linux/kernel/auditsc.c
<<
>>
Prefs
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  46
  47#include <linux/init.h>
  48#include <asm/types.h>
  49#include <linux/atomic.h>
  50#include <linux/fs.h>
  51#include <linux/namei.h>
  52#include <linux/mm.h>
  53#include <linux/export.h>
  54#include <linux/slab.h>
  55#include <linux/mount.h>
  56#include <linux/socket.h>
  57#include <linux/mqueue.h>
  58#include <linux/audit.h>
  59#include <linux/personality.h>
  60#include <linux/time.h>
  61#include <linux/netlink.h>
  62#include <linux/compiler.h>
  63#include <asm/unistd.h>
  64#include <linux/security.h>
  65#include <linux/list.h>
  66#include <linux/binfmts.h>
  67#include <linux/highmem.h>
  68#include <linux/syscalls.h>
  69#include <asm/syscall.h>
  70#include <linux/capability.h>
  71#include <linux/fs_struct.h>
  72#include <linux/compat.h>
  73#include <linux/ctype.h>
  74#include <linux/string.h>
  75#include <linux/uaccess.h>
  76#include <linux/fsnotify_backend.h>
  77#include <uapi/linux/limits.h>
  78
  79#include "audit.h"
  80
  81/* flags stating the success for a syscall */
  82#define AUDITSC_INVALID 0
  83#define AUDITSC_SUCCESS 1
  84#define AUDITSC_FAILURE 2
  85
  86/* no execve audit message should be longer than this (userspace limits),
  87 * see the note near the top of audit_log_execve_info() about this value */
  88#define MAX_EXECVE_AUDIT_LEN 7500
  89
  90/* max length to print of cmdline/proctitle value during audit */
  91#define MAX_PROCTITLE_AUDIT_LEN 128
  92
  93/* number of audit rules */
  94int audit_n_rules;
  95
  96/* determines whether we collect data for signals sent */
  97int audit_signals;
  98
  99struct audit_aux_data {
 100        struct audit_aux_data   *next;
 101        int                     type;
 102};
 103
 104#define AUDIT_AUX_IPCPERM       0
 105
 106/* Number of target pids per aux struct. */
 107#define AUDIT_AUX_PIDS  16
 108
 109struct audit_aux_data_pids {
 110        struct audit_aux_data   d;
 111        pid_t                   target_pid[AUDIT_AUX_PIDS];
 112        kuid_t                  target_auid[AUDIT_AUX_PIDS];
 113        kuid_t                  target_uid[AUDIT_AUX_PIDS];
 114        unsigned int            target_sessionid[AUDIT_AUX_PIDS];
 115        u32                     target_sid[AUDIT_AUX_PIDS];
 116        char                    target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 117        int                     pid_count;
 118};
 119
 120struct audit_aux_data_bprm_fcaps {
 121        struct audit_aux_data   d;
 122        struct audit_cap_data   fcap;
 123        unsigned int            fcap_ver;
 124        struct audit_cap_data   old_pcap;
 125        struct audit_cap_data   new_pcap;
 126};
 127
 128struct audit_tree_refs {
 129        struct audit_tree_refs *next;
 130        struct audit_chunk *c[31];
 131};
 132
 133static int audit_match_perm(struct audit_context *ctx, int mask)
 134{
 135        unsigned n;
 136        if (unlikely(!ctx))
 137                return 0;
 138        n = ctx->major;
 139
 140        switch (audit_classify_syscall(ctx->arch, n)) {
 141        case 0: /* native */
 142                if ((mask & AUDIT_PERM_WRITE) &&
 143                     audit_match_class(AUDIT_CLASS_WRITE, n))
 144                        return 1;
 145                if ((mask & AUDIT_PERM_READ) &&
 146                     audit_match_class(AUDIT_CLASS_READ, n))
 147                        return 1;
 148                if ((mask & AUDIT_PERM_ATTR) &&
 149                     audit_match_class(AUDIT_CLASS_CHATTR, n))
 150                        return 1;
 151                return 0;
 152        case 1: /* 32bit on biarch */
 153                if ((mask & AUDIT_PERM_WRITE) &&
 154                     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 155                        return 1;
 156                if ((mask & AUDIT_PERM_READ) &&
 157                     audit_match_class(AUDIT_CLASS_READ_32, n))
 158                        return 1;
 159                if ((mask & AUDIT_PERM_ATTR) &&
 160                     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 161                        return 1;
 162                return 0;
 163        case 2: /* open */
 164                return mask & ACC_MODE(ctx->argv[1]);
 165        case 3: /* openat */
 166                return mask & ACC_MODE(ctx->argv[2]);
 167        case 4: /* socketcall */
 168                return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 169        case 5: /* execve */
 170                return mask & AUDIT_PERM_EXEC;
 171        default:
 172                return 0;
 173        }
 174}
 175
 176static int audit_match_filetype(struct audit_context *ctx, int val)
 177{
 178        struct audit_names *n;
 179        umode_t mode = (umode_t)val;
 180
 181        if (unlikely(!ctx))
 182                return 0;
 183
 184        list_for_each_entry(n, &ctx->names_list, list) {
 185                if ((n->ino != AUDIT_INO_UNSET) &&
 186                    ((n->mode & S_IFMT) == mode))
 187                        return 1;
 188        }
 189
 190        return 0;
 191}
 192
 193/*
 194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 195 * ->first_trees points to its beginning, ->trees - to the current end of data.
 196 * ->tree_count is the number of free entries in array pointed to by ->trees.
 197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 198 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 199 * it's going to remain 1-element for almost any setup) until we free context itself.
 200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 201 */
 202
 203static void audit_set_auditable(struct audit_context *ctx)
 204{
 205        if (!ctx->prio) {
 206                ctx->prio = 1;
 207                ctx->current_state = AUDIT_RECORD_CONTEXT;
 208        }
 209}
 210
 211static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 212{
 213        struct audit_tree_refs *p = ctx->trees;
 214        int left = ctx->tree_count;
 215        if (likely(left)) {
 216                p->c[--left] = chunk;
 217                ctx->tree_count = left;
 218                return 1;
 219        }
 220        if (!p)
 221                return 0;
 222        p = p->next;
 223        if (p) {
 224                p->c[30] = chunk;
 225                ctx->trees = p;
 226                ctx->tree_count = 30;
 227                return 1;
 228        }
 229        return 0;
 230}
 231
 232static int grow_tree_refs(struct audit_context *ctx)
 233{
 234        struct audit_tree_refs *p = ctx->trees;
 235        ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 236        if (!ctx->trees) {
 237                ctx->trees = p;
 238                return 0;
 239        }
 240        if (p)
 241                p->next = ctx->trees;
 242        else
 243                ctx->first_trees = ctx->trees;
 244        ctx->tree_count = 31;
 245        return 1;
 246}
 247
 248static void unroll_tree_refs(struct audit_context *ctx,
 249                      struct audit_tree_refs *p, int count)
 250{
 251        struct audit_tree_refs *q;
 252        int n;
 253        if (!p) {
 254                /* we started with empty chain */
 255                p = ctx->first_trees;
 256                count = 31;
 257                /* if the very first allocation has failed, nothing to do */
 258                if (!p)
 259                        return;
 260        }
 261        n = count;
 262        for (q = p; q != ctx->trees; q = q->next, n = 31) {
 263                while (n--) {
 264                        audit_put_chunk(q->c[n]);
 265                        q->c[n] = NULL;
 266                }
 267        }
 268        while (n-- > ctx->tree_count) {
 269                audit_put_chunk(q->c[n]);
 270                q->c[n] = NULL;
 271        }
 272        ctx->trees = p;
 273        ctx->tree_count = count;
 274}
 275
 276static void free_tree_refs(struct audit_context *ctx)
 277{
 278        struct audit_tree_refs *p, *q;
 279        for (p = ctx->first_trees; p; p = q) {
 280                q = p->next;
 281                kfree(p);
 282        }
 283}
 284
 285static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 286{
 287        struct audit_tree_refs *p;
 288        int n;
 289        if (!tree)
 290                return 0;
 291        /* full ones */
 292        for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 293                for (n = 0; n < 31; n++)
 294                        if (audit_tree_match(p->c[n], tree))
 295                                return 1;
 296        }
 297        /* partial */
 298        if (p) {
 299                for (n = ctx->tree_count; n < 31; n++)
 300                        if (audit_tree_match(p->c[n], tree))
 301                                return 1;
 302        }
 303        return 0;
 304}
 305
 306static int audit_compare_uid(kuid_t uid,
 307                             struct audit_names *name,
 308                             struct audit_field *f,
 309                             struct audit_context *ctx)
 310{
 311        struct audit_names *n;
 312        int rc;
 313 
 314        if (name) {
 315                rc = audit_uid_comparator(uid, f->op, name->uid);
 316                if (rc)
 317                        return rc;
 318        }
 319 
 320        if (ctx) {
 321                list_for_each_entry(n, &ctx->names_list, list) {
 322                        rc = audit_uid_comparator(uid, f->op, n->uid);
 323                        if (rc)
 324                                return rc;
 325                }
 326        }
 327        return 0;
 328}
 329
 330static int audit_compare_gid(kgid_t gid,
 331                             struct audit_names *name,
 332                             struct audit_field *f,
 333                             struct audit_context *ctx)
 334{
 335        struct audit_names *n;
 336        int rc;
 337 
 338        if (name) {
 339                rc = audit_gid_comparator(gid, f->op, name->gid);
 340                if (rc)
 341                        return rc;
 342        }
 343 
 344        if (ctx) {
 345                list_for_each_entry(n, &ctx->names_list, list) {
 346                        rc = audit_gid_comparator(gid, f->op, n->gid);
 347                        if (rc)
 348                                return rc;
 349                }
 350        }
 351        return 0;
 352}
 353
 354static int audit_field_compare(struct task_struct *tsk,
 355                               const struct cred *cred,
 356                               struct audit_field *f,
 357                               struct audit_context *ctx,
 358                               struct audit_names *name)
 359{
 360        switch (f->val) {
 361        /* process to file object comparisons */
 362        case AUDIT_COMPARE_UID_TO_OBJ_UID:
 363                return audit_compare_uid(cred->uid, name, f, ctx);
 364        case AUDIT_COMPARE_GID_TO_OBJ_GID:
 365                return audit_compare_gid(cred->gid, name, f, ctx);
 366        case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 367                return audit_compare_uid(cred->euid, name, f, ctx);
 368        case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 369                return audit_compare_gid(cred->egid, name, f, ctx);
 370        case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 371                return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
 372        case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 373                return audit_compare_uid(cred->suid, name, f, ctx);
 374        case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 375                return audit_compare_gid(cred->sgid, name, f, ctx);
 376        case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 377                return audit_compare_uid(cred->fsuid, name, f, ctx);
 378        case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 379                return audit_compare_gid(cred->fsgid, name, f, ctx);
 380        /* uid comparisons */
 381        case AUDIT_COMPARE_UID_TO_AUID:
 382                return audit_uid_comparator(cred->uid, f->op,
 383                                            audit_get_loginuid(tsk));
 384        case AUDIT_COMPARE_UID_TO_EUID:
 385                return audit_uid_comparator(cred->uid, f->op, cred->euid);
 386        case AUDIT_COMPARE_UID_TO_SUID:
 387                return audit_uid_comparator(cred->uid, f->op, cred->suid);
 388        case AUDIT_COMPARE_UID_TO_FSUID:
 389                return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 390        /* auid comparisons */
 391        case AUDIT_COMPARE_AUID_TO_EUID:
 392                return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 393                                            cred->euid);
 394        case AUDIT_COMPARE_AUID_TO_SUID:
 395                return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 396                                            cred->suid);
 397        case AUDIT_COMPARE_AUID_TO_FSUID:
 398                return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 399                                            cred->fsuid);
 400        /* euid comparisons */
 401        case AUDIT_COMPARE_EUID_TO_SUID:
 402                return audit_uid_comparator(cred->euid, f->op, cred->suid);
 403        case AUDIT_COMPARE_EUID_TO_FSUID:
 404                return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 405        /* suid comparisons */
 406        case AUDIT_COMPARE_SUID_TO_FSUID:
 407                return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 408        /* gid comparisons */
 409        case AUDIT_COMPARE_GID_TO_EGID:
 410                return audit_gid_comparator(cred->gid, f->op, cred->egid);
 411        case AUDIT_COMPARE_GID_TO_SGID:
 412                return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 413        case AUDIT_COMPARE_GID_TO_FSGID:
 414                return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 415        /* egid comparisons */
 416        case AUDIT_COMPARE_EGID_TO_SGID:
 417                return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 418        case AUDIT_COMPARE_EGID_TO_FSGID:
 419                return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 420        /* sgid comparison */
 421        case AUDIT_COMPARE_SGID_TO_FSGID:
 422                return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 423        default:
 424                WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 425                return 0;
 426        }
 427        return 0;
 428}
 429
 430/* Determine if any context name data matches a rule's watch data */
 431/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 432 * otherwise.
