linux/kernel/bpf/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Linux Socket Filter - Kernel level socket filtering
   4 *
   5 * Based on the design of the Berkeley Packet Filter. The new
   6 * internal format has been designed by PLUMgrid:
   7 *
   8 *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   9 *
  10 * Authors:
  11 *
  12 *      Jay Schulist <jschlst@samba.org>
  13 *      Alexei Starovoitov <ast@plumgrid.com>
  14 *      Daniel Borkmann <dborkman@redhat.com>
  15 *
  16 * Andi Kleen - Fix a few bad bugs and races.
  17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  18 */
  19
  20#include <uapi/linux/btf.h>
  21#include <linux/filter.h>
  22#include <linux/skbuff.h>
  23#include <linux/vmalloc.h>
  24#include <linux/random.h>
  25#include <linux/moduleloader.h>
  26#include <linux/bpf.h>
  27#include <linux/btf.h>
  28#include <linux/frame.h>
  29#include <linux/rbtree_latch.h>
  30#include <linux/kallsyms.h>
  31#include <linux/rcupdate.h>
  32#include <linux/perf_event.h>
  33
  34#include <asm/unaligned.h>
  35
  36/* Registers */
  37#define BPF_R0  regs[BPF_REG_0]
  38#define BPF_R1  regs[BPF_REG_1]
  39#define BPF_R2  regs[BPF_REG_2]
  40#define BPF_R3  regs[BPF_REG_3]
  41#define BPF_R4  regs[BPF_REG_4]
  42#define BPF_R5  regs[BPF_REG_5]
  43#define BPF_R6  regs[BPF_REG_6]
  44#define BPF_R7  regs[BPF_REG_7]
  45#define BPF_R8  regs[BPF_REG_8]
  46#define BPF_R9  regs[BPF_REG_9]
  47#define BPF_R10 regs[BPF_REG_10]
  48
  49/* Named registers */
  50#define DST     regs[insn->dst_reg]
  51#define SRC     regs[insn->src_reg]
  52#define FP      regs[BPF_REG_FP]
  53#define AX      regs[BPF_REG_AX]
  54#define ARG1    regs[BPF_REG_ARG1]
  55#define CTX     regs[BPF_REG_CTX]
  56#define IMM     insn->imm
  57
  58/* No hurry in this branch
  59 *
  60 * Exported for the bpf jit load helper.
  61 */
  62void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  63{
  64        u8 *ptr = NULL;
  65
  66        if (k >= SKF_NET_OFF)
  67                ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  68        else if (k >= SKF_LL_OFF)
  69                ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  70
  71        if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  72                return ptr;
  73
  74        return NULL;
  75}
  76
  77struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
  78{
  79        gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
  80        struct bpf_prog_aux *aux;
  81        struct bpf_prog *fp;
  82
  83        size = round_up(size, PAGE_SIZE);
  84        fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
  85        if (fp == NULL)
  86                return NULL;
  87
  88        aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
  89        if (aux == NULL) {
  90                vfree(fp);
  91                return NULL;
  92        }
  93
  94        fp->pages = size / PAGE_SIZE;
  95        fp->aux = aux;
  96        fp->aux->prog = fp;
  97        fp->jit_requested = ebpf_jit_enabled();
  98
  99        INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
 100
 101        return fp;
 102}
 103
 104struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
 105{
 106        gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
 107        struct bpf_prog *prog;
 108        int cpu;
 109
 110        prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
 111        if (!prog)
 112                return NULL;
 113
 114        prog->aux->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
 115        if (!prog->aux->stats) {
 116                kfree(prog->aux);
 117                vfree(prog);
 118                return NULL;
 119        }
 120
 121        for_each_possible_cpu(cpu) {
 122                struct bpf_prog_stats *pstats;
 123
 124                pstats = per_cpu_ptr(prog->aux->stats, cpu);
 125                u64_stats_init(&pstats->syncp);
 126        }
 127        return prog;
 128}
 129EXPORT_SYMBOL_GPL(bpf_prog_alloc);
 130
 131int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
 132{
 133        if (!prog->aux->nr_linfo || !prog->jit_requested)
 134                return 0;
 135
 136        prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
 137                                         sizeof(*prog->aux->jited_linfo),
 138                                         GFP_KERNEL | __GFP_NOWARN);
 139        if (!prog->aux->jited_linfo)
 140                return -ENOMEM;
 141
 142        return 0;
 143}
 144
 145void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
 146{
 147        kfree(prog->aux->jited_linfo);
 148        prog->aux->jited_linfo = NULL;
 149}
 150
 151void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
 152{
 153        if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
 154                bpf_prog_free_jited_linfo(prog);
 155}
 156
 157/* The jit engine is responsible to provide an array
 158 * for insn_off to the jited_off mapping (insn_to_jit_off).
 159 *
 160 * The idx to this array is the insn_off.  Hence, the insn_off
 161 * here is relative to the prog itself instead of the main prog.
 162 * This array has one entry for each xlated bpf insn.
 163 *
 164 * jited_off is the byte off to the last byte of the jited insn.
 165 *
 166 * Hence, with
 167 * insn_start:
 168 *      The first bpf insn off of the prog.  The insn off
 169 *      here is relative to the main prog.
 170 *      e.g. if prog is a subprog, insn_start > 0
 171 * linfo_idx:
 172 *      The prog's idx to prog->aux->linfo and jited_linfo
 173 *
 174 * jited_linfo[linfo_idx] = prog->bpf_func
 175 *
 176 * For i > linfo_idx,
 177 *
 178 * jited_linfo[i] = prog->bpf_func +
 179 *      insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
 180 */
 181void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
 182                               const u32 *insn_to_jit_off)
 183{
 184        u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
 185        const struct bpf_line_info *linfo;
 186        void **jited_linfo;
 187
 188        if (!prog->aux->jited_linfo)
 189                /* Userspace did not provide linfo */
 190                return;
 191
 192        linfo_idx = prog->aux->linfo_idx;
 193        linfo = &prog->aux->linfo[linfo_idx];
 194        insn_start = linfo[0].insn_off;
 195        insn_end = insn_start + prog->len;
 196
 197        jited_linfo = &prog->aux->jited_linfo[linfo_idx];
 198        jited_linfo[0] = prog->bpf_func;
 199
 200        nr_linfo = prog->aux->nr_linfo - linfo_idx;
 201
 202        for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
 203                /* The verifier ensures that linfo[i].insn_off is
 204                 * strictly increasing
 205                 */
 206                jited_linfo[i] = prog->bpf_func +
 207                        insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
 208}
 209
 210void bpf_prog_free_linfo(struct bpf_prog *prog)
 211{
 212        bpf_prog_free_jited_linfo(prog);
 213        kvfree(prog->aux->linfo);
 214}
 215
 216struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 217                                  gfp_t gfp_extra_flags)
 218{
 219        gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
 220        struct bpf_prog *fp;
 221        u32 pages, delta;
 222        int ret;
 223
 224        BUG_ON(fp_old == NULL);
 225
 226        size = round_up(size, PAGE_SIZE);
 227        pages = size / PAGE_SIZE;
 228        if (pages <= fp_old->pages)
 229                return fp_old;
 230
 231        delta = pages - fp_old->pages;
 232        ret = __bpf_prog_charge(fp_old->aux->user, delta);
 233        if (ret)
 234                return NULL;
 235
 236        fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
 237        if (fp == NULL) {
 238                __bpf_prog_uncharge(fp_old->aux->user, delta);
 239        } else {
 240                memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
 241                fp->pages = pages;
 242                fp->aux->prog = fp;
 243
 244                /* We keep fp->aux from fp_old around in the new
 245                 * reallocated structure.
 246                 */
 247                fp_old->aux = NULL;
 248                __bpf_prog_free(fp_old);
 249        }
 250
 251        return fp;
 252}
 253
 254void __bpf_prog_free(struct bpf_prog *fp)
 255{
 256        if (fp->aux) {
 257                free_percpu(fp->aux->stats);
 258                kfree(fp->aux);
 259        }
 260        vfree(fp);
 261}
 262
 263int bpf_prog_calc_tag(struct bpf_prog *fp)
 264{
 265        const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
 266        u32 raw_size = bpf_prog_tag_scratch_size(fp);
 267        u32 digest[SHA_DIGEST_WORDS];
 268        u32 ws[SHA_WORKSPACE_WORDS];
 269        u32 i, bsize, psize, blocks;
 270        struct bpf_insn *dst;
 271        bool was_ld_map;
 272        u8 *raw, *todo;
 273        __be32 *result;
 274        __be64 *bits;
 275
 276        raw = vmalloc(raw_size);
 277        if (!raw)
 278                return -ENOMEM;
 279
 280        sha_init(digest);
 281        memset(ws, 0, sizeof(ws));
 282
 283        /* We need to take out the map fd for the digest calculation
 284         * since they are unstable from user space side.
