linux/ipc/mqueue.c
<<
>>
Prefs
   1/*
   2 * POSIX message queues filesystem for Linux.
   3 *
   4 * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
   5 *                          Michal Wronski          (michal.wronski@gmail.com)
   6 *
   7 * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
   8 * Lockless receive & send, fd based notify:
   9 *                          Manfred Spraul          (manfred@colorfullife.com)
  10 *
  11 * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
  12 *
  13 * This file is released under the GPL.
  14 */
  15
  16#include <linux/capability.h>
  17#include <linux/init.h>
  18#include <linux/pagemap.h>
  19#include <linux/file.h>
  20#include <linux/mount.h>
  21#include <linux/fs_context.h>
  22#include <linux/namei.h>
  23#include <linux/sysctl.h>
  24#include <linux/poll.h>
  25#include <linux/mqueue.h>
  26#include <linux/msg.h>
  27#include <linux/skbuff.h>
  28#include <linux/vmalloc.h>
  29#include <linux/netlink.h>
  30#include <linux/syscalls.h>
  31#include <linux/audit.h>
  32#include <linux/signal.h>
  33#include <linux/mutex.h>
  34#include <linux/nsproxy.h>
  35#include <linux/pid.h>
  36#include <linux/ipc_namespace.h>
  37#include <linux/user_namespace.h>
  38#include <linux/slab.h>
  39#include <linux/sched/wake_q.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/user.h>
  42
  43#include <net/sock.h>
  44#include "util.h"
  45
  46struct mqueue_fs_context {
  47        struct ipc_namespace    *ipc_ns;
  48};
  49
  50#define MQUEUE_MAGIC    0x19800202
  51#define DIRENT_SIZE     20
  52#define FILENT_SIZE     80
  53
  54#define SEND            0
  55#define RECV            1
  56
  57#define STATE_NONE      0
  58#define STATE_READY     1
  59
  60struct posix_msg_tree_node {
  61        struct rb_node          rb_node;
  62        struct list_head        msg_list;
  63        int                     priority;
  64};
  65
  66struct ext_wait_queue {         /* queue of sleeping tasks */
  67        struct task_struct *task;
  68        struct list_head list;
  69        struct msg_msg *msg;    /* ptr of loaded message */
  70        int state;              /* one of STATE_* values */
  71};
  72
  73struct mqueue_inode_info {
  74        spinlock_t lock;
  75        struct inode vfs_inode;
  76        wait_queue_head_t wait_q;
  77
  78        struct rb_root msg_tree;
  79        struct rb_node *msg_tree_rightmost;
  80        struct posix_msg_tree_node *node_cache;
  81        struct mq_attr attr;
  82
  83        struct sigevent notify;
  84        struct pid *notify_owner;
  85        struct user_namespace *notify_user_ns;
  86        struct user_struct *user;       /* user who created, for accounting */
  87        struct sock *notify_sock;
  88        struct sk_buff *notify_cookie;
  89
  90        /* for tasks waiting for free space and messages, respectively */
  91        struct ext_wait_queue e_wait_q[2];
  92
  93        unsigned long qsize; /* size of queue in memory (sum of all msgs) */
  94};
  95
  96static struct file_system_type mqueue_fs_type;
  97static const struct inode_operations mqueue_dir_inode_operations;
  98static const struct file_operations mqueue_file_operations;
  99static const struct super_operations mqueue_super_ops;
 100static const struct fs_context_operations mqueue_fs_context_ops;
 101static void remove_notification(struct mqueue_inode_info *info);
 102
 103static struct kmem_cache *mqueue_inode_cachep;
 104
 105static struct ctl_table_header *mq_sysctl_table;
 106
 107static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
 108{
 109        return container_of(inode, struct mqueue_inode_info, vfs_inode);
 110}
 111
 112/*
 113 * This routine should be called with the mq_lock held.
 114 */
 115static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
 116{
 117        return get_ipc_ns(inode->i_sb->s_fs_info);
 118}
 119
 120static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
 121{
 122        struct ipc_namespace *ns;
 123
 124        spin_lock(&mq_lock);
 125        ns = __get_ns_from_inode(inode);
 126        spin_unlock(&mq_lock);
 127        return ns;
 128}
 129
 130/* Auxiliary functions to manipulate messages' list */
 131static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
 132{
 133        struct rb_node **p, *parent = NULL;
 134        struct posix_msg_tree_node *leaf;
 135        bool rightmost = true;
 136
 137        p = &info->msg_tree.rb_node;
 138        while (*p) {
 139                parent = *p;
 140                leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 141
 142                if (likely(leaf->priority == msg->m_type))
 143                        goto insert_msg;
 144                else if (msg->m_type < leaf->priority) {
 145                        p = &(*p)->rb_left;
 146                        rightmost = false;
 147                } else
 148                        p = &(*p)->rb_right;
 149        }
 150        if (info->node_cache) {
 151                leaf = info->node_cache;
 152                info->node_cache = NULL;
 153        } else {
 154                leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
 155                if (!leaf)
 156                        return -ENOMEM;
 157                INIT_LIST_HEAD(&leaf->msg_list);
 158        }
 159        leaf->priority = msg->m_type;
 160
 161        if (rightmost)
 162                info->msg_tree_rightmost = &leaf->rb_node;
 163
 164        rb_link_node(&leaf->rb_node, parent, p);
 165        rb_insert_color(&leaf->rb_node, &info->msg_tree);
 166insert_msg:
 167        info->attr.mq_curmsgs++;
 168        info->qsize += msg->m_ts;
 169        list_add_tail(&msg->m_list, &leaf->msg_list);
 170        return 0;
 171}
 172
 173static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
 174                                  struct mqueue_inode_info *info)
 175{
 176        struct rb_node *node = &leaf->rb_node;
 177
 178        if (info->msg_tree_rightmost == node)
 179                info->msg_tree_rightmost = rb_prev(node);
 180
 181        rb_erase(node, &info->msg_tree);
 182        if (info->node_cache) {
 183                kfree(leaf);
 184        } else {
 185                info->node_cache = leaf;
 186        }
 187}
 188
 189static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
 190{
 191        struct rb_node *parent = NULL;
 192        struct posix_msg_tree_node *leaf;
 193        struct msg_msg *msg;
 194
 195try_again:
 196        /*
 197         * During insert, low priorities go to the left and high to the
 198         * right.  On receive, we want the highest priorities first, so
 199         * walk all the way to the right.
