linux/include/uapi/linux/btrfs_tree.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
   2#ifndef _BTRFS_CTREE_H_
   3#define _BTRFS_CTREE_H_
   4
   5#include <linux/btrfs.h>
   6#include <linux/types.h>
   7
   8/*
   9 * This header contains the structure definitions and constants used
  10 * by file system objects that can be retrieved using
  11 * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
  12 * is needed to describe a leaf node's key or item contents.
  13 */
  14
  15/* holds pointers to all of the tree roots */
  16#define BTRFS_ROOT_TREE_OBJECTID 1ULL
  17
  18/* stores information about which extents are in use, and reference counts */
  19#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
  20
  21/*
  22 * chunk tree stores translations from logical -> physical block numbering
  23 * the super block points to the chunk tree
  24 */
  25#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
  26
  27/*
  28 * stores information about which areas of a given device are in use.
  29 * one per device.  The tree of tree roots points to the device tree
  30 */
  31#define BTRFS_DEV_TREE_OBJECTID 4ULL
  32
  33/* one per subvolume, storing files and directories */
  34#define BTRFS_FS_TREE_OBJECTID 5ULL
  35
  36/* directory objectid inside the root tree */
  37#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
  38
  39/* holds checksums of all the data extents */
  40#define BTRFS_CSUM_TREE_OBJECTID 7ULL
  41
  42/* holds quota configuration and tracking */
  43#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
  44
  45/* for storing items that use the BTRFS_UUID_KEY* types */
  46#define BTRFS_UUID_TREE_OBJECTID 9ULL
  47
  48/* tracks free space in block groups. */
  49#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
  50
  51/* device stats in the device tree */
  52#define BTRFS_DEV_STATS_OBJECTID 0ULL
  53
  54/* for storing balance parameters in the root tree */
  55#define BTRFS_BALANCE_OBJECTID -4ULL
  56
  57/* orhpan objectid for tracking unlinked/truncated files */
  58#define BTRFS_ORPHAN_OBJECTID -5ULL
  59
  60/* does write ahead logging to speed up fsyncs */
  61#define BTRFS_TREE_LOG_OBJECTID -6ULL
  62#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
  63
  64/* for space balancing */
  65#define BTRFS_TREE_RELOC_OBJECTID -8ULL
  66#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
  67
  68/*
  69 * extent checksums all have this objectid
  70 * this allows them to share the logging tree
  71 * for fsyncs
  72 */
  73#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
  74
  75/* For storing free space cache */
  76#define BTRFS_FREE_SPACE_OBJECTID -11ULL
  77
  78/*
  79 * The inode number assigned to the special inode for storing
  80 * free ino cache
  81 */
  82#define BTRFS_FREE_INO_OBJECTID -12ULL
  83
  84/* dummy objectid represents multiple objectids */
  85#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
  86
  87/*
  88 * All files have objectids in this range.
  89 */
  90#define BTRFS_FIRST_FREE_OBJECTID 256ULL
  91#define BTRFS_LAST_FREE_OBJECTID -256ULL
  92#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
  93
  94
  95/*
  96 * the device items go into the chunk tree.  The key is in the form
  97 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
  98 */
  99#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
 100
 101#define BTRFS_BTREE_INODE_OBJECTID 1
 102
 103#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
 104
 105#define BTRFS_DEV_REPLACE_DEVID 0ULL
 106
 107/*
 108 * inode items have the data typically returned from stat and store other
 109 * info about object characteristics.  There is one for every file and dir in
 110 * the FS
 111 */
 112#define BTRFS_INODE_ITEM_KEY            1
 113#define BTRFS_INODE_REF_KEY             12
 114#define BTRFS_INODE_EXTREF_KEY          13
 115#define BTRFS_XATTR_ITEM_KEY            24
 116#define BTRFS_ORPHAN_ITEM_KEY           48
 117/* reserve 2-15 close to the inode for later flexibility */
 118
 119/*
 120 * dir items are the name -> inode pointers in a directory.  There is one
 121 * for every name in a directory.
