linux/kernel/bpf/cpumap.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* bpf/cpumap.c
   3 *
   4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
   5 */
   6
   7/* The 'cpumap' is primarily used as a backend map for XDP BPF helper
   8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
   9 *
  10 * Unlike devmap which redirects XDP frames out another NIC device,
  11 * this map type redirects raw XDP frames to another CPU.  The remote
  12 * CPU will do SKB-allocation and call the normal network stack.
  13 *
  14 * This is a scalability and isolation mechanism, that allow
  15 * separating the early driver network XDP layer, from the rest of the
  16 * netstack, and assigning dedicated CPUs for this stage.  This
  17 * basically allows for 10G wirespeed pre-filtering via bpf.
  18 */
  19#include <linux/bpf.h>
  20#include <linux/filter.h>
  21#include <linux/ptr_ring.h>
  22#include <net/xdp.h>
  23
  24#include <linux/sched.h>
  25#include <linux/workqueue.h>
  26#include <linux/kthread.h>
  27#include <linux/capability.h>
  28#include <trace/events/xdp.h>
  29
  30#include <linux/netdevice.h>   /* netif_receive_skb_core */
  31#include <linux/etherdevice.h> /* eth_type_trans */
  32
  33/* General idea: XDP packets getting XDP redirected to another CPU,
  34 * will maximum be stored/queued for one driver ->poll() call.  It is
  35 * guaranteed that queueing the frame and the flush operation happen on
  36 * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
  37 * which queue in bpf_cpu_map_entry contains packets.
  38 */
  39
  40#define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
  41struct bpf_cpu_map_entry;
  42struct bpf_cpu_map;
  43
  44struct xdp_bulk_queue {
  45        void *q[CPU_MAP_BULK_SIZE];
  46        struct list_head flush_node;
  47        struct bpf_cpu_map_entry *obj;
  48        unsigned int count;
  49};
  50
  51/* Struct for every remote "destination" CPU in map */
  52struct bpf_cpu_map_entry {
  53        u32 cpu;    /* kthread CPU and map index */
  54        int map_id; /* Back reference to map */
  55        u32 qsize;  /* Queue size placeholder for map lookup */
  56
  57        /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
  58        struct xdp_bulk_queue __percpu *bulkq;
  59
  60        struct bpf_cpu_map *cmap;
  61
  62        /* Queue with potential multi-producers, and single-consumer kthread */
  63        struct ptr_ring *queue;
  64        struct task_struct *kthread;
  65        struct work_struct kthread_stop_wq;
  66
  67        atomic_t refcnt; /* Control when this struct can be free'ed */
  68        struct rcu_head rcu;
  69};
  70
  71struct bpf_cpu_map {
  72        struct bpf_map map;
  73        /* Below members specific for map type */
  74        struct bpf_cpu_map_entry **cpu_map;
  75        struct list_head __percpu *flush_list;
  76};
  77
  78static int bq_flush_to_queue(struct xdp_bulk_queue *bq, bool in_napi_ctx);
  79
  80static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
  81{
  82        struct bpf_cpu_map *cmap;
  83        int err = -ENOMEM;
  84        int ret, cpu;
  85        u64 cost;
  86
  87        if (!capable(CAP_SYS_ADMIN))
  88                return ERR_PTR(-EPERM);
  89
  90        /* check sanity of attributes */
  91        if (attr->max_entries == 0 || attr->key_size != 4 ||
  92            attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
  93                return ERR_PTR(-EINVAL);
  94
  95        cmap = kzalloc(sizeof(*cmap), GFP_USER);
  96        if (!cmap)
  97                return ERR_PTR(-ENOMEM);
  98
  99        bpf_map_init_from_attr(&cmap->map, attr);
 100
 101        /* Pre-limit array size based on NR_CPUS, not final CPU check */
 102        if (cmap->map.max_entries > NR_CPUS) {
 103                err = -E2BIG;
 104                goto free_cmap;
 105        }
 106
 107        /* make sure page count doesn't overflow */
 108        cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
 109        cost += sizeof(struct list_head) * num_possible_cpus();
 110
 111        /* Notice returns -EPERM on if map size is larger than memlock limit */
 112        ret = bpf_map_charge_init(&cmap->map.memory, cost);
 113        if (ret) {
 114                err = ret;
 115                goto free_cmap;
 116        }
 117
 118        cmap->flush_list = alloc_percpu(struct list_head);
