linux/kernel/bpf/verifier.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   3 * Copyright (c) 2016 Facebook
   4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
   5 */
   6#include <uapi/linux/btf.h>
   7#include <linux/kernel.h>
   8#include <linux/types.h>
   9#include <linux/slab.h>
  10#include <linux/bpf.h>
  11#include <linux/btf.h>
  12#include <linux/bpf_verifier.h>
  13#include <linux/filter.h>
  14#include <net/netlink.h>
  15#include <linux/file.h>
  16#include <linux/vmalloc.h>
  17#include <linux/stringify.h>
  18#include <linux/bsearch.h>
  19#include <linux/sort.h>
  20#include <linux/perf_event.h>
  21#include <linux/ctype.h>
  22
  23#include "disasm.h"
  24
  25static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
  26#define BPF_PROG_TYPE(_id, _name) \
  27        [_id] = & _name ## _verifier_ops,
  28#define BPF_MAP_TYPE(_id, _ops)
  29#include <linux/bpf_types.h>
  30#undef BPF_PROG_TYPE
  31#undef BPF_MAP_TYPE
  32};
  33
  34/* bpf_check() is a static code analyzer that walks eBPF program
  35 * instruction by instruction and updates register/stack state.
  36 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
  37 *
  38 * The first pass is depth-first-search to check that the program is a DAG.
  39 * It rejects the following programs:
  40 * - larger than BPF_MAXINSNS insns
  41 * - if loop is present (detected via back-edge)
  42 * - unreachable insns exist (shouldn't be a forest. program = one function)
  43 * - out of bounds or malformed jumps
  44 * The second pass is all possible path descent from the 1st insn.
  45 * Since it's analyzing all pathes through the program, the length of the
  46 * analysis is limited to 64k insn, which may be hit even if total number of
  47 * insn is less then 4K, but there are too many branches that change stack/regs.
  48 * Number of 'branches to be analyzed' is limited to 1k
  49 *
  50 * On entry to each instruction, each register has a type, and the instruction
  51 * changes the types of the registers depending on instruction semantics.
  52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
  53 * copied to R1.
  54 *
  55 * All registers are 64-bit.
  56 * R0 - return register
  57 * R1-R5 argument passing registers
  58 * R6-R9 callee saved registers
  59 * R10 - frame pointer read-only
  60 *
  61 * At the start of BPF program the register R1 contains a pointer to bpf_context
  62 * and has type PTR_TO_CTX.
  63 *
  64 * Verifier tracks arithmetic operations on pointers in case:
  65 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  66 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
  67 * 1st insn copies R10 (which has FRAME_PTR) type into R1
  68 * and 2nd arithmetic instruction is pattern matched to recognize
  69 * that it wants to construct a pointer to some element within stack.
  70 * So after 2nd insn, the register R1 has type PTR_TO_STACK
  71 * (and -20 constant is saved for further stack bounds checking).
  72 * Meaning that this reg is a pointer to stack plus known immediate constant.
  73 *
  74 * Most of the time the registers have SCALAR_VALUE type, which
  75 * means the register has some value, but it's not a valid pointer.
  76 * (like pointer plus pointer becomes SCALAR_VALUE type)
  77 *
  78 * When verifier sees load or store instructions the type of base register
  79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
  80 * four pointer types recognized by check_mem_access() function.
  81 *
  82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
  83 * and the range of [ptr, ptr + map's value_size) is accessible.
  84 *
  85 * registers used to pass values to function calls are checked against
  86 * function argument constraints.
  87 *
  88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
  89 * It means that the register type passed to this function must be
  90 * PTR_TO_STACK and it will be used inside the function as
  91 * 'pointer to map element key'
  92 *
  93 * For example the argument constraints for bpf_map_lookup_elem():
  94 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
  95 *   .arg1_type = ARG_CONST_MAP_PTR,
  96 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
  97 *
  98 * ret_type says that this function returns 'pointer to map elem value or null'
  99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 100 * 2nd argument should be a pointer to stack, which will be used inside
 101 * the helper function as a pointer to map element key.
 102 *
 103 * On the kernel side the helper function looks like:
 104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 105 * {
 106 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 107 *    void *key = (void *) (unsigned long) r2;
 108 *    void *value;
 109 *
 110 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 111 *    [key, key + map->key_size) bytes are valid and were initialized on
 112 *    the stack of eBPF program.
 113 * }
 114 *
 115 * Corresponding eBPF program may look like:
 116 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 117 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 118 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 119 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 120 * here verifier looks at prototype of map_lookup_elem() and sees:
 121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 123 *
 124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 126 * and were initialized prior to this call.
 127 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 130 * returns ether pointer to map value or NULL.
 131 *
 132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 133 * insn, the register holding that pointer in the true branch changes state to
 134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 135 * branch. See check_cond_jmp_op().
 136 *
 137 * After the call R0 is set to return type of the function and registers R1-R5
 138 * are set to NOT_INIT to indicate that they are no longer readable.
 139 *
 140 * The following reference types represent a potential reference to a kernel
 141 * resource which, after first being allocated, must be checked and freed by
 142 * the BPF program:
 143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
 144 *
 145 * When the verifier sees a helper call return a reference type, it allocates a
 146 * pointer id for the reference and stores it in the current function state.
 147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
 148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
 149 * passes through a NULL-check conditional. For the branch wherein the state is
 150 * changed to CONST_IMM, the verifier releases the reference.
 151 *
 152 * For each helper function that allocates a reference, such as
 153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
 154 * bpf_sk_release(). When a reference type passes into the release function,
 155 * the verifier also releases the reference. If any unchecked or unreleased
 156 * reference remains at the end of the program, the verifier rejects it.
 157 */
 158
 159/* verifier_state + insn_idx are pushed to stack when branch is encountered */
 160struct bpf_verifier_stack_elem {
 161        /* verifer state is 'st'
 162         * before processing instruction 'insn_idx'
 163         * and after processing instruction 'prev_insn_idx'
 164         */
 165        struct bpf_verifier_state st;
 166        int insn_idx;
 167        int prev_insn_idx;
 168        struct bpf_verifier_stack_elem *next;
 169};
 170
 171#define BPF_COMPLEXITY_LIMIT_JMP_SEQ    8192
 172#define BPF_COMPLEXITY_LIMIT_STATES     64
 173
 174#define BPF_MAP_PTR_UNPRIV      1UL
 175#define BPF_MAP_PTR_POISON      ((void *)((0xeB9FUL << 1) +     \
 176                                          POISON_POINTER_DELTA))
 177#define BPF_MAP_PTR(X)          ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
 178
 179static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
 180{
 181        return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
 182}
 183
 184static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
 185{
 186        return aux->map_state & BPF_MAP_PTR_UNPRIV;
 187}
 188
 189static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
 190                              const struct bpf_map *map, bool unpriv)
 191{
 192        BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
 193        unpriv |= bpf_map_ptr_unpriv(aux);
 194        aux->map_state = (unsigned long)map |
 195                         (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
 196}
 197
 198struct bpf_call_arg_meta {
 199        struct bpf_map *map_ptr;
 200        bool raw_mode;
 201        bool pkt_access;
 202        int regno;
 203        int access_size;
 204        s64 msize_smax_value;
 205        u64 msize_umax_value;
 206        int ref_obj_id;
 207        int func_id;
 208};
 209
 210static DEFINE_MUTEX(bpf_verifier_lock);
 211
 212static const struct bpf_line_info *
 213find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
 214{
 215        const struct bpf_line_info *linfo;
 216        const struct bpf_prog *prog;
 217        u32 i, nr_linfo;
 218
 219        prog = env->prog;
 220        nr_linfo = prog->aux->nr_linfo;
 221
 222        if (!nr_linfo || insn_off >= prog->len)
 223                return NULL;
 224
 225        linfo = prog->aux->linfo;
 226        for (i = 1; i < nr_linfo; i++)
 227                if (insn_off < linfo[i].insn_off)
 228                        break;
 229
 230        return &linfo[i - 1];
 231}
 232
 233void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
 234                       va_list args)
 235{
 236        unsigned int n;
 237
 238        n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
 239
 240        WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
 241                  "verifier log line truncated - local buffer too short\n");
 242
 243        n = min(log->len_total - log->len_used - 1, n);
 244        log->kbuf[n] = '\0';
 245
 246        if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
 247                log->len_used += n;
 248        else
 249                log->ubuf = NULL;
 250}
 251
 252/* log_level controls verbosity level of eBPF verifier.
 253 * bpf_verifier_log_write() is used to dump the verification trace to the log,
 254 * so the user can figure out what's wrong with the program
 255 */
 256__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
 257                                           const char *fmt, ...)
 258{
 259        va_list args;
 260
 261        if (!bpf_verifier_log_needed(&env->log))
 262                return;
 263
 264        va_start(args, fmt);
 265        bpf_verifier_vlog(&env->log, fmt, args);
 266        va_end(args);
 267}
 268EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
 269
 270__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
 271{
 272        struct bpf_verifier_env *env = private_data;
 273        va_list args;
 274
 275        if (!bpf_verifier_log_needed(&env->log))
 276                return;
 277
 278        va_start(args, fmt);
 279        bpf_verifier_vlog(&env->log, fmt, args);
 280        va_end(args);
 281}
 282
 283static const char *ltrim(const char *s)
 284{
 285        while (isspace(*s))
 286                s++;
 287
 288        return s;
 289}
 290
 291__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
 292                                         u32 insn_off,
 293                                         const char *prefix_fmt, ...)
 294{
 295        const struct bpf_line_info *linfo;
 296
 297        if (!bpf_verifier_log_needed(&env->log))
 298                return;
 299
 300        linfo = find_linfo(env, insn_off);
 301        if (!linfo || linfo == env->prev_linfo)
 302                return;
 303
 304        if (prefix_fmt) {
 305                va_list args;
 306
 307                va_start(args, prefix_fmt);
 308                bpf_verifier_vlog(&env->log, prefix_fmt, args);
 309                va_end(args);
 310        }
 311
 312        verbose(env, "%s\n",
 313                ltrim(btf_name_by_offset(env->prog->aux->btf,
 314                                         linfo->line_off)));
 315
 316        env->prev_linfo = linfo;
 317}
 318
 319static bool type_is_pkt_pointer(enum bpf_reg_type type)
 320{
 321        return type == PTR_TO_PACKET ||
 322               type == PTR_TO_PACKET_META;
 323}
 324
 325static bool type_is_sk_pointer(enum bpf_reg_type type)
 326{
 327        return type == PTR_TO_SOCKET ||
 328                type == PTR_TO_SOCK_COMMON ||
 329                type == PTR_TO_TCP_SOCK ||
 330                type == PTR_TO_XDP_SOCK;
 331}
 332
 333static bool reg_type_may_be_null(enum bpf_reg_type type)
 334{
 335        return type == PTR_TO_MAP_VALUE_OR_NULL ||
 336               type == PTR_TO_SOCKET_OR_NULL ||
 337               type == PTR_TO_SOCK_COMMON_OR_NULL ||
 338               type == PTR_TO_TCP_SOCK_OR_NULL;
 339}
 340
 341static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
 342{
 343        return reg->type == PTR_TO_MAP_VALUE &&
 344                map_value_has_spin_lock(reg->map_ptr);
 345}
 346
 347static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
 348{
 349        return type == PTR_TO_SOCKET ||
 350                type == PTR_TO_SOCKET_OR_NULL ||
 351                type == PTR_TO_TCP_SOCK ||
 352                type == PTR_TO_TCP_SOCK_OR_NULL;
 353}
 354
 355static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
 356{
 357        return type == ARG_PTR_TO_SOCK_COMMON;
 358}
 359
 360/* Determine whether the function releases some resources allocated by another
 361 * function call. The first reference type argument will be assumed to be
 362 * released by release_reference().