 122 */
 123#define BTRFS_DIR_LOG_ITEM_KEY  60
 124#define BTRFS_DIR_LOG_INDEX_KEY 72
 125#define BTRFS_DIR_ITEM_KEY      84
 126#define BTRFS_DIR_INDEX_KEY     96
 127/*
 128 * extent data is for file data
 129 */
 130#define BTRFS_EXTENT_DATA_KEY   108
 131
 132/*
 133 * extent csums are stored in a separate tree and hold csums for
 134 * an entire extent on disk.
 135 */
 136#define BTRFS_EXTENT_CSUM_KEY   128
 137
 138/*
 139 * root items point to tree roots.  They are typically in the root
 140 * tree used by the super block to find all the other trees
 141 */
 142#define BTRFS_ROOT_ITEM_KEY     132
 143
 144/*
 145 * root backrefs tie subvols and snapshots to the directory entries that
 146 * reference them
 147 */
 148#define BTRFS_ROOT_BACKREF_KEY  144
 149
 150/*
 151 * root refs make a fast index for listing all of the snapshots and
 152 * subvolumes referenced by a given root.  They point directly to the
 153 * directory item in the root that references the subvol
 154 */
 155#define BTRFS_ROOT_REF_KEY      156
 156
 157/*
 158 * extent items are in the extent map tree.  These record which blocks
 159 * are used, and how many references there are to each block
 160 */
 161#define BTRFS_EXTENT_ITEM_KEY   168
 162
 163/*
 164 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
 165 * the length, so we save the level in key->offset instead of the length.
 166 */
 167#define BTRFS_METADATA_ITEM_KEY 169
 168
 169#define BTRFS_TREE_BLOCK_REF_KEY        176
 170
 171#define BTRFS_EXTENT_DATA_REF_KEY       178
 172
 173#define BTRFS_EXTENT_REF_V0_KEY         180
 174
 175#define BTRFS_SHARED_BLOCK_REF_KEY      182
 176
 177#define BTRFS_SHARED_DATA_REF_KEY       184
 178
 179/*
 180 * block groups give us hints into the extent allocation trees.  Which
 181 * blocks are free etc etc
 182 */
 183#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
 184
 185/*
 186 * Every block group is represented in the free space tree by a free space info
 187 * item, which stores some accounting information. It is keyed on
 188 * (block_group_start, FREE_SPACE_INFO, block_group_length).
 189 */
 190#define BTRFS_FREE_SPACE_INFO_KEY 198
 191
 192/*
 193 * A free space extent tracks an extent of space that is free in a block group.
 194 * It is keyed on (start, FREE_SPACE_EXTENT, length).
 195 */
 196#define BTRFS_FREE_SPACE_EXTENT_KEY 199
 197
 198/*
 199 * When a block group becomes very fragmented, we convert it to use bitmaps
 200 * instead of extents. A free space bitmap is keyed on
 201 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
 202 * (length / sectorsize) bits.
 203 */
 204#define BTRFS_FREE_SPACE_BITMAP_KEY 200
 205
 206#define BTRFS_DEV_EXTENT_KEY    204
 207#define BTRFS_DEV_ITEM_KEY      216
 208#define BTRFS_CHUNK_ITEM_KEY    228
 209
 210/*
 211 * Records the overall state of the qgroups.
 212 * There's only one instance of this key present,
 213 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
 214 */
 215#define BTRFS_QGROUP_STATUS_KEY         240
 216/*
 217 * Records the currently used space of the qgroup.
 218 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
 219 */
 220#define BTRFS_QGROUP_INFO_KEY           242
 221/*
 222 * Contains the user configured limits for the qgroup.
 223 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
 224 */
 225#define BTRFS_QGROUP_LIMIT_KEY          244
 226/*
 227 * Records the child-parent relationship of qgroups. For
 228 * each relation, 2 keys are present:
 229 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
 230 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
 231 */
 232#define BTRFS_QGROUP_RELATION_KEY       246
 233
 234/*
 235 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
 236 */
 237#define BTRFS_BALANCE_ITEM_KEY  248
 238
 239/*
 240 * The key type for tree items that are stored persistently, but do not need to
 241 * exist for extended period of time. The items can exist in any tree.