 119        if (!cmap->flush_list)
 120                goto free_charge;
 121
 122        for_each_possible_cpu(cpu)
 123                INIT_LIST_HEAD(per_cpu_ptr(cmap->flush_list, cpu));
 124
 125        /* Alloc array for possible remote "destination" CPUs */
 126        cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
 127                                           sizeof(struct bpf_cpu_map_entry *),
 128                                           cmap->map.numa_node);
 129        if (!cmap->cpu_map)
 130                goto free_percpu;
 131
 132        return &cmap->map;
 133free_percpu:
 134        free_percpu(cmap->flush_list);
 135free_charge:
 136        bpf_map_charge_finish(&cmap->map.memory);
 137free_cmap:
 138        kfree(cmap);
 139        return ERR_PTR(err);
 140}
 141
 142static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
 143{
 144        atomic_inc(&rcpu->refcnt);
 145}
 146
 147/* called from workqueue, to workaround syscall using preempt_disable */
 148static void cpu_map_kthread_stop(struct work_struct *work)
 149{
 150        struct bpf_cpu_map_entry *rcpu;
 151
 152        rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
 153
 154        /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
 155         * as it waits until all in-flight call_rcu() callbacks complete.
 156         */
 157        rcu_barrier();
 158
 159        /* kthread_stop will wake_up_process and wait for it to complete */
 160        kthread_stop(rcpu->kthread);
 161}
 162
 163static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
 164                                         struct xdp_frame *xdpf,
 165                                         struct sk_buff *skb)
 166{
 167        unsigned int hard_start_headroom;
 168        unsigned int frame_size;
 169        void *pkt_data_start;
 170
 171        /* Part of headroom was reserved to xdpf */
 172        hard_start_headroom = sizeof(struct xdp_frame) +  xdpf->headroom;
 173
 174        /* build_skb need to place skb_shared_info after SKB end, and
 175         * also want to know the memory "truesize".  Thus, need to
 176         * know the memory frame size backing xdp_buff.
 177         *
 178         * XDP was designed to have PAGE_SIZE frames, but this
 179         * assumption is not longer true with ixgbe and i40e.  It
 180         * would be preferred to set frame_size to 2048 or 4096
 181         * depending on the driver.
 182         *   frame_size = 2048;
 183         *   frame_len  = frame_size - sizeof(*xdp_frame);
 184         *
 185         * Instead, with info avail, skb_shared_info in placed after
 186         * packet len.  This, unfortunately fakes the truesize.
 187         * Another disadvantage of this approach, the skb_shared_info
 188         * is not at a fixed memory location, with mixed length
 189         * packets, which is bad for cache-line hotness.
 190         */
 191        frame_size = SKB_DATA_ALIGN(xdpf->len + hard_start_headroom) +
 192                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 193
 194        pkt_data_start = xdpf->data - hard_start_headroom;
 195        skb = build_skb_around(skb, pkt_data_start, frame_size);
 196        if (unlikely(!skb))
 197                return NULL;
 198
 199        skb_reserve(skb, hard_start_headroom);
 200        __skb_put(skb, xdpf->len);
 201        if (xdpf->metasize)
 202                skb_metadata_set(skb, xdpf->metasize);
 203
 204        /* Essential SKB info: protocol and skb->dev */
 205        skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
 206
 207        /* Optional SKB info, currently missing:
 208         * - HW checksum info           (skb->ip_summed)
 209         * - HW RX hash                 (skb_set_hash)
 210         * - RX ring dev queue index    (skb_record_rx_queue)
 211         */
 212
 213        /* Until page_pool get SKB return path, release DMA here */
 214        xdp_release_frame(xdpf);
 215
 216        /* Allow SKB to reuse area used by xdp_frame */
 217        xdp_scrub_frame(xdpf);
 218
 219        return skb;
 220}
 221
 222static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
 223{
 224        /* The tear-down procedure should have made sure that queue is
 225         * empty.  See __cpu_map_entry_replace() and work-queue
 226         * invoked cpu_map_kthread_stop(). Catch any broken behaviour
 227         * gracefully and warn once.