 200         */
 201        parent = info->msg_tree_rightmost;
 202        if (!parent) {
 203                if (info->attr.mq_curmsgs) {
 204                        pr_warn_once("Inconsistency in POSIX message queue, "
 205                                     "no tree element, but supposedly messages "
 206                                     "should exist!\n");
 207                        info->attr.mq_curmsgs = 0;
 208                }
 209                return NULL;
 210        }
 211        leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 212        if (unlikely(list_empty(&leaf->msg_list))) {
 213                pr_warn_once("Inconsistency in POSIX message queue, "
 214                             "empty leaf node but we haven't implemented "
 215                             "lazy leaf delete!\n");
 216                msg_tree_erase(leaf, info);
 217                goto try_again;
 218        } else {
 219                msg = list_first_entry(&leaf->msg_list,
 220                                       struct msg_msg, m_list);
 221                list_del(&msg->m_list);
 222                if (list_empty(&leaf->msg_list)) {
 223                        msg_tree_erase(leaf, info);
 224                }
 225        }
 226        info->attr.mq_curmsgs--;
 227        info->qsize -= msg->m_ts;
 228        return msg;
 229}
 230
 231static struct inode *mqueue_get_inode(struct super_block *sb,
 232                struct ipc_namespace *ipc_ns, umode_t mode,
 233                struct mq_attr *attr)
 234{
 235        struct user_struct *u = current_user();
 236        struct inode *inode;
 237        int ret = -ENOMEM;
 238
 239        inode = new_inode(sb);
 240        if (!inode)
 241                goto err;
 242
 243        inode->i_ino = get_next_ino();
 244        inode->i_mode = mode;
 245        inode->i_uid = current_fsuid();
 246        inode->i_gid = current_fsgid();
 247        inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
 248
 249        if (S_ISREG(mode)) {
 250                struct mqueue_inode_info *info;
 251                unsigned long mq_bytes, mq_treesize;
 252
 253                inode->i_fop = &mqueue_file_operations;
 254                inode->i_size = FILENT_SIZE;
 255                /* mqueue specific info */
 256                info = MQUEUE_I(inode);
 257                spin_lock_init(&info->lock);
 258                init_waitqueue_head(&info->wait_q);
 259                INIT_LIST_HEAD(&info->e_wait_q[0].list);
 260                INIT_LIST_HEAD(&info->e_wait_q[1].list);
 261                info->notify_owner = NULL;
 262                info->notify_user_ns = NULL;
 263                info->qsize = 0;
 264                info->user = NULL;      /* set when all is ok */
 265                info->msg_tree = RB_ROOT;
 266                info->msg_tree_rightmost = NULL;
 267                info->node_cache = NULL;
 268                memset(&info->attr, 0, sizeof(info->attr));
 269                info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 270                                           ipc_ns->mq_msg_default);
 271                info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 272                                            ipc_ns->mq_msgsize_default);
 273                if (attr) {
 274                        info->attr.mq_maxmsg = attr->mq_maxmsg;
 275                        info->attr.mq_msgsize = attr->mq_msgsize;
 276                }
 277                /*
 278                 * We used to allocate a static array of pointers and account
 279                 * the size of that array as well as one msg_msg struct per
 280                 * possible message into the queue size. That's no longer
 281                 * accurate as the queue is now an rbtree and will grow and
 282                 * shrink depending on usage patterns.  We can, however, still
 283                 * account one msg_msg struct per message, but the nodes are
 284                 * allocated depending on priority usage, and most programs
 285                 * only use one, or a handful, of priorities.  However, since
 286                 * this is pinned memory, we need to assume worst case, so
 287                 * that means the min(mq_maxmsg, max_priorities) * struct
 288                 * posix_msg_tree_node.
 289                 */
 290
 291                ret = -EINVAL;
 292                if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
 293                        goto out_inode;
 294                if (capable(CAP_SYS_RESOURCE)) {
 295                        if (info->attr.mq_maxmsg > HARD_MSGMAX ||
 296                            info->attr.mq_msgsize > HARD_MSGSIZEMAX)
 297                                goto out_inode;
 298                } else {
 299                        if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
 300                                        info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
 301                                goto out_inode;
 302                }
 303                ret = -EOVERFLOW;
 304                /* check for overflow */
 305                if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
 306                        goto out_inode;
 307                mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 308                        min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 309                        sizeof(struct posix_msg_tree_node);
 310                mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
 311                if (mq_bytes + mq_treesize < mq_bytes)
 312                        goto out_inode;
 313                mq_bytes += mq_treesize;
 314                spin_lock(&mq_lock);
 315                if (u->mq_bytes + mq_bytes < u->mq_bytes ||
 316                    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
 317                        spin_unlock(&mq_lock);
 318                        /* mqueue_evict_inode() releases info->messages */
 319                        ret = -EMFILE;
 320                        goto out_inode;
 321                }
 322                u->mq_bytes += mq_bytes;
 323                spin_unlock(&mq_lock);
 324
 325                /* all is ok */
 326                info->user = get_uid(u);
 327        } else if (S_ISDIR(mode)) {
 328                inc_nlink(inode);
 329                /* Some things misbehave if size == 0 on a directory */
 330                inode->i_size = 2 * DIRENT_SIZE;
 331                inode->i_op = &mqueue_dir_inode_operations;
 332                inode->i_fop = &simple_dir_operations;
 333        }
 334
 335        return inode;
 336out_inode:
 337        iput(inode);
 338err:
 339        return ERR_PTR(ret);
 340}
 341
 342static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
 343{
 344        struct inode *inode;
 345        struct ipc_namespace *ns = sb->s_fs_info;
 346
 347        sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
 348        sb->s_blocksize = PAGE_SIZE;
 349        sb->s_blocksize_bits = PAGE_SHIFT;
 350        sb->s_magic = MQUEUE_MAGIC;
 351        sb->s_op = &mqueue_super_ops;
 352
 353        inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
 354        if (IS_ERR(inode))
 355                return PTR_ERR(inode);
 356
 357        sb->s_root = d_make_root(inode);
 358        if (!sb->s_root)
 359                return -ENOMEM;
 360        return 0;
 361}
 362
 363static int mqueue_get_tree(struct fs_context *fc)
 364{
 365        struct mqueue_fs_context *ctx = fc->fs_private;
 366
 367        fc->s_fs_info = ctx->ipc_ns;
 368        return vfs_get_super(fc, vfs_get_keyed_super, mqueue_fill_super);
 369}
 370
 371static void mqueue_fs_context_free(struct fs_context *fc)
 372{
 373        struct mqueue_fs_context *ctx = fc->fs_private;
 374
 375        put_ipc_ns(ctx->ipc_ns);
 376        kfree(ctx);
 377}
 378
 379static int mqueue_init_fs_context(struct fs_context *fc)
 380{
 381        struct mqueue_fs_context *ctx;
 382
 383        ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
 384        if (!ctx)
 385                return -ENOMEM;
 386
 387        ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
 388        put_user_ns(fc->user_ns);
 389        fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
 390        fc->fs_private = ctx;
 391        fc->ops = &mqueue_fs_context_ops;
 392        return 0;
 393}