 242 *
 243 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
 244 *
 245 * Existing items:
 246 *
 247 * - balance status item
 248 *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
 249 */
 250#define BTRFS_TEMPORARY_ITEM_KEY        248
 251
 252/*
 253 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
 254 */
 255#define BTRFS_DEV_STATS_KEY             249
 256
 257/*
 258 * The key type for tree items that are stored persistently and usually exist
 259 * for a long period, eg. filesystem lifetime. The item kinds can be status
 260 * information, stats or preference values. The item can exist in any tree.
 261 *
 262 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
 263 *
 264 * Existing items:
 265 *
 266 * - device statistics, store IO stats in the device tree, one key for all
 267 *   stats
 268 *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
 269 */
 270#define BTRFS_PERSISTENT_ITEM_KEY       249
 271
 272/*
 273 * Persistantly stores the device replace state in the device tree.
 274 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
 275 */
 276#define BTRFS_DEV_REPLACE_KEY   250
 277
 278/*
 279 * Stores items that allow to quickly map UUIDs to something else.
 280 * These items are part of the filesystem UUID tree.
 281 * The key is built like this:
 282 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
 283 */
 284#if BTRFS_UUID_SIZE != 16
 285#error "UUID items require BTRFS_UUID_SIZE == 16!"
 286#endif
 287#define BTRFS_UUID_KEY_SUBVOL   251     /* for UUIDs assigned to subvols */
 288#define BTRFS_UUID_KEY_RECEIVED_SUBVOL  252     /* for UUIDs assigned to
 289                                                 * received subvols */
 290
 291/*
 292 * string items are for debugging.  They just store a short string of
 293 * data in the FS
 294 */
 295#define BTRFS_STRING_ITEM_KEY   253
 296
 297
 298
 299/* 32 bytes in various csum fields */
 300#define BTRFS_CSUM_SIZE 32
 301
 302/* csum types */
 303#define BTRFS_CSUM_TYPE_CRC32   0
 304
 305/*
 306 * flags definitions for directory entry item type
 307 *
 308 * Used by:
 309 * struct btrfs_dir_item.type
 310 *
 311 * Values 0..7 must match common file type values in fs_types.h.
 312 */
 313#define BTRFS_FT_UNKNOWN        0
 314#define BTRFS_FT_REG_FILE       1
 315#define BTRFS_FT_DIR            2
 316#define BTRFS_FT_CHRDEV         3
 317#define BTRFS_FT_BLKDEV         4
 318#define BTRFS_FT_FIFO           5
 319#define BTRFS_FT_SOCK           6
 320#define BTRFS_FT_SYMLINK        7
 321#define BTRFS_FT_XATTR          8
 322#define BTRFS_FT_MAX            9
 323
 324/*
 325 * The key defines the order in the tree, and so it also defines (optimal)
 326 * block layout.
 327 *
 328 * objectid corresponds to the inode number.
 329 *
 330 * type tells us things about the object, and is a kind of stream selector.
 331 * so for a given inode, keys with type of 1 might refer to the inode data,
 332 * type of 2 may point to file data in the btree and type == 3 may point to
 333 * extents.
 334 *
 335 * offset is the starting byte offset for this key in the stream.