 433 *
 434 * If task_creation is true, this is an explicit indication that we are
 435 * filtering a task rule at task creation time.  This and tsk == current are
 436 * the only situations where tsk->cred may be accessed without an rcu read lock.
 437 */
 438static int audit_filter_rules(struct task_struct *tsk,
 439                              struct audit_krule *rule,
 440                              struct audit_context *ctx,
 441                              struct audit_names *name,
 442                              enum audit_state *state,
 443                              bool task_creation)
 444{
 445        const struct cred *cred;
 446        int i, need_sid = 1;
 447        u32 sid;
 448        unsigned int sessionid;
 449
 450        cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 451
 452        for (i = 0; i < rule->field_count; i++) {
 453                struct audit_field *f = &rule->fields[i];
 454                struct audit_names *n;
 455                int result = 0;
 456                pid_t pid;
 457
 458                switch (f->type) {
 459                case AUDIT_PID:
 460                        pid = task_tgid_nr(tsk);
 461                        result = audit_comparator(pid, f->op, f->val);
 462                        break;
 463                case AUDIT_PPID:
 464                        if (ctx) {
 465                                if (!ctx->ppid)
 466                                        ctx->ppid = task_ppid_nr(tsk);
 467                                result = audit_comparator(ctx->ppid, f->op, f->val);
 468                        }
 469                        break;
 470                case AUDIT_EXE:
 471                        result = audit_exe_compare(tsk, rule->exe);
 472                        if (f->op == Audit_not_equal)
 473                                result = !result;
 474                        break;
 475                case AUDIT_UID:
 476                        result = audit_uid_comparator(cred->uid, f->op, f->uid);
 477                        break;
 478                case AUDIT_EUID:
 479                        result = audit_uid_comparator(cred->euid, f->op, f->uid);
 480                        break;
 481                case AUDIT_SUID:
 482                        result = audit_uid_comparator(cred->suid, f->op, f->uid);
 483                        break;
 484                case AUDIT_FSUID:
 485                        result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 486                        break;
 487                case AUDIT_GID:
 488                        result = audit_gid_comparator(cred->gid, f->op, f->gid);
 489                        if (f->op == Audit_equal) {
 490                                if (!result)
 491                                        result = groups_search(cred->group_info, f->gid);
 492                        } else if (f->op == Audit_not_equal) {
 493                                if (result)
 494                                        result = !groups_search(cred->group_info, f->gid);
 495                        }
 496                        break;
 497                case AUDIT_EGID:
 498                        result = audit_gid_comparator(cred->egid, f->op, f->gid);
 499                        if (f->op == Audit_equal) {
 500                                if (!result)
 501                                        result = groups_search(cred->group_info, f->gid);
 502                        } else if (f->op == Audit_not_equal) {
 503                                if (result)
 504                                        result = !groups_search(cred->group_info, f->gid);
 505                        }
 506                        break;
 507                case AUDIT_SGID:
 508                        result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 509                        break;
 510                case AUDIT_FSGID:
 511                        result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 512                        break;
 513                case AUDIT_SESSIONID:
 514                        sessionid = audit_get_sessionid(tsk);
 515                        result = audit_comparator(sessionid, f->op, f->val);
 516                        break;
 517                case AUDIT_PERS:
 518                        result = audit_comparator(tsk->personality, f->op, f->val);
 519                        break;
 520                case AUDIT_ARCH:
 521                        if (ctx)
 522                                result = audit_comparator(ctx->arch, f->op, f->val);
 523                        break;
 524
 525                case AUDIT_EXIT:
 526                        if (ctx && ctx->return_valid)
 527                                result = audit_comparator(ctx->return_code, f->op, f->val);
 528                        break;
 529                case AUDIT_SUCCESS:
 530                        if (ctx && ctx->return_valid) {
 531                                if (f->val)
 532                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 533                                else
 534                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 535                        }
 536                        break;
 537                case AUDIT_DEVMAJOR:
 538                        if (name) {
 539                                if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 540                                    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 541                                        ++result;
 542                        } else if (ctx) {
 543                                list_for_each_entry(n, &ctx->names_list, list) {
 544                                        if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 545                                            audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 546                                                ++result;
 547                                                break;
 548                                        }
 549                                }
 550                        }
 551                        break;
 552                case AUDIT_DEVMINOR:
 553                        if (name) {
 554                                if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 555                                    audit_comparator(MINOR(name->rdev), f->op, f->val))
 556                                        ++result;
 557                        } else if (ctx) {
 558                                list_for_each_entry(n, &ctx->names_list, list) {
 559                                        if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 560                                            audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 561                                                ++result;
 562                                                break;
 563                                        }
 564                                }
 565                        }
 566                        break;
 567                case AUDIT_INODE:
 568                        if (name)
 569                                result = audit_comparator(name->ino, f->op, f->val);
 570                        else if (ctx) {
 571                                list_for_each_entry(n, &ctx->names_list, list) {
 572                                        if (audit_comparator(n->ino, f->op, f->val)) {
 573                                                ++result;
 574                                                break;
 575                                        }
 576                                }
 577                        }
 578                        break;
 579                case AUDIT_OBJ_UID:
 580                        if (name) {
 581                                result = audit_uid_comparator(name->uid, f->op, f->uid);
 582                        } else if (ctx) {
 583                                list_for_each_entry(n, &ctx->names_list, list) {
 584                                        if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 585                                                ++result;
 586                                                break;
 587                                        }
 588                                }
 589                        }
 590                        break;
 591                case AUDIT_OBJ_GID:
 592                        if (name) {
 593                                result = audit_gid_comparator(name->gid, f->op, f->gid);
 594                        } else if (ctx) {
 595                                list_for_each_entry(n, &ctx->names_list, list) {
 596                                        if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 597                                                ++result;
 598                                                break;
 599                                        }
 600                                }
 601                        }
 602                        break;
 603                case AUDIT_WATCH:
 604                        if (name) {
 605                                result = audit_watch_compare(rule->watch,
 606                                                             name->ino,
 607                                                             name->dev);
 608                                if (f->op == Audit_not_equal)
 609                                        result = !result;
 610                        }
 611                        break;
 612                case AUDIT_DIR:
 613                        if (ctx) {
 614                                result = match_tree_refs(ctx, rule->tree);
 615                                if (f->op == Audit_not_equal)
 616                                        result = !result;
 617                        }
 618                        break;
 619                case AUDIT_LOGINUID:
 620                        result = audit_uid_comparator(audit_get_loginuid(tsk),
 621                                                      f->op, f->uid);
 622                        break;
 623                case AUDIT_LOGINUID_SET:
 624                        result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 625                        break;
 626                case AUDIT_SADDR_FAM:
 627                        if (ctx->sockaddr)
 628                                result = audit_comparator(ctx->sockaddr->ss_family,
 629                                                          f->op, f->val);
 630                        break;
 631                case AUDIT_SUBJ_USER:
 632                case AUDIT_SUBJ_ROLE:
 633                case AUDIT_SUBJ_TYPE:
 634                case AUDIT_SUBJ_SEN:
 635                case AUDIT_SUBJ_CLR:
 636                        /* NOTE: this may return negative values indicating
 637                           a temporary error.  We simply treat this as a
 638                           match for now to avoid losing information that
 639                           may be wanted.   An error message will also be
 640                           logged upon error */
 641                        if (f->lsm_rule) {
 642                                if (need_sid) {
 643                                        security_task_getsecid(tsk, &sid);
 644                                        need_sid = 0;
 645                                }
 646                                result = security_audit_rule_match(sid, f->type,
 647                                                                   f->op,
 648                                                                   f->lsm_rule);
 649                        }
 650                        break;
 651                case AUDIT_OBJ_USER:
 652                case AUDIT_OBJ_ROLE:
 653                case AUDIT_OBJ_TYPE:
 654                case AUDIT_OBJ_LEV_LOW:
 655                case AUDIT_OBJ_LEV_HIGH:
 656                        /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 657                           also applies here */
 658                        if (f->lsm_rule) {
 659                                /* Find files that match */
 660                                if (name) {
 661                                        result = security_audit_rule_match(
 662                                                                name->osid,
 663                                                                f->type,
 664                                                                f->op,
 665                                                                f->lsm_rule);
 666                                } else if (ctx) {
 667                                        list_for_each_entry(n, &ctx->names_list, list) {
 668                                                if (security_audit_rule_match(
 669                                                                n->osid,
 670                                                                f->type,
 671                                                                f->op,
 672                                                                f->lsm_rule)) {
 673                                                        ++result;
 674                                                        break;
 675                                                }
 676                                        }
 677                                }
 678                                /* Find ipc objects that match */
 679                                if (!ctx || ctx->type != AUDIT_IPC)
 680                                        break;
 681                                if (security_audit_rule_match(ctx->ipc.osid,
 682                                                              f->type, f->op,
 683                                                              f->lsm_rule))
 684                                        ++result;
 685                        }
 686                        break;
 687                case AUDIT_ARG0:
 688                case AUDIT_ARG1:
 689                case AUDIT_ARG2:
 690                case AUDIT_ARG3:
 691                        if (ctx)
 692                                result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 693                        break;
 694                case AUDIT_FILTERKEY:
 695                        /* ignore this field for filtering */
 696                        result = 1;
 697                        break;
 698                case AUDIT_PERM:
 699                        result = audit_match_perm(ctx, f->val);
 700                        if (f->op == Audit_not_equal)
 701                                result = !result;
 702                        break;
 703                case AUDIT_FILETYPE:
 704                        result = audit_match_filetype(ctx, f->val);
 705                        if (f->op == Audit_not_equal)
 706                                result = !result;
 707                        break;
 708                case AUDIT_FIELD_COMPARE:
 709                        result = audit_field_compare(tsk, cred, f, ctx, name);
 710                        break;
 711                }
 712                if (!result)
 713                        return 0;
 714        }
 715
 716        if (ctx) {
 717                if (rule->prio <= ctx->prio)
 718                        return 0;
 719                if (rule->filterkey) {
 720                        kfree(ctx->filterkey);
 721                        ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 722                }
 723                ctx->prio = rule->prio;
 724        }
 725        switch (rule->action) {
 726        case AUDIT_NEVER:
 727                *state = AUDIT_DISABLED;
 728                break;
 729        case AUDIT_ALWAYS:
 730                *state = AUDIT_RECORD_CONTEXT;
 731                break;
 732        }
 733        return 1;
 734}
 735
 736/* At process creation time, we can determine if system-call auditing is
 737 * completely disabled for this task.  Since we only have the task
 738 * structure at this point, we can only check uid and gid.