 394
 395static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
 396{
 397        struct mqueue_fs_context *ctx;
 398        struct fs_context *fc;
 399        struct vfsmount *mnt;
 400
 401        fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
 402        if (IS_ERR(fc))
 403                return ERR_CAST(fc);
 404
 405        ctx = fc->fs_private;
 406        put_ipc_ns(ctx->ipc_ns);
 407        ctx->ipc_ns = get_ipc_ns(ns);
 408        put_user_ns(fc->user_ns);
 409        fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
 410
 411        mnt = fc_mount(fc);
 412        put_fs_context(fc);
 413        return mnt;
 414}
 415
 416static void init_once(void *foo)
 417{
 418        struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
 419
 420        inode_init_once(&p->vfs_inode);
 421}
 422
 423static struct inode *mqueue_alloc_inode(struct super_block *sb)
 424{
 425        struct mqueue_inode_info *ei;
 426
 427        ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
 428        if (!ei)
 429                return NULL;
 430        return &ei->vfs_inode;
 431}
 432
 433static void mqueue_free_inode(struct inode *inode)
 434{
 435        kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
 436}
 437
 438static void mqueue_evict_inode(struct inode *inode)
 439{
 440        struct mqueue_inode_info *info;
 441        struct user_struct *user;
 442        struct ipc_namespace *ipc_ns;
 443        struct msg_msg *msg, *nmsg;
 444        LIST_HEAD(tmp_msg);
 445
 446        clear_inode(inode);
 447
 448        if (S_ISDIR(inode->i_mode))
 449                return;
 450
 451        ipc_ns = get_ns_from_inode(inode);
 452        info = MQUEUE_I(inode);
 453        spin_lock(&info->lock);
 454        while ((msg = msg_get(info)) != NULL)
 455                list_add_tail(&msg->m_list, &tmp_msg);
 456        kfree(info->node_cache);
 457        spin_unlock(&info->lock);
 458
 459        list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
 460                list_del(&msg->m_list);
 461                free_msg(msg);
 462        }
 463
 464        user = info->user;
 465        if (user) {
 466                unsigned long mq_bytes, mq_treesize;
 467
 468                /* Total amount of bytes accounted for the mqueue */
 469                mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 470                        min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 471                        sizeof(struct posix_msg_tree_node);
 472
 473                mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 474                                          info->attr.mq_msgsize);
 475
 476                spin_lock(&mq_lock);
 477                user->mq_bytes -= mq_bytes;
 478                /*
 479                 * get_ns_from_inode() ensures that the
 480                 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
 481                 * to which we now hold a reference, or it is NULL.
 482                 * We can't put it here under mq_lock, though.
 483                 */
 484                if (ipc_ns)
 485                        ipc_ns->mq_queues_count--;
 486                spin_unlock(&mq_lock);
 487                free_uid(user);
 488        }
 489        if (ipc_ns)
 490                put_ipc_ns(ipc_ns);
 491}
 492
 493static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
 494{
 495        struct inode *dir = dentry->d_parent->d_inode;
 496        struct inode *inode;
 497        struct mq_attr *attr = arg;
 498        int error;
 499        struct ipc_namespace *ipc_ns;
 500
 501        spin_lock(&mq_lock);
 502        ipc_ns = __get_ns_from_inode(dir);
 503        if (!ipc_ns) {
 504                error = -EACCES;
 505                goto out_unlock;
 506        }
 507
 508        if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
 509            !capable(CAP_SYS_RESOURCE)) {
 510                error = -ENOSPC;
 511                goto out_unlock;
 512        }
 513        ipc_ns->mq_queues_count++;
 514        spin_unlock(&mq_lock);
 515
 516        inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
 517        if (IS_ERR(inode)) {
 518                error = PTR_ERR(inode);
 519                spin_lock(&mq_lock);
 520                ipc_ns->mq_queues_count--;
 521                goto out_unlock;
 522        }
 523
 524        put_ipc_ns(ipc_ns);
 525        dir->i_size += DIRENT_SIZE;
 526        dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 527
 528        d_instantiate(dentry, inode);
 529        dget(dentry);
 530        return 0;
 531out_unlock:
 532        spin_unlock(&mq_lock);
 533        if (ipc_ns)
 534                put_ipc_ns(ipc_ns);
 535        return error;
 536}
 537
 538static int mqueue_create(struct inode *dir, struct dentry *dentry,
 539                                umode_t mode, bool excl)
 540{
 541        return mqueue_create_attr(dentry, mode, NULL);
 542}
 543
 544static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
 545{
 546        struct inode *inode = d_inode(dentry);
 547
 548        dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 549        dir->i_size -= DIRENT_SIZE;
 550        drop_nlink(inode);
 551        dput(dentry);
 552        return 0;
 553}
 554
 555/*
 556*       This is routine for system read from queue file.
 557*       To avoid mess with doing here some sort of mq_receive we allow
 558*       to read only queue size & notification info (the only values
 559*       that are interesting from user point of view and aren't accessible
 560*       through std routines)
 561*/
 562static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
 563                                size_t count, loff_t *off)
 564{
 565        struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 566        char buffer[FILENT_SIZE];
 567        ssize_t ret;
 568
 569        spin_lock(&info->lock);
 570        snprintf(buffer, sizeof(buffer),
 571                        "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
 572                        info->qsize,
 573                        info->notify_owner ? info->notify.sigev_notify : 0,
 574                        (info->notify_owner &&
 575                         info->notify.sigev_notify == SIGEV_SIGNAL) ?
 576                                info->notify.sigev_signo : 0,
 577                        pid_vnr(info->notify_owner));
 578        spin_unlock(&info->lock);
 579        buffer[sizeof(buffer)-1] = '\0';
 580
 581        ret = simple_read_from_buffer(u_data, count, off, buffer,
 582                                strlen(buffer));
 583        if (ret <= 0)
 584                return ret;
 585
 586        file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
 587        return ret;
 588}
 589
 590static int mqueue_flush_file(struct file *filp, fl_owner_t id)
 591{
 592        struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 593
 594        spin_lock(&info->lock);
 595        if (task_tgid(current) == info->notify_owner)
 596                remove_notification(info);
 597
 598        spin_unlock(&info->lock);
 599        return 0;
 600}
 601
 602static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
 603{
 604        struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 605        __poll_t retval = 0;
 606
 607        poll_wait(filp, &info->wait_q, poll_tab);
 608
 609        spin_lock(&info->lock);
 610        if (info->attr.mq_curmsgs)
 611                retval = EPOLLIN | EPOLLRDNORM;
 612
 613        if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
 614                retval |= EPOLLOUT | EPOLLWRNORM;
 615        spin_unlock(&info->lock);
 616
 617        return retval;
 618}
 619
 620/* Adds current to info->e_wait_q[sr] before element with smaller prio */
 621static void wq_add(struct mqueue_inode_info *info, int sr,
 622                        struct ext_wait_queue *ewp)
 623{
 624        struct ext_wait_queue *walk;
 625
 626        list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
 627                if (walk->task->prio <= current->prio) {
 628                        list_add_tail(&ewp->list, &walk->list);
 629                        return;
 630                }
 631        }
 632        list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
 633}
 634
 635/*
 636 * Puts current task to sleep. Caller must hold queue lock. After return
 637 * lock isn't held.