 285         */
 286        dst = (void *)raw;
 287        for (i = 0, was_ld_map = false; i < fp->len; i++) {
 288                dst[i] = fp->insnsi[i];
 289                if (!was_ld_map &&
 290                    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 291                    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
 292                     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
 293                        was_ld_map = true;
 294                        dst[i].imm = 0;
 295                } else if (was_ld_map &&
 296                           dst[i].code == 0 &&
 297                           dst[i].dst_reg == 0 &&
 298                           dst[i].src_reg == 0 &&
 299                           dst[i].off == 0) {
 300                        was_ld_map = false;
 301                        dst[i].imm = 0;
 302                } else {
 303                        was_ld_map = false;
 304                }
 305        }
 306
 307        psize = bpf_prog_insn_size(fp);
 308        memset(&raw[psize], 0, raw_size - psize);
 309        raw[psize++] = 0x80;
 310
 311        bsize  = round_up(psize, SHA_MESSAGE_BYTES);
 312        blocks = bsize / SHA_MESSAGE_BYTES;
 313        todo   = raw;
 314        if (bsize - psize >= sizeof(__be64)) {
 315                bits = (__be64 *)(todo + bsize - sizeof(__be64));
 316        } else {
 317                bits = (__be64 *)(todo + bsize + bits_offset);
 318                blocks++;
 319        }
 320        *bits = cpu_to_be64((psize - 1) << 3);
 321
 322        while (blocks--) {
 323                sha_transform(digest, todo, ws);
 324                todo += SHA_MESSAGE_BYTES;
 325        }
 326
 327        result = (__force __be32 *)digest;
 328        for (i = 0; i < SHA_DIGEST_WORDS; i++)
 329                result[i] = cpu_to_be32(digest[i]);
 330        memcpy(fp->tag, result, sizeof(fp->tag));
 331
 332        vfree(raw);
 333        return 0;
 334}
 335
 336static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
 337                                s32 end_new, s32 curr, const bool probe_pass)
 338{
 339        const s64 imm_min = S32_MIN, imm_max = S32_MAX;
 340        s32 delta = end_new - end_old;
 341        s64 imm = insn->imm;
 342
 343        if (curr < pos && curr + imm + 1 >= end_old)
 344                imm += delta;
 345        else if (curr >= end_new && curr + imm + 1 < end_new)
 346                imm -= delta;
 347        if (imm < imm_min || imm > imm_max)
 348                return -ERANGE;
 349        if (!probe_pass)
 350                insn->imm = imm;
 351        return 0;
 352}
 353
 354static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
 355                                s32 end_new, s32 curr, const bool probe_pass)
 356{
 357        const s32 off_min = S16_MIN, off_max = S16_MAX;
 358        s32 delta = end_new - end_old;
 359        s32 off = insn->off;
 360
 361        if (curr < pos && curr + off + 1 >= end_old)
 362                off += delta;
 363        else if (curr >= end_new && curr + off + 1 < end_new)
 364                off -= delta;
 365        if (off < off_min || off > off_max)
 366                return -ERANGE;
 367        if (!probe_pass)
 368                insn->off = off;
 369        return 0;
 370}
 371
 372static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
 373                            s32 end_new, const bool probe_pass)
 374{
 375        u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
 376        struct bpf_insn *insn = prog->insnsi;
 377        int ret = 0;
 378
 379        for (i = 0; i < insn_cnt; i++, insn++) {
 380                u8 code;
 381
 382                /* In the probing pass we still operate on the original,
 383                 * unpatched image in order to check overflows before we
 384                 * do any other adjustments. Therefore skip the patchlet.
 385                 */
 386                if (probe_pass && i == pos) {
 387                        i = end_new;
 388                        insn = prog->insnsi + end_old;
 389                }
 390                code = insn->code;
 391                if ((BPF_CLASS(code) != BPF_JMP &&
 392                     BPF_CLASS(code) != BPF_JMP32) ||
 393                    BPF_OP(code) == BPF_EXIT)
 394                        continue;
 395                /* Adjust offset of jmps if we cross patch boundaries. */
 396                if (BPF_OP(code) == BPF_CALL) {
 397                        if (insn->src_reg != BPF_PSEUDO_CALL)
 398                                continue;
 399                        ret = bpf_adj_delta_to_imm(insn, pos, end_old,
 400                                                   end_new, i, probe_pass);
 401                } else {
 402                        ret = bpf_adj_delta_to_off(insn, pos, end_old,
 403                                                   end_new, i, probe_pass);
 404                }
 405                if (ret)
 406                        break;
 407        }
 408
 409        return ret;
 410}
 411
 412static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
 413{
 414        struct bpf_line_info *linfo;
 415        u32 i, nr_linfo;
 416
 417        nr_linfo = prog->aux->nr_linfo;
 418        if (!nr_linfo || !delta)
 419                return;
 420
 421        linfo = prog->aux->linfo;
 422
 423        for (i = 0; i < nr_linfo; i++)
 424                if (off < linfo[i].insn_off)
 425                        break;
 426
 427        /* Push all off < linfo[i].insn_off by delta */
 428        for (; i < nr_linfo; i++)
 429                linfo[i].insn_off += delta;
 430}
 431
 432struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
 433                                       const struct bpf_insn *patch, u32 len)
 434{
 435        u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
 436        const u32 cnt_max = S16_MAX;
 437        struct bpf_prog *prog_adj;
 438        int err;
 439
 440        /* Since our patchlet doesn't expand the image, we're done. */
 441        if (insn_delta == 0) {
 442                memcpy(prog->insnsi + off, patch, sizeof(*patch));
 443                return prog;
 444        }
 445
 446        insn_adj_cnt = prog->len + insn_delta;
 447
 448        /* Reject anything that would potentially let the insn->off
 449         * target overflow when we have excessive program expansions.
 450         * We need to probe here before we do any reallocation where
 451         * we afterwards may not fail anymore.
 452         */
 453        if (insn_adj_cnt > cnt_max &&
 454            (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
 455                return ERR_PTR(err);
 456
 457        /* Several new instructions need to be inserted. Make room
 458         * for them. Likely, there's no need for a new allocation as
 459         * last page could have large enough tailroom.
 460         */
 461        prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
 462                                    GFP_USER);
 463        if (!prog_adj)
 464                return ERR_PTR(-ENOMEM);
 465
 466        prog_adj->len = insn_adj_cnt;
 467
 468        /* Patching happens in 3 steps:
 469         *
 470         * 1) Move over tail of insnsi from next instruction onwards,
 471         *    so we can patch the single target insn with one or more
 472         *    new ones (patching is always from 1 to n insns, n > 0).
 473         * 2) Inject new instructions at the target location.
 474         * 3) Adjust branch offsets if necessary.
 475         */
 476        insn_rest = insn_adj_cnt - off - len;
 477
 478        memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
 479                sizeof(*patch) * insn_rest);
 480        memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
 481
 482        /* We are guaranteed to not fail at this point, otherwise
 483         * the ship has sailed to reverse to the original state. An
 484         * overflow cannot happen at this point.
 485         */
 486        BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
 487
 488        bpf_adj_linfo(prog_adj, off, insn_delta);
 489
 490        return prog_adj;
 491}
 492
 493int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
 494{
 495        /* Branch offsets can't overflow when program is shrinking, no need
 496         * to call bpf_adj_branches(..., true) here
 497         */
 498        memmove(prog->insnsi + off, prog->insnsi + off + cnt,
 499                sizeof(struct bpf_insn) * (prog->len - off - cnt));
 500        prog->len -= cnt;
 501
 502        return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
 503}
 504
 505void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
 506{
 507        int i;
 508
 509        for (i = 0; i < fp->aux->func_cnt; i++)
 510                bpf_prog_kallsyms_del(fp->aux->func[i]);
 511}
 512
 513void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
 514{
 515        bpf_prog_kallsyms_del_subprogs(fp);
 516        bpf_prog_kallsyms_del(fp);
 517}
 518
 519#ifdef CONFIG_BPF_JIT
 520/* All BPF JIT sysctl knobs here. */
 521int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON);
 522int bpf_jit_harden   __read_mostly;
 523int bpf_jit_kallsyms __read_mostly;
 524long bpf_jit_limit   __read_mostly;
 525
 526static __always_inline void
 527bpf_get_prog_addr_region(const struct bpf_prog *prog,
 528                         unsigned long *symbol_start,
 529                         unsigned long *symbol_end)
 530{
 531        const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
 532        unsigned long addr = (unsigned long)hdr;
 533
 534        WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
 535
 536        *symbol_start = addr;
 537        *symbol_end   = addr + hdr->pages * PAGE_SIZE;
 538}
 539
 540void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
 541{
 542        const char *end = sym + KSYM_NAME_LEN;
 543        const struct btf_type *type;
 544        const char *func_name;
 545
 546        BUILD_BUG_ON(sizeof("bpf_prog_") +
 547                     sizeof(prog->tag) * 2 +
 548                     /* name has been null terminated.
