as needed */
 314
 315#define DRM_FORMAT_RESERVED           ((1ULL << 56) - 1)
 316
 317#define fourcc_mod_code(vendor, val) \
 318        ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
 319
 320/*
 321 * Format Modifier tokens:
 322 *
 323 * When adding a new token please document the layout with a code comment,
 324 * similar to the fourcc codes above. drm_fourcc.h is considered the
 325 * authoritative source for all of these.
 326 */
 327
 328/*
 329 * Invalid Modifier
 330 *
 331 * This modifier can be used as a sentinel to terminate the format modifiers
 332 * list, or to initialize a variable with an invalid modifier. It might also be
 333 * used to report an error back to userspace for certain APIs.
 334 */
 335#define DRM_FORMAT_MOD_INVALID  fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
 336
 337/*
 338 * Linear Layout
 339 *
 340 * Just plain linear layout. Note that this is different from no specifying any
 341 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
 342 * which tells the driver to also take driver-internal information into account
 343 * and so might actually result in a tiled framebuffer.
 344 */
 345#define DRM_FORMAT_MOD_LINEAR   fourcc_mod_code(NONE, 0)
 346
 347/* Intel framebuffer modifiers */
 348
 349/*
 350 * Intel X-tiling layout
 351 *
 352 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
 353 * in row-major layout. Within the tile bytes are laid out row-major, with
 354 * a platform-dependent stride. On top of that the memory can apply
 355 * platform-depending swizzling of some higher address bits into bit6.
 356 *
 357 * This format is highly platforms specific and not useful for cross-driver
 358 * sharing. It exists since on a given platform it does uniquely identify the
 359 * layout in a simple way for i915-specific userspace.
 360 */
 361#define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
 362
 363/*
 364 * Intel Y-tiling layout
 365 *
 366 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
 367 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
 368 * chunks column-major, with a platform-dependent height. On top of that the
 369 * memory can apply platform-depending swizzling of some higher address bits
 370 * into bit6.
 371 *
 372 * This format is highly platforms specific and not useful for cross-driver
 373 * sharing. It exists since on a given platform it does uniquely identify the
 374 * layout in a simple way for i915-specific userspace.
 375 */
 376#define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)
 377
 378/*
 379 * Intel Yf-tiling layout
 380 *
 381 * This is a tiled layout using 4Kb tiles in row-major layout.
 382 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
 383 * are arranged in four groups (two wide, two high) with column-major layout.
 384 * Each group therefore consits out of four 256 byte units, which are also laid
 385 * out as 2x2 column-major.
 386 * 256 byte units are made out of four 64 byte blocks of pixels, producing
 387 * either a square block or a 2:1 unit.
 388 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
 389 * in pixel depends on the pixel depth.
 390 */
 391#define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
 392
 393/*
 394 * Intel color control surface (CCS) for render compression
 395 *
 396 * The framebuffer format must be one of the 8:8:8:8 RGB formats.
 397 * The main surface will be plane index 0 and must be Y/Yf-tiled,
 398 * the CCS will be plane index 1.
 399 *
 400 * Each CCS tile matches a 1024x512 pixel area of the main surface.
 401 * To match certain aspects of the 3D hardware the CCS is
 402 * considered to be made up of normal 128Bx32 Y tiles, Thus
 403 * the CCS pitch must be specified in multiples of 128 bytes.
 404 *
 405 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
 406 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
 407 * But that fact is not relevant unless the memory is accessed
 408 * directly.
 409 */
 410#define I915_FORMAT_MOD_Y_TILED_CCS     fourcc_mod_code(INTEL, 4)
 411#define I915_FORMAT_MOD_Yf_TILED_CCS    fourcc_mod_code(INTEL, 5)
 412
 413/*
 414 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
 415 *
 416 * Macroblocks are laid in a Z-shape, and each pixel data is following the
 417 * standard NV12 style.
 418 * As for NV12, an image is the result of two frame buffers: one for Y,
 419 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
 420 * Alignment requirements are (for each buffer):
 421 * - multiple of 128 pixels for the width
 422 * - multiple of  32 pixels for the height
 423 *
 424 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
 425 */
 426#define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE       fourcc_mod_code(SAMSUNG, 1)
 427
 428/*
 429 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
 430 *
 431 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
 432 * layout. For YCbCr formats Cb/Cr components are taken in such a way that
 433 * they correspond to their 16x16 luma block.
 434 */
 435#define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE       fourcc_mod_code(SAMSUNG, 2)
 436
 437/*
 438 * Qualcomm Compressed Format
 439 *
 440 * Refers to a compressed variant of the base format that is compressed.
 441 * Implementation may be platform and base-format specific.
 442 *
 443 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
 444 * Pixel data pitch/stride is aligned with macrotile width.
 445 * Pixel data height is aligned with macrotile height.
 446 * Entire pixel data buffer is aligned with 4k(bytes).
 447 */
 448#define DRM_FORMAT_MOD_QCOM_COMPRESSED  fourcc_mod_code(QCOM, 1)
 449
 450/* Vivante framebuffer modifiers */
 451
 452/*
 453 * Vivante 4x4 tiling layout
 454 *
 455 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
 456 * layout.