 739 */
 740static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 741{
 742        struct audit_entry *e;
 743        enum audit_state   state;
 744
 745        rcu_read_lock();
 746        list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 747                if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 748                                       &state, true)) {
 749                        if (state == AUDIT_RECORD_CONTEXT)
 750                                *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 751                        rcu_read_unlock();
 752                        return state;
 753                }
 754        }
 755        rcu_read_unlock();
 756        return AUDIT_BUILD_CONTEXT;
 757}
 758
 759static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 760{
 761        int word, bit;
 762
 763        if (val > 0xffffffff)
 764                return false;
 765
 766        word = AUDIT_WORD(val);
 767        if (word >= AUDIT_BITMASK_SIZE)
 768                return false;
 769
 770        bit = AUDIT_BIT(val);
 771
 772        return rule->mask[word] & bit;
 773}
 774
 775/* At syscall entry and exit time, this filter is called if the
 776 * audit_state is not low enough that auditing cannot take place, but is
 777 * also not high enough that we already know we have to write an audit
 778 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 779 */
 780static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 781                                             struct audit_context *ctx,
 782                                             struct list_head *list)
 783{
 784        struct audit_entry *e;
 785        enum audit_state state;
 786
 787        if (auditd_test_task(tsk))
 788                return AUDIT_DISABLED;
 789
 790        rcu_read_lock();
 791        list_for_each_entry_rcu(e, list, list) {
 792                if (audit_in_mask(&e->rule, ctx->major) &&
 793                    audit_filter_rules(tsk, &e->rule, ctx, NULL,
 794                                       &state, false)) {
 795                        rcu_read_unlock();
 796                        ctx->current_state = state;
 797                        return state;
 798                }
 799        }
 800        rcu_read_unlock();
 801        return AUDIT_BUILD_CONTEXT;
 802}
 803
 804/*
 805 * Given an audit_name check the inode hash table to see if they match.
 806 * Called holding the rcu read lock to protect the use of audit_inode_hash
 807 */
 808static int audit_filter_inode_name(struct task_struct *tsk,
 809                                   struct audit_names *n,
 810                                   struct audit_context *ctx) {
 811        int h = audit_hash_ino((u32)n->ino);
 812        struct list_head *list = &audit_inode_hash[h];
 813        struct audit_entry *e;
 814        enum audit_state state;
 815
 816        list_for_each_entry_rcu(e, list, list) {
 817                if (audit_in_mask(&e->rule, ctx->major) &&
 818                    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 819                        ctx->current_state = state;
 820                        return 1;
 821                }
 822        }
 823        return 0;
 824}
 825
 826/* At syscall exit time, this filter is called if any audit_names have been
 827 * collected during syscall processing.  We only check rules in sublists at hash
 828 * buckets applicable to the inode numbers in audit_names.
 829 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 830 */
 831void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 832{
 833        struct audit_names *n;
 834
 835        if (auditd_test_task(tsk))
 836                return;
 837
 838        rcu_read_lock();
 839
 840        list_for_each_entry(n, &ctx->names_list, list) {
 841                if (audit_filter_inode_name(tsk, n, ctx))
 842                        break;
 843        }
 844        rcu_read_unlock();
 845}
 846
 847static inline void audit_proctitle_free(struct audit_context *context)
 848{
 849        kfree(context->proctitle.value);
 850        context->proctitle.value = NULL;
 851        context->proctitle.len = 0;
 852}
 853
 854static inline void audit_free_module(struct audit_context *context)
 855{
 856        if (context->type == AUDIT_KERN_MODULE) {
 857                kfree(context->module.name);
 858                context->module.name = NULL;
 859        }
 860}
 861static inline void audit_free_names(struct audit_context *context)
 862{
 863        struct audit_names *n, *next;
 864
 865        list_for_each_entry_safe(n, next, &context->names_list, list) {
 866                list_del(&n->list);
 867                if (n->name)
 868                        putname(n->name);
 869                if (n->should_free)
 870                        kfree(n);
 871        }
 872        context->name_count = 0;
 873        path_put(&context->pwd);
 874        context->pwd.dentry = NULL;
 875        context->pwd.mnt = NULL;
 876}
 877
 878static inline void audit_free_aux(struct audit_context *context)
 879{
 880        struct audit_aux_data *aux;
 881
 882        while ((aux = context->aux)) {
 883                context->aux = aux->next;
 884                kfree(aux);
 885        }
 886        while ((aux = context->aux_pids)) {
 887                context->aux_pids = aux->next;
 888                kfree(aux);
 889        }
 890}
 891
 892static inline struct audit_context *audit_alloc_context(enum audit_state state)
 893{
 894        struct audit_context *context;
 895
 896        context = kzalloc(sizeof(*context), GFP_KERNEL);
 897        if (!context)
 898                return NULL;
 899        context->state = state;
 900        context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 901        INIT_LIST_HEAD(&context->killed_trees);
 902        INIT_LIST_HEAD(&context->names_list);
 903        return context;
 904}
 905
 906/**
 907 * audit_alloc - allocate an audit context block for a task
 908 * @tsk: task
 909 *
 910 * Filter on the task information and allocate a per-task audit context
 911 * if necessary.  Doing so turns on system call auditing for the
 912 * specified task.  This is called from copy_process, so no lock is
 913 * needed.
 914 */
 915int audit_alloc(struct task_struct *tsk)
 916{
 917        struct audit_context *context;
 918        enum audit_state     state;
 919        char *key = NULL;
 920
 921        if (likely(!audit_ever_enabled))
 922                return 0; /* Return if not auditing. */
 923
 924        state = audit_filter_task(tsk, &key);
 925        if (state == AUDIT_DISABLED) {
 926                clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 927                return 0;
 928        }
 929
 930        if (!(context = audit_alloc_context(state))) {
 931                kfree(key);
 932                audit_log_lost("out of memory in audit_alloc");
 933                return -ENOMEM;
 934        }
 935        context->filterkey = key;
 936
 937        audit_set_context(tsk, context);
 938        set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 939        return 0;
 940}
 941
 942static inline void audit_free_context(struct audit_context *context)
 943{
 944        audit_free_module(context);
 945        audit_free_names(context);
 946        unroll_tree_refs(context, NULL, 0);
 947        free_tree_refs(context);
 948        audit_free_aux(context);
 949        kfree(context->filterkey);
 950        kfree(context->sockaddr);
 951        audit_proctitle_free(context);
 952        kfree(context);
 953}
 954
 955static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 956                                 kuid_t auid, kuid_t uid, unsigned int sessionid,
 957                                 u32 sid, char *comm)
 958{
 959        struct audit_buffer *ab;
 960        char *ctx = NULL;
 961        u32 len;
 962        int rc = 0;
 963
 964        ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 965        if (!ab)
 966                return rc;
 967
 968        audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
 969                         from_kuid(&init_user_ns, auid),
 970                         from_kuid(&init_user_ns, uid), sessionid);
 971        if (sid) {
 972                if (security_secid_to_secctx(sid, &ctx, &len)) {
 973                        audit_log_format(ab, " obj=(none)");
 974                        rc = 1;
 975                } else {
 976                        audit_log_format(ab, " obj=%s", ctx);
 977                        security_release_secctx(ctx, len);
 978                }
 979        }
 980        audit_log_format(ab, " ocomm=");
 981        audit_log_untrustedstring(ab, comm);
 982        audit_log_end(ab);
 983
 984        return rc;
 985}
 986
 987static void audit_log_execve_info(struct audit_context *context,
 988                                  struct audit_buffer **ab)
 989{
 990        long len_max;
 991        long len_rem;
 992        long len_full;
 993        long len_buf;
 994        long len_abuf = 0;
 995        long len_tmp;
 996        bool require_data;
 997        bool encode;
 998        unsigned int iter;
 999        unsigned int arg;
1000        char *buf_head;
1001        char *buf;
1002        const char __user *p = (const char __user *)current->mm->arg_start;
1003
1004        /* NOTE: this buffer needs to be large enough to hold all the non-arg
1005         *       data we put in the audit record for this argument (see the
1006         *       code below) ... at this point in time 96 is plenty */
1007        char abuf[96];
1008
1009        /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1010         *       current value of 7500 is not as important as the fact that it
1011         *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1012         *       room if we go over a little bit in the logging below */
1013        WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1014        len_max = MAX_EXECVE_AUDIT_LEN;
1015
1016        /* scratch buffer to hold the userspace args */
1017        buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1018        if (!buf_head) {
1019                audit_panic("out of memory for argv string");
1020                return;
1021        }
1022        buf = buf_head;
1023
1024        audit_log_format(*ab, "argc=%d", context->execve.argc);
1025
1026        len_rem = len_max;
1027        len_buf = 0;
1028        len_full = 0;
1029        require_data = true;
1030        encode = false;
1031        iter = 0;
1032        arg = 0;
1033        do {
1034                /* NOTE: we don't ever want to trust this value for anything
1035                 *       serious, but the audit record format insists we
1036                 *       provide an argument length for really long arguments,
1037                 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1038                 *       to use strncpy_from_user() to obtain this value for
1039                 *       recording in the log, although we don't use it
1040                 *       anywhere here to avoid a double-fetch problem */
1041                if (len_full == 0)
1042                        len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1043
1044                /* read more data from userspace */
1045                if (require_data) {
1046                        /* can we make more room in the buffer? */
1047                        if (buf != buf_head) {
1048                                memmove(buf_head, buf, len_buf);
1049                                buf = buf_head;
1050                        }
1051
1052                        /* fetch as much as we can of the argument */
1053                        len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1054                                                    len_max - len_buf);
1055                        if (len_tmp == -EFAULT) {
1056                                /* unable to copy from userspace */
1057                                send_sig(SIGKILL, current, 0);
1058                                goto out;
1059                        } else if (len_tmp == (len_max - len_buf)) {
1060                                /* buffer is not large enough */
1061                                require_data = true;
1062                                /* NOTE: if we are going to span multiple
1063                                 *       buffers force the encoding so we stand
1064                                 *       a chance at a sane len_full value and
1065                                 *       consistent record encoding */
1066                                encode = true;
1067                                len_full = len_full * 2;
1068                                p += len_tmp;
1069                        } else {
1070                                require_data = false;
1071                                if (!encode)
1072                                        encode = audit_string_contains_control(
1073                                                                buf, len_tmp);
1074                                /* try to use a trusted value for len_full */
1075                                if (len_full < len_max)
1076                                        len_full = (encode ?