 638 * sr: SEND or RECV
 639 */
 640static int wq_sleep(struct mqueue_inode_info *info, int sr,
 641                    ktime_t *timeout, struct ext_wait_queue *ewp)
 642        __releases(&info->lock)
 643{
 644        int retval;
 645        signed long time;
 646
 647        wq_add(info, sr, ewp);
 648
 649        for (;;) {
 650                __set_current_state(TASK_INTERRUPTIBLE);
 651
 652                spin_unlock(&info->lock);
 653                time = schedule_hrtimeout_range_clock(timeout, 0,
 654                        HRTIMER_MODE_ABS, CLOCK_REALTIME);
 655
 656                if (ewp->state == STATE_READY) {
 657                        retval = 0;
 658                        goto out;
 659                }
 660                spin_lock(&info->lock);
 661                if (ewp->state == STATE_READY) {
 662                        retval = 0;
 663                        goto out_unlock;
 664                }
 665                if (signal_pending(current)) {
 666                        retval = -ERESTARTSYS;
 667                        break;
 668                }
 669                if (time == 0) {
 670                        retval = -ETIMEDOUT;
 671                        break;
 672                }
 673        }
 674        list_del(&ewp->list);
 675out_unlock:
 676        spin_unlock(&info->lock);
 677out:
 678        return retval;
 679}
 680
 681/*
 682 * Returns waiting task that should be serviced first or NULL if none exists
 683 */
 684static struct ext_wait_queue *wq_get_first_waiter(
 685                struct mqueue_inode_info *info, int sr)
 686{
 687        struct list_head *ptr;
 688
 689        ptr = info->e_wait_q[sr].list.prev;
 690        if (ptr == &info->e_wait_q[sr].list)
 691                return NULL;
 692        return list_entry(ptr, struct ext_wait_queue, list);
 693}
 694
 695
 696static inline void set_cookie(struct sk_buff *skb, char code)
 697{
 698        ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
 699}
 700
 701/*
 702 * The next function is only to split too long sys_mq_timedsend
 703 */
 704static void __do_notify(struct mqueue_inode_info *info)
 705{
 706        /* notification
 707         * invoked when there is registered process and there isn't process
 708         * waiting synchronously for message AND state of queue changed from
 709         * empty to not empty. Here we are sure that no one is waiting
 710         * synchronously. */
 711        if (info->notify_owner &&
 712            info->attr.mq_curmsgs == 1) {
 713                struct kernel_siginfo sig_i;
 714                switch (info->notify.sigev_notify) {
 715                case SIGEV_NONE:
 716                        break;
 717                case SIGEV_SIGNAL:
 718                        /* sends signal */
 719
 720                        clear_siginfo(&sig_i);
 721                        sig_i.si_signo = info->notify.sigev_signo;
 722                        sig_i.si_errno = 0;
 723                        sig_i.si_code = SI_MESGQ;
 724                        sig_i.si_value = info->notify.sigev_value;
 725                        /* map current pid/uid into info->owner's namespaces */
 726                        rcu_read_lock();
 727                        sig_i.si_pid = task_tgid_nr_ns(current,
 728                                                ns_of_pid(info->notify_owner));
 729                        sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
 730                        rcu_read_unlock();
 731
 732                        kill_pid_info(info->notify.sigev_signo,
 733                                      &sig_i, info->notify_owner);
 734                        break;
 735                case SIGEV_THREAD:
 736                        set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
 737                        netlink_sendskb(info->notify_sock, info->notify_cookie);
 738                        break;
 739                }
 740                /* after notification unregisters process */
 741                put_pid(info->notify_owner);
 742                put_user_ns(info->notify_user_ns);
 743                info->notify_owner = NULL;
 744                info->notify_user_ns = NULL;
 745        }
 746        wake_up(&info->wait_q);
 747}
 748
 749static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
 750                           struct timespec64 *ts)
 751{
 752        if (get_timespec64(ts, u_abs_timeout))
 753                return -EFAULT;
 754        if (!timespec64_valid(ts))
 755                return -EINVAL;
 756        return 0;
 757}
 758
 759static void remove_notification(struct mqueue_inode_info *info)
 760{
 761        if (info->notify_owner != NULL &&
 762            info->notify.sigev_notify == SIGEV_THREAD) {
 763                set_cookie(info->notify_cookie, NOTIFY_REMOVED);
 764                netlink_sendskb(info->notify_sock, info->notify_cookie);
 765        }
 766        put_pid(info->notify_owner);
 767        put_user_ns(info->notify_user_ns);
 768        info->notify_owner = NULL;
 769        info->notify_user_ns = NULL;
 770}
 771
 772static int prepare_open(struct dentry *dentry, int oflag, int ro,
 773                        umode_t mode, struct filename *name,
 774                        struct mq_attr *attr)
 775{
 776        static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
 777                                                  MAY_READ | MAY_WRITE };
 778        int acc;
 779
 780        if (d_really_is_negative(dentry)) {
 781                if (!(oflag & O_CREAT))
 782                        return -ENOENT;
 783                if (ro)
 784                        return ro;
 785                audit_inode_parent_hidden(name, dentry->d_parent);
 786                return vfs_mkobj(dentry, mode & ~current_umask(),
 787                                  mqueue_create_attr, attr);
 788        }
 789        /* it already existed */
 790        audit_inode(name, dentry, 0);
 791        if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
 792                return -EEXIST;
 793        if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
 794                return -EINVAL;
 795        acc = oflag2acc[oflag & O_ACCMODE];
 796        return inode_permission(d_inode(dentry), acc);
 797}
 798
 799static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
 800                      struct mq_attr *attr)
 801{
 802        struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
 803        struct dentry *root = mnt->mnt_root;
 804        struct filename *name;
 805        struct path path;
 806        int fd, error;
 807        int ro;
 808
 809        audit_mq_open(oflag, mode, attr);
 810
 811        if (IS_ERR(name = getname(u_name)))
 812                return PTR_ERR(name);
 813
 814        fd = get_unused_fd_flags(O_CLOEXEC);
 815        if (fd < 0)
 816                goto out_putname;
 817
 818        ro = mnt_want_write(mnt);       /* we'll drop it in any case */
 819        inode_lock(d_inode(root));
 820        path.dentry = lookup_one_len(name->name, root, strlen(name->name));
 821        if (IS_ERR(path.dentry)) {
 822                error = PTR_ERR(path.dentry);
 823                goto out_putfd;
 824        }
 825        path.mnt = mntget(mnt);
 826        error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