 228         */
 229        struct xdp_frame *xdpf;
 230
 231        while ((xdpf = ptr_ring_consume(ring)))
 232                if (WARN_ON_ONCE(xdpf))
 233                        xdp_return_frame(xdpf);
 234}
 235
 236static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
 237{
 238        if (atomic_dec_and_test(&rcpu->refcnt)) {
 239                /* The queue should be empty at this point */
 240                __cpu_map_ring_cleanup(rcpu->queue);
 241                ptr_ring_cleanup(rcpu->queue, NULL);
 242                kfree(rcpu->queue);
 243                kfree(rcpu);
 244        }
 245}
 246
 247#define CPUMAP_BATCH 8
 248
 249static int cpu_map_kthread_run(void *data)
 250{
 251        struct bpf_cpu_map_entry *rcpu = data;
 252
 253        set_current_state(TASK_INTERRUPTIBLE);
 254
 255        /* When kthread gives stop order, then rcpu have been disconnected
 256         * from map, thus no new packets can enter. Remaining in-flight
 257         * per CPU stored packets are flushed to this queue.  Wait honoring
 258         * kthread_stop signal until queue is empty.
 259         */
 260        while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
 261                unsigned int drops = 0, sched = 0;
 262                void *frames[CPUMAP_BATCH];
 263                void *skbs[CPUMAP_BATCH];
 264                gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
 265                int i, n, m;
 266
 267                /* Release CPU reschedule checks */
 268                if (__ptr_ring_empty(rcpu->queue)) {
 269                        set_current_state(TASK_INTERRUPTIBLE);
 270                        /* Recheck to avoid lost wake-up */
 271                        if (__ptr_ring_empty(rcpu->queue)) {
 272                                schedule();
 273                                sched = 1;
 274                        } else {
 275                                __set_current_state(TASK_RUNNING);
 276                        }
 277                } else {
 278                        sched = cond_resched();
 279                }
 280
 281                /*
 282                 * The bpf_cpu_map_entry is single consumer, with this
 283                 * kthread CPU pinned. Lockless access to ptr_ring
 284                 * consume side valid as no-resize allowed of queue.
 285                 */
 286                n = ptr_ring_consume_batched(rcpu->queue, frames, CPUMAP_BATCH);
 287
 288                for (i = 0; i < n; i++) {
 289                        void *f = frames[i];
 290                        struct page *page = virt_to_page(f);
 291
 292                        /* Bring struct page memory area to curr CPU. Read by
 293                         * build_skb_around via page_is_pfmemalloc(), and when
 294                         * freed written by page_frag_free call.