 336 *
 337 * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
 338 * in cpu native order.  Otherwise they are identical and their sizes
 339 * should be the same (ie both packed)
 340 */
 341struct btrfs_disk_key {
 342        __le64 objectid;
 343        __u8 type;
 344        __le64 offset;
 345} __attribute__ ((__packed__));
 346
 347struct btrfs_key {
 348        __u64 objectid;
 349        __u8 type;
 350        __u64 offset;
 351} __attribute__ ((__packed__));
 352
 353struct btrfs_dev_item {
 354        /* the internal btrfs device id */
 355        __le64 devid;
 356
 357        /* size of the device */
 358        __le64 total_bytes;
 359
 360        /* bytes used */
 361        __le64 bytes_used;
 362
 363        /* optimal io alignment for this device */
 364        __le32 io_align;
 365
 366        /* optimal io width for this device */
 367        __le32 io_width;
 368
 369        /* minimal io size for this device */
 370        __le32 sector_size;
 371
 372        /* type and info about this device */
 373        __le64 type;
 374
 375        /* expected generation for this device */
 376        __le64 generation;
 377
 378        /*
 379         * starting byte of this partition on the device,
 380         * to allow for stripe alignment in the future
 381         */
 382        __le64 start_offset;
 383
 384        /* grouping information for allocation decisions */
 385        __le32 dev_group;
 386
 387        /* seek speed 0-100 where 100 is fastest */
 388        __u8 seek_speed;
 389
 390        /* bandwidth 0-100 where 100 is fastest */
 391        __u8 bandwidth;
 392
 393        /* btrfs generated uuid for this device */
 394        __u8 uuid[BTRFS_UUID_SIZE];
 395
 396        /* uuid of FS who owns this device */
 397        __u8 fsid[BTRFS_UUID_SIZE];
 398} __attribute__ ((__packed__));
 399
 400struct btrfs_stripe {
 401        __le64 devid;
 402        __le64 offset;
 403        __u8 dev_uuid[BTRFS_UUID_SIZE];
 404} __attribute__ ((__packed__));
 405
 406struct btrfs_chunk {
 407        /* size of this chunk in bytes */
 408        __le64 length;
 409
 410        /* objectid of the root referencing this chunk */
 411        __le64 owner;
 412
 413        __le64 stripe_len;
 414        __le64 type;
 415
 416        /* optimal io alignment for this chunk */
 417        __le32 io_align;
 418
 419        /* optimal io width for this chunk */
 420        __le32 io_width;
 421
 422        /* minimal io size for this chunk */
 423        __le32 sector_size;
 424
 425        /* 2^16 stripes is quite a lot, a second limit is the size of a single
 426         * item in the btree
 427         */
 428        __le16 num_stripes;
 429
 430        /* sub stripes only matter for raid10 */
 431        __le16 sub_stripes;
 432        struct btrfs_stripe stripe;
 433        /* additional stripes go here */
 434} __attribute__ ((__packed__));
 435
 436#define BTRFS_FREE_SPACE_EXTENT 1
 437#define BTRFS_FREE_SPACE_BITMAP 2
 438
 439struct btrfs_free_space_entry {
 440        __le64 offset;
 441        __le64 bytes;
 442        __u8 type;
 443} __attribute__ ((__packed__));
 444
 445struct btrfs_free_space_header {
 446        struct btrfs_disk_key location;
 447        __le64 generation;
 448        __le64 num_entries;
 449        __le64 num_bitmaps;
 450} __attribute__ ((__packed__));
 451
 452#define BTRFS_HEADER_FLAG_WRITTEN       (1ULL << 0)
 453#define BTRFS_HEADER_FLAG_RELOC         (1ULL << 1)
 454
 455/* Super block flags */
 456/* Errors detected */
 457#define BTRFS_SUPER_FLAG_ERROR          (1ULL << 2)
 458
 459#define BTRFS_SUPER_FLAG_SEEDING        (1ULL << 32)
 460#define BTRFS_SUPER_FLAG_METADUMP       (1ULL << 33)
 461#define BTRFS_SUPER_FLAG_METADUMP_V2    (1ULL << 34)
 462#define BTRFS_SUPER_FLAG_CHANGING_FSID  (1ULL << 35)
 463#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
 464
 465
 466/*
 467 * items in the extent btree are used to record the objectid of the
 468 * owner of the block and the number of references
 469 */
 470
 471struct btrfs_extent_item {
 472        __le64 refs;
 473        __le64 generation;
 474        __le64 flags;
 475} __attribute__ ((__packed__));
 476
 477struct btrfs_extent_item_v0 {
 478        __le32 refs;
 479} __attribute__ ((__packed__));
 480
 481
 482#define BTRFS_EXTENT_FLAG_DATA          (1ULL << 0)
 483#define BTRFS_EXTENT_FLAG_TREE_BLOCK    (1ULL << 1)
 484
 485/* following flags only apply to tree blocks */
 486
 487/* use full backrefs for extent pointers in the block */
 488#define BTRFS_BLOCK_FLAG_FULL_BACKREF   (1ULL << 8)