 827        if (!error) {
 828                struct file *file = dentry_open(&path, oflag, current_cred());
 829                if (!IS_ERR(file))
 830                        fd_install(fd, file);
 831                else
 832                        error = PTR_ERR(file);
 833        }
 834        path_put(&path);
 835out_putfd:
 836        if (error) {
 837                put_unused_fd(fd);
 838                fd = error;
 839        }
 840        inode_unlock(d_inode(root));
 841        if (!ro)
 842                mnt_drop_write(mnt);
 843out_putname:
 844        putname(name);
 845        return fd;
 846}
 847
 848SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
 849                struct mq_attr __user *, u_attr)
 850{
 851        struct mq_attr attr;
 852        if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
 853                return -EFAULT;
 854
 855        return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
 856}
 857
 858SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
 859{
 860        int err;
 861        struct filename *name;
 862        struct dentry *dentry;
 863        struct inode *inode = NULL;
 864        struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 865        struct vfsmount *mnt = ipc_ns->mq_mnt;
 866
 867        name = getname(u_name);
 868        if (IS_ERR(name))
 869                return PTR_ERR(name);
 870
 871        audit_inode_parent_hidden(name, mnt->mnt_root);
 872        err = mnt_want_write(mnt);
 873        if (err)
 874                goto out_name;
 875        inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
 876        dentry = lookup_one_len(name->name, mnt->mnt_root,
 877                                strlen(name->name));
 878        if (IS_ERR(dentry)) {
 879                err = PTR_ERR(dentry);
 880                goto out_unlock;
 881        }
 882
 883        inode = d_inode(dentry);
 884        if (!inode) {
 885                err = -ENOENT;
 886        } else {
 887                ihold(inode);
 888                err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
 889        }
 890        dput(dentry);
 891
 892out_unlock:
 893        inode_unlock(d_inode(mnt->mnt_root));
 894        if (inode)
 895                iput(inode);
 896        mnt_drop_write(mnt);
 897out_name:
 898        putname(name);
 899
 900        return err;
 901}
 902
 903/* Pipelined send and receive functions.
 904 *
 905 * If a receiver finds no waiting message, then it registers itself in the
 906 * list of waiting receivers. A sender checks that list before adding the new
 907 * message into the message array. If there is a waiting receiver, then it
 908 * bypasses the message array and directly hands the message over to the
 909 * receiver. The receiver accepts the message and returns without grabbing the
 910 * queue spinlock:
 911 *
 912 * - Set pointer to message.
 913 * - Queue the receiver task for later wakeup (without the info->lock).
 914 * - Update its state to STATE_READY. Now the receiver can continue.
 915 * - Wake up the process after the lock is dropped. Should the process wake up
 916 *   before this wakeup (due to a timeout or a signal) it will either see
 917 *   STATE_READY and continue or acquire the lock to check the state again.
 918 *
 919 * The same algorithm is used for senders.
 920 */
 921
 922/* pipelined_send() - send a message directly to the task waiting in
 923 * sys_mq_timedreceive() (without inserting message into a queue).
 924 */
 925static inline void pipelined_send(struct wake_q_head *wake_q,
 926                                  struct mqueue_inode_info *info,
 927                                  struct msg_msg *message,
 928                                  struct ext_wait_queue *receiver)
 929{
 930        receiver->msg = message;
 931        list_del(&receiver->list);
 932        wake_q_add(wake_q, receiver->task);
 933        /*
 934         * Rely on the implicit cmpxchg barrier from wake_q_add such
 935         * that we can ensure that updating receiver->state is the last
 936         * write operation: As once set, the receiver can continue,
 937         * and if we don't have the reference count from the wake_q,
 938         * yet, at that point we can later have a use-after-free
 939         * condition and bogus wakeup.
 940         */
 941        receiver->state = STATE_READY;
 942}
 943
 944/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
 945 * gets its message and put to the queue (we have one free place for sure). */
 946static inline void pipelined_receive(struct wake_q_head *wake_q,
 947                                     struct mqueue_inode_info *info)
 948{
 949        struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
 950
 951        if (!sender) {
 952                /* for poll */
 953                wake_up_interruptible(&info->wait_q);
 954                return;
 955        }
 956        if (msg_insert(sender->msg, info))
 957                return;
 958
 959        list_del(&sender->list);
 960        wake_q_add(wake_q, sender->task);
 961        sender->state = STATE_READY;
 962}
 963
 964static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
 965                size_t msg_len, unsigned int msg_prio,
 966                struct timespec64 *ts)
 967{
 968        struct fd f;
 969        struct inode *inode;
 970        struct ext_wait_queue wait;
 971        struct ext_wait_queue *receiver;
 972        struct msg_msg *msg_ptr;
 973        struct mqueue_inode_info *info;
 974        ktime_t expires, *timeout = NULL;
 975        struct posix_msg_tree_node *new_leaf = NULL;
 976        int ret = 0;
 977        DEFINE_WAKE_Q(wake_q);
 978
 979        if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
 980                return -EINVAL;
 981
 982        if (ts) {
 983                expires = timespec64_to_ktime(*ts);
 984                timeout = &expires;
 985        }
 986
 987        audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
 988
 989        f = fdget(mqdes);
 990        if (unlikely(!f.file)) {
 991                ret = -EBADF;
 992                goto out;
 993        }
 994
 995        inode = file_inode(f.file);
 996        if (unlikely(f.file->f_op != &mqueue_file_operations)) {
 997                ret = -EBADF;
 998                goto out_fput;
 999        }
1000        info = MQUEUE_I(inode);
1001        audit_file(f.file);
1002
1003        if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1004                ret = -EBADF;
1005                goto out_fput;
1006        }
1007
1008        if (unlikely(msg_len > info->attr.mq_msgsize)) {
1009                ret = -EMSGSIZE;
1010                goto out_fput;
1011        }
1012
1013        /* First try to allocate memory, before doing anything with
1014         * existing queues. */
1015        msg_ptr = load_msg(u_msg_ptr, msg_len);
1016        if (IS_ERR(msg_ptr)) {
1017                ret = PTR_ERR(msg_ptr);
1018                goto out_fput;
1019        }
1020        msg_ptr->m_ts = msg_len;
1021        msg_ptr->m_type = msg_prio;
1022
1023        /*
1024         * msg_insert really wants us to have a valid, spare node struct so
1025         * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1026         * fall back to that if necessary.