 295                         */
 296                        prefetchw(page);
 297                }
 298
 299                m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, n, skbs);
 300                if (unlikely(m == 0)) {
 301                        for (i = 0; i < n; i++)
 302                                skbs[i] = NULL; /* effect: xdp_return_frame */
 303                        drops = n;
 304                }
 305
 306                local_bh_disable();
 307                for (i = 0; i < n; i++) {
 308                        struct xdp_frame *xdpf = frames[i];
 309                        struct sk_buff *skb = skbs[i];
 310                        int ret;
 311
 312                        skb = cpu_map_build_skb(rcpu, xdpf, skb);
 313                        if (!skb) {
 314                                xdp_return_frame(xdpf);
 315                                continue;
 316                        }
 317
 318                        /* Inject into network stack */
 319                        ret = netif_receive_skb_core(skb);
 320                        if (ret == NET_RX_DROP)
 321                                drops++;
 322                }
 323                /* Feedback loop via tracepoint */
 324                trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched);
 325
 326                local_bh_enable(); /* resched point, may call do_softirq() */
 327        }
 328        __set_current_state(TASK_RUNNING);
 329
 330        put_cpu_map_entry(rcpu);
 331        return 0;
 332}
 333
 334static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu,
 335                                                       int map_id)
 336{
 337        gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
 338        struct bpf_cpu_map_entry *rcpu;
 339        struct xdp_bulk_queue *bq;
 340        int numa, err, i;
 341
 342        /* Have map->numa_node, but choose node of redirect target CPU */
 343        numa = cpu_to_node(cpu);
 344
 345        rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
 346        if (!rcpu)
 347                return NULL;
 348
 349        /* Alloc percpu bulkq */
 350        rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
 351                                         sizeof(void *), gfp);
 352        if (!rcpu->bulkq)
 353                goto free_rcu;
 354
 355        for_each_possible_cpu(i) {
 356                bq = per_cpu_ptr(rcpu->bulkq, i);
 357                bq->obj = rcpu;
 358        }
 359
 360        /* Alloc queue */
 361        rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
 362        if (!rcpu->queue)
 363                goto free_bulkq;
 364
 365        err = ptr_ring_init(rcpu->queue, qsize, gfp);
 366        if (err)
 367                goto free_queue;
 368
 369        rcpu->cpu    = cpu;
 370        rcpu->map_id = map_id;
 371        rcpu->qsize  = qsize;
 372
 373        /* Setup kthread */
 374        rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
 375                                               "cpumap/%d/map:%d", cpu, map_id);
 376        if (IS_ERR(rcpu->kthread))
 377                goto free_ptr_ring;
 378
 379        get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
 380        get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
 381
 382        /* Make sure kthread runs on a single CPU */
 383        kthread_bind(rcpu->kthread, cpu);
 384        wake_up_process(rcpu->kthread);
 385
 386        return rcpu;
 387
 388free_ptr_ring:
 389        ptr_ring_cleanup(rcpu->queue, NULL);
 390free_queue:
 391        kfree(rcpu->queue);
 392free_bulkq:
 393        free_percpu(rcpu->bulkq);
 394free_rcu:
 395        kfree(rcpu);
 396        return NULL;
 397}
 398
 399static void __cpu_map_entry_free(struct rcu_head *rcu)
 400{
 401        struct bpf_cpu_map_entry *rcpu;
 402        int cpu;
 403
 404        /* This cpu_map_entry have been disconnected from map and one
 405         * RCU graze-period have elapsed.  Thus, XDP cannot queue any
 406         * new packets and cannot change/set flush_needed that can
 407         * find this entry.
 408         */
 409        rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
 410
 411        /* Flush remaining packets in percpu bulkq */
 412        for_each_online_cpu(cpu) {
 413                struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu);
 414
 415                /* No concurrent bq_enqueue can run at this point */
 416                bq_flush_to_queue(bq, false);
 417        }
 418        free_percpu(rcpu->bulkq);
 419        /* Cannot kthread_stop() here, last put free rcpu resources */
 420        put_cpu_map_entry(rcpu);
 421}
 422
 423/* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
 424 * ensure any driver rcu critical sections have completed, but this
 425 * does not guarantee a flush has happened yet. Because driver side
 426 * rcu_read_lock/unlock only protects the running XDP program.  The
 427 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
 428 * pending flush op doesn't fail.
 429 *
 430 * The bpf_cpu_map_entry is still used by the kthread, and there can
 431 * still be pending packets (in queue and percpu bulkq).  A refcnt
 432 * makes sure to last user (kthread_stop vs. call_rcu) free memory
 433 * resources.
 434 *
 435 * The rcu callback __cpu_map_entry_free flush remaining packets in
 436 * percpu bulkq to queue.  Due to caller map_delete_elem() disable
 437 * preemption, cannot call kthread_stop() to make sure queue is empty.
 438 * Instead a work_queue is started for stopping kthread,
 439 * cpu_map_kthread_stop, which waits for an RCU graze period before
 440 * stopping kthread, emptying the queue.
