linux/include/uapi/linux/hyperv.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
   2/*
   3 *
   4 * Copyright (c) 2011, Microsoft Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  17 * Place - Suite 330, Boston, MA 02111-1307 USA.
  18 *
  19 * Authors:
  20 *   Haiyang Zhang <haiyangz@microsoft.com>
  21 *   Hank Janssen  <hjanssen@microsoft.com>
  22 *   K. Y. Srinivasan <kys@microsoft.com>
  23 *
  24 */
  25
  26#ifndef _UAPI_HYPERV_H
  27#define _UAPI_HYPERV_H
  28
  29#include <linux/uuid.h>
  30
  31/*
  32 * Framework version for util services.
  33 */
  34#define UTIL_FW_MINOR  0
  35
  36#define UTIL_WS2K8_FW_MAJOR  1
  37#define UTIL_WS2K8_FW_VERSION     (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR)
  38
  39#define UTIL_FW_MAJOR  3
  40#define UTIL_FW_VERSION     (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
  41
  42
  43/*
  44 * Implementation of host controlled snapshot of the guest.
  45 */
  46
  47#define VSS_OP_REGISTER 128
  48
  49/*
  50  Daemon code with full handshake support.
  51 */
  52#define VSS_OP_REGISTER1 129
  53
  54enum hv_vss_op {
  55        VSS_OP_CREATE = 0,
  56        VSS_OP_DELETE,
  57        VSS_OP_HOT_BACKUP,
  58        VSS_OP_GET_DM_INFO,
  59        VSS_OP_BU_COMPLETE,
  60        /*
  61         * Following operations are only supported with IC version >= 5.0
  62         */
  63        VSS_OP_FREEZE, /* Freeze the file systems in the VM */
  64        VSS_OP_THAW, /* Unfreeze the file systems */
  65        VSS_OP_AUTO_RECOVER,
  66        VSS_OP_COUNT /* Number of operations, must be last */
  67};
  68
  69
  70/*
  71 * Header for all VSS messages.
  72 */
  73struct hv_vss_hdr {
  74        __u8 operation;
  75        __u8 reserved[7];
  76} __attribute__((packed));
  77
  78
  79/*
  80 * Flag values for the hv_vss_check_feature. Linux supports only
  81 * one value.
  82 */
  83#define VSS_HBU_NO_AUTO_RECOVERY        0x00000005
  84
  85struct hv_vss_check_feature {
  86        __u32 flags;
  87} __attribute__((packed));
  88
  89struct hv_vss_check_dm_info {
  90        __u32 flags;
  91} __attribute__((packed));
  92
  93struct hv_vss_msg {
  94        union {
  95                struct hv_vss_hdr vss_hdr;
  96                int error;
  97        };
  98        union {
  99                struct hv_vss_check_feature vss_cf;
 100                struct hv_vss_check_dm_info dm_info;
 101        };
 102} __attribute__((packed));
 103
 104/*
 105 * Implementation of a host to guest copy facility.
 106 */
 107
 108#define FCOPY_VERSION_0 0
 109#define FCOPY_VERSION_1 1
 110#define FCOPY_CURRENT_VERSION FCOPY_VERSION_1
 111#define W_MAX_PATH 260
 112
 113enum hv_fcopy_op {
 114        START_FILE_COPY = 0,
 115        WRITE_TO_FILE,
 116        COMPLETE_FCOPY,
 117        CANCEL_FCOPY,
 118};
 119
 120struct hv_fcopy_hdr {
 121        __u32 operation;
 122        uuid_le service_id0; /* currently unused */
 123        uuid_le service_id1; /* currently unused */
 124} __attribute__((packed));
 125
 126#define OVER_WRITE      0x1
 127#define CREATE_PATH     0x2
 128
 129struct hv_start_fcopy {
 130        struct hv_fcopy_hdr hdr;
 131        __u16 file_name[W_MAX_PATH];
 132        __u16 path_name[W_MAX_PATH];
 133        __u32 copy_flags;
 134        __u64 file_size;
 135} __attribute__((packed));
 136
 137/*
 138 * The file is chunked into fragments.
 139 */
 140#define DATA_FRAGMENT   (6 * 1024)
 141
 142struct hv_do_fcopy {
 143        struct hv_fcopy_hdr hdr;
 144        __u32   pad;
 145        __u64   offset;
 146        __u32   size;
 147        __u8    data[DATA_FRAGMENT];
 148} __attribute__((packed));
 149
 150/*
 151 * An implementation of HyperV key value pair (KVP) functionality for Linux.
 152 *
 153 *
 154 * Copyright (C) 2010, Novell, Inc.