 489
 490/*
 491 * this flag is only used internally by scrub and may be changed at any time
 492 * it is only declared here to avoid collisions
 493 */
 494#define BTRFS_EXTENT_FLAG_SUPER         (1ULL << 48)
 495
 496struct btrfs_tree_block_info {
 497        struct btrfs_disk_key key;
 498        __u8 level;
 499} __attribute__ ((__packed__));
 500
 501struct btrfs_extent_data_ref {
 502        __le64 root;
 503        __le64 objectid;
 504        __le64 offset;
 505        __le32 count;
 506} __attribute__ ((__packed__));
 507
 508struct btrfs_shared_data_ref {
 509        __le32 count;
 510} __attribute__ ((__packed__));
 511
 512struct btrfs_extent_inline_ref {
 513        __u8 type;
 514        __le64 offset;
 515} __attribute__ ((__packed__));
 516
 517/* old style backrefs item */
 518struct btrfs_extent_ref_v0 {
 519        __le64 root;
 520        __le64 generation;
 521        __le64 objectid;
 522        __le32 count;
 523} __attribute__ ((__packed__));
 524
 525
 526/* dev extents record free space on individual devices.  The owner
 527 * field points back to the chunk allocation mapping tree that allocated
 528 * the extent.  The chunk tree uuid field is a way to double check the owner
 529 */
 530struct btrfs_dev_extent {
 531        __le64 chunk_tree;
 532        __le64 chunk_objectid;
 533        __le64 chunk_offset;
 534        __le64 length;
 535        __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 536} __attribute__ ((__packed__));
 537
 538struct btrfs_inode_ref {
 539        __le64 index;
 540        __le16 name_len;
 541        /* name goes here */
 542} __attribute__ ((__packed__));
 543
 544struct btrfs_inode_extref {
 545        __le64 parent_objectid;
 546        __le64 index;
 547        __le16 name_len;
 548        __u8   name[0];
 549        /* name goes here */
 550} __attribute__ ((__packed__));
 551
 552struct btrfs_timespec {
 553        __le64 sec;
 554        __le32 nsec;
 555} __attribute__ ((__packed__));
 556
 557struct btrfs_inode_item {
 558        /* nfs style generation number */
 559        __le64 generation;
 560        /* transid that last touched this inode */
 561        __le64 transid;
 562        __le64 size;
 563        __le64 nbytes;
 564        __le64 block_group;
 565        __le32 nlink;
 566        __le32 uid;
 567        __le32 gid;
 568        __le32 mode;
 569        __le64 rdev;
 570        __le64 flags;
 571
 572        /* modification sequence number for NFS */
 573        __le64 sequence;
 574
 575        /*
 576         * a little future expansion, for more than this we can
 577         * just grow the inode item and version it
 578         */
 579        __le64 reserved[4];
 580        struct btrfs_timespec atime;
 581        struct btrfs_timespec ctime;
 582        struct btrfs_timespec mtime;
 583        struct btrfs_timespec otime;
 584} __attribute__ ((__packed__));
 585
 586struct btrfs_dir_log_item {
 587        __le64 end;
 588} __attribute__ ((__packed__));
 589
 590struct btrfs_dir_item {
 591        struct btrfs_disk_key location;
 592        __le64 transid;
 593        __le16 data_len;
 594        __le16 name_len;
 595        __u8 type;
 596} __attribute__ ((__packed__));
 597
 598#define BTRFS_ROOT_SUBVOL_RDONLY        (1ULL << 0)
 599
 600/*
 601 * Internal in-memory flag that a subvolume has been marked for deletion but
 602 * still visible as a directory
 603 */
 604#define BTRFS_ROOT_SUBVOL_DEAD          (1ULL << 48)
 605
 606struct btrfs_root_item {
 607        struct btrfs_inode_item inode;
 608        __le64 generation;
 609        __le64 root_dirid;
 610        __le64 bytenr;
 611        __le64 byte_limit;
 612        __le64 bytes_used;
 613        __le64 last_snapshot;
 614        __le64 flags;
 615        __le32 refs;
 616        struct btrfs_disk_key drop_progress;
 617        __u8 drop_level;
 618        __u8 level;
 619
 620        /*
 621         * The following fields appear after subvol_uuids+subvol_times
 622         * were introduced.
 623         */
 624
 625        /*
 626         * This generation number is used to test if the new fields are valid
 627         * and up to date while reading the root item. Every time the root item
 628         * is written out, the "generation" field is copied into this field. If
 629         * anyone ever mounted the fs with an older kernel, we will have
 630         * mismatching generation values here and thus must invalidate the
 631         * new fields. See btrfs_update_root and btrfs_find_last_root for
 632         * details.