1077                                                    len_tmp * 2 : len_tmp);
1078                                p += len_tmp + 1;
1079                        }
1080                        len_buf += len_tmp;
1081                        buf_head[len_buf] = '\0';
1082
1083                        /* length of the buffer in the audit record? */
1084                        len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1085                }
1086
1087                /* write as much as we can to the audit log */
1088                if (len_buf >= 0) {
1089                        /* NOTE: some magic numbers here - basically if we
1090                         *       can't fit a reasonable amount of data into the
1091                         *       existing audit buffer, flush it and start with
1092                         *       a new buffer */
1093                        if ((sizeof(abuf) + 8) > len_rem) {
1094                                len_rem = len_max;
1095                                audit_log_end(*ab);
1096                                *ab = audit_log_start(context,
1097                                                      GFP_KERNEL, AUDIT_EXECVE);
1098                                if (!*ab)
1099                                        goto out;
1100                        }
1101
1102                        /* create the non-arg portion of the arg record */
1103                        len_tmp = 0;
1104                        if (require_data || (iter > 0) ||
1105                            ((len_abuf + sizeof(abuf)) > len_rem)) {
1106                                if (iter == 0) {
1107                                        len_tmp += snprintf(&abuf[len_tmp],
1108                                                        sizeof(abuf) - len_tmp,
1109                                                        " a%d_len=%lu",
1110                                                        arg, len_full);
1111                                }
1112                                len_tmp += snprintf(&abuf[len_tmp],
1113                                                    sizeof(abuf) - len_tmp,
1114                                                    " a%d[%d]=", arg, iter++);
1115                        } else
1116                                len_tmp += snprintf(&abuf[len_tmp],
1117                                                    sizeof(abuf) - len_tmp,
1118                                                    " a%d=", arg);
1119                        WARN_ON(len_tmp >= sizeof(abuf));
1120                        abuf[sizeof(abuf) - 1] = '\0';
1121
1122                        /* log the arg in the audit record */
1123                        audit_log_format(*ab, "%s", abuf);
1124                        len_rem -= len_tmp;
1125                        len_tmp = len_buf;
1126                        if (encode) {
1127                                if (len_abuf > len_rem)
1128                                        len_tmp = len_rem / 2; /* encoding */
1129                                audit_log_n_hex(*ab, buf, len_tmp);
1130                                len_rem -= len_tmp * 2;
1131                                len_abuf -= len_tmp * 2;
1132                        } else {
1133                                if (len_abuf > len_rem)
1134                                        len_tmp = len_rem - 2; /* quotes */
1135                                audit_log_n_string(*ab, buf, len_tmp);
1136                                len_rem -= len_tmp + 2;
1137                                /* don't subtract the "2" because we still need
1138                                 * to add quotes to the remaining string */
1139                                len_abuf -= len_tmp;
1140                        }
1141                        len_buf -= len_tmp;
1142                        buf += len_tmp;
1143                }
1144
1145                /* ready to move to the next argument? */
1146                if ((len_buf == 0) && !require_data) {
1147                        arg++;
1148                        iter = 0;
1149                        len_full = 0;
1150                        require_data = true;
1151                        encode = false;
1152                }
1153        } while (arg < context->execve.argc);
1154
1155        /* NOTE: the caller handles the final audit_log_end() call */
1156
1157out:
1158        kfree(buf_head);
1159}
1160
1161static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1162                          kernel_cap_t *cap)
1163{
1164        int i;
1165
1166        if (cap_isclear(*cap)) {
1167                audit_log_format(ab, " %s=0", prefix);
1168                return;
1169        }
1170        audit_log_format(ab, " %s=", prefix);
1171        CAP_FOR_EACH_U32(i)
1172                audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1173}
1174
1175static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1176{
1177        if (name->fcap_ver == -1) {
1178                audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1179                return;
1180        }
1181        audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1182        audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1183        audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1184                         name->fcap.fE, name->fcap_ver,
1185                         from_kuid(&init_user_ns, name->fcap.rootid));
1186}
1187
1188static void show_special(struct audit_context *context, int *call_panic)
1189{
1190        struct audit_buffer *ab;
1191        int i;
1192
1193        ab = audit_log_start(context, GFP_KERNEL, context->type);
1194        if (!ab)
1195                return;
1196
1197        switch (context->type) {
1198        case AUDIT_SOCKETCALL: {
1199                int nargs = context->socketcall.nargs;
1200                audit_log_format(ab, "nargs=%d", nargs);
1201                for (i = 0; i < nargs; i++)
1202                        audit_log_format(ab, " a%d=%lx", i,
1203                                context->socketcall.args[i]);
1204                break; }
1205        case AUDIT_IPC: {
1206                u32 osid = context->ipc.osid;
1207
1208                audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1209                                 from_kuid(&init_user_ns, context->ipc.uid),
1210                                 from_kgid(&init_user_ns, context->ipc.gid),
1211                                 context->ipc.mode);
1212                if (osid) {
1213                        char *ctx = NULL;
1214                        u32 len;
1215                        if (security_secid_to_secctx(osid, &ctx, &len)) {
1216                                audit_log_format(ab, " osid=%u", osid);
1217                                *call_panic = 1;
1218                        } else {
1219                                audit_log_format(ab, " obj=%s", ctx);
1220                                security_release_secctx(ctx, len);
1221                        }
1222                }
1223                if (context->ipc.has_perm) {
1224                        audit_log_end(ab);
1225                        ab = audit_log_start(context, GFP_KERNEL,
1226                                             AUDIT_IPC_SET_PERM);
1227                        if (unlikely(!ab))
1228                                return;
1229                        audit_log_format(ab,
1230                                "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1231                                context->ipc.qbytes,
1232                                context->ipc.perm_uid,
1233                                context->ipc.perm_gid,
1234                                context->ipc.perm_mode);
1235                }
1236                break; }
1237        case AUDIT_MQ_OPEN:
1238                audit_log_format(ab,
1239                        "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1240                        "mq_msgsize=%ld mq_curmsgs=%ld",
1241                        context->mq_open.oflag, context->mq_open.mode,
1242                        context->mq_open.attr.mq_flags,
1243                        context->mq_open.attr.mq_maxmsg,
1244                        context->mq_open.attr.mq_msgsize,
1245                        context->mq_open.attr.mq_curmsgs);
1246                break;
1247        case AUDIT_MQ_SENDRECV:
1248                audit_log_format(ab,
1249                        "mqdes=%d msg_len=%zd msg_prio=%u "
1250                        "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1251                        context->mq_sendrecv.mqdes,
1252                        context->mq_sendrecv.msg_len,
1253                        context->mq_sendrecv.msg_prio,
1254                        (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1255                        context->mq_sendrecv.abs_timeout.tv_nsec);
1256                break;
1257        case AUDIT_MQ_NOTIFY:
1258                audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1259                                context->mq_notify.mqdes,
1260                                context->mq_notify.sigev_signo);
1261                break;
1262        case AUDIT_MQ_GETSETATTR: {
1263                struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1264                audit_log_format(ab,
1265                        "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1266                        "mq_curmsgs=%ld ",
1267                        context->mq_getsetattr.mqdes,
1268                        attr->mq_flags, attr->mq_maxmsg,
1269                        attr->mq_msgsize, attr->mq_curmsgs);
1270                break; }
1271        case AUDIT_CAPSET:
1272                audit_log_format(ab, "pid=%d", context->capset.pid);
1273                audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1274                audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1275                audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1276                audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1277                break;
1278        case AUDIT_MMAP:
1279                audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1280                                 context->mmap.flags);
1281                break;
1282        case AUDIT_EXECVE:
1283                audit_log_execve_info(context, &ab);
1284                break;
1285        case AUDIT_KERN_MODULE:
1286                audit_log_format(ab, "name=");
1287                if (context->module.name) {
1288                        audit_log_untrustedstring(ab, context->module.name);
1289                } else
1290                        audit_log_format(ab, "(null)");
1291
1292                break;
1293        }
1294        audit_log_end(ab);
1295}
1296
1297static inline int audit_proctitle_rtrim(char *proctitle, int len)
1298{
1299        char *end = proctitle + len - 1;
1300        while (end > proctitle && !isprint(*end))
1301                end--;
1302
1303        /* catch the case where proctitle is only 1 non-print character */
1304        len = end - proctitle + 1;
1305        len -= isprint(proctitle[len-1]) == 0;
1306        return len;
1307}
1308
1309/*
1310 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1311 * @context: audit_context for the task
1312 * @n: audit_names structure with reportable details
1313 * @path: optional path to report instead of audit_names->name
1314 * @record_num: record number to report when handling a list of names
1315 * @call_panic: optional pointer to int that will be updated if secid fails
1316 */
1317static void audit_log_name(struct audit_context *context, struct audit_names *n,
1318                    const struct path *path, int record_num, int *call_panic)
1319{
1320        struct audit_buffer *ab;
1321
1322        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1323        if (!ab)
1324                return;
1325
1326        audit_log_format(ab, "item=%d", record_num);
1327
1328        if (path)
1329                audit_log_d_path(ab, " name=", path);
1330        else if (n->name) {
1331                switch (n->name_len) {
1332                case AUDIT_NAME_FULL:
1333                        /* log the full path */
1334                        audit_log_format(ab, " name=");
1335                        audit_log_untrustedstring(ab, n->name->name);
1336                        break;