 549                      * We should need +1 for the '_' preceding
 550                      * the name.  However, the null character
 551                      * is double counted between the name and the
 552                      * sizeof("bpf_prog_") above, so we omit
 553                      * the +1 here.
 554                      */
 555                     sizeof(prog->aux->name) > KSYM_NAME_LEN);
 556
 557        sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
 558        sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
 559
 560        /* prog->aux->name will be ignored if full btf name is available */
 561        if (prog->aux->func_info_cnt) {
 562                type = btf_type_by_id(prog->aux->btf,
 563                                      prog->aux->func_info[prog->aux->func_idx].type_id);
 564                func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
 565                snprintf(sym, (size_t)(end - sym), "_%s", func_name);
 566                return;
 567        }
 568
 569        if (prog->aux->name[0])
 570                snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
 571        else
 572                *sym = 0;
 573}
 574
 575static __always_inline unsigned long
 576bpf_get_prog_addr_start(struct latch_tree_node *n)
 577{
 578        unsigned long symbol_start, symbol_end;
 579        const struct bpf_prog_aux *aux;
 580
 581        aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
 582        bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
 583
 584        return symbol_start;
 585}
 586
 587static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
 588                                          struct latch_tree_node *b)
 589{
 590        return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
 591}
 592
 593static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
 594{
 595        unsigned long val = (unsigned long)key;
 596        unsigned long symbol_start, symbol_end;
 597        const struct bpf_prog_aux *aux;
 598
 599        aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
 600        bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
 601
 602        if (val < symbol_start)
 603                return -1;
 604        if (val >= symbol_end)
 605                return  1;
 606
 607        return 0;
 608}
 609
 610static const struct latch_tree_ops bpf_tree_ops = {
 611        .less   = bpf_tree_less,
 612        .comp   = bpf_tree_comp,
 613};
 614
 615static DEFINE_SPINLOCK(bpf_lock);
 616static LIST_HEAD(bpf_kallsyms);
 617static struct latch_tree_root bpf_tree __cacheline_aligned;
 618
 619static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
 620{
 621        WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
 622        list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
 623        latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
 624}
 625
 626static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
 627{
 628        if (list_empty(&aux->ksym_lnode))
 629                return;
 630
 631        latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
 632        list_del_rcu(&aux->ksym_lnode);
 633}
 634
 635static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
 636{
 637        return fp->jited && !bpf_prog_was_classic(fp);
 638}
 639
 640static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
 641{
 642        return list_empty(&fp->aux->ksym_lnode) ||
 643               fp->aux->ksym_lnode.prev == LIST_POISON2;
 644}
 645
 646void bpf_prog_kallsyms_add(struct bpf_prog *fp)
 647{
 648        if (!bpf_prog_kallsyms_candidate(fp) ||
 649            !capable(CAP_SYS_ADMIN))
 650                return;
 651
 652        spin_lock_bh(&bpf_lock);
 653        bpf_prog_ksym_node_add(fp->aux);
 654        spin_unlock_bh(&bpf_lock);
 655}
 656
 657void bpf_prog_kallsyms_del(struct bpf_prog *fp)
 658{
 659        if (!bpf_prog_kallsyms_candidate(fp))
 660                return;
 661
 662        spin_lock_bh(&bpf_lock);
 663        bpf_prog_ksym_node_del(fp->aux);
 664        spin_unlock_bh(&bpf_lock);
 665}
 666
 667static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
 668{
 669        struct latch_tree_node *n;
 670
 671        if (!bpf_jit_kallsyms_enabled())
 672                return NULL;
 673
 674        n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
 675        return n ?
 676               container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
 677               NULL;
 678}
 679
 680const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
 681                                 unsigned long *off, char *sym)
 682{
 683        unsigned long symbol_start, symbol_end;
 684        struct bpf_prog *prog;
 685        char *ret = NULL;
 686
 687        rcu_read_lock();
 688        prog = bpf_prog_kallsyms_find(addr);
 689        if (prog) {
 690                bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
 691                bpf_get_prog_name(prog, sym);
 692
 693                ret = sym;
 694                if (size)
 695                        *size = symbol_end - symbol_start;
 696                if (off)
 697                        *off  = addr - symbol_start;
 698        }
 699        rcu_read_unlock();
 700
 701        return ret;
 702}
 703
 704bool is_bpf_text_address(unsigned long addr)
 705{
 706        bool ret;
 707
 708        rcu_read_lock();
 709        ret = bpf_prog_kallsyms_find(addr) != NULL;
 710        rcu_read_unlock();
 711
 712        return ret;
 713}
 714
 715int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
 716                    char *sym)
 717{
 718        struct bpf_prog_aux *aux;
 719        unsigned int it = 0;
 720        int ret = -ERANGE;
 721
 722        if (!bpf_jit_kallsyms_enabled())
 723                return ret;
 724
 725        rcu_read_lock();
 726        list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
 727                if (it++ != symnum)
 728                        continue;
 729
 730                bpf_get_prog_name(aux->prog, sym);
 731
 732                *value = (unsigned long)aux->prog->bpf_func;
 733                *type  = BPF_SYM_ELF_TYPE;
 734
 735                ret = 0;
 736                break;
 737        }
 738        rcu_read_unlock();
 739
 740        return ret;
 741}
 742
 743static atomic_long_t bpf_jit_current;
 744
 745/* Can be overridden by an arch's JIT compiler if it has a custom,
 746 * dedicated BPF backend memory area, or if neither of the two
 747 * below apply.
 748 */
 749u64 __weak bpf_jit_alloc_exec_limit(void)
 750{
 751#if defined(MODULES_VADDR)
 752        return MODULES_END - MODULES_VADDR;
 753#else
 754        return VMALLOC_END - VMALLOC_START;
 755#endif
 756}
 757
 758static int __init bpf_jit_charge_init(void)
 759{
 760        /* Only used as heuristic here to derive limit. */
 761        bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
 762                                            PAGE_SIZE), LONG_MAX);
 763        return 0;
 764}
 765pure_initcall(bpf_jit_charge_init);
 766
 767static int bpf_jit_charge_modmem(u32 pages)
 768{
 769        if (atomic_long_add_return(pages, &bpf_jit_current) >
 770            (bpf_jit_limit >> PAGE_SHIFT)) {
 771                if (!capable(CAP_SYS_ADMIN)) {
 772                        atomic_long_sub(pages, &bpf_jit_current);
 773                        return -EPERM;
 774                }
 775        }
 776
 777        return 0;
 778}
 779
 780static void bpf_jit_uncharge_modmem(u32 pages)
 781{
 782        atomic_long_sub(pages, &bpf_jit_current);
 783}
 784
 785void *__weak bpf_jit_alloc_exec(unsigned long size)
 786{
 787        return module_alloc(size);
 788}
 789
 790void __weak bpf_jit_free_exec(void *addr)
 791{
 792        module_memfree(addr);
 793}
 794
 795struct bpf_binary_header *
 796bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
 797                     unsigned int alignment,
 798                     bpf_jit_fill_hole_t bpf_fill_ill_insns)
 799{
 800        struct bpf_binary_header *hdr;
 801        u32 size, hole, start, pages;
 802
 803        /* Most of BPF filters are really small, but if some of them
 804         * fill a page, allow at least 128 extra bytes to insert a
 805         * random section of illegal instructions.
 806         */
 807        size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
 808        pages = size / PAGE_SIZE;
 809
 810        if (bpf_jit_charge_modmem(pages))
 811                return NULL;
 812        hdr = bpf_jit_alloc_exec(size);
 813        if (!hdr) {
 814                bpf_jit_uncharge_modmem(pages);
 815                return NULL;
 816        }
 817
 818        /* Fill space with illegal/arch-dep instructions. */
 819        bpf_fill_ill_insns(hdr, size);
 820
 821        hdr->pages = pages;
 822        hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
 823                     PAGE_SIZE - sizeof(*hdr));
 824        start = (get_random_int() % hole) & ~(alignment - 1);
 825
 826        /* Leave a random number of instructions before BPF code. */
 827        *image_ptr = &hdr->image[start];
 828
 829        return hdr;
 830}
 831
 832void bpf_jit_binary_free(struct bpf_binary_header *hdr)
 833{
 834        u32 pages = hdr->pages;
 835
 836        bpf_jit_free_exec(hdr);
 837        bpf_jit_uncharge_modmem(pages);
 838}
 839
 840/* This symbol is only overridden by archs that have different
 841 * requirements than the usual eBPF JITs, f.e. when they only
 842 * implement cBPF JIT, do not set images read-only, etc.