 633         * the offset of generation_v2 is also used as the start for the memset
 634         * when invalidating the fields.
 635         */
 636        __le64 generation_v2;
 637        __u8 uuid[BTRFS_UUID_SIZE];
 638        __u8 parent_uuid[BTRFS_UUID_SIZE];
 639        __u8 received_uuid[BTRFS_UUID_SIZE];
 640        __le64 ctransid; /* updated when an inode changes */
 641        __le64 otransid; /* trans when created */
 642        __le64 stransid; /* trans when sent. non-zero for received subvol */
 643        __le64 rtransid; /* trans when received. non-zero for received subvol */
 644        struct btrfs_timespec ctime;
 645        struct btrfs_timespec otime;
 646        struct btrfs_timespec stime;
 647        struct btrfs_timespec rtime;
 648        __le64 reserved[8]; /* for future */
 649} __attribute__ ((__packed__));
 650
 651/*
 652 * this is used for both forward and backward root refs
 653 */
 654struct btrfs_root_ref {
 655        __le64 dirid;
 656        __le64 sequence;
 657        __le16 name_len;
 658} __attribute__ ((__packed__));
 659
 660struct btrfs_disk_balance_args {
 661        /*
 662         * profiles to operate on, single is denoted by
 663         * BTRFS_AVAIL_ALLOC_BIT_SINGLE
 664         */
 665        __le64 profiles;
 666
 667        /*
 668         * usage filter
 669         * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
 670         * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
 671         */
 672        union {
 673                __le64 usage;
 674                struct {
 675                        __le32 usage_min;
 676                        __le32 usage_max;
 677                };
 678        };
 679
 680        /* devid filter */
 681        __le64 devid;
 682
 683        /* devid subset filter [pstart..pend) */
 684        __le64 pstart;
 685        __le64 pend;
 686
 687        /* btrfs virtual address space subset filter [vstart..vend) */
 688        __le64 vstart;
 689        __le64 vend;
 690
 691        /*
 692         * profile to convert to, single is denoted by
 693         * BTRFS_AVAIL_ALLOC_BIT_SINGLE
 694         */
 695        __le64 target;
 696
 697        /* BTRFS_BALANCE_ARGS_* */
 698        __le64 flags;
 699
 700        /*
 701         * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
 702         * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
 703         * and maximum
 704         */
 705        union {
 706                __le64 limit;
 707                struct {
 708                        __le32 limit_min;
 709                        __le32 limit_max;
 710                };
 711        };
 712
 713        /*
 714         * Process chunks that cross stripes_min..stripes_max devices,
 715         * BTRFS_BALANCE_ARGS_STRIPES_RANGE
 716         */
 717        __le32 stripes_min;
 718        __le32 stripes_max;
 719
 720        __le64 unused[6];
 721} __attribute__ ((__packed__));
 722
 723/*
 724 * store balance parameters to disk so that balance can be properly
 725 * resumed after crash or unmount
 726 */
 727struct btrfs_balance_item {
 728        /* BTRFS_BALANCE_* */
 729        __le64 flags;
 730
 731        struct btrfs_disk_balance_args data;
 732        struct btrfs_disk_balance_args meta;
 733        struct btrfs_disk_balance_args sys;
 734
 735        __le64 unused[4];
 736} __attribute__ ((__packed__));
 737
 738#define BTRFS_FILE_EXTENT_INLINE 0
 739#define BTRFS_FILE_EXTENT_REG 1
 740#define BTRFS_FILE_EXTENT_PREALLOC 2
 741#define BTRFS_FILE_EXTENT_TYPES 2
 742
 743struct btrfs_file_extent_item {
 744        /*
 745         * transaction id that created this extent
 746         */
 747        __le64 generation;
 748        /*
 749         * max number of bytes to hold this extent in ram
 750         * when we split a compressed extent we can't know how big
 751         * each of the resulting pieces will be.  So, this is
 752         * an upper limit on the size of the extent in ram instead of
 753         * an exact limit.