1027         */
1028        if (!info->node_cache)
1029                new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1030
1031        spin_lock(&info->lock);
1032
1033        if (!info->node_cache && new_leaf) {
1034                /* Save our speculative allocation into the cache */
1035                INIT_LIST_HEAD(&new_leaf->msg_list);
1036                info->node_cache = new_leaf;
1037                new_leaf = NULL;
1038        } else {
1039                kfree(new_leaf);
1040        }
1041
1042        if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1043                if (f.file->f_flags & O_NONBLOCK) {
1044                        ret = -EAGAIN;
1045                } else {
1046                        wait.task = current;
1047                        wait.msg = (void *) msg_ptr;
1048                        wait.state = STATE_NONE;
1049                        ret = wq_sleep(info, SEND, timeout, &wait);
1050                        /*
1051                         * wq_sleep must be called with info->lock held, and
1052                         * returns with the lock released
1053                         */
1054                        goto out_free;
1055                }
1056        } else {
1057                receiver = wq_get_first_waiter(info, RECV);
1058                if (receiver) {
1059                        pipelined_send(&wake_q, info, msg_ptr, receiver);
1060                } else {
1061                        /* adds message to the queue */
1062                        ret = msg_insert(msg_ptr, info);
1063                        if (ret)
1064                                goto out_unlock;
1065                        __do_notify(info);
1066                }
1067                inode->i_atime = inode->i_mtime = inode->i_ctime =
1068                                current_time(inode);
1069        }
1070out_unlock:
1071        spin_unlock(&info->lock);
1072        wake_up_q(&wake_q);
1073out_free:
1074        if (ret)
1075                free_msg(msg_ptr);
1076out_fput:
1077        fdput(f);
1078out:
1079        return ret;
1080}
1081
1082static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1083                size_t msg_len, unsigned int __user *u_msg_prio,
1084                struct timespec64 *ts)
1085{
1086        ssize_t ret;
1087        struct msg_msg *msg_ptr;
1088        struct fd f;
1089        struct inode *inode;
1090        struct mqueue_inode_info *info;
1091        struct ext_wait_queue wait;
1092        ktime_t expires, *timeout = NULL;
1093        struct posix_msg_tree_node *new_leaf = NULL;
1094
1095        if (ts) {
1096                expires = timespec64_to_ktime(*ts);
1097                timeout = &expires;
1098        }
1099
1100        audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1101
1102        f = fdget(mqdes);
1103        if (unlikely(!f.file)) {
1104                ret = -EBADF;
1105                goto out;
1106        }
1107
1108        inode = file_inode(f.file);
1109        if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1110                ret = -EBADF;
1111                goto out_fput;
1112        }
1113        info = MQUEUE_I(inode);
1114        audit_file(f.file);
1115
1116        if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1117                ret = -EBADF;
1118                goto out_fput;
1119        }
1120
1121        /* checks if buffer is big enough */
1122        if (unlikely(msg_len < info->attr.mq_msgsize)) {
1123                ret = -EMSGSIZE;
1124                goto out_fput;
1125        }
1126
1127        /*
1128         * msg_insert really wants us to have a valid, spare node struct so
1129         * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1130         * fall back to that if necessary.
1131         */
1132        if (!info->node_cache)
1133                new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1134
1135        spin_lock(&info->lock);
1136
1137        if (!info->node_cache && new_leaf) {
1138                /* Save our speculative allocation into the cache */
1139                INIT_LIST_HEAD(&new_leaf->msg_list);
1140                info->node_cache = new_leaf;
1141        } else {
1142                kfree(new_leaf);
1143        }
1144
1145        if (info->attr.mq_curmsgs == 0) {
1146                if (f.file->f_flags & O_NONBLOCK) {
1147                        spin_unlock(&info->lock);
1148                        ret = -EAGAIN;
1149                } else {
1150                        wait.task = current;
1151                        wait.state = STATE_NONE;
1152                        ret = wq_sleep(info, RECV, timeout, &wait);
1153                        msg_ptr = wait.msg;
1154                }
1155        } else {
1156                DEFINE_WAKE_Q(wake_q);
1157
1158                msg_ptr = msg_get(info);
1159
1160                inode->i_atime = inode->i_mtime = inode->i_ctime =
1161                                current_time(inode);
1162
1163                /* There is now free space in queue. */
1164                pipelined_receive(&wake_q, info);
1165                spin_unlock(&info->lock);
1166                wake_up_q(&wake_q);
1167                ret = 0;
1168        }
1169        if (ret == 0) {
1170                ret = msg_ptr->m_ts;
1171
1172                if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1173                        store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1174                        ret = -EFAULT;
1175                }
1176                free_msg(msg_ptr);
1177        }
1178out_fput:
1179        fdput(f);
1180out:
1181        return ret;
1182}
1183
1184SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1185                size_t, msg_len, unsigned int, msg_prio,
1186                const struct __kernel_timespec __user *, u_abs_timeout)
1187{
1188        struct timespec64 ts, *p = NULL;
1189        if (u_abs_timeout) {
1190                int res = prepare_timeout(u_abs_timeout, &ts);
1191                if (res)
1192                        return res;
1193                p = &ts;
1194        }
1195        return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1196}
1197
1198SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1199                size_t, msg_len, unsigned int __user *, u_msg_prio,
1200                const struct __kernel_timespec __user *, u_abs_timeout)
1201{
1202        struct timespec64 ts, *p = NULL;
1203        if (u_abs_timeout) {
1204                int res = prepare_timeout(u_abs_timeout, &ts);
1205                if (res)
1206                        return res;
1207                p = &ts;
1208        }
1209        return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1210}
1211
1212/*
1213 * Notes: the case when user wants us to deregister (with NULL as pointer)
1214 * and he isn't currently owner of notification, will be silently discarded.
1215 * It isn't explicitly defined in the POSIX.