 843 */
 844void __weak bpf_jit_free(struct bpf_prog *fp)
 845{
 846        if (fp->jited) {
 847                struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
 848
 849                bpf_jit_binary_free(hdr);
 850
 851                WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
 852        }
 853
 854        bpf_prog_unlock_free(fp);
 855}
 856
 857int bpf_jit_get_func_addr(const struct bpf_prog *prog,
 858                          const struct bpf_insn *insn, bool extra_pass,
 859                          u64 *func_addr, bool *func_addr_fixed)
 860{
 861        s16 off = insn->off;
 862        s32 imm = insn->imm;
 863        u8 *addr;
 864
 865        *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
 866        if (!*func_addr_fixed) {
 867                /* Place-holder address till the last pass has collected
 868                 * all addresses for JITed subprograms in which case we
 869                 * can pick them up from prog->aux.
 870                 */
 871                if (!extra_pass)
 872                        addr = NULL;
 873                else if (prog->aux->func &&
 874                         off >= 0 && off < prog->aux->func_cnt)
 875                        addr = (u8 *)prog->aux->func[off]->bpf_func;
 876                else
 877                        return -EINVAL;
 878        } else {
 879                /* Address of a BPF helper call. Since part of the core
 880                 * kernel, it's always at a fixed location. __bpf_call_base
 881                 * and the helper with imm relative to it are both in core
 882                 * kernel.
 883                 */
 884                addr = (u8 *)__bpf_call_base + imm;
 885        }
 886
 887        *func_addr = (unsigned long)addr;
 888        return 0;
 889}
 890
 891static int bpf_jit_blind_insn(const struct bpf_insn *from,
 892                              const struct bpf_insn *aux,
 893                              struct bpf_insn *to_buff,
 894                              bool emit_zext)
 895{
 896        struct bpf_insn *to = to_buff;
 897        u32 imm_rnd = get_random_int();
 898        s16 off;
 899
 900        BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
 901        BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
 902
 903        /* Constraints on AX register:
 904         *
 905         * AX register is inaccessible from user space. It is mapped in
 906         * all JITs, and used here for constant blinding rewrites. It is
 907         * typically "stateless" meaning its contents are only valid within
 908         * the executed instruction, but not across several instructions.
 909         * There are a few exceptions however which are further detailed
 910         * below.
 911         *
 912         * Constant blinding is only used by JITs, not in the interpreter.
 913         * The interpreter uses AX in some occasions as a local temporary
 914         * register e.g. in DIV or MOD instructions.
 915         *
 916         * In restricted circumstances, the verifier can also use the AX
 917         * register for rewrites as long as they do not interfere with
 918         * the above cases!
 919         */
 920        if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
 921                goto out;
 922
 923        if (from->imm == 0 &&
 924            (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
 925             from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
 926                *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
 927                goto out;
 928        }
 929
 930        switch (from->code) {
 931        case BPF_ALU | BPF_ADD | BPF_K:
 932        case BPF_ALU | BPF_SUB | BPF_K:
 933        case BPF_ALU | BPF_AND | BPF_K:
 934        case BPF_ALU | BPF_OR  | BPF_K:
 935        case BPF_ALU | BPF_XOR | BPF_K:
 936        case BPF_ALU | BPF_MUL | BPF_K:
 937        case BPF_ALU | BPF_MOV | BPF_K:
 938        case BPF_ALU | BPF_DIV | BPF_K:
 939        case BPF_ALU | BPF_MOD | BPF_K:
 940                *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 941                *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 942                *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
 943                break;
 944
 945        case BPF_ALU64 | BPF_ADD | BPF_K:
 946        case BPF_ALU64 | BPF_SUB | BPF_K:
 947        case BPF_ALU64 | BPF_AND | BPF_K:
 948        case BPF_ALU64 | BPF_OR  | BPF_K:
 949        case BPF_ALU64 | BPF_XOR | BPF_K:
 950        case BPF_ALU64 | BPF_MUL | BPF_K:
 951        case BPF_ALU64 | BPF_MOV | BPF_K:
 952        case BPF_ALU64 | BPF_DIV | BPF_K:
 953        case BPF_ALU64 | BPF_MOD | BPF_K:
 954                *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 955                *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 956                *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
 957                break;
 958
 959        case BPF_JMP | BPF_JEQ  | BPF_K:
 960        case BPF_JMP | BPF_JNE  | BPF_K:
 961        case BPF_JMP | BPF_JGT  | BPF_K:
 962        case BPF_JMP | BPF_JLT  | BPF_K:
 963        case BPF_JMP | BPF_JGE  | BPF_K:
 964        case BPF_JMP | BPF_JLE  | BPF_K:
 965        case BPF_JMP | BPF_JSGT | BPF_K:
 966        case BPF_JMP | BPF_JSLT | BPF_K:
 967        case BPF_JMP | BPF_JSGE | BPF_K:
 968        case BPF_JMP | BPF_JSLE | BPF_K:
 969        case BPF_JMP | BPF_JSET | BPF_K:
 970                /* Accommodate for extra offset in case of a backjump. */
 971                off = from->off;
 972                if (off < 0)
 973                        off -= 2;
 974                *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 975                *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 976                *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
 977                break;
 978
 979        case BPF_JMP32 | BPF_JEQ  | BPF_K:
 980        case BPF_JMP32 | BPF_JNE  | BPF_K:
 981        case BPF_JMP32 | BPF_JGT  | BPF_K:
 982        case BPF_JMP32 | BPF_JLT  | BPF_K:
 983        case BPF_JMP32 | BPF_JGE  | BPF_K:
 984        case BPF_JMP32 | BPF_JLE  | BPF_K:
 985        case BPF_JMP32 | BPF_JSGT | BPF_K:
 986        case BPF_JMP32 | BPF_JSLT | BPF_K:
 987        case BPF_JMP32 | BPF_JSGE | BPF_K:
 988        case BPF_JMP32 | BPF_JSLE | BPF_K:
 989        case BPF_JMP32 | BPF_JSET | BPF_K:
 990                /* Accommodate for extra offset in case of a backjump. */
 991                off = from->off;
 992                if (off < 0)
 993                        off -= 2;
 994                *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 995                *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 996                *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
 997                                      off);
 998                break;
 999
1000        case BPF_LD | BPF_IMM | BPF_DW:
1001                *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1002                *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1003                *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1004                *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1005                break;
1006        case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1007                *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1008                *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1009                if (emit_zext)
1010                        *to++ = BPF_ZEXT_REG(BPF_REG_AX);
1011                *to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1012                break;
1013
1014        case BPF_ST | BPF_MEM | BPF_DW:
1015        case BPF_ST | BPF_MEM | BPF_W:
1016        case BPF_ST | BPF_MEM | BPF_H:
1017        case BPF_ST | BPF_MEM | BPF_B:
1018                *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1019                *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1020                *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1021                break;
1022        }
1023out:
1024        return to - to_buff;
1025}
1026
1027static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1028                                              gfp_t gfp_extra_flags)
1029{
1030        gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1031        struct bpf_prog *fp;
1032
1033        fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
1034        if (fp != NULL) {
1035                /* aux->prog still points to the fp_other one, so
1036                 * when promoting the clone to the real program,
1037                 * this still needs to be adapted.
1038                 */
1039                memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1040        }
1041
1042        return fp;
1043}
1044
1045static void bpf_prog_clone_free(struct bpf_prog *fp)
1046{
1047        /* aux was stolen by the other clone, so we cannot free
1048         * it from this path! It will be freed eventually by the
1049         * other program on release.
1050         *
1051         * At this point, we don't need a deferred release since
1052         * clone is guaranteed to not be locked.
1053         */
1054        fp->aux = NULL;
1055        __bpf_prog_free(fp);
1056}
1057
1058void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1059{
1060        /* We have to repoint aux->prog to self, as we don't
1061         * know whether fp here is the clone or the original.
1062         */
1063        fp->aux->prog = fp;
1064        bpf_prog_clone_free(fp_other);
1065}
1066
1067struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1068{
1069        struct bpf_insn insn_buff[16], aux[2];
1070        struct bpf_prog *clone, *tmp;
1071        int insn_delta, insn_cnt;
1072        struct bpf_insn *insn;
1073        int i, rewritten;
1074
1075        if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1076                return prog;
1077
1078        clone = bpf_prog_clone_create(prog, GFP_USER);
1079        if (!clone)
1080                return ERR_PTR(-ENOMEM);
1081
1082        insn_cnt = clone->len;
1083        insn = clone->insnsi;
1084
1085        for (i = 0; i < insn_cnt; i++, insn++) {
1086                /* We temporarily need to hold the original ld64 insn
1087                 * so that we can still access the first part in the
1088                 * second blinding run.