 363 */
 364static bool is_release_function(enum bpf_func_id func_id)
 365{
 366        return func_id == BPF_FUNC_sk_release;
 367}
 368
 369static bool is_acquire_function(enum bpf_func_id func_id)
 370{
 371        return func_id == BPF_FUNC_sk_lookup_tcp ||
 372                func_id == BPF_FUNC_sk_lookup_udp ||
 373                func_id == BPF_FUNC_skc_lookup_tcp;
 374}
 375
 376static bool is_ptr_cast_function(enum bpf_func_id func_id)
 377{
 378        return func_id == BPF_FUNC_tcp_sock ||
 379                func_id == BPF_FUNC_sk_fullsock;
 380}
 381
 382/* string representation of 'enum bpf_reg_type' */
 383static const char * const reg_type_str[] = {
 384        [NOT_INIT]              = "?",
 385        [SCALAR_VALUE]          = "inv",
 386        [PTR_TO_CTX]            = "ctx",
 387        [CONST_PTR_TO_MAP]      = "map_ptr",
 388        [PTR_TO_MAP_VALUE]      = "map_value",
 389        [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
 390        [PTR_TO_STACK]          = "fp",
 391        [PTR_TO_PACKET]         = "pkt",
 392        [PTR_TO_PACKET_META]    = "pkt_meta",
 393        [PTR_TO_PACKET_END]     = "pkt_end",
 394        [PTR_TO_FLOW_KEYS]      = "flow_keys",
 395        [PTR_TO_SOCKET]         = "sock",
 396        [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
 397        [PTR_TO_SOCK_COMMON]    = "sock_common",
 398        [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
 399        [PTR_TO_TCP_SOCK]       = "tcp_sock",
 400        [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
 401        [PTR_TO_TP_BUFFER]      = "tp_buffer",
 402        [PTR_TO_XDP_SOCK]       = "xdp_sock",
 403};
 404
 405static char slot_type_char[] = {
 406        [STACK_INVALID] = '?',
 407        [STACK_SPILL]   = 'r',
 408        [STACK_MISC]    = 'm',
 409        [STACK_ZERO]    = '0',
 410};
 411
 412static void print_liveness(struct bpf_verifier_env *env,
 413                           enum bpf_reg_liveness live)
 414{
 415        if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
 416            verbose(env, "_");
 417        if (live & REG_LIVE_READ)
 418                verbose(env, "r");
 419        if (live & REG_LIVE_WRITTEN)
 420                verbose(env, "w");
 421        if (live & REG_LIVE_DONE)
 422                verbose(env, "D");
 423}
 424
 425static struct bpf_func_state *func(struct bpf_verifier_env *env,
 426                                   const struct bpf_reg_state *reg)
 427{
 428        struct bpf_verifier_state *cur = env->cur_state;
 429
 430        return cur->frame[reg->frameno];
 431}
 432
 433static void print_verifier_state(struct bpf_verifier_env *env,
 434                                 const struct bpf_func_state *state)
 435{
 436        const struct bpf_reg_state *reg;
 437        enum bpf_reg_type t;
 438        int i;
 439
 440        if (state->frameno)
 441                verbose(env, " frame%d:", state->frameno);
 442        for (i = 0; i < MAX_BPF_REG; i++) {
 443                reg = &state->regs[i];
 444                t = reg->type;
 445                if (t == NOT_INIT)
 446                        continue;
 447                verbose(env, " R%d", i);
 448                print_liveness(env, reg->live);
 449                verbose(env, "=%s", reg_type_str[t]);
 450                if (t == SCALAR_VALUE && reg->precise)
 451                        verbose(env, "P");
 452                if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
 453                    tnum_is_const(reg->var_off)) {
 454                        /* reg->off should be 0 for SCALAR_VALUE */
 455                        verbose(env, "%lld", reg->var_off.value + reg->off);
 456                } else {
 457                        verbose(env, "(id=%d", reg->id);
 458                        if (reg_type_may_be_refcounted_or_null(t))
 459                                verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
 460                        if (t != SCALAR_VALUE)
 461                                verbose(env, ",off=%d", reg->off);
 462                        if (type_is_pkt_pointer(t))
 463                                verbose(env, ",r=%d", reg->range);
 464                        else if (t == CONST_PTR_TO_MAP ||
 465                                 t == PTR_TO_MAP_VALUE ||
 466                                 t == PTR_TO_MAP_VALUE_OR_NULL)
 467                                verbose(env, ",ks=%d,vs=%d",
 468                                        reg->map_ptr->key_size,
 469                                        reg->map_ptr->value_size);
 470                        if (tnum_is_const(reg->var_off)) {
 471                                /* Typically an immediate SCALAR_VALUE, but
 472                                 * could be a pointer whose offset is too big
 473                                 * for reg->off
 474                                 */
 475                                verbose(env, ",imm=%llx", reg->var_off.value);
 476                        } else {
 477                                if (reg->smin_value != reg->umin_value &&
 478                                    reg->smin_value != S64_MIN)
 479                                        verbose(env, ",smin_value=%lld",
 480                                                (long long)reg->smin_value);
 481                                if (reg->smax_value != reg->umax_value &&
 482                                    reg->smax_value != S64_MAX)
 483                                        verbose(env, ",smax_value=%lld",
 484                                                (long long)reg->smax_value);
 485                                if (reg->umin_value != 0)
 486                                        verbose(env, ",umin_value=%llu",
 487                                                (unsigned long long)reg->umin_value);
 488                                if (reg->umax_value != U64_MAX)
 489                                        verbose(env, ",umax_value=%llu",
 490                                                (unsigned long long)reg->umax_value);
 491                                if (!tnum_is_unknown(reg->var_off)) {
 492                                        char tn_buf[48];
 493
 494                                        tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
 495                                        verbose(env, ",var_off=%s", tn_buf);
 496                                }
 497                        }
 498                        verbose(env, ")");
 499                }
 500        }
 501        for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
 502                char types_buf[BPF_REG_SIZE + 1];
 503                bool valid = false;
 504                int j;
 505
 506                for (j = 0; j < BPF_REG_SIZE; j++) {
 507                        if (state->stack[i].slot_type[j] != STACK_INVALID)
 508                                valid = true;
 509                        types_buf[j] = slot_type_char[
 510                                        state->stack[i].slot_type[j]];
 511                }
 512                types_buf[BPF_REG_SIZE] = 0;
 513                if (!valid)
 514                        continue;
 515                verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
 516                print_liveness(env, state->stack[i].spilled_ptr.live);
 517                if (state->stack[i].slot_type[0] == STACK_SPILL) {
 518                        reg = &state->stack[i].spilled_ptr;
 519                        t = reg->type;
 520                        verbose(env, "=%s", reg_type_str[t]);
 521                        if (t == SCALAR_VALUE && reg->precise)
 522                                verbose(env, "P");
 523                        if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
 524                                verbose(env, "%lld", reg->var_off.value + reg->off);
 525                } else {
 526                        verbose(env, "=%s", types_buf);
 527                }
 528        }
 529        if (state->acquired_refs && state->refs[0].id) {
 530                verbose(env, " refs=%d", state->refs[0].id);
 531                for (i = 1; i < state->acquired_refs; i++)
 532                        if (state->refs[i].id)
 533                                verbose(env, ",%d", state->refs[i].id);
 534        }
 535        verbose(env, "\n");
 536}
 537
 538#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)                         \
 539static int copy_##NAME##_state(struct bpf_func_state *dst,              \
 540                               const struct bpf_func_state *src)        \
 541{                                                                       \
 542        if (!src->FIELD)                                                \
 543                return 0;                                               \
 544        if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {                    \
 545                /* internal bug, make state invalid to reject the program */ \
 546                memset(dst, 0, sizeof(*dst));                           \
 547                return -EFAULT;                                         \
 548        }                                                               \
 549        memcpy(dst->FIELD, src->FIELD,                                  \
 550               sizeof(*src->FIELD) * (src->COUNT / SIZE));              \
 551        return 0;                                                       \
 552}
 553/* copy_reference_state() */
 554COPY_STATE_FN(reference, acquired_refs, refs, 1)
 555/* copy_stack_state() */
 556COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
 557#undef COPY_STATE_FN
 558
 559#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)                      \
 560static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
 561                                  bool copy_old)                        \
 562{                                                                       \
 563        u32 old_size = state->COUNT;                                    \
 564        struct bpf_##NAME##_state *new_##FIELD;                         \
 565        int slot = size / SIZE;                                         \
 566                                                                        \
 567        if (size <= old_size || !size) {                                \
 568                if (copy_old)                                           \
 569                        return 0;                                       \
 570                state->COUNT = slot * SIZE;                             \
 571                if (!size && old_size) {                                \
 572                        kfree(state->FIELD);                            \
 573                        state->FIELD = NULL;                            \
 574                }                                                       \
 575                return 0;                                               \
 576        }                                                               \
 577        new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
 578                                    GFP_KERNEL);                        \
 579        if (!new_##FIELD)                                               \
 580                return -ENOMEM;                                         \
 581        if (copy_old) {                                                 \
 582                if (state->FIELD)                                       \
 583                        memcpy(new_##FIELD, state->FIELD,               \
 584                               sizeof(*new_##FIELD) * (old_size / SIZE)); \
 585                memset(new_##FIELD + old_size / SIZE, 0,                \
 586                       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
 587        }                                                               \
 588        state->COUNT = slot * SIZE;                                     \
 589        kfree(state->FIELD);                                            \
 590        state->FIELD = new_##FIELD;                                     \
 591        return 0;                                                       \
 592}
 593/* realloc_reference_state() */
 594REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
 595/* realloc_stack_state() */
 596REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
 597#undef REALLOC_STATE_FN
 598
 599/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
 600 * make it consume minimal amount of memory. check_stack_write() access from
 601 * the program calls into realloc_func_state() to grow the stack size.
 602 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
 603 * which realloc_stack_state() copies over. It points to previous
 604 * bpf_verifier_state which is never reallocated.
 605 */
 606static int realloc_func_state(struct bpf_func_state *state, int stack_size,
 607                              int refs_size, bool copy_old)
 608{
 609        int err = realloc_reference_state(state, refs_size, copy_old);
 610        if (err)
 611                return err;
 612        return realloc_stack_state(state, stack_size, copy_old);
 613}
 614
 615/* Acquire a pointer id from the env and update the state->refs to include
 616 * this new pointer reference.
 617 * On success, returns a valid pointer id to associate with the register
 618 * On failure, returns a negative errno.
 619 */
 620static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
 621{
 622        struct bpf_func_state *state = cur_func(env);
 623        int new_ofs = state->acquired_refs;
 624        int id, err;
 625
 626        err = realloc_reference_state(state, state->acquired_refs + 1, true);
 627        if (err)
 628                return err;
 629        id = ++env->id_gen;
 630        state->refs[new_ofs].id = id;
 631        state->refs[new_ofs].insn_idx = insn_idx;
 632
 633        return id;
 634}
 635
 636/* release function corresponding to acquire_reference_state(). Idempotent. */
 637static int release_reference_state(struct bpf_func_state *state, int ptr_id)
 638{
 639        int i, last_idx;
 640
 641        last_idx = state->acquired_refs - 1;
 642        for (i = 0; i < state->acquired_refs; i++) {
 643                if (state->refs[i].id == ptr_id) {
 644                        if (last_idx && i != last_idx)
 645                                memcpy(&state->refs[i], &state->refs[last_idx],
 646                                       sizeof(*state->refs));
 647                        memset(&state->refs[last_idx], 0, sizeof(*state->refs));
 648                        state->acquired_refs--;
 649                        return 0;
 650                }
 651        }
 652        return -EINVAL;
 653}
 654
 655static int transfer_reference_state(struct bpf_func_state *dst,
 656                                    struct bpf_func_state *src)
 657{
 658        int err = realloc_reference_state(dst, src->acquired_refs, false);
 659        if (err)
 660                return err;
 661        err = copy_reference_state(dst, src);
 662        if (err)
 663                return err;
 664        return 0;
 665}
 666
 667static void free_func_state(struct bpf_func_state *state)
 668{
 669        if (!state)
 670                return;
 671        kfree(state->refs);
 672        kfree(state->stack);
 673        kfree(state);
 674}
 675
 676static void clear_jmp_history(struct bpf_verifier_state *state)
 677{
 678        kfree(state->jmp_history);
 679        state->jmp_history = NULL;
 680        state->jmp_history_cnt = 0;
 681}
 682
 683static void free_verifier_state(struct bpf_verifier_state *state,
 684                                bool free_self)
 685{
 686        int i;
 687
 688        for (i = 0; i <= state->curframe; i++) {
 689                free_func_state(state->frame[i]);
 690                state->frame[i] = NULL;
 691        }
 692        clear_jmp_history(state);
 693        if (free_self)
 694                kfree(state);
 695}
 696
 697/* copy verifier state from src to dst growing dst stack space
 698 * when necessary to accommodate larger src stack
 699 */
 700static int copy_func_state(struct bpf_func_state *dst,
 701                           const struct bpf_func_state *src)
 702{
 703        int err;
 704
 705        err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
 706                                 false);
 707        if (err)
 708                return err;
 709        memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
 710        err = copy_reference_state(dst, src);
 711        if (err)
 712                return err;
 713        return copy_stack_state(dst, src);
 714}
 715
 716static int copy_verifier_state(struct bpf_verifier_state *dst_state,
 717                               const struct bpf_verifier_state *src)
 718{
 719        struct bpf_func_state *dst;
 720        u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
 721        int i, err;
 722
 723        if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
 724                kfree(dst_state->jmp_history);
 725                dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
 726                if (!dst_state->jmp_history)
 727                        return -ENOMEM;
 728        }
 729        memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
 730        dst_state->jmp_history_cnt = src->jmp_history_cnt;
 731
 732        /* if dst has more stack frames then src frame, free them */
 733        for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
 734                free_func_state(dst_state->frame[i]);
 735                dst_state->frame[i] = NULL;
 736        }
 737        dst_state->speculative = src->speculative;
 738        dst_state->curframe = src->curframe;
 739        dst_state->active_spin_lock = src->active_spin_lock;
 740        dst_state->branches = src->branches;
 741        dst_state->parent = src->parent;
 742        dst_state->first_insn_idx = src->first_insn_idx;
 743        dst_state->last_insn_idx = src->last_insn_idx;
 744        for (i = 0; i <= src->curframe; i++) {
 745                dst = dst_state->frame[i];
 746                if (!dst) {
 747                        dst = kzalloc(sizeof(*dst), GFP_KERNEL);
 748                        if (!dst)
 749                                return -ENOMEM;
 750                        dst_state->frame[i] = dst;
 751                }
 752                err = copy_func_state(dst, src->frame[i]);
 753                if (err)
 754                        return err;
 755        }
 756        return 0;
 757}
 758
 759static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
 760{
 761        while (st) {
 762                u32 br = --st->branches;
 763
 764                /* WARN_ON(br > 1) technically makes sense here,
 765                 * but see comment in push_stack(), hence:
 766                 */
 767                WARN_ONCE((int)br < 0,
 768                          "BUG update_branch_counts:branches_to_explore=%d\n",
 769                          br);
 770                if (br)
 771                        break;
 772                st = st->parent;
 773        }
 774}
 775
 776static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
 777                     int *insn_idx)
 778{
 779        struct bpf_verifier_state *cur = env->cur_state;
 780        struct bpf_verifier_stack_elem *elem, *head = env->head;
 781        int err;
 782
 783        if (env->head == NULL)
 784                return -ENOENT;
 785
 786        if (cur) {
 787                err = copy_verifier_state(cur, &head->st);
 788                if (err)
 789                        return err;
 790        }
 791        if (insn_idx)
 792                *insn_idx = head->insn_idx;
 793        if (prev_insn_idx)
 794                *prev_insn_idx = head->prev_insn_idx;
 795        elem = head->next;
 796        free_verifier_state(&head->st, false);
 797        kfree(head);
 798        env->head = elem;
 799        env->stack_size--;
 800        return 0;
 801}
 802
 803static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
 804                                             int insn_idx, int prev_insn_idx,
 805                                             bool speculative)
 806{
 807        struct bpf_verifier_state *cur = env->cur_state;
 808        struct bpf_verifier_stack_elem *elem;
 809        int err;
 810
 811        elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
 812        if (!elem)
 813                goto err;
 814
 815        elem->insn_idx = insn_idx;
 816        elem->prev_insn_idx = prev_insn_idx;
 817        elem->next = env->head;
 818        env->head = elem;
 819        env->stack_size++;
 820        err = copy_verifier_state(&elem->st, cur);
 821        if (err)
 822                goto err;
 823        elem->st.speculative |= speculative;
 824        if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
 825                verbose(env, "The sequence of %d jumps is too complex.\n",
 826                        env->stack_size);
 827                goto err;
 828        }
 829        if (elem->st.parent) {
 830                ++elem->st.parent->branches;
 831                /* WARN_ON(branches > 2) technically makes sense here,
 832                 * but
 833                 * 1. speculative states will bump 'branches' for non-branch
 834                 * instructions
 835                 * 2. is_state_visited() heuristics may decide not to create
 836                 * a new state for a sequence of branches and all such current
 837                 * and cloned states will be pointing to a single parent state
 838                 * which might have large 'branches' count.