 754         */
 755        __le64 ram_bytes;
 756
 757        /*
 758         * 32 bits for the various ways we might encode the data,
 759         * including compression and encryption.  If any of these
 760         * are set to something a given disk format doesn't understand
 761         * it is treated like an incompat flag for reading and writing,
 762         * but not for stat.
 763         */
 764        __u8 compression;
 765        __u8 encryption;
 766        __le16 other_encoding; /* spare for later use */
 767
 768        /* are we inline data or a real extent? */
 769        __u8 type;
 770
 771        /*
 772         * disk space consumed by the extent, checksum blocks are included
 773         * in these numbers
 774         *
 775         * At this offset in the structure, the inline extent data start.
 776         */
 777        __le64 disk_bytenr;
 778        __le64 disk_num_bytes;
 779        /*
 780         * the logical offset in file blocks (no csums)
 781         * this extent record is for.  This allows a file extent to point
 782         * into the middle of an existing extent on disk, sharing it
 783         * between two snapshots (useful if some bytes in the middle of the
 784         * extent have changed
 785         */
 786        __le64 offset;
 787        /*
 788         * the logical number of file blocks (no csums included).  This
 789         * always reflects the size uncompressed and without encoding.
 790         */
 791        __le64 num_bytes;
 792
 793} __attribute__ ((__packed__));
 794
 795struct btrfs_csum_item {
 796        __u8 csum;
 797} __attribute__ ((__packed__));
 798
 799struct btrfs_dev_stats_item {
 800        /*
 801         * grow this item struct at the end for future enhancements and keep
 802         * the existing values unchanged
 803         */
 804        __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
 805} __attribute__ ((__packed__));
 806
 807#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS     0
 808#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID      1
 809#define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED      0
 810#define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED            1
 811#define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED          2
 812#define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED           3
 813#define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED           4
 814
 815struct btrfs_dev_replace_item {
 816        /*
 817         * grow this item struct at the end for future enhancements and keep
 818         * the existing values unchanged
 819         */
 820        __le64 src_devid;
 821        __le64 cursor_left;
 822        __le64 cursor_right;
 823        __le64 cont_reading_from_srcdev_mode;
 824
 825        __le64 replace_state;
 826        __le64 time_started;
 827        __le64 time_stopped;
 828        __le64 num_write_errors;
 829        __le64 num_uncorrectable_read_errors;
 830} __attribute__ ((__packed__));
 831
 832/* different types of block groups (and chunks) */
 833#define BTRFS_BLOCK_GROUP_DATA          (1ULL << 0)
 834#define BTRFS_BLOCK_GROUP_SYSTEM        (1ULL << 1)
 835#define BTRFS_BLOCK_GROUP_METADATA      (1ULL << 2)
 836#define BTRFS_BLOCK_GROUP_RAID0         (1ULL << 3)
 837#define BTRFS_BLOCK_GROUP_RAID1         (1ULL << 4)
 838#define BTRFS_BLOCK_GROUP_DUP           (1ULL << 5)
 839#define BTRFS_BLOCK_GROUP_RAID10        (1ULL << 6)
 840#define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
 841#define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
 842#define BTRFS_BLOCK_GROUP_RESERVED      (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
 843                                         BTRFS_SPACE_INFO_GLOBAL_RSV)
 844
 845enum btrfs_raid_types {
 846        BTRFS_RAID_RAID10,
 847        BTRFS_RAID_RAID1,
 848        BTRFS_RAID_DUP,
 849        BTRFS_RAID_RAID0,
 850        BTRFS_RAID_SINGLE,
 851        BTRFS_RAID_RAID5,
 852        BTRFS_RAID_RAID6,
 853        BTRFS_NR_RAID_TYPES
 854};
 855
 856#define BTRFS_BLOCK_GROUP_TYPE_MASK     (BTRFS_BLOCK_GROUP_DATA |    \
 857                                         BTRFS_BLOCK_GROUP_SYSTEM |  \
 858                                         BTRFS_BLOCK_GROUP_METADATA)
 859
 860#define BTRFS_BLOCK_GROUP_PROFILE_MASK  (BTRFS_BLOCK_GROUP_RAID0 |   \
 861                                         BTRFS_BLOCK_GROUP_RAID1 |   \
 862                                         BTRFS_BLOCK_GROUP_RAID5 |   \
 863                                         BTRFS_BLOCK_GROUP_RAID6 |   \
 864                                         BTRFS_BLOCK_GROUP_DUP |     \
 865                                         BTRFS_BLOCK_GROUP_RAID10)
 866#define BTRFS_BLOCK_GROUP_RAID56_MASK   (BTRFS_BLOCK_GROUP_RAID5 |   \
 867                                         BTRFS_BLOCK_GROUP_RAID6)
 868
 869#define BTRFS_BLOCK_GROUP_RAID1_MASK    (BTRFS_BLOCK_GROUP_RAID1)
 870
 871/*
 872 * We need a bit for restriper to be able to tell when chunks of type
 873 * SINGLE are available.  This "extended" profile format is used in
 874 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
 875 * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
 876 * to avoid remappings between two formats in future.