1089                 */
1090                if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1091                    insn[1].code == 0)
1092                        memcpy(aux, insn, sizeof(aux));
1093
1094                rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1095                                                clone->aux->verifier_zext);
1096                if (!rewritten)
1097                        continue;
1098
1099                tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1100                if (IS_ERR(tmp)) {
1101                        /* Patching may have repointed aux->prog during
1102                         * realloc from the original one, so we need to
1103                         * fix it up here on error.
1104                         */
1105                        bpf_jit_prog_release_other(prog, clone);
1106                        return tmp;
1107                }
1108
1109                clone = tmp;
1110                insn_delta = rewritten - 1;
1111
1112                /* Walk new program and skip insns we just inserted. */
1113                insn = clone->insnsi + i + insn_delta;
1114                insn_cnt += insn_delta;
1115                i        += insn_delta;
1116        }
1117
1118        clone->blinded = 1;
1119        return clone;
1120}
1121#endif /* CONFIG_BPF_JIT */
1122
1123/* Base function for offset calculation. Needs to go into .text section,
1124 * therefore keeping it non-static as well; will also be used by JITs
1125 * anyway later on, so do not let the compiler omit it. This also needs
1126 * to go into kallsyms for correlation from e.g. bpftool, so naming
1127 * must not change.
1128 */
1129noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1130{
1131        return 0;
1132}
1133EXPORT_SYMBOL_GPL(__bpf_call_base);
1134
1135/* All UAPI available opcodes. */
1136#define BPF_INSN_MAP(INSN_2, INSN_3)            \
1137        /* 32 bit ALU operations. */            \
1138        /*   Register based. */                 \
1139        INSN_3(ALU, ADD,  X),                   \
1140        INSN_3(ALU, SUB,  X),                   \
1141        INSN_3(ALU, AND,  X),                   \
1142        INSN_3(ALU, OR,   X),                   \
1143        INSN_3(ALU, LSH,  X),                   \
1144        INSN_3(ALU, RSH,  X),                   \
1145        INSN_3(ALU, XOR,  X),                   \
1146        INSN_3(ALU, MUL,  X),                   \
1147        INSN_3(ALU, MOV,  X),                   \
1148        INSN_3(ALU, ARSH, X),                   \
1149        INSN_3(ALU, DIV,  X),                   \
1150        INSN_3(ALU, MOD,  X),                   \
1151        INSN_2(ALU, NEG),                       \
1152        INSN_3(ALU, END, TO_BE),                \
1153        INSN_3(ALU, END, TO_LE),                \
1154        /*   Immediate based. */                \
1155        INSN_3(ALU, ADD,  K),                   \
1156        INSN_3(ALU, SUB,  K),                   \
1157        INSN_3(ALU, AND,  K),                   \
1158        INSN_3(ALU, OR,   K),                   \
1159        INSN_3(ALU, LSH,  K),                   \
1160        INSN_3(ALU, RSH,  K),                   \
1161        INSN_3(ALU, XOR,  K),                   \
1162        INSN_3(ALU, MUL,  K),                   \
1163        INSN_3(ALU, MOV,  K),                   \
1164        INSN_3(ALU, ARSH, K),                   \
1165        INSN_3(ALU, DIV,  K),                   \
1166        INSN_3(ALU, MOD,  K),                   \
1167        /* 64 bit ALU operations. */            \
1168        /*   Register based. */                 \
1169        INSN_3(ALU64, ADD,  X),                 \
1170        INSN_3(ALU64, SUB,  X),                 \
1171        INSN_3(ALU64, AND,  X),                 \
1172        INSN_3(ALU64, OR,   X),                 \
1173        INSN_3(ALU64, LSH,  X),                 \
1174        INSN_3(ALU64, RSH,  X),                 \
1175        INSN_3(ALU64, XOR,  X),                 \
1176        INSN_3(ALU64, MUL,  X),                 \
1177        INSN_3(ALU64, MOV,  X),                 \
1178        INSN_3(ALU64, ARSH, X),                 \
1179        INSN_3(ALU64, DIV,  X),                 \
1180        INSN_3(ALU64, MOD,  X),                 \
1181        INSN_2(ALU64, NEG),                     \
1182        /*   Immediate based. */                \
1183        INSN_3(ALU64, ADD,  K),                 \
1184        INSN_3(ALU64, SUB,  K),                 \
1185        INSN_3(ALU64, AND,  K),                 \
1186        INSN_3(ALU64, OR,   K),                 \
1187        INSN_3(ALU64, LSH,  K),                 \
1188        INSN_3(ALU64, RSH,  K),                 \
1189        INSN_3(ALU64, XOR,  K),                 \
1190        INSN_3(ALU64, MUL,  K),                 \
1191        INSN_3(ALU64, MOV,  K),                 \
1192        INSN_3(ALU64, ARSH, K),                 \
1193        INSN_3(ALU64, DIV,  K),                 \
1194        INSN_3(ALU64, MOD,  K),                 \
1195        /* Call instruction. */                 \
1196        INSN_2(JMP, CALL),                      \
1197        /* Exit instruction. */                 \
1198        INSN_2(JMP, EXIT),                      \
1199        /* 32-bit Jump instructions. */         \
1200        /*   Register based. */                 \
1201        INSN_3(JMP32, JEQ,  X),                 \
1202        INSN_3(JMP32, JNE,  X),                 \
1203        INSN_3(JMP32, JGT,  X),                 \
1204        INSN_3(JMP32, JLT,  X),                 \
1205        INSN_3(JMP32, JGE,  X),                 \
1206        INSN_3(JMP32, JLE,  X),                 \
1207        INSN_3(JMP32, JSGT, X),                 \
1208        INSN_3(JMP32, JSLT, X),                 \
1209        INSN_3(JMP32, JSGE, X),                 \
1210        INSN_3(JMP32, JSLE, X),                 \
1211        INSN_3(JMP32, JSET, X),                 \
1212        /*   Immediate based. */                \
1213        INSN_3(JMP32, JEQ,  K),                 \
1214        INSN_3(JMP32, JNE,  K),                 \
1215        INSN_3(JMP32, JGT,  K),                 \
1216        INSN_3(JMP32, JLT,  K),                 \
1217        INSN_3(JMP32, JGE,  K),                 \
1218        INSN_3(JMP32, JLE,  K),                 \
1219        INSN_3(JMP32, JSGT, K),                 \
1220        INSN_3(JMP32, JSLT, K),                 \
1221        INSN_3(JMP32, JSGE, K),                 \
1222        INSN_3(JMP32, JSLE, K),                 \
1223        INSN_3(JMP32, JSET, K),                 \
1224        /* Jump instructions. */                \
1225        /*   Register based. */                 \
1226        INSN_3(JMP, JEQ,  X),                   \
1227        INSN_3(JMP, JNE,  X),                   \
1228        INSN_3(JMP, JGT,  X),                   \
1229        INSN_3(JMP, JLT,  X),                   \
1230        INSN_3(JMP, JGE,  X),                   \
1231        INSN_3(JMP, JLE,  X),                   \
1232        INSN_3(JMP, JSGT, X),                   \
1233        INSN_3(JMP, JSLT, X),                   \
1234        INSN_3(JMP, JSGE, X),                   \
1235        INSN_3(JMP, JSLE, X),                   \
1236        INSN_3(JMP, JSET, X),                   \
1237        /*   Immediate based. */                \
1238        INSN_3(JMP, JEQ,  K),                   \
1239        INSN_3(JMP, JNE,  K),                   \
1240        INSN_3(JMP, JGT,  K),                   \
1241        INSN_3(JMP, JLT,  K),                   \
1242        INSN_3(JMP, JGE,  K),                   \
1243        INSN_3(JMP, JLE,  K),                   \
1244        INSN_3(JMP, JSGT, K),                   \
1245        INSN_3(JMP, JSLT, K),                   \
1246        INSN_3(JMP, JSGE, K),                   \
1247        INSN_3(JMP, JSLE, K),                   \
1248        INSN_3(JMP, JSET, K),                   \
1249        INSN_2(JMP, JA),                        \
1250        /* Store instructions. */               \
1251        /*   Register based. */                 \
1252        INSN_3(STX, MEM,  B),                   \
1253        INSN_3(STX, MEM,  H),                   \
1254        INSN_3(STX, MEM,  W),                   \
1255        INSN_3(STX, MEM,  DW),                  \
1256        INSN_3(STX, XADD, W),                   \
1257        INSN_3(STX, XADD, DW),                  \
1258        /*   Immediate based. */                \
1259        INSN_3(ST, MEM, B),                     \
1260        INSN_3(ST, MEM, H),                     \
1261        INSN_3(ST, MEM, W),                     \
1262        INSN_3(ST, MEM, DW),                    \
1263        /* Load instructions. */                \
1264        /*   Register based. */                 \
1265        INSN_3(LDX, MEM, B),                    \
1266        INSN_3(LDX, MEM, H),                    \
1267        INSN_3(LDX, MEM, W),                    \
1268        INSN_3(LDX, MEM, DW),                   \
1269        /*   Immediate based. */                \
1270        INSN_3(LD, IMM, DW)
1271
1272bool bpf_opcode_in_insntable(u8 code)
1273{
1274#define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1275#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1276        static const bool public_insntable[256] = {
1277                [0 ... 255] = false,
1278                /* Now overwrite non-defaults ... */
1279                BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1280                /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1281                [BPF_LD | BPF_ABS | BPF_B] = true,
1282                [BPF_LD | BPF_ABS | BPF_H] = true,
1283                [BPF_LD | BPF_ABS | BPF_W] = true,
1284                [BPF_LD | BPF_IND | BPF_B] = true,
1285                [BPF_LD | BPF_IND | BPF_H] = true,
1286                [BPF_LD | BPF_IND | BPF_W] = true,
1287        };
1288#undef BPF_INSN_3_TBL
1289#undef BPF_INSN_2_TBL
1290        return public_insntable[code];
1291}
1292
1293#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1294/**
1295 *      __bpf_prog_run - run eBPF program on a given context
1296 *      @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1297 *      @insn: is the array of eBPF instructions
1298 *      @stack: is the eBPF storage stack
1299 *
1300 * Decode and execute eBPF instructions.