 155 * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
 156 *
 157 */
 158
 159/*
 160 * Maximum value size - used for both key names and value data, and includes
 161 * any applicable NULL terminators.
 162 *
 163 * Note:  This limit is somewhat arbitrary, but falls easily within what is
 164 * supported for all native guests (back to Win 2000) and what is reasonable
 165 * for the IC KVP exchange functionality.  Note that Windows Me/98/95 are
 166 * limited to 255 character key names.
 167 *
 168 * MSDN recommends not storing data values larger than 2048 bytes in the
 169 * registry.
 170 *
 171 * Note:  This value is used in defining the KVP exchange message - this value
 172 * cannot be modified without affecting the message size and compatibility.
 173 */
 174
 175/*
 176 * bytes, including any null terminators
 177 */
 178#define HV_KVP_EXCHANGE_MAX_VALUE_SIZE          (2048)
 179
 180
 181/*
 182 * Maximum key size - the registry limit for the length of an entry name
 183 * is 256 characters, including the null terminator
 184 */
 185
 186#define HV_KVP_EXCHANGE_MAX_KEY_SIZE            (512)
 187
 188/*
 189 * In Linux, we implement the KVP functionality in two components:
 190 * 1) The kernel component which is packaged as part of the hv_utils driver
 191 * is responsible for communicating with the host and responsible for
 192 * implementing the host/guest protocol. 2) A user level daemon that is
 193 * responsible for data gathering.
 194 *
 195 * Host/Guest Protocol: The host iterates over an index and expects the guest
 196 * to assign a key name to the index and also return the value corresponding to
 197 * the key. The host will have atmost one KVP transaction outstanding at any
 198 * given point in time. The host side iteration stops when the guest returns
 199 * an error. Microsoft has specified the following mapping of key names to
 200 * host specified index:
 201 *
 202 *      Index           Key Name
 203 *      0               FullyQualifiedDomainName
 204 *      1               IntegrationServicesVersion
 205 *      2               NetworkAddressIPv4
 206 *      3               NetworkAddressIPv6
 207 *      4               OSBuildNumber
 208 *      5               OSName
 209 *      6               OSMajorVersion
 210 *      7               OSMinorVersion
 211 *      8               OSVersion
 212 *      9               ProcessorArchitecture
 213 *
 214 * The Windows host expects the Key Name and Key Value to be encoded in utf16.
 215 *
 216 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
 217 * data gathering functionality in a user mode daemon. The user level daemon
 218 * is also responsible for binding the key name to the index as well. The
 219 * kernel and user-level daemon communicate using a connector channel.
 220 *
 221 * The user mode component first registers with the
 222 * the kernel component. Subsequently, the kernel component requests, data
 223 * for the specified keys. In response to this message the user mode component
 224 * fills in the value corresponding to the specified key. We overload the
 225 * sequence field in the cn_msg header to define our KVP message types.
 226 *
 227 *
 228 * The kernel component simply acts as a conduit for communication between the
 229 * Windows host and the user-level daemon. The kernel component passes up the
 230 * index received from the Host to the user-level daemon. If the index is
 231 * valid (supported), the corresponding key as well as its
 232 * value (both are strings) is returned. If the index is invalid
 233 * (not supported), a NULL key string is returned.
 234 */
 235
 236
 237/*
 238 * Registry value types.
 239 */
 240
 241#define REG_SZ 1
 242#define REG_U32 4
 243#define REG_U64 8
 244
 245/*
 246 * As we look at expanding the KVP functionality to include
 247 * IP injection functionality, we need to maintain binary
 248 * compatibility with older daemons.
 249 *
 250 * The KVP opcodes are defined by the host and it was unfortunate
 251 * that I chose to treat the registration operation as part of the
 252 * KVP operations defined by the host.
 253 * Here is the level of compatibility
 254 * (between the user level daemon and the kernel KVP driver) that we
 255 * will implement:
 256 *
 257 * An older daemon will always be supported on a newer driver.
 258 * A given user level daemon will require a minimal version of the
 259 * kernel driver.
 260 * If we cannot handle the version differences, we will fail gracefully
 261 * (this can happen when we have a user level daemon that is more
 262 * advanced than the KVP driver.
 263 *
 264 * We will use values used in this handshake for determining if we have
 265 * workable user level daemon and the kernel driver. We begin by taking the
 266 * registration opcode out of the KVP opcode namespace. We will however,
 267 * maintain compatibility with the existing user-level daemon code.
 268 */
 269
 270/*
 271 * Daemon code not supporting IP injection (legacy daemon).
 272 */
 273
 274#define KVP_OP_REGISTER 4
 275
 276/*
 277 * Daemon code supporting IP injection.