 839                 */
 840        }
 841        return &elem->st;
 842err:
 843        free_verifier_state(env->cur_state, true);
 844        env->cur_state = NULL;
 845        /* pop all elements and return */
 846        while (!pop_stack(env, NULL, NULL));
 847        return NULL;
 848}
 849
 850#define CALLER_SAVED_REGS 6
 851static const int caller_saved[CALLER_SAVED_REGS] = {
 852        BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
 853};
 854
 855static void __mark_reg_not_init(struct bpf_reg_state *reg);
 856
 857/* Mark the unknown part of a register (variable offset or scalar value) as
 858 * known to have the value @imm.
 859 */
 860static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
 861{
 862        /* Clear id, off, and union(map_ptr, range) */
 863        memset(((u8 *)reg) + sizeof(reg->type), 0,
 864               offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
 865        reg->var_off = tnum_const(imm);
 866        reg->smin_value = (s64)imm;
 867        reg->smax_value = (s64)imm;
 868        reg->umin_value = imm;
 869        reg->umax_value = imm;
 870}
 871
 872/* Mark the 'variable offset' part of a register as zero.  This should be
 873 * used only on registers holding a pointer type.
 874 */
 875static void __mark_reg_known_zero(struct bpf_reg_state *reg)
 876{
 877        __mark_reg_known(reg, 0);
 878}
 879
 880static void __mark_reg_const_zero(struct bpf_reg_state *reg)
 881{
 882        __mark_reg_known(reg, 0);
 883        reg->type = SCALAR_VALUE;
 884}
 885
 886static void mark_reg_known_zero(struct bpf_verifier_env *env,
 887                                struct bpf_reg_state *regs, u32 regno)
 888{
 889        if (WARN_ON(regno >= MAX_BPF_REG)) {
 890                verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
 891                /* Something bad happened, let's kill all regs */
 892                for (regno = 0; regno < MAX_BPF_REG; regno++)
 893                        __mark_reg_not_init(regs + regno);
 894                return;
 895        }
 896        __mark_reg_known_zero(regs + regno);
 897}
 898
 899static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
 900{
 901        return type_is_pkt_pointer(reg->type);
 902}
 903
 904static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
 905{
 906        return reg_is_pkt_pointer(reg) ||
 907               reg->type == PTR_TO_PACKET_END;
 908}
 909
 910/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
 911static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
 912                                    enum bpf_reg_type which)
 913{
 914        /* The register can already have a range from prior markings.
 915         * This is fine as long as it hasn't been advanced from its
 916         * origin.
 917         */
 918        return reg->type == which &&
 919               reg->id == 0 &&
 920               reg->off == 0 &&
 921               tnum_equals_const(reg->var_off, 0);
 922}
 923
 924/* Attempts to improve min/max values based on var_off information */
 925static void __update_reg_bounds(struct bpf_reg_state *reg)
 926{
 927        /* min signed is max(sign bit) | min(other bits) */
 928        reg->smin_value = max_t(s64, reg->smin_value,
 929                                reg->var_off.value | (reg->var_off.mask & S64_MIN));
 930        /* max signed is min(sign bit) | max(other bits) */
 931        reg->smax_value = min_t(s64, reg->smax_value,
 932                                reg->var_off.value | (reg->var_off.mask & S64_MAX));
 933        reg->umin_value = max(reg->umin_value, reg->var_off.value);
 934        reg->umax_value = min(reg->umax_value,
 935                              reg->var_off.value | reg->var_off.mask);
 936}
 937
 938/* Uses signed min/max values to inform unsigned, and vice-versa */
 939static void __reg_deduce_bounds(struct bpf_reg_state *reg)
 940{
 941        /* Learn sign from signed bounds.
 942         * If we cannot cross the sign boundary, then signed and unsigned bounds
 943         * are the same, so combine.  This works even in the negative case, e.g.
 944         * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
 945         */
 946        if (reg->smin_value >= 0 || reg->smax_value < 0) {
 947                reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
 948                                                          reg->umin_value);
 949                reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
 950                                                          reg->umax_value);
 951                return;
 952        }
 953        /* Learn sign from unsigned bounds.  Signed bounds cross the sign
 954         * boundary, so we must be careful.
 955         */
 956        if ((s64)reg->umax_value >= 0) {
 957                /* Positive.  We can't learn anything from the smin, but smax
 958                 * is positive, hence safe.
 959                 */
 960                reg->smin_value = reg->umin_value;
 961                reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
 962                                                          reg->umax_value);
 963        } else if ((s64)reg->umin_value < 0) {
 964                /* Negative.  We can't learn anything from the smax, but smin
 965                 * is negative, hence safe.
 966                 */
 967                reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
 968                                                          reg->umin_value);
 969                reg->smax_value = reg->umax_value;
 970        }
 971}
 972
 973/* Attempts to improve var_off based on unsigned min/max information */
 974static void __reg_bound_offset(struct bpf_reg_state *reg)
 975{
 976        reg->var_off = tnum_intersect(reg->var_off,
 977                                      tnum_range(reg->umin_value,
 978                                                 reg->umax_value));
 979}
 980
 981/* Reset the min/max bounds of a register */
 982static void __mark_reg_unbounded(struct bpf_reg_state *reg)
 983{
 984        reg->smin_value = S64_MIN;
 985        reg->smax_value = S64_MAX;
 986        reg->umin_value = 0;
 987        reg->umax_value = U64_MAX;
 988}
 989
 990/* Mark a register as having a completely unknown (scalar) value. */
 991static void __mark_reg_unknown(struct bpf_reg_state *reg)
 992{
 993        /*
 994         * Clear type, id, off, and union(map_ptr, range) and
 995         * padding between 'type' and union
 996         */
 997        memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
 998        reg->type = SCALAR_VALUE;
 999        reg->var_off = tnum_unknown;
1000        reg->frameno = 0;
1001        __mark_reg_unbounded(reg);
1002}
1003
1004static void mark_reg_unknown(struct bpf_verifier_env *env,
1005                             struct bpf_reg_state *regs, u32 regno)
1006{
1007        if (WARN_ON(regno >= MAX_BPF_REG)) {
1008                verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1009                /* Something bad happened, let's kill all regs except FP */
1010                for (regno = 0; regno < BPF_REG_FP; regno++)
1011                        __mark_reg_not_init(regs + regno);
1012                return;
1013        }
1014        regs += regno;
1015        __mark_reg_unknown(regs);
1016        /* constant backtracking is enabled for root without bpf2bpf calls */
1017        regs->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ?
1018                        true : false;
1019}
1020
1021static void __mark_reg_not_init(struct bpf_reg_state *reg)
1022{
1023        __mark_reg_unknown(reg);
1024        reg->type = NOT_INIT;
1025}
1026
1027static void mark_reg_not_init(struct bpf_verifier_env *env,
1028                              struct bpf_reg_state *regs, u32 regno)
1029{
1030        if (WARN_ON(regno >= MAX_BPF_REG)) {
1031                verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1032                /* Something bad happened, let's kill all regs except FP */
1033                for (regno = 0; regno < BPF_REG_FP; regno++)
1034                        __mark_reg_not_init(regs + regno);
1035                return;
1036        }
1037        __mark_reg_not_init(regs + regno);
1038}
1039
1040#define DEF_NOT_SUBREG  (0)
1041static void init_reg_state(struct bpf_verifier_env *env,
1042                           struct bpf_func_state *state)
1043{
1044        struct bpf_reg_state *regs = state->regs;
1045        int i;
1046
1047        for (i = 0; i < MAX_BPF_REG; i++) {
1048                mark_reg_not_init(env, regs, i);
1049                regs[i].live = REG_LIVE_NONE;
1050                regs[i].parent = NULL;
1051                regs[i].subreg_def = DEF_NOT_SUBREG;
1052        }
1053
1054        /* frame pointer */
1055        regs[BPF_REG_FP].type = PTR_TO_STACK;
1056        mark_reg_known_zero(env, regs, BPF_REG_FP);
1057        regs[BPF_REG_FP].frameno = state->frameno;
1058
1059        /* 1st arg to a function */
1060        regs[BPF_REG_1].type = PTR_TO_CTX;
1061        mark_reg_known_zero(env, regs, BPF_REG_1);
1062}
1063
1064#define BPF_MAIN_FUNC (-1)
1065static void init_func_state(struct bpf_verifier_env *env,
1066                            struct bpf_func_state *state,
1067                            int callsite, int frameno, int subprogno)
1068{
1069        state->callsite = callsite;
1070        state->frameno = frameno;
1071        state->subprogno = subprogno;
1072        init_reg_state(env, state);
1073}
1074
1075enum reg_arg_type {
1076        SRC_OP,         /* register is used as source operand */
1077        DST_OP,         /* register is used as destination operand */
1078        DST_OP_NO_MARK  /* same as above, check only, don't mark */
1079};
1080
1081static int cmp_subprogs(const void *a, const void *b)
1082{
1083        return ((struct bpf_subprog_info *)a)->start -
1084               ((struct bpf_subprog_info *)b)->start;
1085}
1086
1087static int find_subprog(struct bpf_verifier_env *env, int off)
1088{
1089        struct bpf_subprog_info *p;
1090
1091        p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1092                    sizeof(env->subprog_info[0]), cmp_subprogs);
1093        if (!p)
1094                return -ENOENT;
1095        return p - env->subprog_info;
1096
1097}
1098
1099static int add_subprog(struct bpf_verifier_env *env, int off)
1100{
1101        int insn_cnt = env->prog->len;
1102        int ret;
1103
1104        if (off >= insn_cnt || off < 0) {
1105                verbose(env, "call to invalid destination\n");
1106                return -EINVAL;
1107        }
1108        ret = find_subprog(env, off);
1109        if (ret >= 0)
1110                return 0;
1111        if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1112                verbose(env, "too many subprograms\n");
1113                return -E2BIG;
1114        }
1115        env->subprog_info[env->subprog_cnt++].start = off;
1116        sort(env->subprog_info, env->subprog_cnt,
1117             sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1118        return 0;
1119}
1120
1121static int check_subprogs(struct bpf_verifier_env *env)
1122{
1123        int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1124        struct bpf_subprog_info *subprog = env->subprog_info;
1125        struct bpf_insn *insn = env->prog->insnsi;
1126        int insn_cnt = env->prog->len;
1127
1128        /* Add entry function. */
1129        ret = add_subprog(env, 0);
1130        if (ret < 0)
1131                return ret;
1132
1133        /* determine subprog starts. The end is one before the next starts */
1134        for (i = 0; i < insn_cnt; i++) {
1135                if (insn[i].code != (BPF_JMP | BPF_CALL))
1136                        continue;
1137                if (insn[i].src_reg != BPF_PSEUDO_CALL)
1138                        continue;
1139                if (!env->allow_ptr_leaks) {
1140                        verbose(env, "function calls to other bpf functions are allowed for root only\n");
1141                        return -EPERM;
1142                }
1143                ret = add_subprog(env, i + insn[i].imm + 1);
1144                if (ret < 0)
1145                        return ret;
1146        }
1147
1148        /* Add a fake 'exit' subprog which could simplify subprog iteration
1149         * logic. 'subprog_cnt' should not be increased.