1301 */
1302static u64 __no_fgcse ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
1303{
1304#define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1305#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1306        static const void * const jumptable[256] __annotate_jump_table = {
1307                [0 ... 255] = &&default_label,
1308                /* Now overwrite non-defaults ... */
1309                BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1310                /* Non-UAPI available opcodes. */
1311                [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1312                [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1313        };
1314#undef BPF_INSN_3_LBL
1315#undef BPF_INSN_2_LBL
1316        u32 tail_call_cnt = 0;
1317
1318#define CONT     ({ insn++; goto select_insn; })
1319#define CONT_JMP ({ insn++; goto select_insn; })
1320
1321select_insn:
1322        goto *jumptable[insn->code];
1323
1324        /* ALU */
1325#define ALU(OPCODE, OP)                 \
1326        ALU64_##OPCODE##_X:             \
1327                DST = DST OP SRC;       \
1328                CONT;                   \
1329        ALU_##OPCODE##_X:               \
1330                DST = (u32) DST OP (u32) SRC;   \
1331                CONT;                   \
1332        ALU64_##OPCODE##_K:             \
1333                DST = DST OP IMM;               \
1334                CONT;                   \
1335        ALU_##OPCODE##_K:               \
1336                DST = (u32) DST OP (u32) IMM;   \
1337                CONT;
1338
1339        ALU(ADD,  +)
1340        ALU(SUB,  -)
1341        ALU(AND,  &)
1342        ALU(OR,   |)
1343        ALU(LSH, <<)
1344        ALU(RSH, >>)
1345        ALU(XOR,  ^)
1346        ALU(MUL,  *)
1347#undef ALU
1348        ALU_NEG:
1349                DST = (u32) -DST;
1350                CONT;
1351        ALU64_NEG:
1352                DST = -DST;
1353                CONT;
1354        ALU_MOV_X:
1355                DST = (u32) SRC;
1356                CONT;
1357        ALU_MOV_K:
1358                DST = (u32) IMM;
1359                CONT;
1360        ALU64_MOV_X:
1361                DST = SRC;
1362                CONT;
1363        ALU64_MOV_K:
1364                DST = IMM;
1365                CONT;
1366        LD_IMM_DW:
1367                DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1368                insn++;
1369                CONT;
1370        ALU_ARSH_X:
1371                DST = (u64) (u32) (((s32) DST) >> SRC);
1372                CONT;
1373        ALU_ARSH_K:
1374                DST = (u64) (u32) (((s32) DST) >> IMM);
1375                CONT;
1376        ALU64_ARSH_X:
1377                (*(s64 *) &DST) >>= SRC;
1378                CONT;
1379        ALU64_ARSH_K:
1380                (*(s64 *) &DST) >>= IMM;
1381                CONT;
1382        ALU64_MOD_X:
1383                div64_u64_rem(DST, SRC, &AX);
1384                DST = AX;
1385                CONT;
1386        ALU_MOD_X:
1387                AX = (u32) DST;
1388                DST = do_div(AX, (u32) SRC);
1389                CONT;
1390        ALU64_MOD_K:
1391                div64_u64_rem(DST, IMM, &AX);
1392                DST = AX;
1393                CONT;
1394        ALU_MOD_K:
1395                AX = (u32) DST;
1396                DST = do_div(AX, (u32) IMM);
1397                CONT;
1398        ALU64_DIV_X:
1399                DST = div64_u64(DST, SRC);
1400                CONT;
1401        ALU_DIV_X:
1402                AX = (u32) DST;
1403                do_div(AX, (u32) SRC);
1404                DST = (u32) AX;
1405                CONT;
1406        ALU64_DIV_K:
1407                DST = div64_u64(DST, IMM);
1408                CONT;
1409        ALU_DIV_K:
1410                AX = (u32) DST;
1411                do_div(AX, (u32) IMM);
1412                DST = (u32) AX;
1413                CONT;
1414        ALU_END_TO_BE:
1415                switch (IMM) {
1416                case 16:
1417                        DST = (__force u16) cpu_to_be16(DST);
1418                        break;
1419                case 32:
1420                        DST = (__force u32) cpu_to_be32(DST);
1421                        break;
1422                case 64:
1423                        DST = (__force u64) cpu_to_be64(DST);
1424                        break;
1425                }
1426                CONT;
1427        ALU_END_TO_LE:
1428                switch (IMM) {
1429                case 16:
1430                        DST = (__force u16) cpu_to_le16(DST);
1431                        break;
1432                case 32:
1433                        DST = (__force u32) cpu_to_le32(DST);
1434                        break;
1435                case 64:
1436                        DST = (__force u64) cpu_to_le64(DST);
1437                        break;
1438                }
1439                CONT;
1440
1441        /* CALL */
1442        JMP_CALL:
1443                /* Function call scratches BPF_R1-BPF_R5 registers,
1444                 * preserves BPF_R6-BPF_R9, and stores return value
1445                 * into BPF_R0.
1446                 */
1447                BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1448                                                       BPF_R4, BPF_R5);
1449                CONT;
1450
1451        JMP_CALL_ARGS:
1452                BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1453                                                            BPF_R3, BPF_R4,
1454                                                            BPF_R5,
1455                                                            insn + insn->off + 1);
1456                CONT;
1457
1458        JMP_TAIL_CALL: {
1459                struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1460                struct bpf_array *array = container_of(map, struct bpf_array, map);
1461                struct bpf_prog *prog;
1462                u32 index = BPF_R3;
1463
1464                if (unlikely(index >= array->map.max_entries))
1465                        goto out;
1466                if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1467                        goto out;
1468
1469                tail_call_cnt++;
1470
1471                prog = READ_ONCE(array->ptrs[index]);
1472                if (!prog)
1473                        goto out;
1474
1475                /* ARG1 at this point is guaranteed to point to CTX from
1476                 * the verifier side due to the fact that the tail call is
1477                 * handeled like a helper, that is, bpf_tail_call_proto,
1478                 * where arg1_type is ARG_PTR_TO_CTX.