1337                case 0:
1338                        /* name was specified as a relative path and the
1339                         * directory component is the cwd
1340                         */
1341                        audit_log_d_path(ab, " name=", &context->pwd);
1342                        break;
1343                default:
1344                        /* log the name's directory component */
1345                        audit_log_format(ab, " name=");
1346                        audit_log_n_untrustedstring(ab, n->name->name,
1347                                                    n->name_len);
1348                }
1349        } else
1350                audit_log_format(ab, " name=(null)");
1351
1352        if (n->ino != AUDIT_INO_UNSET)
1353                audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1354                                 n->ino,
1355                                 MAJOR(n->dev),
1356                                 MINOR(n->dev),
1357                                 n->mode,
1358                                 from_kuid(&init_user_ns, n->uid),
1359                                 from_kgid(&init_user_ns, n->gid),
1360                                 MAJOR(n->rdev),
1361                                 MINOR(n->rdev));
1362        if (n->osid != 0) {
1363                char *ctx = NULL;
1364                u32 len;
1365
1366                if (security_secid_to_secctx(
1367                        n->osid, &ctx, &len)) {
1368                        audit_log_format(ab, " osid=%u", n->osid);
1369                        if (call_panic)
1370                                *call_panic = 2;
1371                } else {
1372                        audit_log_format(ab, " obj=%s", ctx);
1373                        security_release_secctx(ctx, len);
1374                }
1375        }
1376
1377        /* log the audit_names record type */
1378        switch (n->type) {
1379        case AUDIT_TYPE_NORMAL:
1380                audit_log_format(ab, " nametype=NORMAL");
1381                break;
1382        case AUDIT_TYPE_PARENT:
1383                audit_log_format(ab, " nametype=PARENT");
1384                break;
1385        case AUDIT_TYPE_CHILD_DELETE:
1386                audit_log_format(ab, " nametype=DELETE");
1387                break;
1388        case AUDIT_TYPE_CHILD_CREATE:
1389                audit_log_format(ab, " nametype=CREATE");
1390                break;
1391        default:
1392                audit_log_format(ab, " nametype=UNKNOWN");
1393                break;
1394        }
1395
1396        audit_log_fcaps(ab, n);
1397        audit_log_end(ab);
1398}
1399
1400static void audit_log_proctitle(void)
1401{
1402        int res;
1403        char *buf;
1404        char *msg = "(null)";
1405        int len = strlen(msg);
1406        struct audit_context *context = audit_context();
1407        struct audit_buffer *ab;
1408
1409        if (!context || context->dummy)
1410                return;
1411
1412        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1413        if (!ab)
1414                return; /* audit_panic or being filtered */
1415
1416        audit_log_format(ab, "proctitle=");
1417
1418        /* Not  cached */
1419        if (!context->proctitle.value) {
1420                buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1421                if (!buf)
1422                        goto out;
1423                /* Historically called this from procfs naming */
1424                res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1425                if (res == 0) {
1426                        kfree(buf);
1427                        goto out;
1428                }
1429                res = audit_proctitle_rtrim(buf, res);
1430                if (res == 0) {
1431                        kfree(buf);
1432                        goto out;
1433                }
1434                context->proctitle.value = buf;
1435                context->proctitle.len = res;
1436        }
1437        msg = context->proctitle.value;
1438        len = context->proctitle.len;
1439out:
1440        audit_log_n_untrustedstring(ab, msg, len);
1441        audit_log_end(ab);
1442}
1443
1444static void audit_log_exit(void)
1445{
1446        int i, call_panic = 0;
1447        struct audit_context *context = audit_context();
1448        struct audit_buffer *ab;
1449        struct audit_aux_data *aux;
1450        struct audit_names *n;
1451
1452        context->personality = current->personality;
1453
1454        ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1455        if (!ab)
1456                return;         /* audit_panic has been called */
1457        audit_log_format(ab, "arch=%x syscall=%d",
1458                         context->arch, context->major);
1459        if (context->personality != PER_LINUX)
1460                audit_log_format(ab, " per=%lx", context->personality);
1461        if (context->return_valid)
1462                audit_log_format(ab, " success=%s exit=%ld",
1463                                 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1464                                 context->return_code);
1465
1466        audit_log_format(ab,
1467                         " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1468                         context->argv[0],
1469                         context->argv[1],
1470                         context->argv[2],
1471                         context->argv[3],
1472                         context->name_count);
1473
1474        audit_log_task_info(ab);
1475        audit_log_key(ab, context->filterkey);
1476        audit_log_end(ab);
1477
1478        for (aux = context->aux; aux; aux = aux->next) {
1479
1480                ab = audit_log_start(context, GFP_KERNEL, aux->type);
1481                if (!ab)
1482                        continue; /* audit_panic has been called */
1483
1484                switch (aux->type) {
1485
1486                case AUDIT_BPRM_FCAPS: {
1487                        struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1488                        audit_log_format(ab, "fver=%x", axs->fcap_ver);
1489                        audit_log_cap(ab, "fp", &axs->fcap.permitted);
1490                        audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1491                        audit_log_format(ab, " fe=%d", axs->fcap.fE);
1492                        audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1493                        audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1494                        audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1495                        audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1496                        audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1497                        audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1498                        audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1499                        audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1500                        audit_log_format(ab, " frootid=%d",
1501                                         from_kuid(&init_user_ns,
1502                                                   axs->fcap.rootid));
1503                        break; }
1504
1505                }
1506                audit_log_end(ab);
1507        }
1508
1509        if (context->type)
1510                show_special(context, &call_panic);
1511
1512        if (context->fds[0] >= 0) {
1513                ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1514                if (ab) {
1515                        audit_log_format(ab, "fd0=%d fd1=%d",
1516                                        context->fds[0], context->fds[1]);
1517                        audit_log_end(ab);
1518                }
1519        }
1520
1521        if (context->sockaddr_len) {
1522                ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1523                if (ab) {
1524                        audit_log_format(ab, "saddr=");
1525                        audit_log_n_hex(ab, (void *)context->sockaddr,
1526                                        context->sockaddr_len);
1527                        audit_log_end(ab);
1528                }
1529        }
1530
1531        for (aux = context->aux_pids; aux; aux = aux->next) {
1532                struct audit_aux_data_pids *axs = (void *)aux;
1533
1534                for (i = 0; i < axs->pid_count; i++)
1535                        if (audit_log_pid_context(context, axs->target_pid[i],
1536                                                  axs->target_auid[i],
1537                                                  axs->target_uid[i],
1538                                                  axs->target_sessionid[i],
1539                                                  axs->target_sid[i],
1540                                                  axs->target_comm[i]))
1541                                call_panic = 1;
1542        }
1543
1544        if (context->target_pid &&
1545            audit_log_pid_context(context, context->target_pid,
1546                                  context->target_auid, context->target_uid,
1547                                  context->target_sessionid,
1548                                  context->target_sid, context->target_comm))
1549                        call_panic = 1;
1550
1551        if (context->pwd.dentry && context->pwd.mnt) {
1552                ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1553                if (ab) {
1554                        audit_log_d_path(ab, "cwd=", &context->pwd);
1555                        audit_log_end(ab);
1556                }
1557        }
1558
1559        i = 0;
1560        list_for_each_entry(n, &context->names_list, list) {
1561                if (n->hidden)
1562                        continue;
1563                audit_log_name(context, n, NULL, i++, &call_panic);
1564        }
1565
1566        audit_log_proctitle();
1567
1568        /* Send end of event record to help user space know we are finished */
1569        ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1570        if (ab)
1571                audit_log_end(ab);
1572        if (call_panic)
1573                audit_panic("error converting sid to string");
1574}
1575
1576/**
1577 * __audit_free - free a per-task audit context
1578 * @tsk: task whose audit context block to free
1579 *
1580 * Called from copy_process and do_exit
1581 */
1582void __audit_free(struct task_struct *tsk)
1583{
1584        struct audit_context *context = tsk->audit_context;
1585
1586        if (!context)
1587                return;
1588
1589        if (!list_empty(&context->killed_trees))
1590                audit_kill_trees(context);
1591
1592        /* We are called either by do_exit() or the fork() error handling code;
1593         * in the former case tsk == current and in the latter tsk is a
1594         * random task_struct that doesn't doesn't have any meaningful data we
1595         * need to log via audit_log_exit().
1596         */
1597        if (tsk == current && !context->dummy && context->in_syscall) {
1598                context->return_valid = 0;
1599                context->return_code = 0;
1600
1601                audit_filter_syscall(tsk, context,
1602                                     &audit_filter_list[AUDIT_FILTER_EXIT]);
1603                audit_filter_inodes(tsk, context);
1604                if (context->current_state == AUDIT_RECORD_CONTEXT)
1605                        audit_log_exit();
1606        }
1607
1608        audit_set_context(tsk, NULL);
1609        audit_free_context(context);
1610}
1611
1612/**
1613 * __audit_syscall_entry - fill in an audit record at syscall entry
1614 * @major: major syscall type (function)
1615 * @a1: additional syscall register 1
1616 * @a2: additional syscall register 2
1617 * @a3: additional syscall register 3
1618 * @a4: additional syscall register 4
1619 *
1620 * Fill in audit context at syscall entry.  This only happens if the
1621 * audit context was created when the task was created and the state or
1622 * filters demand the audit context be built.  If the state from the
1623 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1624 * then the record will be written at syscall exit time (otherwise, it
1625 * will only be written if another part of the kernel requests that it
1626 * be written).