 441 */
 442static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
 443                                    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
 444{
 445        struct bpf_cpu_map_entry *old_rcpu;
 446
 447        old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
 448        if (old_rcpu) {
 449                call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
 450                INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
 451                schedule_work(&old_rcpu->kthread_stop_wq);
 452        }
 453}
 454
 455static int cpu_map_delete_elem(struct bpf_map *map, void *key)
 456{
 457        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 458        u32 key_cpu = *(u32 *)key;
 459
 460        if (key_cpu >= map->max_entries)
 461                return -EINVAL;
 462
 463        /* notice caller map_delete_elem() use preempt_disable() */
 464        __cpu_map_entry_replace(cmap, key_cpu, NULL);
 465        return 0;
 466}
 467
 468static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
 469                               u64 map_flags)
 470{
 471        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 472        struct bpf_cpu_map_entry *rcpu;
 473
 474        /* Array index key correspond to CPU number */
 475        u32 key_cpu = *(u32 *)key;
 476        /* Value is the queue size */
 477        u32 qsize = *(u32 *)value;
 478
 479        if (unlikely(map_flags > BPF_EXIST))
 480                return -EINVAL;
 481        if (unlikely(key_cpu >= cmap->map.max_entries))
 482                return -E2BIG;
 483        if (unlikely(map_flags == BPF_NOEXIST))
 484                return -EEXIST;
 485        if (unlikely(qsize > 16384)) /* sanity limit on qsize */
 486                return -EOVERFLOW;
 487
 488        /* Make sure CPU is a valid possible cpu */
 489        if (!cpu_possible(key_cpu))
 490                return -ENODEV;
 491
 492        if (qsize == 0) {
 493                rcpu = NULL; /* Same as deleting */
 494        } else {
 495                /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
 496                rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
 497                if (!rcpu)
 498                        return -ENOMEM;
 499                rcpu->cmap = cmap;
 500        }
 501        rcu_read_lock();
 502        __cpu_map_entry_replace(cmap, key_cpu, rcpu);
 503        rcu_read_unlock();
 504        return 0;
 505}
 506
 507static void cpu_map_free(struct bpf_map *map)
 508{
 509        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 510        int cpu;
 511        u32 i;
 512
 513        /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
 514         * so the bpf programs (can be more than one that used this map) were
 515         * disconnected from events. Wait for outstanding critical sections in
 516         * these programs to complete. The rcu critical section only guarantees
 517         * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
 518         * It does __not__ ensure pending flush operations (if any) are
 519         * complete.
 520         */
 521
 522        bpf_clear_redirect_map(map);
 523        synchronize_rcu();
 524
 525        /* To ensure all pending flush operations have completed wait for flush
 526         * list be empty on _all_ cpus. Because the above synchronize_rcu()
 527         * ensures the map is disconnected from the program we can assume no new
 528         * items will be added to the list.
 529         */
 530        for_each_online_cpu(cpu) {
 531                struct list_head *flush_list = per_cpu_ptr(cmap->flush_list, cpu);
 532
 533                while (!list_empty(flush_list))
 534                        cond_resched();
 535        }
 536
 537        /* For cpu_map the remote CPUs can still be using the entries
 538         * (struct bpf_cpu_map_entry).