1150         */
1151        subprog[env->subprog_cnt].start = insn_cnt;
1152
1153        if (env->log.level & BPF_LOG_LEVEL2)
1154                for (i = 0; i < env->subprog_cnt; i++)
1155                        verbose(env, "func#%d @%d\n", i, subprog[i].start);
1156
1157        /* now check that all jumps are within the same subprog */
1158        subprog_start = subprog[cur_subprog].start;
1159        subprog_end = subprog[cur_subprog + 1].start;
1160        for (i = 0; i < insn_cnt; i++) {
1161                u8 code = insn[i].code;
1162
1163                if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1164                        goto next;
1165                if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1166                        goto next;
1167                off = i + insn[i].off + 1;
1168                if (off < subprog_start || off >= subprog_end) {
1169                        verbose(env, "jump out of range from insn %d to %d\n", i, off);
1170                        return -EINVAL;
1171                }
1172next:
1173                if (i == subprog_end - 1) {
1174                        /* to avoid fall-through from one subprog into another
1175                         * the last insn of the subprog should be either exit
1176                         * or unconditional jump back
1177                         */
1178                        if (code != (BPF_JMP | BPF_EXIT) &&
1179                            code != (BPF_JMP | BPF_JA)) {
1180                                verbose(env, "last insn is not an exit or jmp\n");
1181                                return -EINVAL;
1182                        }
1183                        subprog_start = subprog_end;
1184                        cur_subprog++;
1185                        if (cur_subprog < env->subprog_cnt)
1186                                subprog_end = subprog[cur_subprog + 1].start;
1187                }
1188        }
1189        return 0;
1190}
1191
1192/* Parentage chain of this register (or stack slot) should take care of all
1193 * issues like callee-saved registers, stack slot allocation time, etc.
1194 */
1195static int mark_reg_read(struct bpf_verifier_env *env,
1196                         const struct bpf_reg_state *state,
1197                         struct bpf_reg_state *parent, u8 flag)
1198{
1199        bool writes = parent == state->parent; /* Observe write marks */
1200        int cnt = 0;
1201
1202        while (parent) {
1203                /* if read wasn't screened by an earlier write ... */
1204                if (writes && state->live & REG_LIVE_WRITTEN)
1205                        break;
1206                if (parent->live & REG_LIVE_DONE) {
1207                        verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1208                                reg_type_str[parent->type],
1209                                parent->var_off.value, parent->off);
1210                        return -EFAULT;
1211                }
1212                /* The first condition is more likely to be true than the
1213                 * second, checked it first.
1214                 */
1215                if ((parent->live & REG_LIVE_READ) == flag ||
1216                    parent->live & REG_LIVE_READ64)
1217                        /* The parentage chain never changes and
1218                         * this parent was already marked as LIVE_READ.
1219                         * There is no need to keep walking the chain again and
1220                         * keep re-marking all parents as LIVE_READ.
1221                         * This case happens when the same register is read
1222                         * multiple times without writes into it in-between.
1223                         * Also, if parent has the stronger REG_LIVE_READ64 set,
1224                         * then no need to set the weak REG_LIVE_READ32.
1225                         */
1226                        break;
1227                /* ... then we depend on parent's value */
1228                parent->live |= flag;
1229                /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1230                if (flag == REG_LIVE_READ64)
1231                        parent->live &= ~REG_LIVE_READ32;
1232                state = parent;
1233                parent = state->parent;
1234                writes = true;
1235                cnt++;
1236        }
1237
1238        if (env->longest_mark_read_walk < cnt)
1239                env->longest_mark_read_walk = cnt;
1240        return 0;
1241}
1242
1243/* This function is supposed to be used by the following 32-bit optimization
1244 * code only. It returns TRUE if the source or destination register operates
1245 * on 64-bit, otherwise return FALSE.
1246 */
1247static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1248                     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1249{
1250        u8 code, class, op;
1251
1252        code = insn->code;
1253        class = BPF_CLASS(code);
1254        op = BPF_OP(code);
1255        if (class == BPF_JMP) {
1256                /* BPF_EXIT for "main" will reach here. Return TRUE
1257                 * conservatively.
1258                 */
1259                if (op == BPF_EXIT)
1260                        return true;
1261                if (op == BPF_CALL) {
1262                        /* BPF to BPF call will reach here because of marking
1263                         * caller saved clobber with DST_OP_NO_MARK for which we
1264                         * don't care the register def because they are anyway
1265                         * marked as NOT_INIT already.
1266                         */
1267                        if (insn->src_reg == BPF_PSEUDO_CALL)
1268                                return false;
1269                        /* Helper call will reach here because of arg type
1270                         * check, conservatively return TRUE.
1271                         */
1272                        if (t == SRC_OP)
1273                                return true;
1274
1275                        return false;
1276                }
1277        }
1278
1279        if (class == BPF_ALU64 || class == BPF_JMP ||
1280            /* BPF_END always use BPF_ALU class. */
1281            (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1282                return true;
1283
1284        if (class == BPF_ALU || class == BPF_JMP32)
1285                return false;
1286
1287        if (class == BPF_LDX) {
1288                if (t != SRC_OP)
1289                        return BPF_SIZE(code) == BPF_DW;
1290                /* LDX source must be ptr. */
1291                return true;
1292        }
1293
1294        if (class == BPF_STX) {
1295                if (reg->type != SCALAR_VALUE)
1296                        return true;
1297                return BPF_SIZE(code) == BPF_DW;
1298        }
1299
1300        if (class == BPF_LD) {
1301                u8 mode = BPF_MODE(code);
1302
1303                /* LD_IMM64 */
1304                if (mode == BPF_IMM)
1305                        return true;
1306
1307                /* Both LD_IND and LD_ABS return 32-bit data. */
1308                if (t != SRC_OP)
1309                        return  false;
1310
1311                /* Implicit ctx ptr. */
1312                if (regno == BPF_REG_6)
1313                        return true;
1314
1315                /* Explicit source could be any width. */
1316                return true;
1317        }
1318
1319        if (class == BPF_ST)
1320                /* The only source register for BPF_ST is a ptr. */
1321                return true;
1322
1323        /* Conservatively return true at default. */
1324        return true;
1325}
1326
1327/* Return TRUE if INSN doesn't have explicit value define. */
1328static bool insn_no_def(struct bpf_insn *insn)
1329{
1330        u8 class = BPF_CLASS(insn->code);
1331
1332        return (class == BPF_JMP || class == BPF_JMP32 ||
1333                class == BPF_STX || class == BPF_ST);
1334}
1335
1336/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1337static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1338{
1339        if (insn_no_def(insn))
1340                return false;
1341
1342        return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1343}
1344
1345static void mark_insn_zext(struct bpf_verifier_env *env,
1346                           struct bpf_reg_state *reg)
1347{
1348        s32 def_idx = reg->subreg_def;
1349
1350        if (def_idx == DEF_NOT_SUBREG)
1351                return;
1352
1353        env->insn_aux_data[def_idx - 1].zext_dst = true;
1354        /* The dst will be zero extended, so won't be sub-register anymore. */
1355        reg->subreg_def = DEF_NOT_SUBREG;
1356}
1357
1358static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1359                         enum reg_arg_type t)
1360{
1361        struct bpf_verifier_state *vstate = env->cur_state;
1362        struct bpf_func_state *state = vstate->frame[vstate->curframe];
1363        struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1364        struct bpf_reg_state *reg, *regs = state->regs;
1365        bool rw64;
1366
1367        if (regno >= MAX_BPF_REG) {
1368                verbose(env, "R%d is invalid\n", regno);
1369                return -EINVAL;
1370        }
1371
1372        reg = &regs[regno];
1373        rw64 = is_reg64(env, insn, regno, reg, t);
1374        if (t == SRC_OP) {
1375                /* check whether register used as source operand can be read */
1376                if (reg->type == NOT_INIT) {
1377                        verbose(env, "R%d !read_ok\n", regno);
1378                        return -EACCES;
1379                }
1380                /* We don't need to worry about FP liveness because it's read-only */
1381                if (regno == BPF_REG_FP)
1382                        return 0;
1383
1384                if (rw64)
1385                        mark_insn_zext(env, reg);
1386
1387                return mark_reg_read(env, reg, reg->parent,
1388                                     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1389        } else {
1390                /* check whether register used as dest operand can be written to */
1391                if (regno == BPF_REG_FP) {
1392                        verbose(env, "frame pointer is read only\n");
1393                        return -EACCES;
1394                }
1395                reg->live |= REG_LIVE_WRITTEN;
1396                reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1397                if (t == DST_OP)
1398                        mark_reg_unknown(env, regs, regno);
1399        }
1400        return 0;
1401}
1402
1403/* for any branch, call, exit record the history of jmps in the given state */
1404static int push_jmp_history(struct bpf_verifier_env *env,
1405                            struct bpf_verifier_state *cur)
1406{
1407        u32 cnt = cur->jmp_history_cnt;
1408        struct bpf_idx_pair *p;
1409
1410        cnt++;
1411        p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1412        if (!p)
1413                return -ENOMEM;
1414        p[cnt - 1].idx = env->insn_idx;
1415        p[cnt - 1].prev_idx = env->prev_insn_idx;
1416        cur->jmp_history = p;
1417        cur->jmp_history_cnt = cnt;
1418        return 0;
1419}
1420
1421/* Backtrack one insn at a time. If idx is not at the top of recorded
1422 * history then previous instruction came from straight line execution.
1423 */
1424static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1425                             u32 *history)
1426{
1427        u32 cnt = *history;
1428
1429        if (cnt && st->jmp_history[cnt - 1].idx == i) {
1430                i = st->jmp_history[cnt - 1].prev_idx;
1431                (*history)--;
1432        } else {
1433                i--;
1434        }
1435        return i;
1436}
1437
1438/* For given verifier state backtrack_insn() is called from the last insn to
1439 * the first insn. Its purpose is to compute a bitmask of registers and
1440 * stack slots that needs precision in the parent verifier state.
1441 */
1442static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1443                          u32 *reg_mask, u64 *stack_mask)
1444{
1445        const struct bpf_insn_cbs cbs = {
1446                .cb_print       = verbose,
1447                .private_data   = env,
1448        };
1449        struct bpf_insn *insn = env->prog->insnsi + idx;
1450        u8 class = BPF_CLASS(insn->code);
1451        u8 opcode = BPF_OP(insn->code);
1452        u8 mode = BPF_MODE(insn->code);
1453        u32 dreg = 1u << insn->dst_reg;
1454        u32 sreg = 1u << insn->src_reg;
1455        u32 spi;
1456
1457        if (insn->code == 0)
1458                return 0;
1459        if (env->log.level & BPF_LOG_LEVEL) {
1460                verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1461                verbose(env, "%d: ", idx);
1462                print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1463        }
1464
1465        if (class == BPF_ALU || class == BPF_ALU64) {
1466                if (!(*reg_mask & dreg))
1467                        return 0;
1468                if (opcode == BPF_MOV) {
1469                        if (BPF_SRC(insn->code) == BPF_X) {
1470                                /* dreg = sreg
1471                                 * dreg needs precision after this insn
1472                                 * sreg needs precision before this insn
1473                                 */
1474                                *reg_mask &= ~dreg;
1475                                *reg_mask |= sreg;
1476                        } else {
1477                                /* dreg = K
1478                                 * dreg needs precision after this insn.
1479                                 * Corresponding register is already marked
1480                                 * as precise=true in this verifier state.
1481                                 * No further markings in parent are necessary
1482                                 */
1483                                *reg_mask &= ~dreg;
1484                        }
1485                } else {
1486                        if (BPF_SRC(insn->code) == BPF_X) {
1487                                /* dreg += sreg
1488                                 * both dreg and sreg need precision
1489                                 * before this insn
1490                                 */
1491                                *reg_mask |= sreg;
1492                        } /* else dreg += K
1493                           * dreg still needs precision before this insn
1494                           */
1495                }
1496        } else if (class == BPF_LDX) {
1497                if (!(*reg_mask & dreg))
1498                        return 0;
1499                *reg_mask &= ~dreg;
1500
1501                /* scalars can only be spilled into stack w/o losing precision.
1502                 * Load from any other memory can be zero extended.
1503                 * The desire to keep that precision is already indicated
1504                 * by 'precise' mark in corresponding register of this state.
1505                 * No further tracking necessary.
1506                 */
1507                if (insn->src_reg != BPF_REG_FP)
1508                        return 0;
1509                if (BPF_SIZE(insn->code) != BPF_DW)
1510                        return 0;
1511
1512                /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1513                 * that [fp - off] slot contains scalar that needs to be
1514                 * tracked with precision
1515                 */
1516                spi = (-insn->off - 1) / BPF_REG_SIZE;
1517                if (spi >= 64) {
1518                        verbose(env, "BUG spi %d\n", spi);
1519                        WARN_ONCE(1, "verifier backtracking bug");
1520                        return -EFAULT;
1521                }
1522                *stack_mask |= 1ull << spi;
1523        } else if (class == BPF_STX || class == BPF_ST) {
1524                if (*reg_mask & dreg)
1525                        /* stx & st shouldn't be using _scalar_ dst_reg
1526                         * to access memory. It means backtracking
1527                         * encountered a case of pointer subtraction.
1528                         */
1529                        return -ENOTSUPP;
1530                /* scalars can only be spilled into stack */
1531                if (insn->dst_reg != BPF_REG_FP)
1532                        return 0;
1533                if (BPF_SIZE(insn->code) != BPF_DW)
1534                        return 0;
1535                spi = (-insn->off - 1) / BPF_REG_SIZE;
1536                if (spi >= 64) {
1537                        verbose(env, "BUG spi %d\n", spi);
1538                        WARN_ONCE(1, "verifier backtracking bug");
1539                        return -EFAULT;
1540                }
1541                if (!(*stack_mask & (1ull << spi)))
1542                        return 0;
1543                *stack_mask &= ~(1ull << spi);
1544                if (class == BPF_STX)
1545                        *reg_mask |= sreg;
1546        } else if (class == BPF_JMP || class == BPF_JMP32) {
1547                if (opcode == BPF_CALL) {
1548                        if (insn->src_reg == BPF_PSEUDO_CALL)
1549                                return -ENOTSUPP;
1550                        /* regular helper call sets R0 */
1551                        *reg_mask &= ~1;
1552                        if (*reg_mask & 0x3f) {
1553                                /* if backtracing was looking for registers R1-R5
1554                                 * they should have been found already.