1627 */
1628void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1629                           unsigned long a3, unsigned long a4)
1630{
1631        struct audit_context *context = audit_context();
1632        enum audit_state     state;
1633
1634        if (!audit_enabled || !context)
1635                return;
1636
1637        BUG_ON(context->in_syscall || context->name_count);
1638
1639        state = context->state;
1640        if (state == AUDIT_DISABLED)
1641                return;
1642
1643        context->dummy = !audit_n_rules;
1644        if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1645                context->prio = 0;
1646                if (auditd_test_task(current))
1647                        return;
1648        }
1649
1650        context->arch       = syscall_get_arch(current);
1651        context->major      = major;
1652        context->argv[0]    = a1;
1653        context->argv[1]    = a2;
1654        context->argv[2]    = a3;
1655        context->argv[3]    = a4;
1656        context->serial     = 0;
1657        context->in_syscall = 1;
1658        context->current_state  = state;
1659        context->ppid       = 0;
1660        ktime_get_coarse_real_ts64(&context->ctime);
1661}
1662
1663/**
1664 * __audit_syscall_exit - deallocate audit context after a system call
1665 * @success: success value of the syscall
1666 * @return_code: return value of the syscall
1667 *
1668 * Tear down after system call.  If the audit context has been marked as
1669 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1670 * filtering, or because some other part of the kernel wrote an audit
1671 * message), then write out the syscall information.  In call cases,
1672 * free the names stored from getname().
1673 */
1674void __audit_syscall_exit(int success, long return_code)
1675{
1676        struct audit_context *context;
1677
1678        context = audit_context();
1679        if (!context)
1680                return;
1681
1682        if (!list_empty(&context->killed_trees))
1683                audit_kill_trees(context);
1684
1685        if (!context->dummy && context->in_syscall) {
1686                if (success)
1687                        context->return_valid = AUDITSC_SUCCESS;
1688                else
1689                        context->return_valid = AUDITSC_FAILURE;
1690
1691                /*
1692                 * we need to fix up the return code in the audit logs if the
1693                 * actual return codes are later going to be fixed up by the
1694                 * arch specific signal handlers
1695                 *
1696                 * This is actually a test for:
1697                 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1698                 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1699                 *
1700                 * but is faster than a bunch of ||
1701                 */
1702                if (unlikely(return_code <= -ERESTARTSYS) &&
1703                    (return_code >= -ERESTART_RESTARTBLOCK) &&
1704                    (return_code != -ENOIOCTLCMD))
1705                        context->return_code = -EINTR;
1706                else
1707                        context->return_code  = return_code;
1708
1709                audit_filter_syscall(current, context,
1710                                     &audit_filter_list[AUDIT_FILTER_EXIT]);
1711                audit_filter_inodes(current, context);
1712                if (context->current_state == AUDIT_RECORD_CONTEXT)
1713                        audit_log_exit();
1714        }
1715
1716        context->in_syscall = 0;
1717        context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1718
1719        audit_free_module(context);
1720        audit_free_names(context);
1721        unroll_tree_refs(context, NULL, 0);
1722        audit_free_aux(context);
1723        context->aux = NULL;
1724        context->aux_pids = NULL;
1725        context->target_pid = 0;
1726        context->target_sid = 0;
1727        context->sockaddr_len = 0;
1728        context->type = 0;
1729        context->fds[0] = -1;
1730        if (context->state != AUDIT_RECORD_CONTEXT) {
1731                kfree(context->filterkey);
1732                context->filterkey = NULL;
1733        }
1734}
1735
1736static inline void handle_one(const struct inode *inode)
1737{
1738        struct audit_context *context;
1739        struct audit_tree_refs *p;
1740        struct audit_chunk *chunk;
1741        int count;
1742        if (likely(!inode->i_fsnotify_marks))
1743                return;
1744        context = audit_context();
1745        p = context->trees;
1746        count = context->tree_count;
1747        rcu_read_lock();
1748        chunk = audit_tree_lookup(inode);
1749        rcu_read_unlock();
1750        if (!chunk)
1751                return;
1752        if (likely(put_tree_ref(context, chunk)))
1753                return;
1754        if (unlikely(!grow_tree_refs(context))) {
1755                pr_warn("out of memory, audit has lost a tree reference\n");
1756                audit_set_auditable(context);
1757                audit_put_chunk(chunk);
1758                unroll_tree_refs(context, p, count);
1759                return;
1760        }
1761        put_tree_ref(context, chunk);
1762}
1763
1764static void handle_path(const struct dentry *dentry)
1765{
1766        struct audit_context *context;
1767        struct audit_tree_refs *p;
1768        const struct dentry *d, *parent;
1769        struct audit_chunk *drop;
1770        unsigned long seq;
1771        int count;
1772
1773        context = audit_context();
1774        p = context->trees;
1775        count = context->tree_count;
1776retry:
1777        drop = NULL;
1778        d = dentry;
1779        rcu_read_lock();
1780        seq = read_seqbegin(&rename_lock);
1781        for(;;) {
1782                struct inode *inode = d_backing_inode(d);
1783                if (inode && unlikely(inode->i_fsnotify_marks)) {
1784                        struct audit_chunk *chunk;
1785                        chunk = audit_tree_lookup(inode);
1786                        if (chunk) {
1787                                if (unlikely(!put_tree_ref(context, chunk))) {
1788                                        drop = chunk;
1789                                        break;
1790                                }
1791                        }
1792                }
1793                parent = d->d_parent;
1794                if (parent == d)
1795                        break;
1796                d = parent;
1797        }
1798        if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1799                rcu_read_unlock();
1800                if (!drop) {
1801                        /* just a race with rename */
1802                        unroll_tree_refs(context, p, count);
1803                        goto retry;
1804                }
1805                audit_put_chunk(drop);
1806                if (grow_tree_refs(context)) {
1807                        /* OK, got more space */
1808                        unroll_tree_refs(context, p, count);
1809                        goto retry;
1810                }
1811                /* too bad */
1812                pr_warn("out of memory, audit has lost a tree reference\n");
1813                unroll_tree_refs(context, p, count);
1814                audit_set_auditable(context);
1815                return;
1816        }
1817        rcu_read_unlock();
1818}
1819
1820static struct audit_names *audit_alloc_name(struct audit_context *context,
1821                                                unsigned char type)
1822{
1823        struct audit_names *aname;
1824
1825        if (context->name_count < AUDIT_NAMES) {
1826                aname = &context->preallocated_names[context->name_count];
1827                memset(aname, 0, sizeof(*aname));
1828        } else {
1829                aname = kzalloc(sizeof(*aname), GFP_NOFS);
1830                if (!aname)
1831                        return NULL;
1832                aname->should_free = true;
1833        }
1834
1835        aname->ino = AUDIT_INO_UNSET;
1836        aname->type = type;
1837        list_add_tail(&aname->list, &context->names_list);
1838
1839        context->name_count++;
1840        return aname;
1841}
1842
1843/**
1844 * __audit_reusename - fill out filename with info from existing entry
1845 * @uptr: userland ptr to pathname
1846 *
1847 * Search the audit_names list for the current audit context. If there is an
1848 * existing entry with a matching "uptr" then return the filename
1849 * associated with that audit_name. If not, return NULL.
1850 */
1851struct filename *
1852__audit_reusename(const __user char *uptr)
1853{
1854        struct audit_context *context = audit_context();
1855        struct audit_names *n;
1856
1857        list_for_each_entry(n, &context->names_list, list) {
1858                if (!n->name)
1859                        continue;
1860                if (n->name->uptr == uptr) {
1861                        n->name->refcnt++;
1862                        return n->name;
1863                }
1864        }
1865        return NULL;
1866}
1867
1868/**
1869 * __audit_getname - add a name to the list
1870 * @name: name to add
1871 *
1872 * Add a name to the list of audit names for this context.
1873 * Called from fs/namei.c:getname().
1874 */
1875void __audit_getname(struct filename *name)
1876{
1877        struct audit_context *context = audit_context();
1878        struct audit_names *n;
1879
1880        if (!context->in_syscall)
1881                return;
1882
1883        n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1884        if (!n)
1885                return;
1886
1887        n->name = name;
1888        n->name_len = AUDIT_NAME_FULL;
1889        name->aname = n;
1890        name->refcnt++;
1891
1892        if (!context->pwd.dentry)
1893                get_fs_pwd(current->fs, &context->pwd);
1894}
1895
1896static inline int audit_copy_fcaps(struct audit_names *name,
1897                                   const struct dentry *dentry)
1898{
1899        struct cpu_vfs_cap_data caps;
1900        int rc;
1901
1902        if (!dentry)
1903                return 0;
1904
1905        rc = get_vfs_caps_from_disk(dentry, &caps);
1906        if (rc)
1907                return rc;
1908
1909        name->fcap.permitted = caps.permitted;
1910        name->fcap.inheritable = caps.inheritable;
1911        name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1912        name->fcap.rootid = caps.rootid;
1913        name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1914                                VFS_CAP_REVISION_SHIFT;
1915
1916        return 0;
1917}
1918
1919/* Copy inode data into an audit_names. */
1920static void audit_copy_inode(struct audit_names *name,
1921                             const struct dentry *dentry,
1922                             struct inode *inode, unsigned int flags)
1923{
1924        name->ino   = inode->i_ino;
1925        name->dev   = inode->i_sb->s_dev;
1926        name->mode  = inode->i_mode;
1927        name->uid   = inode->i_uid;
1928        name->gid   = inode->i_gid;
1929        name->rdev  = inode->i_rdev;
1930        security_inode_getsecid(inode, &name->osid);
1931        if (flags & AUDIT_INODE_NOEVAL) {
1932                name->fcap_ver = -1;
1933                return;
1934        }
1935        audit_copy_fcaps(name, dentry);
1936}
1937
1938/**
1939 * __audit_inode - store the inode and device from a lookup
1940 * @name: name being audited
1941 * @dentry: dentry being audited
1942 * @flags: attributes for this particular entry
1943 */
1944void __audit_inode(struct filename *name, const struct dentry *dentry,
1945                   unsigned int flags)
1946{
1947        struct audit_context *context = audit_context();
1948        struct inode *inode = d_backing_inode(dentry);
1949        struct audit_names *n;
1950        bool parent = flags & AUDIT_INODE_PARENT;
1951        struct audit_entry *e;
1952        struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1953        int i;
1954
1955        if (!context->in_syscall)
1956                return;
1957
1958        rcu_read_lock();
1959        list_for_each_entry_rcu(e, list, list) {
1960                for (i = 0; i < e->rule.field_count; i++) {
1961                        struct audit_field *f = &e->rule.fields[i];
1962
1963                        if (f->type == AUDIT_FSTYPE
1964                            && audit_comparator(inode->i_sb->s_magic,
1965                                                f->op, f->val)
1966                            && e->rule.action == AUDIT_NEVER) {
1967                                rcu_read_unlock();
1968                                return;
1969                        }
1970                }
1971        }
1972        rcu_read_unlock();
1973
1974        if (!name)
1975                goto out_alloc;
1976
1977        /*
1978         * If we have a pointer to an audit_names entry already, then we can
1979         * just use it directly if the type is correct.