 457 */
 458#define DRM_FORMAT_MOD_VIVANTE_TILED            fourcc_mod_code(VIVANTE, 1)
 459
 460/*
 461 * Vivante 64x64 super-tiling layout
 462 *
 463 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
 464 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
 465 * major layout.
 466 *
 467 * For more information: see
 468 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
 469 */
 470#define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED      fourcc_mod_code(VIVANTE, 2)
 471
 472/*
 473 * Vivante 4x4 tiling layout for dual-pipe
 474 *
 475 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
 476 * different base address. Offsets from the base addresses are therefore halved
 477 * compared to the non-split tiled layout.
 478 */
 479#define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED      fourcc_mod_code(VIVANTE, 3)
 480
 481/*
 482 * Vivante 64x64 super-tiling layout for dual-pipe
 483 *
 484 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
 485 * starts at a different base address. Offsets from the base addresses are
 486 * therefore halved compared to the non-split super-tiled layout.
 487 */
 488#define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
 489
 490/* NVIDIA frame buffer modifiers */
 491
 492/*
 493 * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
 494 *
 495 * Pixels are arranged in simple tiles of 16 x 16 bytes.
 496 */
 497#define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
 498
 499/*
 500 * 16Bx2 Block Linear layout, used by desktop GPUs, and Tegra K1 and later
 501 *
 502 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
 503 * vertically by a power of 2 (1 to 32 GOBs) to form a block.
 504 *
 505 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
 506 *
 507 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
 508 * Valid values are:
 509 *
 510 * 0 == ONE_GOB
 511 * 1 == TWO_GOBS
 512 * 2 == FOUR_GOBS
 513 * 3 == EIGHT_GOBS
 514 * 4 == SIXTEEN_GOBS
 515 * 5 == THIRTYTWO_GOBS
 516 *
 517 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
 518 * in full detail.
 519 */
 520#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
 521        fourcc_mod_code(NVIDIA, 0x10 | ((v) & 0xf))
 522
 523#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
 524        fourcc_mod_code(NVIDIA, 0x10)
 525#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
 526        fourcc_mod_code(NVIDIA, 0x11)
 527#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
 528        fourcc_mod_code(NVIDIA, 0x12)
 529#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
 530        fourcc_mod_code(NVIDIA, 0x13)
 531#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
 532        fourcc_mod_code(NVIDIA, 0x14)
 533#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
 534        fourcc_mod_code(NVIDIA, 0x15)
 535
 536/*
 537 * Some Broadcom modifiers take parameters, for example the number of
 538 * vertical lines in the image. Reserve the lower 32 bits for modifier
 539 * type, and the next 24 bits for parameters. Top 8 bits are the
 540 * vendor code.
 541 */
 542#define __fourcc_mod_broadcom_param_shift 8
 543#define __fourcc_mod_broadcom_param_bits 48
 544#define fourcc_mod_broadcom_code(val, params) \
 545        fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
 546#define fourcc_mod_broadcom_param(m) \
 547        ((int)(((m) >> __fourcc_mod_broadcom_param_shift) &     \
 548               ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
 549#define fourcc_mod_broadcom_mod(m) \
 550        ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<    \
 551                 __fourcc_mod_broadcom_param_shift))
 552
 553/*
 554 * Broadcom VC4 "T" format
 555 *
 556 * This is the primary layout that the V3D GPU can texture from (it
 557 * can't do linear).  The T format has:
 558 *
 559 * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
 560 *   pixels at 32 bit depth.
 561 *
 562 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
 563 *   16x16 pixels).
 564 *
 565 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
 566 *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
 567 *   they're (TR, BR, BL, TL), where bottom left is start of memory.
 568 *
 569 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
 570 *   tiles) or right-to-left (odd rows of 4k tiles).
 571 */
 572#define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
 573
 574/*
 575 * Broadcom SAND format
 576 *
 577 * This is the native format that the H.264 codec block uses.  For VC4
 578 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
 579 *
 580 * The image can be considered to be split into columns, and the
 581 * columns are placed consecutively into memory.  The width of those
 582 * columns can be either 32, 64, 128, or 256 pixels, but in practice
 583 * only 128 pixel columns are used.
 584 *
 585 * The pitch between the start of each column is set to optimally
 586 * switch between SDRAM banks. This is passed as the number of lines
 587 * of column width in the modifier (we can't use the stride value due
 588 * to various core checks that look at it , so you should set the
 589 * stride to width*cpp).
 590 *
 591 * Note that the column height for this format modifier is the same
 592 * for all of the planes, assuming that each column contains both Y
 593 * and UV.  Some SAND-using hardware stores UV in a separate tiled
 594 * image from Y to reduce the column height, which is not supported
 595 * with these modifiers.