1555                                 */
1556                                verbose(env, "BUG regs %x\n", *reg_mask);
1557                                WARN_ONCE(1, "verifier backtracking bug");
1558                                return -EFAULT;
1559                        }
1560                } else if (opcode == BPF_EXIT) {
1561                        return -ENOTSUPP;
1562                }
1563        } else if (class == BPF_LD) {
1564                if (!(*reg_mask & dreg))
1565                        return 0;
1566                *reg_mask &= ~dreg;
1567                /* It's ld_imm64 or ld_abs or ld_ind.
1568                 * For ld_imm64 no further tracking of precision
1569                 * into parent is necessary
1570                 */
1571                if (mode == BPF_IND || mode == BPF_ABS)
1572                        /* to be analyzed */
1573                        return -ENOTSUPP;
1574        }
1575        return 0;
1576}
1577
1578/* the scalar precision tracking algorithm:
1579 * . at the start all registers have precise=false.
1580 * . scalar ranges are tracked as normal through alu and jmp insns.
1581 * . once precise value of the scalar register is used in:
1582 *   .  ptr + scalar alu
1583 *   . if (scalar cond K|scalar)
1584 *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
1585 *   backtrack through the verifier states and mark all registers and
1586 *   stack slots with spilled constants that these scalar regisers
1587 *   should be precise.
1588 * . during state pruning two registers (or spilled stack slots)
1589 *   are equivalent if both are not precise.
1590 *
1591 * Note the verifier cannot simply walk register parentage chain,
1592 * since many different registers and stack slots could have been
1593 * used to compute single precise scalar.
1594 *
1595 * The approach of starting with precise=true for all registers and then
1596 * backtrack to mark a register as not precise when the verifier detects
1597 * that program doesn't care about specific value (e.g., when helper
1598 * takes register as ARG_ANYTHING parameter) is not safe.
1599 *
1600 * It's ok to walk single parentage chain of the verifier states.
1601 * It's possible that this backtracking will go all the way till 1st insn.
1602 * All other branches will be explored for needing precision later.
1603 *
1604 * The backtracking needs to deal with cases like:
1605 *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1606 * r9 -= r8
1607 * r5 = r9
1608 * if r5 > 0x79f goto pc+7
1609 *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1610 * r5 += 1
1611 * ...
1612 * call bpf_perf_event_output#25
1613 *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1614 *
1615 * and this case:
1616 * r6 = 1
1617 * call foo // uses callee's r6 inside to compute r0
1618 * r0 += r6
1619 * if r0 == 0 goto
1620 *
1621 * to track above reg_mask/stack_mask needs to be independent for each frame.
1622 *
1623 * Also if parent's curframe > frame where backtracking started,
1624 * the verifier need to mark registers in both frames, otherwise callees
1625 * may incorrectly prune callers. This is similar to
1626 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1627 *
1628 * For now backtracking falls back into conservative marking.
1629 */
1630static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1631                                     struct bpf_verifier_state *st)
1632{
1633        struct bpf_func_state *func;
1634        struct bpf_reg_state *reg;
1635        int i, j;
1636
1637        /* big hammer: mark all scalars precise in this path.
1638         * pop_stack may still get !precise scalars.
1639         */
1640        for (; st; st = st->parent)
1641                for (i = 0; i <= st->curframe; i++) {
1642                        func = st->frame[i];
1643                        for (j = 0; j < BPF_REG_FP; j++) {
1644                                reg = &func->regs[j];
1645                                if (reg->type != SCALAR_VALUE)
1646                                        continue;
1647                                reg->precise = true;
1648                        }
1649                        for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1650                                if (func->stack[j].slot_type[0] != STACK_SPILL)
1651                                        continue;
1652                                reg = &func->stack[j].spilled_ptr;
1653                                if (reg->type != SCALAR_VALUE)
1654                                        continue;
1655                                reg->precise = true;
1656                        }
1657                }
1658}
1659
1660static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1661                                  int spi)
1662{
1663        struct bpf_verifier_state *st = env->cur_state;
1664        int first_idx = st->first_insn_idx;
1665        int last_idx = env->insn_idx;
1666        struct bpf_func_state *func;
1667        struct bpf_reg_state *reg;
1668        u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1669        u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
1670        bool skip_first = true;
1671        bool new_marks = false;
1672        int i, err;
1673
1674        if (!env->allow_ptr_leaks)
1675                /* backtracking is root only for now */
1676                return 0;
1677
1678        func = st->frame[st->curframe];
1679        if (regno >= 0) {
1680                reg = &func->regs[regno];
1681                if (reg->type != SCALAR_VALUE) {
1682                        WARN_ONCE(1, "backtracing misuse");
1683                        return -EFAULT;
1684                }
1685                if (!reg->precise)
1686                        new_marks = true;
1687                else
1688                        reg_mask = 0;
1689                reg->precise = true;
1690        }
1691
1692        while (spi >= 0) {
1693                if (func->stack[spi].slot_type[0] != STACK_SPILL) {
1694                        stack_mask = 0;
1695                        break;
1696                }
1697                reg = &func->stack[spi].spilled_ptr;
1698                if (reg->type != SCALAR_VALUE) {
1699                        stack_mask = 0;
1700                        break;
1701                }
1702                if (!reg->precise)
1703                        new_marks = true;
1704                else
1705                        stack_mask = 0;
1706                reg->precise = true;
1707                break;
1708        }
1709
1710        if (!new_marks)
1711                return 0;
1712        if (!reg_mask && !stack_mask)
1713                return 0;
1714        for (;;) {
1715                DECLARE_BITMAP(mask, 64);
1716                u32 history = st->jmp_history_cnt;
1717
1718                if (env->log.level & BPF_LOG_LEVEL)
1719                        verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
1720                for (i = last_idx;;) {
1721                        if (skip_first) {
1722                                err = 0;
1723                                skip_first = false;
1724                        } else {
1725                                err = backtrack_insn(env, i, &reg_mask, &stack_mask);
1726                        }
1727                        if (err == -ENOTSUPP) {
1728                                mark_all_scalars_precise(env, st);
1729                                return 0;
1730                        } else if (err) {
1731                                return err;
1732                        }
1733                        if (!reg_mask && !stack_mask)
1734                                /* Found assignment(s) into tracked register in this state.
1735                                 * Since this state is already marked, just return.
1736                                 * Nothing to be tracked further in the parent state.
1737                                 */
1738                                return 0;
1739                        if (i == first_idx)
1740                                break;
1741                        i = get_prev_insn_idx(st, i, &history);
1742                        if (i >= env->prog->len) {
1743                                /* This can happen if backtracking reached insn 0
1744                                 * and there are still reg_mask or stack_mask
1745                                 * to backtrack.
1746                                 * It means the backtracking missed the spot where
1747                                 * particular register was initialized with a constant.
1748                                 */
1749                                verbose(env, "BUG backtracking idx %d\n", i);
1750                                WARN_ONCE(1, "verifier backtracking bug");
1751                                return -EFAULT;
1752                        }
1753                }
1754                st = st->parent;
1755                if (!st)
1756                        break;
1757
1758                new_marks = false;
1759                func = st->frame[st->curframe];
1760                bitmap_from_u64(mask, reg_mask);
1761                for_each_set_bit(i, mask, 32) {
1762                        reg = &func->regs[i];
1763                        if (reg->type != SCALAR_VALUE) {
1764                                reg_mask &= ~(1u << i);
1765                                continue;
1766                        }
1767                        if (!reg->precise)
1768                                new_marks = true;
1769                        reg->precise = true;
1770                }
1771
1772                bitmap_from_u64(mask, stack_mask);
1773                for_each_set_bit(i, mask, 64) {
1774                        if (i >= func->allocated_stack / BPF_REG_SIZE) {
1775                                /* the sequence of instructions:
1776                                 * 2: (bf) r3 = r10
1777                                 * 3: (7b) *(u64 *)(r3 -8) = r0
1778                                 * 4: (79) r4 = *(u64 *)(r10 -8)
1779                                 * doesn't contain jmps. It's backtracked
1780                                 * as a single block.
1781                                 * During backtracking insn 3 is not recognized as
1782                                 * stack access, so at the end of backtracking
1783                                 * stack slot fp-8 is still marked in stack_mask.
1784                                 * However the parent state may not have accessed
1785                                 * fp-8 and it's "unallocated" stack space.
1786                                 * In such case fallback to conservative.
1787                                 */
1788                                mark_all_scalars_precise(env, st);
1789                                return 0;
1790                        }
1791
1792                        if (func->stack[i].slot_type[0] != STACK_SPILL) {
1793                                stack_mask &= ~(1ull << i);
1794                                continue;
1795                        }
1796                        reg = &func->stack[i].spilled_ptr;
1797                        if (reg->type != SCALAR_VALUE) {
1798                                stack_mask &= ~(1ull << i);
1799                                continue;
1800                        }
1801                        if (!reg->precise)
1802                                new_marks = true;
1803                        reg->precise = true;
1804                }
1805                if (env->log.level & BPF_LOG_LEVEL) {
1806                        print_verifier_state(env, func);
1807                        verbose(env, "parent %s regs=%x stack=%llx marks\n",
1808                                new_marks ? "didn't have" : "already had",
1809                                reg_mask, stack_mask);
1810                }
1811
1812                if (!reg_mask && !stack_mask)
1813                        break;
1814                if (!new_marks)
1815                        break;
1816
1817                last_idx = st->last_insn_idx;
1818                first_idx = st->first_insn_idx;
1819        }
1820        return 0;
1821}
1822
1823static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
1824{
1825        return __mark_chain_precision(env, regno, -1);
1826}
1827
1828static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
1829{
1830        return __mark_chain_precision(env, -1, spi);
1831}
1832
1833static bool is_spillable_regtype(enum bpf_reg_type type)
1834{
1835        switch (type) {
1836        case PTR_TO_MAP_VALUE:
1837        case PTR_TO_MAP_VALUE_OR_NULL:
1838        case PTR_TO_STACK:
1839        case PTR_TO_CTX:
1840        case PTR_TO_PACKET:
1841        case PTR_TO_PACKET_META:
1842        case PTR_TO_PACKET_END:
1843        case PTR_TO_FLOW_KEYS:
1844        case CONST_PTR_TO_MAP:
1845        case PTR_TO_SOCKET:
1846        case PTR_TO_SOCKET_OR_NULL:
1847        case PTR_TO_SOCK_COMMON:
1848        case PTR_TO_SOCK_COMMON_OR_NULL:
1849        case PTR_TO_TCP_SOCK:
1850        case PTR_TO_TCP_SOCK_OR_NULL:
1851        case PTR_TO_XDP_SOCK:
1852                return true;
1853        default:
1854                return false;
1855        }
1856}
1857
1858/* Does this register contain a constant zero? */
1859static bool register_is_null(struct bpf_reg_state *reg)
1860{
1861        return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1862}
1863
1864static bool register_is_const(struct bpf_reg_state *reg)
1865{
1866        return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
1867}
1868
1869static void save_register_state(struct bpf_func_state *state,
1870                                int spi, struct bpf_reg_state *reg)
1871{
1872        int i;
1873
1874        state->stack[spi].spilled_ptr = *reg;
1875        state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1876
1877        for (i = 0; i < BPF_REG_SIZE; i++)
1878                state->stack[spi].slot_type[i] = STACK_SPILL;
1879}
1880
1881/* check_stack_read/write functions track spill/fill of registers,
1882 * stack boundary and alignment are checked in check_mem_access()
1883 */
1884static int check_stack_write(struct bpf_verifier_env *env,
1885                             struct bpf_func_state *state, /* func where register points to */
1886                             int off, int size, int value_regno, int insn_idx)
1887{
1888        struct bpf_func_state *cur; /* state of the current function */
1889        int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1890        u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
1891        struct bpf_reg_state *reg = NULL;
1892
1893        err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1894                                 state->acquired_refs, true);
1895        if (err)
1896                return err;
1897        /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1898         * so it's aligned access and [off, off + size) are within stack limits
1899         */
1900        if (!env->allow_ptr_leaks &&
1901            state->stack[spi].slot_type[0] == STACK_SPILL &&
1902            size != BPF_REG_SIZE) {
1903                verbose(env, "attempt to corrupt spilled pointer on stack\n");
1904                return -EACCES;
1905        }
1906
1907        cur = env->cur_state->frame[env->cur_state->curframe];
1908        if (value_regno >= 0)
1909                reg = &cur->regs[value_regno];
1910
1911        if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
1912            !register_is_null(reg) && env->allow_ptr_leaks) {
1913                if (dst_reg != BPF_REG_FP) {
1914                        /* The backtracking logic can only recognize explicit
1915                         * stack slot address like [fp - 8]. Other spill of
1916                         * scalar via different register has to be conervative.
1917                         * Backtrack from here and mark all registers as precise
1918                         * that contributed into 'reg' being a constant.