 877 */
 878#define BTRFS_AVAIL_ALLOC_BIT_SINGLE    (1ULL << 48)
 879
 880/*
 881 * A fake block group type that is used to communicate global block reserve
 882 * size to userspace via the SPACE_INFO ioctl.
 883 */
 884#define BTRFS_SPACE_INFO_GLOBAL_RSV     (1ULL << 49)
 885
 886#define BTRFS_EXTENDED_PROFILE_MASK     (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
 887                                         BTRFS_AVAIL_ALLOC_BIT_SINGLE)
 888
 889static inline __u64 chunk_to_extended(__u64 flags)
 890{
 891        if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
 892                flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
 893
 894        return flags;
 895}
 896static inline __u64 extended_to_chunk(__u64 flags)
 897{
 898        return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
 899}
 900
 901struct btrfs_block_group_item {
 902        __le64 used;
 903        __le64 chunk_objectid;
 904        __le64 flags;
 905} __attribute__ ((__packed__));
 906
 907struct btrfs_free_space_info {
 908        __le32 extent_count;
 909        __le32 flags;
 910} __attribute__ ((__packed__));
 911
 912#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
 913
 914#define BTRFS_QGROUP_LEVEL_SHIFT                48
 915static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
 916{
 917        return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
 918}
 919
 920/*
 921 * is subvolume quota turned on?
 922 */
 923#define BTRFS_QGROUP_STATUS_FLAG_ON             (1ULL << 0)
 924/*
 925 * RESCAN is set during the initialization phase
 926 */
 927#define BTRFS_QGROUP_STATUS_FLAG_RESCAN         (1ULL << 1)
 928/*
 929 * Some qgroup entries are known to be out of date,
 930 * either because the configuration has changed in a way that
 931 * makes a rescan necessary, or because the fs has been mounted
 932 * with a non-qgroup-aware version.
 933 * Turning qouta off and on again makes it inconsistent, too.
 934 */
 935#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT   (1ULL << 2)
 936
 937#define BTRFS_QGROUP_STATUS_VERSION        1
 938
 939struct btrfs_qgroup_status_item {
 940        __le64 version;
 941        /*
 942         * the generation is updated during every commit. As older
 943         * versions of btrfs are not aware of qgroups, it will be
 944         * possible to detect inconsistencies by checking the
 945         * generation on mount time
 946         */
 947        __le64 generation;
 948
 949        /* flag definitions see above */
 950        __le64 flags;
 951
 952        /*
 953         * only used during scanning to record the progress
 954         * of the scan. It contains a logical address
 955         */
 956        __le64 rescan;
 957} __attribute__ ((__packed__));
 958
 959struct btrfs_qgroup_info_item {
 960        __le64 generation;
 961        __le64 rfer;
 962        __le64 rfer_cmpr;
 963        __le64 excl;
 964        __le64 excl_cmpr;
 965} __attribute__ ((__packed__));
 966
 967struct btrfs_qgroup_limit_item {
 968        /*
 969         * only updated when any of the other values change
 970         */
 971        __le64 flags;
 972        __le64 max_rfer;
 973        __le64 max_excl;
 974        __le64 rsv_rfer;
 975        __le64 rsv_excl;
 976} __attribute__ ((__packed__));
 977
 978#endif /* _BTRFS_CTREE_H_ */
 979