1216 */
1217static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1218{
1219        int ret;
1220        struct fd f;
1221        struct sock *sock;
1222        struct inode *inode;
1223        struct mqueue_inode_info *info;
1224        struct sk_buff *nc;
1225
1226        audit_mq_notify(mqdes, notification);
1227
1228        nc = NULL;
1229        sock = NULL;
1230        if (notification != NULL) {
1231                if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1232                             notification->sigev_notify != SIGEV_SIGNAL &&
1233                             notification->sigev_notify != SIGEV_THREAD))
1234                        return -EINVAL;
1235                if (notification->sigev_notify == SIGEV_SIGNAL &&
1236                        !valid_signal(notification->sigev_signo)) {
1237                        return -EINVAL;
1238                }
1239                if (notification->sigev_notify == SIGEV_THREAD) {
1240                        long timeo;
1241
1242                        /* create the notify skb */
1243                        nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1244                        if (!nc) {
1245                                ret = -ENOMEM;
1246                                goto out;
1247                        }
1248                        if (copy_from_user(nc->data,
1249                                        notification->sigev_value.sival_ptr,
1250                                        NOTIFY_COOKIE_LEN)) {
1251                                ret = -EFAULT;
1252                                goto out;
1253                        }
1254
1255                        /* TODO: add a header? */
1256                        skb_put(nc, NOTIFY_COOKIE_LEN);
1257                        /* and attach it to the socket */
1258retry:
1259                        f = fdget(notification->sigev_signo);
1260                        if (!f.file) {
1261                                ret = -EBADF;
1262                                goto out;
1263                        }
1264                        sock = netlink_getsockbyfilp(f.file);
1265                        fdput(f);
1266                        if (IS_ERR(sock)) {
1267                                ret = PTR_ERR(sock);
1268                                sock = NULL;
1269                                goto out;
1270                        }
1271
1272                        timeo = MAX_SCHEDULE_TIMEOUT;
1273                        ret = netlink_attachskb(sock, nc, &timeo, NULL);
1274                        if (ret == 1) {
1275                                sock = NULL;
1276                                goto retry;
1277                        }
1278                        if (ret) {
1279                                sock = NULL;
1280                                nc = NULL;
1281                                goto out;
1282                        }
1283                }
1284        }
1285
1286        f = fdget(mqdes);
1287        if (!f.file) {
1288                ret = -EBADF;
1289                goto out;
1290        }
1291
1292        inode = file_inode(f.file);
1293        if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1294                ret = -EBADF;
1295                goto out_fput;
1296        }
1297        info = MQUEUE_I(inode);
1298
1299        ret = 0;
1300        spin_lock(&info->lock);
1301        if (notification == NULL) {
1302                if (info->notify_owner == task_tgid(current)) {
1303                        remove_notification(info);
1304                        inode->i_atime = inode->i_ctime = current_time(inode);
1305                }
1306        } else if (info->notify_owner != NULL) {
1307                ret = -EBUSY;
1308        } else {
1309                switch (notification->sigev_notify) {
1310                case SIGEV_NONE:
1311                        info->notify.sigev_notify = SIGEV_NONE;
1312                        break;
1313                case SIGEV_THREAD:
1314                        info->notify_sock = sock;
1315                        info->notify_cookie = nc;
1316                        sock = NULL;
1317                        nc = NULL;
1318                        info->notify.sigev_notify = SIGEV_THREAD;
1319                        break;
1320                case SIGEV_SIGNAL:
1321                        info->notify.sigev_signo = notification->sigev_signo;
1322                        info->notify.sigev_value = notification->sigev_value;
1323                        info->notify.sigev_notify = SIGEV_SIGNAL;
1324                        break;
1325                }
1326
1327                info->notify_owner = get_pid(task_tgid(current));
1328                info->notify_user_ns = get_user_ns(current_user_ns());
1329                inode->i_atime = inode->i_ctime = current_time(inode);
1330        }
1331        spin_unlock(&info->lock);
1332out_fput:
1333        fdput(f);
1334out:
1335        if (sock)
1336                netlink_detachskb(sock, nc);
1337        else if (nc)
1338                dev_kfree_skb(nc);
1339
1340        return ret;
1341}
1342
1343SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1344                const struct sigevent __user *, u_notification)
1345{
1346        struct sigevent n, *p = NULL;
1347        if (u_notification) {
1348                if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1349                        return -EFAULT;
1350                p = &n;
1351        }
1352        return do_mq_notify(mqdes, p);
1353}
1354
1355static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1356{
1357        struct fd f;
1358        struct inode *inode;
1359        struct mqueue_inode_info *info;
1360
1361        if (new && (new->mq_flags & (~O_NONBLOCK)))
1362                return -EINVAL;
1363
1364        f = fdget(mqdes);
1365        if (!f.file)
1366                return -EBADF;
1367
1368        if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1369                fdput(f);
1370                return -EBADF;
1371        }
1372
1373        inode = file_inode(f.file);
1374        info = MQUEUE_I(inode);
1375
1376        spin_lock(&info->lock);
1377
1378        if (old) {
1379                *old = info->attr;
1380                old->mq_flags = f.file->f_flags & O_NONBLOCK;
1381        }
1382        if (new) {
1383                audit_mq_getsetattr(mqdes, new);
1384                spin_lock(&f.file->f_lock);
1385                if (new->mq_flags & O_NONBLOCK)
1386                        f.file->f_flags |= O_NONBLOCK;
1387                else
1388                        f.file->f_flags &= ~O_NONBLOCK;
1389                spin_unlock(&f.file->f_lock);
1390
1391                inode->i_atime = inode->i_ctime = current_time(inode);
1392        }
1393
1394        spin_unlock(&info->lock);
1395        fdput(f);
1396        return 0;
1397}
1398
1399SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1400                const struct mq_attr __user *, u_mqstat,
1401                struct mq_attr __user *, u_omqstat)
1402{
1403        int ret;
1404        struct mq_attr mqstat, omqstat;
1405        struct mq_attr *new = NULL, *old = NULL;
1406
1407        if (u_mqstat) {
1408                new = &mqstat;
1409                if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1410                        return -EFAULT;
1411        }
1412        if (u_omqstat)
1413                old = &omqstat;
1414
1415        ret = do_mq_getsetattr(mqdes, new, old);
1416        if (ret || !old)
1417                return ret;
1418
1419        if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1420                return -EFAULT;
1421        return 0;
1422}
1423
1424#ifdef CONFIG_COMPAT
1425
1426struct compat_mq_attr {
1427        compat_long_t mq_flags;      /* message queue flags                  */