1919                         */
1920                        err = mark_chain_precision(env, value_regno);
1921                        if (err)
1922                                return err;
1923                }
1924                save_register_state(state, spi, reg);
1925        } else if (reg && is_spillable_regtype(reg->type)) {
1926                /* register containing pointer is being spilled into stack */
1927                if (size != BPF_REG_SIZE) {
1928                        verbose_linfo(env, insn_idx, "; ");
1929                        verbose(env, "invalid size of register spill\n");
1930                        return -EACCES;
1931                }
1932
1933                if (state != cur && reg->type == PTR_TO_STACK) {
1934                        verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1935                        return -EINVAL;
1936                }
1937
1938                if (!env->allow_ptr_leaks) {
1939                        bool sanitize = false;
1940
1941                        if (state->stack[spi].slot_type[0] == STACK_SPILL &&
1942                            register_is_const(&state->stack[spi].spilled_ptr))
1943                                sanitize = true;
1944                        for (i = 0; i < BPF_REG_SIZE; i++)
1945                                if (state->stack[spi].slot_type[i] == STACK_MISC) {
1946                                        sanitize = true;
1947                                        break;
1948                                }
1949                        if (sanitize) {
1950                                int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1951                                int soff = (-spi - 1) * BPF_REG_SIZE;
1952
1953                                /* detected reuse of integer stack slot with a pointer
1954                                 * which means either llvm is reusing stack slot or
1955                                 * an attacker is trying to exploit CVE-2018-3639
1956                                 * (speculative store bypass)
1957                                 * Have to sanitize that slot with preemptive
1958                                 * store of zero.
1959                                 */
1960                                if (*poff && *poff != soff) {
1961                                        /* disallow programs where single insn stores
1962                                         * into two different stack slots, since verifier
1963                                         * cannot sanitize them
1964                                         */
1965                                        verbose(env,
1966                                                "insn %d cannot access two stack slots fp%d and fp%d",
1967                                                insn_idx, *poff, soff);
1968                                        return -EINVAL;
1969                                }
1970                                *poff = soff;
1971                        }
1972                }
1973                save_register_state(state, spi, reg);
1974        } else {
1975                u8 type = STACK_MISC;
1976
1977                /* regular write of data into stack destroys any spilled ptr */
1978                state->stack[spi].spilled_ptr.type = NOT_INIT;
1979                /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1980                if (state->stack[spi].slot_type[0] == STACK_SPILL)
1981                        for (i = 0; i < BPF_REG_SIZE; i++)
1982                                state->stack[spi].slot_type[i] = STACK_MISC;
1983
1984                /* only mark the slot as written if all 8 bytes were written
1985                 * otherwise read propagation may incorrectly stop too soon
1986                 * when stack slots are partially written.
1987                 * This heuristic means that read propagation will be
1988                 * conservative, since it will add reg_live_read marks
1989                 * to stack slots all the way to first state when programs
1990                 * writes+reads less than 8 bytes
1991                 */
1992                if (size == BPF_REG_SIZE)
1993                        state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1994
1995                /* when we zero initialize stack slots mark them as such */
1996                if (reg && register_is_null(reg)) {
1997                        /* backtracking doesn't work for STACK_ZERO yet. */
1998                        err = mark_chain_precision(env, value_regno);
1999                        if (err)
2000                                return err;
2001                        type = STACK_ZERO;
2002                }
2003
2004                /* Mark slots affected by this stack write. */
2005                for (i = 0; i < size; i++)
2006                        state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2007                                type;
2008        }
2009        return 0;
2010}
2011
2012static int check_stack_read(struct bpf_verifier_env *env,
2013                            struct bpf_func_state *reg_state /* func where register points to */,
2014                            int off, int size, int value_regno)
2015{
2016        struct bpf_verifier_state *vstate = env->cur_state;
2017        struct bpf_func_state *state = vstate->frame[vstate->curframe];
2018        int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2019        struct bpf_reg_state *reg;
2020        u8 *stype;
2021
2022        if (reg_state->allocated_stack <= slot) {
2023                verbose(env, "invalid read from stack off %d+0 size %d\n",
2024                        off, size);
2025                return -EACCES;
2026        }
2027        stype = reg_state->stack[spi].slot_type;
2028        reg = &reg_state->stack[spi].spilled_ptr;
2029
2030        if (stype[0] == STACK_SPILL) {
2031                if (size != BPF_REG_SIZE) {
2032                        if (reg->type != SCALAR_VALUE) {
2033                                verbose_linfo(env, env->insn_idx, "; ");
2034                                verbose(env, "invalid size of register fill\n");
2035                                return -EACCES;
2036                        }
2037                        if (value_regno >= 0) {
2038                                mark_reg_unknown(env, state->regs, value_regno);
2039                                state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2040                        }
2041                        mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2042                        return 0;
2043                }
2044                for (i = 1; i < BPF_REG_SIZE; i++) {
2045                        if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2046                                verbose(env, "corrupted spill memory\n");
2047                                return -EACCES;
2048                        }
2049                }
2050
2051                if (value_regno >= 0) {
2052                        /* restore register state from stack */
2053                        state->regs[value_regno] = *reg;
2054                        /* mark reg as written since spilled pointer state likely
2055                         * has its liveness marks cleared by is_state_visited()
2056                         * which resets stack/reg liveness for state transitions
2057                         */
2058                        state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2059                }
2060                mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2061        } else {
2062                int zeros = 0;
2063
2064                for (i = 0; i < size; i++) {
2065                        if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2066                                continue;
2067                        if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2068                                zeros++;
2069                                continue;
2070                        }
2071                        verbose(env, "invalid read from stack off %d+%d size %d\n",
2072                                off, i, size);
2073                        return -EACCES;
2074                }
2075                mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2076                if (value_regno >= 0) {
2077                        if (zeros == size) {
2078                                /* any size read into register is zero extended,
2079                                 * so the whole register == const_zero
2080                                 */
2081                                __mark_reg_const_zero(&state->regs[value_regno]);
2082                                /* backtracking doesn't support STACK_ZERO yet,
2083                                 * so mark it precise here, so that later
2084                                 * backtracking can stop here.
2085                                 * Backtracking may not need this if this register
2086                                 * doesn't participate in pointer adjustment.
2087                                 * Forward propagation of precise flag is not
2088                                 * necessary either. This mark is only to stop
2089                                 * backtracking. Any register that contributed
2090                                 * to const 0 was marked precise before spill.
2091                                 */
2092                                state->regs[value_regno].precise = true;
2093                        } else {
2094                                /* have read misc data from the stack */
2095                                mark_reg_unknown(env, state->regs, value_regno);
2096                        }
2097                        state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2098                }
2099        }
2100        return 0;
2101}
2102
2103static int check_stack_access(struct bpf_verifier_env *env,
2104                              const struct bpf_reg_state *reg,
2105                              int off, int size)
2106{
2107        /* Stack accesses must be at a fixed offset, so that we
2108         * can determine what type of data were returned. See
2109         * check_stack_read().
2110         */
2111        if (!tnum_is_const(reg->var_off)) {
2112                char tn_buf[48];
2113
2114                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2115                verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2116                        tn_buf, off, size);
2117                return -EACCES;
2118        }
2119
2120        if (off >= 0 || off < -MAX_BPF_STACK) {
2121                verbose(env, "invalid stack off=%d size=%d\n", off, size);
2122                return -EACCES;
2123        }
2124
2125        return 0;
2126}
2127
2128static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2129                                 int off, int size, enum bpf_access_type type)
2130{
2131        struct bpf_reg_state *regs = cur_regs(env);
2132        struct bpf_map *map = regs[regno].map_ptr;
2133        u32 cap = bpf_map_flags_to_cap(map);
2134
2135        if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2136                verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2137                        map->value_size, off, size);
2138                return -EACCES;
2139        }
2140
2141        if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2142                verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2143                        map->value_size, off, size);
2144                return -EACCES;
2145        }
2146
2147        return 0;
2148}
2149
2150/* check read/write into map element returned by bpf_map_lookup_elem() */
2151static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
2152                              int size, bool zero_size_allowed)
2153{
2154        struct bpf_reg_state *regs = cur_regs(env);
2155        struct bpf_map *map = regs[regno].map_ptr;
2156
2157        if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2158            off + size > map->value_size) {
2159                verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2160                        map->value_size, off, size);
2161                return -EACCES;
2162        }
2163        return 0;
2164}
2165
2166/* check read/write into a map element with possible variable offset */
2167static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2168                            int off, int size, bool zero_size_allowed)
2169{
2170        struct bpf_verifier_state *vstate = env->cur_state;
2171        struct bpf_func_state *state = vstate->frame[vstate->curframe];
2172        struct bpf_reg_state *reg = &state->regs[regno];
2173        int err;
2174
2175        /* We may have adjusted the register to this map value, so we
2176         * need to try adding each of min_value and max_value to off
2177         * to make sure our theoretical access will be safe.
2178         */
2179        if (env->log.level & BPF_LOG_LEVEL)
2180                print_verifier_state(env, state);
2181
2182        /* The minimum value is only important with signed
2183         * comparisons where we can't assume the floor of a
2184         * value is 0.  If we are using signed variables for our
2185         * index'es we need to make sure that whatever we use
2186         * will have a set floor within our range.
2187         */
2188        if (reg->smin_value < 0 &&
2189            (reg->smin_value == S64_MIN ||
2190             (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2191              reg->smin_value + off < 0)) {
2192                verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2193                        regno);
2194                return -EACCES;
2195        }
2196        err = __check_map_access(env, regno, reg->smin_value + off, size,
2197                                 zero_size_allowed);
2198        if (err) {
2199                verbose(env, "R%d min value is outside of the array range\n",
2200                        regno);
2201                return err;
2202        }
2203
2204        /* If we haven't set a max value then we need to bail since we can't be
2205         * sure we won't do bad things.
2206         * If reg->umax_value + off could overflow, treat that as unbounded too.
2207         */
2208        if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2209                verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
2210                        regno);
2211                return -EACCES;
2212        }
2213        err = __check_map_access(env, regno, reg->umax_value + off, size,
2214                                 zero_size_allowed);
2215        if (err)
2216                verbose(env, "R%d max value is outside of the array range\n",
2217                        regno);
2218
2219        if (map_value_has_spin_lock(reg->map_ptr)) {
2220                u32 lock = reg->map_ptr->spin_lock_off;
2221
2222                /* if any part of struct bpf_spin_lock can be touched by
2223                 * load/store reject this program.
2224                 * To check that [x1, x2) overlaps with [y1, y2)
2225                 * it is sufficient to check x1 < y2 && y1 < x2.
2226                 */
2227                if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2228                     lock < reg->umax_value + off + size) {
2229                        verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2230                        return -EACCES;
2231                }
2232        }
2233        return err;
2234}
2235
2236#define MAX_PACKET_OFF 0xffff
2237
2238static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2239                                       const struct bpf_call_arg_meta *meta,
2240                                       enum bpf_access_type t)
2241{
2242        switch (env->prog->type) {
2243        /* Program types only with direct read access go here! */
2244        case BPF_PROG_TYPE_LWT_IN:
2245        case BPF_PROG_TYPE_LWT_OUT:
2246        case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2247        case BPF_PROG_TYPE_SK_REUSEPORT:
2248        case BPF_PROG_TYPE_FLOW_DISSECTOR:
2249        case BPF_PROG_TYPE_CGROUP_SKB:
2250                if (t == BPF_WRITE)
2251                        return false;
2252                /* fallthrough */
2253
2254        /* Program types with direct read + write access go here! */
2255        case BPF_PROG_TYPE_SCHED_CLS:
2256        case BPF_PROG_TYPE_SCHED_ACT:
2257        case BPF_PROG_TYPE_XDP:
2258        case BPF_PROG_TYPE_LWT_XMIT:
2259        case BPF_PROG_TYPE_SK_SKB:
2260        case BPF_PROG_TYPE_SK_MSG:
2261                if (meta)
2262                        return meta->pkt_access;
2263
2264                env->seen_direct_write = true;
2265                return true;
2266
2267        case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2268                if (t == BPF_WRITE)
2269                        env->seen_direct_write = true;
2270
2271                return true;
2272
2273        default:
2274                return false;
2275        }
2276}
2277
2278static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
2279                                 int off, int size, bool zero_size_allowed)
2280{
2281        struct bpf_reg_state *regs = cur_regs(env);
2282        struct bpf_reg_state *reg = &regs[regno];
2283
2284        if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2285            (u64)off + size > reg->range) {
2286                verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2287                        off, size, regno, reg->id, reg->off, reg->range);
2288                return -EACCES;
2289        }
2290        return 0;
2291}
2292
2293static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2294                               int size, bool zero_size_allowed)
2295{
2296        struct bpf_reg_state *regs = cur_regs(env);
2297        struct bpf_reg_state *reg = &regs[regno];
2298        int err;
2299
2300        /* We may have added a variable offset to the packet pointer; but any
2301         * reg->range we have comes after that.  We are only checking the fixed
2302         * offset.
2303         */
2304
2305        /* We don't allow negative numbers, because we aren't tracking enough
2306         * detail to prove they're safe.
2307         */
2308        if (reg->smin_value < 0) {
2309                verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2310                        regno);
2311                return -EACCES;
2312        }
2313        err = __check_packet_access(env, regno, off, size, zero_size_allowed);
2314        if (err) {
2315                verbose(env, "R%d offset is outside of the packet\n", regno);
2316                return err;
2317        }
2318
2319        /* __check_packet_access has made sure "off + size - 1" is within u16.
2320         * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2321         * otherwise find_good_pkt_pointers would have refused to set range info
2322         * that __check_packet_access would have rejected this pkt access.
2323         * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2324         */
2325        env->prog->aux->max_pkt_offset =
2326                max_t(u32, env->prog->aux->max_pkt_offset,
2327                      off + reg->umax_value + size - 1);
2328
2329        return err;
2330}
2331
2332/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
2333static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2334                            enum bpf_access_type t, enum bpf_reg_type *reg_type)
2335{
2336        struct bpf_insn_access_aux info = {
2337                .reg_type = *reg_type,
2338        };
2339
2340        if (env->ops->is_valid_access &&
2341            env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2342                /* A non zero info.ctx_field_size indicates that this field is a
2343                 * candidate for later verifier transformation to load the whole
2344                 * field and then apply a mask when accessed with a narrower
2345                 * access than actual ctx access size. A zero info.ctx_field_size
2346                 * will only allow for whole field access and rejects any other
2347                 * type of narrower access.