1980         */
1981        n = name->aname;
1982        if (n) {
1983                if (parent) {
1984                        if (n->type == AUDIT_TYPE_PARENT ||
1985                            n->type == AUDIT_TYPE_UNKNOWN)
1986                                goto out;
1987                } else {
1988                        if (n->type != AUDIT_TYPE_PARENT)
1989                                goto out;
1990                }
1991        }
1992
1993        list_for_each_entry_reverse(n, &context->names_list, list) {
1994                if (n->ino) {
1995                        /* valid inode number, use that for the comparison */
1996                        if (n->ino != inode->i_ino ||
1997                            n->dev != inode->i_sb->s_dev)
1998                                continue;
1999                } else if (n->name) {
2000                        /* inode number has not been set, check the name */
2001                        if (strcmp(n->name->name, name->name))
2002                                continue;
2003                } else
2004                        /* no inode and no name (?!) ... this is odd ... */
2005                        continue;
2006
2007                /* match the correct record type */
2008                if (parent) {
2009                        if (n->type == AUDIT_TYPE_PARENT ||
2010                            n->type == AUDIT_TYPE_UNKNOWN)
2011                                goto out;
2012                } else {
2013                        if (n->type != AUDIT_TYPE_PARENT)
2014                                goto out;
2015                }
2016        }
2017
2018out_alloc:
2019        /* unable to find an entry with both a matching name and type */
2020        n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2021        if (!n)
2022                return;
2023        if (name) {
2024                n->name = name;
2025                name->refcnt++;
2026        }
2027
2028out:
2029        if (parent) {
2030                n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2031                n->type = AUDIT_TYPE_PARENT;
2032                if (flags & AUDIT_INODE_HIDDEN)
2033                        n->hidden = true;
2034        } else {
2035                n->name_len = AUDIT_NAME_FULL;
2036                n->type = AUDIT_TYPE_NORMAL;
2037        }
2038        handle_path(dentry);
2039        audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2040}
2041
2042void __audit_file(const struct file *file)
2043{
2044        __audit_inode(NULL, file->f_path.dentry, 0);
2045}
2046
2047/**
2048 * __audit_inode_child - collect inode info for created/removed objects
2049 * @parent: inode of dentry parent
2050 * @dentry: dentry being audited
2051 * @type:   AUDIT_TYPE_* value that we're looking for
2052 *
2053 * For syscalls that create or remove filesystem objects, audit_inode
2054 * can only collect information for the filesystem object's parent.
2055 * This call updates the audit context with the child's information.
2056 * Syscalls that create a new filesystem object must be hooked after
2057 * the object is created.  Syscalls that remove a filesystem object
2058 * must be hooked prior, in order to capture the target inode during
2059 * unsuccessful attempts.
2060 */
2061void __audit_inode_child(struct inode *parent,
2062                         const struct dentry *dentry,
2063                         const unsigned char type)
2064{
2065        struct audit_context *context = audit_context();
2066        struct inode *inode = d_backing_inode(dentry);
2067        const struct qstr *dname = &dentry->d_name;
2068        struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2069        struct audit_entry *e;
2070        struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2071        int i;
2072
2073        if (!context->in_syscall)
2074                return;
2075
2076        rcu_read_lock();
2077        list_for_each_entry_rcu(e, list, list) {
2078                for (i = 0; i < e->rule.field_count; i++) {
2079                        struct audit_field *f = &e->rule.fields[i];
2080
2081                        if (f->type == AUDIT_FSTYPE
2082                            && audit_comparator(parent->i_sb->s_magic,
2083                                                f->op, f->val)
2084                            && e->rule.action == AUDIT_NEVER) {
2085                                rcu_read_unlock();
2086                                return;
2087                        }
2088                }
2089        }
2090        rcu_read_unlock();
2091
2092        if (inode)
2093                handle_one(inode);
2094
2095        /* look for a parent entry first */
2096        list_for_each_entry(n, &context->names_list, list) {
2097                if (!n->name ||
2098                    (n->type != AUDIT_TYPE_PARENT &&
2099                     n->type != AUDIT_TYPE_UNKNOWN))
2100                        continue;
2101
2102                if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2103                    !audit_compare_dname_path(dname,
2104                                              n->name->name, n->name_len)) {
2105                        if (n->type == AUDIT_TYPE_UNKNOWN)
2106                                n->type = AUDIT_TYPE_PARENT;
2107                        found_parent = n;
2108                        break;
2109                }
2110        }
2111
2112        /* is there a matching child entry? */
2113        list_for_each_entry(n, &context->names_list, list) {
2114                /* can only match entries that have a name */
2115                if (!n->name ||
2116                    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2117                        continue;
2118
2119                if (!strcmp(dname->name, n->name->name) ||
2120                    !audit_compare_dname_path(dname, n->name->name,
2121                                                found_parent ?
2122                                                found_parent->name_len :
2123                                                AUDIT_NAME_FULL)) {
2124                        if (n->type == AUDIT_TYPE_UNKNOWN)
2125                                n->type = type;
2126                        found_child = n;
2127                        break;
2128                }
2129        }
2130
2131        if (!found_parent) {
2132                /* create a new, "anonymous" parent record */
2133                n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2134                if (!n)
2135                        return;
2136                audit_copy_inode(n, NULL, parent, 0);
2137        }
2138
2139        if (!found_child) {
2140                found_child = audit_alloc_name(context, type);
2141                if (!found_child)
2142                        return;
2143
2144                /* Re-use the name belonging to the slot for a matching parent
2145                 * directory. All names for this context are relinquished in
2146                 * audit_free_names() */
2147                if (found_parent) {
2148                        found_child->name = found_parent->name;
2149                        found_child->name_len = AUDIT_NAME_FULL;
2150                        found_child->name->refcnt++;
2151                }
2152        }
2153
2154        if (inode)
2155                audit_copy_inode(found_child, dentry, inode, 0);
2156        else
2157                found_child->ino = AUDIT_INO_UNSET;
2158}
2159EXPORT_SYMBOL_GPL(__audit_inode_child);
2160
2161/**
2162 * auditsc_get_stamp - get local copies of audit_context values
2163 * @ctx: audit_context for the task
2164 * @t: timespec64 to store time recorded in the audit_context
2165 * @serial: serial value that is recorded in the audit_context
2166 *
2167 * Also sets the context as auditable.
2168 */
2169int auditsc_get_stamp(struct audit_context *ctx,
2170                       struct timespec64 *t, unsigned int *serial)
2171{
2172        if (!ctx->in_syscall)
2173                return 0;
2174        if (!ctx->serial)
2175                ctx->serial = audit_serial();
2176        t->tv_sec  = ctx->ctime.tv_sec;
2177        t->tv_nsec = ctx->ctime.tv_nsec;
2178        *serial    = ctx->serial;
2179        if (!ctx->prio) {
2180                ctx->prio = 1;
2181                ctx->current_state = AUDIT_RECORD_CONTEXT;
2182        }
2183        return 1;
2184}
2185
2186/**
2187 * __audit_mq_open - record audit data for a POSIX MQ open
2188 * @oflag: open flag
2189 * @mode: mode bits
2190 * @attr: queue attributes
2191 *
2192 */
2193void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2194{
2195        struct audit_context *context = audit_context();
2196
2197        if (attr)
2198                memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2199        else
2200                memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2201
2202        context->mq_open.oflag = oflag;
2203        context->mq_open.mode = mode;
2204
2205        context->type = AUDIT_MQ_OPEN;
2206}
2207
2208/**
2209 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2210 * @mqdes: MQ descriptor
2211 * @msg_len: Message length
2212 * @msg_prio: Message priority
2213 * @abs_timeout: Message timeout in absolute time
2214 *
2215 */
2216void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2217                        const struct timespec64 *abs_timeout)
2218{
2219        struct audit_context *context = audit_context();
2220        struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2221
2222        if (abs_timeout)
2223                memcpy(p, abs_timeout, sizeof(*p));
2224        else
2225                memset(p, 0, sizeof(*p));
2226
2227        context->mq_sendrecv.mqdes = mqdes;
2228        context->mq_sendrecv.msg_len = msg_len;
2229        context->mq_sendrecv.msg_prio = msg_prio;
2230
2231        context->type = AUDIT_MQ_SENDRECV;
2232}
2233
2234/**
2235 * __audit_mq_notify - record audit data for a POSIX MQ notify
2236 * @mqdes: MQ descriptor
2237 * @notification: Notification event
2238 *
2239 */
2240
2241void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2242{
2243        struct audit_context *context = audit_context();
2244
2245        if (notification)
2246                context->mq_notify.sigev_signo = notification->sigev_signo;
2247        else
2248                context->mq_notify.sigev_signo = 0;
2249
2250        context->mq_notify.mqdes = mqdes;
2251        context->type = AUDIT_MQ_NOTIFY;
2252}
2253
2254/**
2255 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2256 * @mqdes: MQ descriptor
2257 * @mqstat: MQ flags
2258 *
2259 */
2260void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2261{
2262        struct audit_context *context = audit_context();
2263        context->mq_getsetattr.mqdes = mqdes;
2264        context->mq_getsetattr.mqstat = *mqstat;
2265        context->type = AUDIT_MQ_GETSETATTR;
2266}
2267
2268/**
2269 * __audit_ipc_obj - record audit data for ipc object
2270 * @ipcp: ipc permissions
2271 *
2272 */
2273void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2274{
2275        struct audit_context *context = audit_context();
2276        context->ipc.uid = ipcp->uid;
2277        context->ipc.gid = ipcp->gid;
2278        context->ipc.mode = ipcp->mode;
2279        context->ipc.has_perm = 0;
2280        security_ipc_getsecid(ipcp, &context->ipc.osid);
2281        context->type = AUDIT_IPC;
2282}
2283
2284/**
2285 * __audit_ipc_set_perm - record audit data for new ipc permissions
2286 * @qbytes: msgq bytes
2287 * @uid: msgq user id
2288 * @gid: msgq group id
2289 * @mode: msgq mode (permissions)
2290 *
2291 * Called only after audit_ipc_obj().