1428        compat_long_t mq_maxmsg;     /* maximum number of messages           */
1429        compat_long_t mq_msgsize;    /* maximum message size                 */
1430        compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1431        compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1432};
1433
1434static inline int get_compat_mq_attr(struct mq_attr *attr,
1435                        const struct compat_mq_attr __user *uattr)
1436{
1437        struct compat_mq_attr v;
1438
1439        if (copy_from_user(&v, uattr, sizeof(*uattr)))
1440                return -EFAULT;
1441
1442        memset(attr, 0, sizeof(*attr));
1443        attr->mq_flags = v.mq_flags;
1444        attr->mq_maxmsg = v.mq_maxmsg;
1445        attr->mq_msgsize = v.mq_msgsize;
1446        attr->mq_curmsgs = v.mq_curmsgs;
1447        return 0;
1448}
1449
1450static inline int put_compat_mq_attr(const struct mq_attr *attr,
1451                        struct compat_mq_attr __user *uattr)
1452{
1453        struct compat_mq_attr v;
1454
1455        memset(&v, 0, sizeof(v));
1456        v.mq_flags = attr->mq_flags;
1457        v.mq_maxmsg = attr->mq_maxmsg;
1458        v.mq_msgsize = attr->mq_msgsize;
1459        v.mq_curmsgs = attr->mq_curmsgs;
1460        if (copy_to_user(uattr, &v, sizeof(*uattr)))
1461                return -EFAULT;
1462        return 0;
1463}
1464
1465COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1466                       int, oflag, compat_mode_t, mode,
1467                       struct compat_mq_attr __user *, u_attr)
1468{
1469        struct mq_attr attr, *p = NULL;
1470        if (u_attr && oflag & O_CREAT) {
1471                p = &attr;
1472                if (get_compat_mq_attr(&attr, u_attr))
1473                        return -EFAULT;
1474        }
1475        return do_mq_open(u_name, oflag, mode, p);
1476}
1477
1478COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1479                       const struct compat_sigevent __user *, u_notification)
1480{
1481        struct sigevent n, *p = NULL;
1482        if (u_notification) {
1483                if (get_compat_sigevent(&n, u_notification))
1484                        return -EFAULT;
1485                if (n.sigev_notify == SIGEV_THREAD)
1486                        n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1487                p = &n;
1488        }
1489        return do_mq_notify(mqdes, p);
1490}
1491
1492COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1493                       const struct compat_mq_attr __user *, u_mqstat,
1494                       struct compat_mq_attr __user *, u_omqstat)
1495{
1496        int ret;
1497        struct mq_attr mqstat, omqstat;
1498        struct mq_attr *new = NULL, *old = NULL;
1499
1500        if (u_mqstat) {
1501                new = &mqstat;
1502                if (get_compat_mq_attr(new, u_mqstat))
1503                        return -EFAULT;
1504        }
1505        if (u_omqstat)
1506                old = &omqstat;
1507
1508        ret = do_mq_getsetattr(mqdes, new, old);
1509        if (ret || !old)
1510                return ret;
1511
1512        if (put_compat_mq_attr(old, u_omqstat))
1513                return -EFAULT;
1514        return 0;
1515}
1516#endif
1517
1518#ifdef CONFIG_COMPAT_32BIT_TIME
1519static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1520                                   struct timespec64 *ts)
1521{
1522        if (get_old_timespec32(ts, p))
1523                return -EFAULT;
1524        if (!timespec64_valid(ts))
1525                return -EINVAL;
1526        return 0;
1527}
1528
1529SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1530                const char __user *, u_msg_ptr,
1531                unsigned int, msg_len, unsigned int, msg_prio,
1532                const struct old_timespec32 __user *, u_abs_timeout)
1533{
1534        struct timespec64 ts, *p = NULL;
1535        if (u_abs_timeout) {
1536                int res = compat_prepare_timeout(u_abs_timeout, &ts);
1537                if (res)
1538                        return res;
1539                p = &ts;
1540        }
1541        return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1542}
1543
1544SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1545                char __user *, u_msg_ptr,
1546                unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1547                const struct old_timespec32 __user *, u_abs_timeout)
1548{
1549        struct timespec64 ts, *p = NULL;
1550        if (u_abs_timeout) {
1551                int res = compat_prepare_timeout(u_abs_timeout, &ts);
1552                if (res)
1553                        return res;
1554                p = &ts;
1555        }
1556        return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1557}
1558#endif
1559
1560static const struct inode_operations mqueue_dir_inode_operations = {
1561        .lookup = simple_lookup,
1562        .create = mqueue_create,
1563        .unlink = mqueue_unlink,
1564};
1565
1566static const struct file_operations mqueue_file_operations = {
1567        .flush = mqueue_flush_file,
1568        .poll = mqueue_poll_file,
1569        .read = mqueue_read_file,
1570        .llseek = default_llseek,
1571};
1572
1573static const struct super_operations mqueue_super_ops = {
1574        .alloc_inode = mqueue_alloc_inode,
1575        .free_inode = mqueue_free_inode,
1576        .evict_inode = mqueue_evict_inode,
1577        .statfs = simple_statfs,
1578};
1579
1580static const struct fs_context_operations mqueue_fs_context_ops = {
1581        .free           = mqueue_fs_context_free,
1582        .get_tree       = mqueue_get_tree,
1583};
1584
1585static struct file_system_type mqueue_fs_type = {
1586        .name                   = "mqueue",
1587        .init_fs_context        = mqueue_init_fs_context,
1588        .kill_sb                = kill_litter_super,
1589        .fs_flags               = FS_USERNS_MOUNT,
1590};
1591
1592int mq_init_ns(struct ipc_namespace *ns)
1593{
1594        struct vfsmount *m;
1595
1596        ns->mq_queues_count  = 0;
1597        ns->mq_queues_max    = DFLT_QUEUESMAX;
1598        ns->mq_msg_max       = DFLT_MSGMAX;
1599        ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1600        ns->mq_msg_default   = DFLT_MSG;
1601        ns->mq_msgsize_default  = DFLT_MSGSIZE;
1602
1603        m = mq_create_mount(ns);
1604        if (IS_ERR(m))
1605                return PTR_ERR(m);
1606        ns->mq_mnt = m;
1607        return 0;
1608}
1609
1610void mq_clear_sbinfo(struct ipc_namespace *ns)
1611{
1612        ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1613}
1614
1615void mq_put_mnt(struct ipc_namespace *ns)
1616{
1617        kern_unmount(ns->mq_mnt);
1618}
1619
1620static int __init init_mqueue_fs(void)
1621{
1622        int error;
1623
1624        mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1625                                sizeof(struct mqueue_inode_info), 0,
1626                                SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1627        if (mqueue_inode_cachep == NULL)
1628                return -ENOMEM;
1629
1630        /* ignore failures - they are not fatal */
1631        mq_sysctl_table = mq_register_sysctl_table();
1632
1633        error = register_filesystem(&mqueue_fs_type);
1634        if (error)
1635                goto out_sysctl;
1636
1637        spin_lock_init(&mq_lock);
1638
1639        error = mq_init_ns(&init_ipc_ns);
1640        if (error)
1641                goto out_filesystem;
1642
1643        return 0;
1644
1645out_filesystem:
1646        unregister_filesystem(&mqueue_fs_type);
1647out_sysctl:
1648        if (mq_sysctl_table)
1649                unregister_sysctl_table(mq_sysctl_table);
1650        kmem_cache_destroy(mqueue_inode_cachep);
1651        return error;
1652}
1653
1654device_initcall(init_mqueue_fs);
1655