 539         */
 540        for (i = 0; i < cmap->map.max_entries; i++) {
 541                struct bpf_cpu_map_entry *rcpu;
 542
 543                rcpu = READ_ONCE(cmap->cpu_map[i]);
 544                if (!rcpu)
 545                        continue;
 546
 547                /* bq flush and cleanup happens after RCU graze-period */
 548                __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
 549        }
 550        free_percpu(cmap->flush_list);
 551        bpf_map_area_free(cmap->cpu_map);
 552        kfree(cmap);
 553}
 554
 555struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
 556{
 557        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 558        struct bpf_cpu_map_entry *rcpu;
 559
 560        if (key >= map->max_entries)
 561                return NULL;
 562
 563        rcpu = READ_ONCE(cmap->cpu_map[key]);
 564        return rcpu;
 565}
 566
 567static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
 568{
 569        struct bpf_cpu_map_entry *rcpu =
 570                __cpu_map_lookup_elem(map, *(u32 *)key);
 571
 572        return rcpu ? &rcpu->qsize : NULL;
 573}
 574
 575static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
 576{
 577        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 578        u32 index = key ? *(u32 *)key : U32_MAX;
 579        u32 *next = next_key;
 580
 581        if (index >= cmap->map.max_entries) {
 582                *next = 0;
 583                return 0;
 584        }
 585
 586        if (index == cmap->map.max_entries - 1)
 587                return -ENOENT;
 588        *next = index + 1;
 589        return 0;
 590}
 591
 592const struct bpf_map_ops cpu_map_ops = {
 593        .map_alloc              = cpu_map_alloc,
 594        .map_free               = cpu_map_free,
 595        .map_delete_elem        = cpu_map_delete_elem,
 596        .map_update_elem        = cpu_map_update_elem,
 597        .map_lookup_elem        = cpu_map_lookup_elem,
 598        .map_get_next_key       = cpu_map_get_next_key,
 599        .map_check_btf          = map_check_no_btf,
 600};
 601
 602static int bq_flush_to_queue(struct xdp_bulk_queue *bq, bool in_napi_ctx)
 603{
 604        struct bpf_cpu_map_entry *rcpu = bq->obj;
 605        unsigned int processed = 0, drops = 0;
 606        const int to_cpu = rcpu->cpu;
 607        struct ptr_ring *q;
 608        int i;
 609
 610        if (unlikely(!bq->count))
 611                return 0;
 612
 613        q = rcpu->queue;
 614        spin_lock(&q->producer_lock);
 615
 616        for (i = 0; i < bq->count; i++) {
 617                struct xdp_frame *xdpf = bq->q[i];
 618                int err;
 619
 620                err = __ptr_ring_produce(q, xdpf);
 621                if (err) {
 622                        drops++;
 623                        if (likely(in_napi_ctx))
 624                                xdp_return_frame_rx_napi(xdpf);
 625                        else
 626                                xdp_return_frame(xdpf);
 627                }
 628                processed++;
 629        }
 630        bq->count = 0;
 631        spin_unlock(&q->producer_lock);
 632
 633        __list_del_clearprev(&bq->flush_node);
 634
 635        /* Feedback loop via tracepoints */
 636        trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
 637        return 0;
 638}
 639
 640/* Runs under RCU-read-side, plus in softirq under NAPI protection.
 641 * Thus, safe percpu variable access.
 642 */
 643static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
 644{
 645        struct list_head *flush_list = this_cpu_ptr(rcpu->cmap->flush_list);
 646        struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
 647
 648        if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
 649                bq_flush_to_queue(bq, true);
 650
 651        /* Notice, xdp_buff/page MUST be queued here, long enough for
 652         * driver to code invoking us to finished, due to driver
 653         * (e.g. ixgbe) recycle tricks based on page-refcnt.
 654         *
 655         * Thus, incoming xdp_frame is always queued here (else we race
 656         * with another CPU on page-refcnt and remaining driver code).
 657         * Queue time is very short, as driver will invoke flush
 658         * operation, when completing napi->poll call.
 659         */
 660        bq->q[bq->count++] = xdpf;
 661
 662        if (!bq->flush_node.prev)
 663                list_add(&bq->flush_node, flush_list);
 664
 665        return 0;
 666}
 667
 668int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
 669                    struct net_device *dev_rx)
 670{
 671        struct xdp_frame *xdpf;
 672
 673        xdpf = convert_to_xdp_frame(xdp);
 674        if (unlikely(!xdpf))
 675                return -EOVERFLOW;
 676
 677        /* Info needed when constructing SKB on remote CPU */
 678        xdpf->dev_rx = dev_rx;
 679
 680        bq_enqueue(rcpu, xdpf);
 681        return 0;
 682}
 683
 684void __cpu_map_flush(struct bpf_map *map)
 685{
 686        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 687        struct list_head *flush_list = this_cpu_ptr(cmap->flush_list);
 688        struct xdp_bulk_queue *bq, *tmp;
 689
 690        list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
 691                bq_flush_to_queue(bq, true);
 692
 693                /* If already running, costs spin_lock_irqsave + smb_mb */
 694                wake_up_process(bq->obj->kthread);
 695        }
 696}
 697