2348                 */
2349                *reg_type = info.reg_type;
2350
2351                env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2352                /* remember the offset of last byte accessed in ctx */
2353                if (env->prog->aux->max_ctx_offset < off + size)
2354                        env->prog->aux->max_ctx_offset = off + size;
2355                return 0;
2356        }
2357
2358        verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2359        return -EACCES;
2360}
2361
2362static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2363                                  int size)
2364{
2365        if (size < 0 || off < 0 ||
2366            (u64)off + size > sizeof(struct bpf_flow_keys)) {
2367                verbose(env, "invalid access to flow keys off=%d size=%d\n",
2368                        off, size);
2369                return -EACCES;
2370        }
2371        return 0;
2372}
2373
2374static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2375                             u32 regno, int off, int size,
2376                             enum bpf_access_type t)
2377{
2378        struct bpf_reg_state *regs = cur_regs(env);
2379        struct bpf_reg_state *reg = &regs[regno];
2380        struct bpf_insn_access_aux info = {};
2381        bool valid;
2382
2383        if (reg->smin_value < 0) {
2384                verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2385                        regno);
2386                return -EACCES;
2387        }
2388
2389        switch (reg->type) {
2390        case PTR_TO_SOCK_COMMON:
2391                valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2392                break;
2393        case PTR_TO_SOCKET:
2394                valid = bpf_sock_is_valid_access(off, size, t, &info);
2395                break;
2396        case PTR_TO_TCP_SOCK:
2397                valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2398                break;
2399        case PTR_TO_XDP_SOCK:
2400                valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2401                break;
2402        default:
2403                valid = false;
2404        }
2405
2406
2407        if (valid) {
2408                env->insn_aux_data[insn_idx].ctx_field_size =
2409                        info.ctx_field_size;
2410                return 0;
2411        }
2412
2413        verbose(env, "R%d invalid %s access off=%d size=%d\n",
2414                regno, reg_type_str[reg->type], off, size);
2415
2416        return -EACCES;
2417}
2418
2419static bool __is_pointer_value(bool allow_ptr_leaks,
2420                               const struct bpf_reg_state *reg)
2421{
2422        if (allow_ptr_leaks)
2423                return false;
2424
2425        return reg->type != SCALAR_VALUE;
2426}
2427
2428static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2429{
2430        return cur_regs(env) + regno;
2431}
2432
2433static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2434{
2435        return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2436}
2437
2438static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2439{
2440        const struct bpf_reg_state *reg = reg_state(env, regno);
2441
2442        return reg->type == PTR_TO_CTX;
2443}
2444
2445static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2446{
2447        const struct bpf_reg_state *reg = reg_state(env, regno);
2448
2449        return type_is_sk_pointer(reg->type);
2450}
2451
2452static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2453{
2454        const struct bpf_reg_state *reg = reg_state(env, regno);
2455
2456        return type_is_pkt_pointer(reg->type);
2457}
2458
2459static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2460{
2461        const struct bpf_reg_state *reg = reg_state(env, regno);
2462
2463        /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2464        return reg->type == PTR_TO_FLOW_KEYS;
2465}
2466
2467static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2468                                   const struct bpf_reg_state *reg,
2469                                   int off, int size, bool strict)
2470{
2471        struct tnum reg_off;
2472        int ip_align;
2473
2474        /* Byte size accesses are always allowed. */
2475        if (!strict || size == 1)
2476                return 0;
2477
2478        /* For platforms that do not have a Kconfig enabling
2479         * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2480         * NET_IP_ALIGN is universally set to '2'.  And on platforms
2481         * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2482         * to this code only in strict mode where we want to emulate
2483         * the NET_IP_ALIGN==2 checking.  Therefore use an
2484         * unconditional IP align value of '2'.
2485         */
2486        ip_align = 2;
2487
2488        reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2489        if (!tnum_is_aligned(reg_off, size)) {
2490                char tn_buf[48];
2491
2492                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2493                verbose(env,
2494                        "misaligned packet access off %d+%s+%d+%d size %d\n",
2495                        ip_align, tn_buf, reg->off, off, size);
2496                return -EACCES;
2497        }
2498
2499        return 0;
2500}
2501
2502static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2503                                       const struct bpf_reg_state *reg,
2504                                       const char *pointer_desc,
2505                                       int off, int size, bool strict)
2506{
2507        struct tnum reg_off;
2508
2509        /* Byte size accesses are always allowed. */
2510        if (!strict || size == 1)
2511                return 0;
2512
2513        reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2514        if (!tnum_is_aligned(reg_off, size)) {
2515                char tn_buf[48];
2516
2517                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2518                verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2519                        pointer_desc, tn_buf, reg->off, off, size);
2520                return -EACCES;
2521        }
2522
2523        return 0;
2524}
2525
2526static int check_ptr_alignment(struct bpf_verifier_env *env,
2527                               const struct bpf_reg_state *reg, int off,
2528                               int size, bool strict_alignment_once)
2529{
2530        bool strict = env->strict_alignment || strict_alignment_once;
2531        const char *pointer_desc = "";
2532
2533        switch (reg->type) {
2534        case PTR_TO_PACKET:
2535        case PTR_TO_PACKET_META:
2536                /* Special case, because of NET_IP_ALIGN. Given metadata sits
2537                 * right in front, treat it the very same way.
2538                 */
2539                return check_pkt_ptr_alignment(env, reg, off, size, strict);
2540        case PTR_TO_FLOW_KEYS:
2541                pointer_desc = "flow keys ";
2542                break;
2543        case PTR_TO_MAP_VALUE:
2544                pointer_desc = "value ";
2545                break;
2546        case PTR_TO_CTX:
2547                pointer_desc = "context ";
2548                break;
2549        case PTR_TO_STACK:
2550                pointer_desc = "stack ";
2551                /* The stack spill tracking logic in check_stack_write()
2552                 * and check_stack_read() relies on stack accesses being
2553                 * aligned.
2554                 */
2555                strict = true;
2556                break;
2557        case PTR_TO_SOCKET:
2558                pointer_desc = "sock ";
2559                break;
2560        case PTR_TO_SOCK_COMMON:
2561                pointer_desc = "sock_common ";
2562                break;
2563        case PTR_TO_TCP_SOCK:
2564                pointer_desc = "tcp_sock ";
2565                break;
2566        case PTR_TO_XDP_SOCK:
2567                pointer_desc = "xdp_sock ";
2568                break;
2569        default:
2570                break;
2571        }
2572        return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2573                                           strict);
2574}
2575
2576static int update_stack_depth(struct bpf_verifier_env *env,
2577                              const struct bpf_func_state *func,
2578                              int off)
2579{
2580        u16 stack = env->subprog_info[func->subprogno].stack_depth;
2581
2582        if (stack >= -off)
2583                return 0;
2584
2585        /* update known max for given subprogram */
2586        env->subprog_info[func->subprogno].stack_depth = -off;
2587        return 0;
2588}
2589
2590/* starting from main bpf function walk all instructions of the function
2591 * and recursively walk all callees that given function can call.
2592 * Ignore jump and exit insns.
2593 * Since recursion is prevented by check_cfg() this algorithm
2594 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2595 */
2596static int check_max_stack_depth(struct bpf_verifier_env *env)
2597{
2598        int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2599        struct bpf_subprog_info *subprog = env->subprog_info;
2600        struct bpf_insn *insn = env->prog->insnsi;
2601        int ret_insn[MAX_CALL_FRAMES];
2602        int ret_prog[MAX_CALL_FRAMES];
2603
2604process_func:
2605        /* round up to 32-bytes, since this is granularity
2606         * of interpreter stack size
2607         */
2608        depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2609        if (depth > MAX_BPF_STACK) {
2610                verbose(env, "combined stack size of %d calls is %d. Too large\n",
2611                        frame + 1, depth);
2612                return -EACCES;
2613        }
2614continue_func:
2615        subprog_end = subprog[idx + 1].start;
2616        for (; i < subprog_end; i++) {
2617                if (insn[i].code != (BPF_JMP | BPF_CALL))
2618                        continue;
2619                if (insn[i].src_reg != BPF_PSEUDO_CALL)
2620                        continue;
2621                /* remember insn and function to return to */
2622                ret_insn[frame] = i + 1;
2623                ret_prog[frame] = idx;
2624
2625                /* find the callee */
2626                i = i + insn[i].imm + 1;
2627                idx = find_subprog(env, i);
2628                if (idx < 0) {
2629                        WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2630                                  i);
2631                        return -EFAULT;
2632                }
2633                frame++;
2634                if (frame >= MAX_CALL_FRAMES) {
2635                        verbose(env, "the call stack of %d frames is too deep !\n",
2636                                frame);
2637                        return -E2BIG;
2638                }
2639                goto process_func;
2640        }
2641        /* end of for() loop means the last insn of the 'subprog'
2642         * was reached. Doesn't matter whether it was JA or EXIT
2643         */
2644        if (frame == 0)
2645                return 0;
2646        depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2647        frame--;
2648        i = ret_insn[frame];
2649        idx = ret_prog[frame];
2650        goto continue_func;
2651}
2652
2653#ifndef CONFIG_BPF_JIT_ALWAYS_ON
2654static int get_callee_stack_depth(struct bpf_verifier_env *env,
2655                                  const struct bpf_insn *insn, int idx)
2656{
2657        int start = idx + insn->imm + 1, subprog;
2658
2659        subprog = find_subprog(env, start);
2660        if (subprog < 0) {
2661                WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2662                          start);
2663                return -EFAULT;
2664        }
2665        return env->subprog_info[subprog].stack_depth;
2666}
2667#endif
2668
2669static int check_ctx_reg(struct bpf_verifier_env *env,
2670                         const struct bpf_reg_state *reg, int regno)
2671{
2672        /* Access to ctx or passing it to a helper is only allowed in
2673         * its original, unmodified form.
2674         */
2675
2676        if (reg->off) {
2677                verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2678                        regno, reg->off);
2679                return -EACCES;
2680        }
2681
2682        if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2683                char tn_buf[48];
2684
2685                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2686                verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2687                return -EACCES;
2688        }
2689
2690        return 0;
2691}
2692
2693static int check_tp_buffer_access(struct bpf_verifier_env *env,
2694                                  const struct bpf_reg_state *reg,
2695                                  int regno, int off, int size)
2696{
2697        if (off < 0) {
2698                verbose(env,
2699                        "R%d invalid tracepoint buffer access: off=%d, size=%d",
2700                        regno, off, size);
2701                return -EACCES;
2702        }
2703        if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2704                char tn_buf[48];
2705
2706                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2707                verbose(env,
2708                        "R%d invalid variable buffer offset: off=%d, var_off=%s",
2709                        regno, off, tn_buf);
2710                return -EACCES;
2711        }
2712        if (off + size > env->prog->aux->max_tp_access)
2713                env->prog->aux->max_tp_access = off + size;
2714
2715        return 0;
2716}
2717
2718
2719/* truncate register to smaller size (in bytes)
2720 * must be called with size < BPF_REG_SIZE
2721 */
2722static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2723{
2724        u64 mask;
2725
2726        /* clear high bits in bit representation */
2727        reg->var_off = tnum_cast(reg->var_off, size);
2728
2729        /* fix arithmetic bounds */
2730        mask = ((u64)1 << (size * 8)) - 1;
2731        if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2732                reg->umin_value &= mask;
2733                reg->umax_value &= mask;
2734        } else {
2735                reg->umin_value = 0;
2736                reg->umax_value = mask;
2737        }
2738        reg->smin_value = reg->umin_value;
2739        reg->smax_value = reg->umax_value;
2740}
2741
2742/* check whether memory at (regno + off) is accessible for t = (read | write)
2743 * if t==write, value_regno is a register which value is stored into memory
2744 * if t==read, value_regno is a register which will receive the value from memory
2745 * if t==write && value_regno==-1, some unknown value is stored into memory
2746 * if t==read && value_regno==-1, don't care what we read from memory
2747 */
2748static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2749                            int off, int bpf_size, enum bpf_access_type t,
2750                            int value_regno, bool strict_alignment_once)
2751{
2752        struct bpf_reg_state *regs = cur_regs(env);
2753        struct bpf_reg_state *reg = regs + regno;
2754        struct bpf_func_state *state;
2755        int size, err = 0;
2756
2757        size = bpf_size_to_bytes(bpf_size);
2758        if (size < 0)
2759                return size;
2760
2761        /* alignment checks will add in reg->off themselves */
2762        err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
2763        if (err)
2764                return err;
2765
2766        /* for access checks, reg->off is just part of off */
2767        off += reg->off;
2768
2769        if (reg->type == PTR_TO_MAP_VALUE) {
2770                if (t == BPF_WRITE && value_regno >= 0 &&
2771                    is_pointer_value(env, value_regno)) {
2772                        verbose(env, "R%d leaks addr into map\n", value_regno);
2773                        return -EACCES;
2774                }
2775                err = check_map_access_type(env, regno, off, size, t);
2776                if (err)
2777                        return err;
2778                err = check_map_access(env, regno, off, size, false);
2779                if (!err && t == BPF_READ && value_regno >= 0)
2780                        mark_reg_unknown(env, regs, value_regno);
2781
2782        } else if (reg->type == PTR_TO_CTX) {
2783                enum bpf_reg_type reg_type = SCALAR_VALUE;
2784
2785                if (t == BPF_WRITE && value_regno >= 0 &&
2786                    is_pointer_value(env, value_regno)) {
2787                        verbose(env, "R%d leaks addr into ctx\n", value_regno);
2788                        return -EACCES;
2789                }
2790
2791                err = check_ctx_reg(env, reg, regno);
2792                if (err < 0)
2793                        return err;
2794
2795                err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
2796                if (!err && t == BPF_READ && value_regno >= 0) {
2797                        /* ctx access returns either a scalar, or a
2798                         * PTR_TO_PACKET[_META,_END]. In the latter
2799                         * case, we know the offset is zero.