 278 * The KVP opcode field is used to communicate the
 279 * registration information; so define a namespace that
 280 * will be distinct from the host defined KVP opcode.
 281 */
 282
 283#define KVP_OP_REGISTER1 100
 284
 285enum hv_kvp_exchg_op {
 286        KVP_OP_GET = 0,
 287        KVP_OP_SET,
 288        KVP_OP_DELETE,
 289        KVP_OP_ENUMERATE,
 290        KVP_OP_GET_IP_INFO,
 291        KVP_OP_SET_IP_INFO,
 292        KVP_OP_COUNT /* Number of operations, must be last. */
 293};
 294
 295enum hv_kvp_exchg_pool {
 296        KVP_POOL_EXTERNAL = 0,
 297        KVP_POOL_GUEST,
 298        KVP_POOL_AUTO,
 299        KVP_POOL_AUTO_EXTERNAL,
 300        KVP_POOL_AUTO_INTERNAL,
 301        KVP_POOL_COUNT /* Number of pools, must be last. */
 302};
 303
 304/*
 305 * Some Hyper-V status codes.
 306 */
 307
 308#define HV_S_OK                         0x00000000
 309#define HV_E_FAIL                       0x80004005
 310#define HV_S_CONT                       0x80070103
 311#define HV_ERROR_NOT_SUPPORTED          0x80070032
 312#define HV_ERROR_MACHINE_LOCKED         0x800704F7
 313#define HV_ERROR_DEVICE_NOT_CONNECTED   0x8007048F
 314#define HV_INVALIDARG                   0x80070057
 315#define HV_GUID_NOTFOUND                0x80041002
 316#define HV_ERROR_ALREADY_EXISTS         0x80070050
 317#define HV_ERROR_DISK_FULL              0x80070070
 318
 319#define ADDR_FAMILY_NONE        0x00
 320#define ADDR_FAMILY_IPV4        0x01
 321#define ADDR_FAMILY_IPV6        0x02
 322
 323#define MAX_ADAPTER_ID_SIZE     128
 324#define MAX_IP_ADDR_SIZE        1024
 325#define MAX_GATEWAY_SIZE        512
 326
 327
 328struct hv_kvp_ipaddr_value {
 329        __u16   adapter_id[MAX_ADAPTER_ID_SIZE];
 330        __u8    addr_family;
 331        __u8    dhcp_enabled;
 332        __u16   ip_addr[MAX_IP_ADDR_SIZE];
 333        __u16   sub_net[MAX_IP_ADDR_SIZE];
 334        __u16   gate_way[MAX_GATEWAY_SIZE];
 335        __u16   dns_addr[MAX_IP_ADDR_SIZE];
 336} __attribute__((packed));
 337
 338
 339struct hv_kvp_hdr {
 340        __u8 operation;
 341        __u8 pool;
 342        __u16 pad;
 343} __attribute__((packed));
 344
 345struct hv_kvp_exchg_msg_value {
 346        __u32 value_type;
 347        __u32 key_size;
 348        __u32 value_size;
 349        __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
 350        union {
 351                __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
 352                __u32 value_u32;
 353                __u64 value_u64;
 354        };
 355} __attribute__((packed));
 356
 357struct hv_kvp_msg_enumerate {
 358        __u32 index;
 359        struct hv_kvp_exchg_msg_value data;
 360} __attribute__((packed));
 361
 362struct hv_kvp_msg_get {
 363        struct hv_kvp_exchg_msg_value data;
 364};
 365
 366struct hv_kvp_msg_set {
 367        struct hv_kvp_exchg_msg_value data;
 368};
 369
 370struct hv_kvp_msg_delete {
 371        __u32 key_size;
 372        __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
 373};
 374
 375struct hv_kvp_register {
 376        __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
 377};
 378
 379struct hv_kvp_msg {
 380        union {
 381                struct hv_kvp_hdr       kvp_hdr;
 382                int error;
 383        };
 384        union {
 385                struct hv_kvp_msg_get           kvp_get;
 386                struct hv_kvp_msg_set           kvp_set;
 387                struct hv_kvp_msg_delete        kvp_delete;
 388                struct hv_kvp_msg_enumerate     kvp_enum_data;
 389                struct hv_kvp_ipaddr_value      kvp_ip_val;
 390                struct hv_kvp_register          kvp_register;
 391        } body;
 392} __attribute__((packed));
 393
 394struct hv_kvp_ip_msg {
 395        __u8 operation;
 396        __u8 pool;
 397        struct hv_kvp_ipaddr_value      kvp_ip_val;
 398} __attribute__((packed));
 399
 400#endif /* _UAPI_HYPERV_H */
 401