 596 */
 597
 598#define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
 599        fourcc_mod_broadcom_code(2, v)
 600#define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
 601        fourcc_mod_broadcom_code(3, v)
 602#define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
 603        fourcc_mod_broadcom_code(4, v)
 604#define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
 605        fourcc_mod_broadcom_code(5, v)
 606
 607#define DRM_FORMAT_MOD_BROADCOM_SAND32 \
 608        DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
 609#define DRM_FORMAT_MOD_BROADCOM_SAND64 \
 610        DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
 611#define DRM_FORMAT_MOD_BROADCOM_SAND128 \
 612        DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
 613#define DRM_FORMAT_MOD_BROADCOM_SAND256 \
 614        DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
 615
 616/* Broadcom UIF format
 617 *
 618 * This is the common format for the current Broadcom multimedia
 619 * blocks, including V3D 3.x and newer, newer video codecs, and
 620 * displays.
 621 *
 622 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
 623 * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
 624 * stored in columns, with padding between the columns to ensure that
 625 * moving from one column to the next doesn't hit the same SDRAM page
 626 * bank.
 627 *
 628 * To calculate the padding, it is assumed that each hardware block
 629 * and the software driving it knows the platform's SDRAM page size,
 630 * number of banks, and XOR address, and that it's identical between
 631 * all blocks using the format.  This tiling modifier will use XOR as
 632 * necessary to reduce the padding.  If a hardware block can't do XOR,
 633 * the assumption is that a no-XOR tiling modifier will be created.
 634 */
 635#define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
 636
 637/*
 638 * Arm Framebuffer Compression (AFBC) modifiers
 639 *
 640 * AFBC is a proprietary lossless image compression protocol and format.
 641 * It provides fine-grained random access and minimizes the amount of data
 642 * transferred between IP blocks.
 643 *
 644 * AFBC has several features which may be supported and/or used, which are
 645 * represented using bits in the modifier. Not all combinations are valid,
 646 * and different devices or use-cases may support different combinations.
 647 *
 648 * Further information on the use of AFBC modifiers can be found in
 649 * Documentation/gpu/afbc.rst
 650 */
 651#define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode)    fourcc_mod_code(ARM, __afbc_mode)
 652
 653/*
 654 * AFBC superblock size
 655 *
 656 * Indicates the superblock size(s) used for the AFBC buffer. The buffer
 657 * size (in pixels) must be aligned to a multiple of the superblock size.
 658 * Four lowest significant bits(LSBs) are reserved for block size.
 659 *
 660 * Where one superblock size is specified, it applies to all planes of the
 661 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
 662 * the first applies to the Luma plane and the second applies to the Chroma
 663 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
 664 * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
 665 */
 666#define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
 667#define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
 668#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
 669#define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
 670#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
 671
 672/*
 673 * AFBC lossless colorspace transform
 674 *
 675 * Indicates that the buffer makes use of the AFBC lossless colorspace
 676 * transform.
 677 */
 678#define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
 679
 680/*
 681 * AFBC block-split
 682 *
 683 * Indicates that the payload of each superblock is split. The second
 684 * half of the payload is positioned at a predefined offset from the start
 685 * of the superblock payload.
 686 */
 687#define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
 688
 689/*
 690 * AFBC sparse layout
 691 *
 692 * This flag indicates that the payload of each superblock must be stored at a
 693 * predefined position relative to the other superblocks in the same AFBC
 694 * buffer. This order is the same order used by the header buffer. In this mode
 695 * each superblock is given the same amount of space as an uncompressed
 696 * superblock of the particular format would require, rounding up to the next
 697 * multiple of 128 bytes in size.
 698 */
 699#define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
 700
 701/*
 702 * AFBC copy-block restrict
 703 *
 704 * Buffers with this flag must obey the copy-block restriction. The restriction
 705 * is such that there are no copy-blocks referring across the border of 8x8
 706 * blocks. For the subsampled data the 8x8 limitation is also subsampled.
 707 */
 708#define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
 709
 710/*
 711 * AFBC tiled layout
 712 *
 713 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
 714 * superblocks inside a tile are stored together in memory. 8x8 tiles are used
 715 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
 716 * larger bpp formats. The order between the tiles is scan line.
 717 * When the tiled layout is used, the buffer size (in pixels) must be aligned
 718 * to the tile size.
 719 */
 720#define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
 721
 722/*
 723 * AFBC solid color blocks
 724 *
 725 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
 726 * can be reduced if a whole superblock is a single color.
 727 */
 728#define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
 729
 730/*
 731 * AFBC double-buffer
 732 *
 733 * Indicates that the buffer is allocated in a layout safe for front-buffer
 734 * rendering.
 735 */
 736#define AFBC_FORMAT_MOD_DB      (1ULL << 10)
 737
 738/*
 739 * AFBC buffer content hints
 740 *
 741 * Indicates that the buffer includes per-superblock content hints.
 742 */
 743#define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
 744
 745/*
 746 * Allwinner tiled modifier
 747 *
 748 * This tiling mode is implemented by the VPU found on all Allwinner platforms,
 749 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
 750 * planes.
 751 *
 752 * With this tiling, the luminance samples are disposed in tiles representing
 753 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
 754 * The pixel order in each tile is linear and the tiles are disposed linearly,
 755 * both in row-major order.
 756 */
 757#define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
 758
 759#if defined(__cplusplus)
 760}
 761#endif
 762
 763#endif /* DRM_FOURCC_H */
 764