2292 */
2293void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2294{
2295        struct audit_context *context = audit_context();
2296
2297        context->ipc.qbytes = qbytes;
2298        context->ipc.perm_uid = uid;
2299        context->ipc.perm_gid = gid;
2300        context->ipc.perm_mode = mode;
2301        context->ipc.has_perm = 1;
2302}
2303
2304void __audit_bprm(struct linux_binprm *bprm)
2305{
2306        struct audit_context *context = audit_context();
2307
2308        context->type = AUDIT_EXECVE;
2309        context->execve.argc = bprm->argc;
2310}
2311
2312
2313/**
2314 * __audit_socketcall - record audit data for sys_socketcall
2315 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2316 * @args: args array
2317 *
2318 */
2319int __audit_socketcall(int nargs, unsigned long *args)
2320{
2321        struct audit_context *context = audit_context();
2322
2323        if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2324                return -EINVAL;
2325        context->type = AUDIT_SOCKETCALL;
2326        context->socketcall.nargs = nargs;
2327        memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2328        return 0;
2329}
2330
2331/**
2332 * __audit_fd_pair - record audit data for pipe and socketpair
2333 * @fd1: the first file descriptor
2334 * @fd2: the second file descriptor
2335 *
2336 */
2337void __audit_fd_pair(int fd1, int fd2)
2338{
2339        struct audit_context *context = audit_context();
2340        context->fds[0] = fd1;
2341        context->fds[1] = fd2;
2342}
2343
2344/**
2345 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2346 * @len: data length in user space
2347 * @a: data address in kernel space
2348 *
2349 * Returns 0 for success or NULL context or < 0 on error.
2350 */
2351int __audit_sockaddr(int len, void *a)
2352{
2353        struct audit_context *context = audit_context();
2354
2355        if (!context->sockaddr) {
2356                void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2357                if (!p)
2358                        return -ENOMEM;
2359                context->sockaddr = p;
2360        }
2361
2362        context->sockaddr_len = len;
2363        memcpy(context->sockaddr, a, len);
2364        return 0;
2365}
2366
2367void __audit_ptrace(struct task_struct *t)
2368{
2369        struct audit_context *context = audit_context();
2370
2371        context->target_pid = task_tgid_nr(t);
2372        context->target_auid = audit_get_loginuid(t);
2373        context->target_uid = task_uid(t);
2374        context->target_sessionid = audit_get_sessionid(t);
2375        security_task_getsecid(t, &context->target_sid);
2376        memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2377}
2378
2379/**
2380 * audit_signal_info_syscall - record signal info for syscalls
2381 * @t: task being signaled
2382 *
2383 * If the audit subsystem is being terminated, record the task (pid)
2384 * and uid that is doing that.
2385 */
2386int audit_signal_info_syscall(struct task_struct *t)
2387{
2388        struct audit_aux_data_pids *axp;
2389        struct audit_context *ctx = audit_context();
2390        kuid_t t_uid = task_uid(t);
2391
2392        if (!audit_signals || audit_dummy_context())
2393                return 0;
2394
2395        /* optimize the common case by putting first signal recipient directly
2396         * in audit_context */
2397        if (!ctx->target_pid) {
2398                ctx->target_pid = task_tgid_nr(t);
2399                ctx->target_auid = audit_get_loginuid(t);
2400                ctx->target_uid = t_uid;
2401                ctx->target_sessionid = audit_get_sessionid(t);
2402                security_task_getsecid(t, &ctx->target_sid);
2403                memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2404                return 0;
2405        }
2406
2407        axp = (void *)ctx->aux_pids;
2408        if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2409                axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2410                if (!axp)
2411                        return -ENOMEM;
2412
2413                axp->d.type = AUDIT_OBJ_PID;
2414                axp->d.next = ctx->aux_pids;
2415                ctx->aux_pids = (void *)axp;
2416        }
2417        BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2418
2419        axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2420        axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2421        axp->target_uid[axp->pid_count] = t_uid;
2422        axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2423        security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2424        memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2425        axp->pid_count++;
2426
2427        return 0;
2428}
2429
2430/**
2431 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2432 * @bprm: pointer to the bprm being processed
2433 * @new: the proposed new credentials
2434 * @old: the old credentials
2435 *
2436 * Simply check if the proc already has the caps given by the file and if not
2437 * store the priv escalation info for later auditing at the end of the syscall
2438 *
2439 * -Eric
2440 */
2441int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2442                           const struct cred *new, const struct cred *old)
2443{
2444        struct audit_aux_data_bprm_fcaps *ax;
2445        struct audit_context *context = audit_context();
2446        struct cpu_vfs_cap_data vcaps;
2447
2448        ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2449        if (!ax)
2450                return -ENOMEM;
2451
2452        ax->d.type = AUDIT_BPRM_FCAPS;
2453        ax->d.next = context->aux;
2454        context->aux = (void *)ax;
2455
2456        get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2457
2458        ax->fcap.permitted = vcaps.permitted;
2459        ax->fcap.inheritable = vcaps.inheritable;
2460        ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2461        ax->fcap.rootid = vcaps.rootid;
2462        ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2463
2464        ax->old_pcap.permitted   = old->cap_permitted;
2465        ax->old_pcap.inheritable = old->cap_inheritable;
2466        ax->old_pcap.effective   = old->cap_effective;
2467        ax->old_pcap.ambient     = old->cap_ambient;
2468
2469        ax->new_pcap.permitted   = new->cap_permitted;
2470        ax->new_pcap.inheritable = new->cap_inheritable;
2471        ax->new_pcap.effective   = new->cap_effective;
2472        ax->new_pcap.ambient     = new->cap_ambient;
2473        return 0;
2474}
2475
2476/**
2477 * __audit_log_capset - store information about the arguments to the capset syscall
2478 * @new: the new credentials
2479 * @old: the old (current) credentials
2480 *
2481 * Record the arguments userspace sent to sys_capset for later printing by the
2482 * audit system if applicable
2483 */
2484void __audit_log_capset(const struct cred *new, const struct cred *old)
2485{
2486        struct audit_context *context = audit_context();
2487        context->capset.pid = task_tgid_nr(current);
2488        context->capset.cap.effective   = new->cap_effective;
2489        context->capset.cap.inheritable = new->cap_effective;
2490        context->capset.cap.permitted   = new->cap_permitted;
2491        context->capset.cap.ambient     = new->cap_ambient;
2492        context->type = AUDIT_CAPSET;
2493}
2494
2495void __audit_mmap_fd(int fd, int flags)
2496{
2497        struct audit_context *context = audit_context();
2498        context->mmap.fd = fd;
2499        context->mmap.flags = flags;
2500        context->type = AUDIT_MMAP;
2501}
2502
2503void __audit_log_kern_module(char *name)
2504{
2505        struct audit_context *context = audit_context();
2506
2507        context->module.name = kstrdup(name, GFP_KERNEL);
2508        if (!context->module.name)
2509                audit_log_lost("out of memory in __audit_log_kern_module");
2510        context->type = AUDIT_KERN_MODULE;
2511}
2512
2513void __audit_fanotify(unsigned int response)
2514{
2515        audit_log(audit_context(), GFP_KERNEL,
2516                AUDIT_FANOTIFY, "resp=%u", response);
2517}
2518
2519void __audit_tk_injoffset(struct timespec64 offset)
2520{
2521        audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2522                  "sec=%lli nsec=%li",
2523                  (long long)offset.tv_sec, offset.tv_nsec);
2524}
2525
2526static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2527                              const char *op, enum audit_ntp_type type)
2528{
2529        const struct audit_ntp_val *val = &ad->vals[type];
2530
2531        if (val->newval == val->oldval)
2532                return;
2533
2534        audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2535                  "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2536}
2537
2538void __audit_ntp_log(const struct audit_ntp_data *ad)
2539{
2540        audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET);
2541        audit_log_ntp_val(ad, "freq",   AUDIT_NTP_FREQ);
2542        audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS);
2543        audit_log_ntp_val(ad, "tai",    AUDIT_NTP_TAI);
2544        audit_log_ntp_val(ad, "tick",   AUDIT_NTP_TICK);
2545        audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST);
2546}
2547
2548static void audit_log_task(struct audit_buffer *ab)
2549{
2550        kuid_t auid, uid;
2551        kgid_t gid;
2552        unsigned int sessionid;
2553        char comm[sizeof(current->comm)];
2554
2555        auid = audit_get_loginuid(current);
2556        sessionid = audit_get_sessionid(current);
2557        current_uid_gid(&uid, &gid);
2558
2559        audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2560                         from_kuid(&init_user_ns, auid),
2561                         from_kuid(&init_user_ns, uid),
2562                         from_kgid(&init_user_ns, gid),
2563                         sessionid);
2564        audit_log_task_context(ab);
2565        audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2566        audit_log_untrustedstring(ab, get_task_comm(comm, current));
2567        audit_log_d_path_exe(ab, current->mm);
2568}
2569
2570/**
2571 * audit_core_dumps - record information about processes that end abnormally
2572 * @signr: signal value
2573 *
2574 * If a process ends with a core dump, something fishy is going on and we
2575 * should record the event for investigation.
2576 */
2577void audit_core_dumps(long signr)
2578{
2579        struct audit_buffer *ab;
2580
2581        if (!audit_enabled)
2582                return;
2583
2584        if (signr == SIGQUIT)   /* don't care for those */
2585                return;
2586
2587        ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2588        if (unlikely(!ab))
2589                return;
2590        audit_log_task(ab);
2591        audit_log_format(ab, " sig=%ld res=1", signr);
2592        audit_log_end(ab);
2593}
2594
2595/**
2596 * audit_seccomp - record information about a seccomp action
2597 * @syscall: syscall number
2598 * @signr: signal value
2599 * @code: the seccomp action
2600 *
2601 * Record the information associated with a seccomp action. Event filtering for
2602 * seccomp actions that are not to be logged is done in seccomp_log().
2603 * Therefore, this function forces auditing independent of the audit_enabled
2604 * and dummy context state because seccomp actions should be logged even when
2605 * audit is not in use.
2606 */
2607void audit_seccomp(unsigned long syscall, long signr, int code)
2608{
2609        struct audit_buffer *ab;
2610
2611        ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2612        if (unlikely(!ab))
2613                return;
2614        audit_log_task(ab);
2615        audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2616                         signr, syscall_get_arch(current), syscall,
2617                         in_compat_syscall(), KSTK_EIP(current), code);
2618        audit_log_end(ab);
2619}
2620
2621void audit_seccomp_actions_logged(const char *names, const char *old_names,
2622                                  int res)
2623{
2624        struct audit_buffer *ab;
2625
2626        if (!audit_enabled)
2627                return;
2628
2629        ab = audit_log_start(audit_context(), GFP_KERNEL,
2630                             AUDIT_CONFIG_CHANGE);
2631        if (unlikely(!ab))
2632                return;
2633
2634        audit_log_format(ab,
2635                         "op=seccomp-logging actions=%s old-actions=%s res=%d",
2636                         names, old_names, res);
2637        audit_log_end(ab);
2638}
2639
2640struct list_head *audit_killed_trees(void)
2641{
2642        struct audit_context *ctx = audit_context();
2643        if (likely(!ctx || !ctx->in_syscall))
2644                return NULL;
2645        return &ctx->killed_trees;
2646}
2647