1479                 */
1480                insn = prog->insnsi;
1481                goto select_insn;
1482out:
1483                CONT;
1484        }
1485        JMP_JA:
1486                insn += insn->off;
1487                CONT;
1488        JMP_EXIT:
1489                return BPF_R0;
1490        /* JMP */
1491#define COND_JMP(SIGN, OPCODE, CMP_OP)                          \
1492        JMP_##OPCODE##_X:                                       \
1493                if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {     \
1494                        insn += insn->off;                      \
1495                        CONT_JMP;                               \
1496                }                                               \
1497                CONT;                                           \
1498        JMP32_##OPCODE##_X:                                     \
1499                if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {     \
1500                        insn += insn->off;                      \
1501                        CONT_JMP;                               \
1502                }                                               \
1503                CONT;                                           \
1504        JMP_##OPCODE##_K:                                       \
1505                if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {     \
1506                        insn += insn->off;                      \
1507                        CONT_JMP;                               \
1508                }                                               \
1509                CONT;                                           \
1510        JMP32_##OPCODE##_K:                                     \
1511                if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {     \
1512                        insn += insn->off;                      \
1513                        CONT_JMP;                               \
1514                }                                               \
1515                CONT;
1516        COND_JMP(u, JEQ, ==)
1517        COND_JMP(u, JNE, !=)
1518        COND_JMP(u, JGT, >)
1519        COND_JMP(u, JLT, <)
1520        COND_JMP(u, JGE, >=)
1521        COND_JMP(u, JLE, <=)
1522        COND_JMP(u, JSET, &)
1523        COND_JMP(s, JSGT, >)
1524        COND_JMP(s, JSLT, <)
1525        COND_JMP(s, JSGE, >=)
1526        COND_JMP(s, JSLE, <=)
1527#undef COND_JMP
1528        /* STX and ST and LDX*/
1529#define LDST(SIZEOP, SIZE)                                              \
1530        STX_MEM_##SIZEOP:                                               \
1531                *(SIZE *)(unsigned long) (DST + insn->off) = SRC;       \
1532                CONT;                                                   \
1533        ST_MEM_##SIZEOP:                                                \
1534                *(SIZE *)(unsigned long) (DST + insn->off) = IMM;       \
1535                CONT;                                                   \
1536        LDX_MEM_##SIZEOP:                                               \
1537                DST = *(SIZE *)(unsigned long) (SRC + insn->off);       \
1538                CONT;
1539
1540        LDST(B,   u8)
1541        LDST(H,  u16)
1542        LDST(W,  u32)
1543        LDST(DW, u64)
1544#undef LDST
1545        STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1546                atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1547                           (DST + insn->off));
1548                CONT;
1549        STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1550                atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1551                             (DST + insn->off));
1552                CONT;
1553
1554        default_label:
1555                /* If we ever reach this, we have a bug somewhere. Die hard here
1556                 * instead of just returning 0; we could be somewhere in a subprog,
1557                 * so execution could continue otherwise which we do /not/ want.
1558                 *
1559                 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1560                 */
1561                pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1562                BUG_ON(1);
1563                return 0;
1564}
1565
1566#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1567#define DEFINE_BPF_PROG_RUN(stack_size) \
1568static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1569{ \
1570        u64 stack[stack_size / sizeof(u64)]; \
1571        u64 regs[MAX_BPF_EXT_REG]; \
1572\
1573        FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1574        ARG1 = (u64) (unsigned long) ctx; \
1575        return ___bpf_prog_run(regs, insn, stack); \
1576}
1577
1578#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1579#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1580static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1581                                      const struct bpf_insn *insn) \
1582{ \
1583        u64 stack[stack_size / sizeof(u64)]; \
1584        u64 regs[MAX_BPF_EXT_REG]; \
1585\
1586        FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1587        BPF_R1 = r1; \
1588        BPF_R2 = r2; \
1589        BPF_R3 = r3; \
1590        BPF_R4 = r4; \
1591        BPF_R5 = r5; \
1592        return ___bpf_prog_run(regs, insn, stack); \
1593}
1594
1595#define EVAL1(FN, X) FN(X)
1596#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1597#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1598#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1599#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1600#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1601
1602EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1603EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1604EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1605
1606EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1607EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1608EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1609
1610#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1611
1612static unsigned int (*interpreters[])(const void *ctx,
1613                                      const struct bpf_insn *insn) = {
1614EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1615EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1616EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1617};
1618#undef PROG_NAME_LIST
1619#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1620static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1621                                  const struct bpf_insn *insn) = {
1622EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1623EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1624EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1625};
1626#undef PROG_NAME_LIST
1627
1628void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1629{
1630        stack_depth = max_t(u32, stack_depth, 1);
1631        insn->off = (s16) insn->imm;
1632        insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1633                __bpf_call_base_args;
1634        insn->code = BPF_JMP | BPF_CALL_ARGS;
1635}
1636
1637#else
1638static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1639                                         const struct bpf_insn *insn)
1640{
1641        /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1642         * is not working properly, so warn about it!
1643         */
1644        WARN_ON_ONCE(1);
1645        return 0;
1646}
1647#endif
1648
1649bool bpf_prog_array_compatible(struct bpf_array *array,
1650                               const struct bpf_prog *fp)
1651{
1652        if (fp->kprobe_override)
1653                return false;
1654
1655        if (!array->owner_prog_type) {
1656                /* There's no owner yet where we could check for
1657                 * compatibility.
1658                 */
1659                array->owner_prog_type = fp->type;
1660                array->owner_jited = fp->jited;
1661
1662                return true;
1663        }
1664
1665        return array->owner_prog_type == fp->type &&
1666               array->owner_jited == fp->jited;
1667}
1668
1669static int bpf_check_tail_call(const struct bpf_prog *fp)
1670{
1671        struct bpf_prog_aux *aux = fp->aux;
1672        int i;
1673
1674        for (i = 0; i < aux->used_map_cnt; i++) {
1675                struct bpf_map *map = aux->used_maps[i];
1676                struct bpf_array *array;
1677
1678                if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1679                        continue;
1680
1681                array = container_of(map, struct bpf_array, map);
1682                if (!bpf_prog_array_compatible(array, fp))
1683                        return -EINVAL;
1684        }
1685
1686        return 0;
1687}
1688
1689static void bpf_prog_select_func(struct bpf_prog *fp)
1690{
1691#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1692        u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1693
1694        fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1695#else
1696        fp->bpf_func = __bpf_prog_ret0_warn;
1697#endif
1698}
1699
1700/**
1701 *      bpf_prog_select_runtime - select exec runtime for BPF program
1702 *      @fp: bpf_prog populated with internal BPF program
1703 *      @err: pointer to error variable
1704 *
1705 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1706 * The BPF program will be executed via BPF_PROG_RUN() macro.
1707 */
1708struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1709{
1710        /* In case of BPF to BPF calls, verifier did all the prep
1711         * work with regards to JITing, etc.
1712         */
1713        if (fp->bpf_func)
1714                goto finalize;
1715
1716        bpf_prog_select_func(fp);
1717
1718        /* eBPF JITs can rewrite the program in case constant
1719         * blinding is active. However, in case of error during
1720         * blinding, bpf_int_jit_compile() must always return a
1721         * valid program, which in this case would simply not
1722         * be JITed, but falls back to the interpreter.
1723         */
1724        if (!bpf_prog_is_dev_bound(fp->aux)) {
1725                *err = bpf_prog_alloc_jited_linfo(fp);
1726                if (*err)
1727                        return fp;
1728
1729                fp = bpf_int_jit_compile(fp);
1730                if (!fp->jited) {
1731                        bpf_prog_free_jited_linfo(fp);
1732#ifdef CONFIG_BPF_JIT_ALWAYS_ON
1733                        *err = -ENOTSUPP;
1734                        return fp;
1735#endif
1736                } else {
1737                        bpf_prog_free_unused_jited_linfo(fp);
1738                }
1739        } else {
1740                *err = bpf_prog_offload_compile(fp);
1741                if (*err)
1742                        return fp;
1743        }
1744
1745finalize:
1746        bpf_prog_lock_ro(fp);
1747
1748        /* The tail call compatibility check can only be done at
1749         * this late stage as we need to determine, if we deal
1750         * with JITed or non JITed program concatenations and not
1751         * all eBPF JITs might immediately support all features.
1752         */
1753        *err = bpf_check_tail_call(fp);
1754
1755        return fp;
1756}
1757EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1758
1759static unsigned int __bpf_prog_ret1(const void *ctx,
1760                                    const struct bpf_insn *insn)
1761{
1762        return 1;
1763}
1764
1765static struct bpf_prog_dummy {
1766        struct bpf_prog prog;
1767} dummy_bpf_prog = {
1768        .prog = {
1769                .bpf_func = __bpf_prog_ret1,
1770        },
1771};
1772
1773/* to avoid allocating empty bpf_prog_array for cgroups that
1774 * don't have bpf program attached use one global 'empty_prog_array'
1775 * It will not be modified the caller of bpf_prog_array_alloc()
1776 * (since caller requested prog_cnt == 0)
1777 * that pointer should be 'freed' by bpf_prog_array_free()
1778 */
1779static struct {
1780        struct bpf_prog_array hdr;
1781        struct bpf_prog *null_prog;
1782} empty_prog_array = {
1783        .null_prog = NULL,
1784};
1785
1786struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1787{
1788        if (prog_cnt)
1789                return kzalloc(sizeof(struct bpf_prog_array) +
1790                               sizeof(struct bpf_prog_array_item) *
1791                               (prog_cnt + 1),
1792                               flags);
1793
1794        return &empty_prog_array.hdr;
1795}
1796
1797void bpf_prog_array_free(struct bpf_prog_array *progs)
1798{
1799        if (!progs || progs == &empty_prog_array.hdr)
1800                return;
1801        kfree_rcu(progs, rcu);
1802}
1803
1804int bpf_prog_array_length(struct bpf_prog_array *array)
1805{
1806        struct bpf_prog_array_item *item;
1807        u32 cnt = 0;
1808
1809        for (item = array->items; item->prog; item++)
1810                if (item->prog != &dummy_bpf_prog.prog)
1811                        cnt++;
1812        return cnt;
1813}
1814
1815bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1816{
1817        struct bpf_prog_array_item *item;
1818
1819        for (item = array->items; item->prog; item++)
1820                if (item->prog != &dummy_bpf_prog.prog)
1821                        return false;
1822        return true;
1823}
1824
1825static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
1826                                     u32 *prog_ids,
1827                                     u32 request_cnt)
1828{
1829        struct bpf_prog_array_item *item;
1830        int i = 0;
1831
1832        for (item = array->items; item->prog; item++) {
1833                if (item->prog == &dummy_bpf_prog.prog)
1834                        continue;
1835                prog_ids[i] = item->prog->aux->id;
1836                if (++i == request_cnt) {
1837                        item++;
1838                        break;
1839                }
1840        }
1841
1842        return !!(item->prog);
1843}
1844
1845int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
1846                                __u32 __user *prog_ids, u32 cnt)
1847{
1848        unsigned long err = 0;
1849        bool nospc;
1850        u32 *ids;
1851
1852        /* users of this function are doing:
1853         * cnt = bpf_prog_array_length();
1854         * if (cnt > 0)
1855         *     bpf_prog_array_copy_to_user(..., cnt);
1856         * so below kcalloc doesn't need extra cnt > 0 check.
1857         */
1858        ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1859        if (!ids)
1860                return -ENOMEM;
1861        nospc = bpf_prog_array_copy_core(array, ids, cnt);
1862        err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1863        kfree(ids);
1864        if (err)
1865                return -EFAULT;
1866        if (nospc)
1867                return -ENOSPC;
1868        return 0;
1869}
1870
1871void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
1872                                struct bpf_prog *old_prog)
1873{
1874        struct bpf_prog_array_item *item;
1875
1876        for (item = array->items; item->prog; item++)
1877                if (item->prog == old_prog) {
1878                        WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
1879                        break;
1880                }
1881}
1882
1883int bpf_prog_array_copy(struct bpf_prog_array *old_array,
1884                        struct bpf_prog *exclude_prog,
1885                        struct bpf_prog *include_prog,
1886                        struct bpf_prog_array **new_array)
1887{
1888        int new_prog_cnt, carry_prog_cnt = 0;
1889        struct bpf_prog_array_item *existing;
1890        struct bpf_prog_array *array;
1891        bool found_exclude = false;
1892        int new_prog_idx = 0;
1893
1894        /* Figure out how many existing progs we need to carry over to
1895         * the new array.
1896         */
1897        if (old_array) {
1898                existing = old_array->items;
1899                for (; existing->prog; existing++) {
1900                        if (existing->prog == exclude_prog) {
1901                                found_exclude = true;
1902                                continue;
1903                        }
1904                        if (existing->prog != &dummy_bpf_prog.prog)
1905                                carry_prog_cnt++;
1906                        if (existing->prog == include_prog)
1907                                return -EEXIST;
1908                }
1909        }
1910
1911        if (exclude_prog && !found_exclude)
1912                return -ENOENT;
1913
1914        /* How many progs (not NULL) will be in the new array? */
1915        new_prog_cnt = carry_prog_cnt;
1916        if (include_prog)
1917                new_prog_cnt += 1;
1918
1919        /* Do we have any prog (not NULL) in the new array? */
1920        if (!new_prog_cnt) {
1921                *new_array = NULL;
1922                return 0;
1923        }
1924
1925        /* +1 as the end of prog_array is marked with NULL */
1926        array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1927        if (!array)
1928                return -ENOMEM;
1929
1930        /* Fill in the new prog array */
1931        if (carry_prog_cnt) {
1932                existing = old_array->items;
1933                for (; existing->prog; existing++)
1934                        if (existing->prog != exclude_prog &&
1935                            existing->prog != &dummy_bpf_prog.prog) {
1936                                array->items[new_prog_idx++].prog =
1937                                        existing->prog;
1938                        }
1939        }
1940        if (include_prog)
1941                array->items[new_prog_idx++].prog = include_prog;
1942        array->items[new_prog_idx].prog = NULL;
1943        *new_array = array;
1944        return 0;
1945}
1946
1947int bpf_prog_array_copy_info(struct bpf_prog_array *array,
1948                             u32 *prog_ids, u32 request_cnt,
1949                             u32 *prog_cnt)
1950{
1951        u32 cnt = 0;
1952
1953        if (array)
1954                cnt = bpf_prog_array_length(array);
1955
1956        *prog_cnt = cnt;
1957
1958        /* return early if user requested only program count or nothing to copy */
1959        if (!request_cnt || !cnt)
1960                return 0;
1961
1962        /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
1963        return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
1964                                                                     : 0;
1965}
1966
1967static void bpf_prog_free_deferred(struct work_struct *work)
1968{
1969        struct bpf_prog_aux *aux;
1970        int i;
1971
1972        aux = container_of(work, struct bpf_prog_aux, work);
1973        if (bpf_prog_is_dev_bound(aux))
1974                bpf_prog_offload_destroy(aux->prog);
1975#ifdef CONFIG_PERF_EVENTS
1976        if (aux->prog->has_callchain_buf)
1977                put_callchain_buffers();
1978#endif
1979        for (i = 0; i < aux->func_cnt; i++)
1980                bpf_jit_free(aux->func[i]);
1981        if (aux->func_cnt) {
1982                kfree(aux->func);
1983                bpf_prog_unlock_free(aux->prog);
1984        } else {
1985                bpf_jit_free(aux->prog);
1986        }
1987}
1988
1989/* Free internal BPF program */
1990void bpf_prog_free(struct bpf_prog *fp)
1991{
1992        struct bpf_prog_aux *aux = fp->aux;
1993
1994        INIT_WORK(&aux->work, bpf_prog_free_deferred);
1995        schedule_work(&aux->work);
1996}
1997EXPORT_SYMBOL_GPL(bpf_prog_free);
1998
1999/* RNG for unpriviledged user space with separated state from prandom_u32(). */
2000static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2001
2002void bpf_user_rnd_init_once(void)
2003{
2004        prandom_init_once(&bpf_user_rnd_state);
2005}
2006
2007BPF_CALL_0(bpf_user_rnd_u32)
2008{
2009        /* Should someone ever have the rather unwise idea to use some
2010         * of the registers passed into this function, then note that
2011         * this function is called from native eBPF and classic-to-eBPF
2012         * transformations. Register assignments from both sides are
2013         * different, f.e. classic always sets fn(ctx, A, X) here.
2014         */
2015        struct rnd_state *state;
2016        u32 res;
2017
2018        state = &get_cpu_var(bpf_user_rnd_state);
2019        res = prandom_u32_state(state);
2020        put_cpu_var(bpf_user_rnd_state);
2021
2022        return res;
2023}
2024
2025/* Weak definitions of helper functions in case we don't have bpf syscall. */
2026const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2027const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2028const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2029const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2030const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2031const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2032const struct bpf_func_proto bpf_spin_lock_proto __weak;
2033const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2034
2035const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2036const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2037const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2038const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2039
2040const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2041const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2042const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2043const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2044const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2045
2046const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2047{
2048        return NULL;
2049}
2050
2051u64 __weak
2052bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2053                 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2054{
2055        return -ENOTSUPP;
2056}
2057EXPORT_SYMBOL_GPL(bpf_event_output);
2058
2059/* Always built-in helper functions. */
2060const struct bpf_func_proto bpf_tail_call_proto = {
2061        .func           = NULL,
2062        .gpl_only       = false,
2063        .ret_type       = RET_VOID,
2064        .arg1_type      = ARG_PTR_TO_CTX,
2065        .arg2_type      = ARG_CONST_MAP_PTR,
2066        .arg3_type      = ARG_ANYTHING,
2067};
2068
2069/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2070 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2071 * eBPF and implicitly also cBPF can get JITed!
2072 */
2073struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2074{
2075        return prog;
2076}
2077
2078/* Stub for JITs that support eBPF. All cBPF code gets transformed into
2079 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2080 */
2081void __weak bpf_jit_compile(struct bpf_prog *prog)
2082{
2083}
2084
2085bool __weak bpf_helper_changes_pkt_data(void *func)
2086{
2087        return false;
2088}
2089
2090/* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2091 * analysis code and wants explicit zero extension inserted by verifier.
2092 * Otherwise, return FALSE.
2093 */
2094bool __weak bpf_jit_needs_zext(void)
2095{
2096        return false;
2097}
2098
2099/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2100 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2101 */
2102int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2103                         int len)
2104{
2105        return -EFAULT;
2106}
2107
2108DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2109EXPORT_SYMBOL(bpf_stats_enabled_key);
2110
2111/* All definitions of tracepoints related to BPF. */
2112#define CREATE_TRACE_POINTS
2113#include <linux/bpf_trace.h>
2114
2115EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2116EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2117