2800                         */
2801                        if (reg_type == SCALAR_VALUE) {
2802                                mark_reg_unknown(env, regs, value_regno);
2803                        } else {
2804                                mark_reg_known_zero(env, regs,
2805                                                    value_regno);
2806                                if (reg_type_may_be_null(reg_type))
2807                                        regs[value_regno].id = ++env->id_gen;
2808                                /* A load of ctx field could have different
2809                                 * actual load size with the one encoded in the
2810                                 * insn. When the dst is PTR, it is for sure not
2811                                 * a sub-register.
2812                                 */
2813                                regs[value_regno].subreg_def = DEF_NOT_SUBREG;
2814                        }
2815                        regs[value_regno].type = reg_type;
2816                }
2817
2818        } else if (reg->type == PTR_TO_STACK) {
2819                off += reg->var_off.value;
2820                err = check_stack_access(env, reg, off, size);
2821                if (err)
2822                        return err;
2823
2824                state = func(env, reg);
2825                err = update_stack_depth(env, state, off);
2826                if (err)
2827                        return err;
2828
2829                if (t == BPF_WRITE)
2830                        err = check_stack_write(env, state, off, size,
2831                                                value_regno, insn_idx);
2832                else
2833                        err = check_stack_read(env, state, off, size,
2834                                               value_regno);
2835        } else if (reg_is_pkt_pointer(reg)) {
2836                if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
2837                        verbose(env, "cannot write into packet\n");
2838                        return -EACCES;
2839                }
2840                if (t == BPF_WRITE && value_regno >= 0 &&
2841                    is_pointer_value(env, value_regno)) {
2842                        verbose(env, "R%d leaks addr into packet\n",
2843                                value_regno);
2844                        return -EACCES;
2845                }
2846                err = check_packet_access(env, regno, off, size, false);
2847                if (!err && t == BPF_READ && value_regno >= 0)
2848                        mark_reg_unknown(env, regs, value_regno);
2849        } else if (reg->type == PTR_TO_FLOW_KEYS) {
2850                if (t == BPF_WRITE && value_regno >= 0 &&
2851                    is_pointer_value(env, value_regno)) {
2852                        verbose(env, "R%d leaks addr into flow keys\n",
2853                                value_regno);
2854                        return -EACCES;
2855                }
2856
2857                err = check_flow_keys_access(env, off, size);
2858                if (!err && t == BPF_READ && value_regno >= 0)
2859                        mark_reg_unknown(env, regs, value_regno);
2860        } else if (type_is_sk_pointer(reg->type)) {
2861                if (t == BPF_WRITE) {
2862                        verbose(env, "R%d cannot write into %s\n",
2863                                regno, reg_type_str[reg->type]);
2864                        return -EACCES;
2865                }
2866                err = check_sock_access(env, insn_idx, regno, off, size, t);
2867                if (!err && value_regno >= 0)
2868                        mark_reg_unknown(env, regs, value_regno);
2869        } else if (reg->type == PTR_TO_TP_BUFFER) {
2870                err = check_tp_buffer_access(env, reg, regno, off, size);
2871                if (!err && t == BPF_READ && value_regno >= 0)
2872                        mark_reg_unknown(env, regs, value_regno);
2873        } else {
2874                verbose(env, "R%d invalid mem access '%s'\n", regno,
2875                        reg_type_str[reg->type]);
2876                return -EACCES;
2877        }
2878
2879        if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
2880            regs[value_regno].type == SCALAR_VALUE) {
2881                /* b/h/w load zero-extends, mark upper bits as known 0 */
2882                coerce_reg_to_size(&regs[value_regno], size);
2883        }
2884        return err;
2885}
2886
2887static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
2888{
2889        int err;
2890
2891        if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2892            insn->imm != 0) {
2893                verbose(env, "BPF_XADD uses reserved fields\n");
2894                return -EINVAL;
2895        }
2896
2897        /* check src1 operand */
2898        err = check_reg_arg(env, insn->src_reg, SRC_OP);
2899        if (err)
2900                return err;
2901
2902        /* check src2 operand */
2903        err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2904        if (err)
2905                return err;
2906
2907        if (is_pointer_value(env, insn->src_reg)) {
2908                verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
2909                return -EACCES;
2910        }
2911
2912        if (is_ctx_reg(env, insn->dst_reg) ||
2913            is_pkt_reg(env, insn->dst_reg) ||
2914            is_flow_key_reg(env, insn->dst_reg) ||
2915            is_sk_reg(env, insn->dst_reg)) {
2916                verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2917                        insn->dst_reg,
2918                        reg_type_str[reg_state(env, insn->dst_reg)->type]);
2919                return -EACCES;
2920        }
2921
2922        /* check whether atomic_add can read the memory */
2923        err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2924                               BPF_SIZE(insn->code), BPF_READ, -1, true);
2925        if (err)
2926                return err;
2927
2928        /* check whether atomic_add can write into the same memory */
2929        return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2930                                BPF_SIZE(insn->code), BPF_WRITE, -1, true);
2931}
2932
2933static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
2934                                  int off, int access_size,
2935                                  bool zero_size_allowed)
2936{
2937        struct bpf_reg_state *reg = reg_state(env, regno);
2938
2939        if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2940            access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2941                if (tnum_is_const(reg->var_off)) {
2942                        verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2943                                regno, off, access_size);
2944                } else {
2945                        char tn_buf[48];
2946
2947                        tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2948                        verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
2949                                regno, tn_buf, access_size);
2950                }
2951                return -EACCES;
2952        }
2953        return 0;
2954}
2955
2956/* when register 'regno' is passed into function that will read 'access_size'
2957 * bytes from that pointer, make sure that it's within stack boundary
2958 * and all elements of stack are initialized.
2959 * Unlike most pointer bounds-checking functions, this one doesn't take an
2960 * 'off' argument, so it has to add in reg->off itself.
2961 */
2962static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
2963                                int access_size, bool zero_size_allowed,
2964                                struct bpf_call_arg_meta *meta)
2965{
2966        struct bpf_reg_state *reg = reg_state(env, regno);
2967        struct bpf_func_state *state = func(env, reg);
2968        int err, min_off, max_off, i, j, slot, spi;
2969
2970        if (reg->type != PTR_TO_STACK) {
2971                /* Allow zero-byte read from NULL, regardless of pointer type */
2972                if (zero_size_allowed && access_size == 0 &&
2973                    register_is_null(reg))
2974                        return 0;
2975
2976                verbose(env, "R%d type=%s expected=%s\n", regno,
2977                        reg_type_str[reg->type],
2978                        reg_type_str[PTR_TO_STACK]);
2979                return -EACCES;
2980        }
2981
2982        if (tnum_is_const(reg->var_off)) {
2983                min_off = max_off = reg->var_off.value + reg->off;
2984                err = __check_stack_boundary(env, regno, min_off, access_size,
2985                                             zero_size_allowed);
2986                if (err)
2987                        return err;
2988        } else {
2989                /* Variable offset is prohibited for unprivileged mode for
2990                 * simplicity since it requires corresponding support in
2991                 * Spectre masking for stack ALU.
2992                 * See also retrieve_ptr_limit().
2993                 */
2994                if (!env->allow_ptr_leaks) {
2995                        char tn_buf[48];
2996
2997                        tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2998                        verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
2999                                regno, tn_buf);
3000                        return -EACCES;
3001                }
3002                /* Only initialized buffer on stack is allowed to be accessed
3003                 * with variable offset. With uninitialized buffer it's hard to
3004                 * guarantee that whole memory is marked as initialized on
3005                 * helper return since specific bounds are unknown what may
3006                 * cause uninitialized stack leaking.
3007                 */
3008                if (meta && meta->raw_mode)
3009                        meta = NULL;
3010
3011                if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3012                    reg->smax_value <= -BPF_MAX_VAR_OFF) {
3013                        verbose(env, "R%d unbounded indirect variable offset stack access\n",
3014                                regno);
3015                        return -EACCES;
3016                }
3017                min_off = reg->smin_value + reg->off;
3018                max_off = reg->smax_value + reg->off;
3019                err = __check_stack_boundary(env, regno, min_off, access_size,
3020                                             zero_size_allowed);
3021                if (err) {
3022                        verbose(env, "R%d min value is outside of stack bound\n",
3023                                regno);
3024                        return err;
3025                }
3026                err = __check_stack_boundary(env, regno, max_off, access_size,
3027                                             zero_size_allowed);
3028                if (err) {
3029                        verbose(env, "R%d max value is outside of stack bound\n",
3030                                regno);
3031                        return err;
3032                }
3033        }
3034
3035        if (meta && meta->raw_mode) {
3036                meta->access_size = access_size;
3037                meta->regno = regno;
3038                return 0;
3039        }
3040
3041        for (i = min_off; i < max_off + access_size; i++) {
3042                u8 *stype;
3043
3044                slot = -i - 1;
3045                spi = slot / BPF_REG_SIZE;
3046                if (state->allocated_stack <= slot)
3047                        goto err;
3048                stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3049                if (*stype == STACK_MISC)
3050                        goto mark;
3051                if (*stype == STACK_ZERO) {
3052                        /* helper can write anything into the stack */
3053                        *stype = STACK_MISC;
3054                        goto mark;
3055                }
3056                if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3057                    state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3058                        __mark_reg_unknown(&state->stack[spi].spilled_ptr);
3059                        for (j = 0; j < BPF_REG_SIZE; j++)
3060                                state->stack[spi].slot_type[j] = STACK_MISC;
3061                        goto mark;
3062                }
3063
3064err:
3065                if (tnum_is_const(reg->var_off)) {
3066                        verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3067                                min_off, i - min_off, access_size);
3068                } else {
3069                        char tn_buf[48];
3070
3071                        tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3072                        verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3073                                tn_buf, i - min_off, access_size);
3074                }
3075                return -EACCES;
3076mark:
3077                /* reading any byte out of 8-byte 'spill_slot' will cause
3078                 * the whole slot to be marked as 'read'
3079                 */
3080                mark_reg_read(env, &state->stack[spi].spilled_ptr,
3081                              state->stack[spi].spilled_ptr.parent,
3082                              REG_LIVE_READ64);
3083        }
3084        return update_stack_depth(env, state, min_off);
3085}
3086
3087static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3088                                   int access_size, bool zero_size_allowed,
3089                                   struct bpf_call_arg_meta *meta)
3090{
3091        struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3092
3093        switch (reg->type) {
3094        case PTR_TO_PACKET:
3095        case PTR_TO_PACKET_META:
3096                return check_packet_access(env, regno, reg->off, access_size,
3097                                           zero_size_allowed);
3098        case PTR_TO_MAP_VALUE:
3099                if (check_map_access_type(env, regno, reg->off, access_size,
3100                                          meta && meta->raw_mode ? BPF_WRITE :
3101                                          BPF_READ))
3102                        return -EACCES;
3103                return check_map_access(env, regno, reg->off, access_size,
3104                                        zero_size_allowed);
3105        default: /* scalar_value|ptr_to_stack or invalid ptr */
3106                return check_stack_boundary(env, regno, access_size,
3107                                            zero_size_allowed, meta);
3108        }
3109}
3110
3111/* Implementation details:
3112 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3113 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3114 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3115 * value_or_null->value transition, since the verifier only cares about
3116 * the range of access to valid map value pointer and doesn't care about actual
3117 * address of the map element.
3118 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3119 * reg->id > 0 after value_or_null->value transition. By doing so
3120 * two bpf_map_lookups will be considered two different pointers that
3121 * point to different bpf_spin_locks.
3122 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3123 * dead-locks.
3124 * Since only one bpf_spin_lock is allowed the checks are simpler than
3125 * reg_is_refcounted() logic. The verifier needs to remember only
3126 * one spin_lock instead of array of acquired_refs.
3127 * cur_state->active_spin_lock remembers which map value element got locked
3128 * and clears it after bpf_spin_unlock.
3129 */
3130static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3131                             bool is_lock)
3132{
3133        struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3134        struct bpf_verifier_state *cur = env->cur_state;
3135        bool is_const = tnum_is_const(reg->var_off);
3136        struct bpf_map *map = reg->map_ptr;
3137        u64 val = reg->var_off.value;
3138
3139        if (reg->type != PTR_TO_MAP_VALUE) {
3140                verbose(env, "R%d is not a pointer to map_value\n", regno);
3141                return -EINVAL;
3142        }
3143        if (!is_const) {
3144                verbose(env,
3145                        "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3146                        regno);
3147                return -EINVAL;
3148        }
3149        if (!map->btf) {
3150                verbose(env,
3151                        "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3152                        map->name);
3153                return -EINVAL;
3154        }
3155        if (!map_value_has_spin_lock(map)) {
3156                if (map->spin_lock_off == -E2BIG)
3157                        verbose(env,
3158                                "map '%s' has more than one 'struct bpf_spin_lock'\n",
3159                                map->name);
3160                else if (map->spin_lock_off == -ENOENT)
3161                        verbose(env,
3162                                "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3163                                map->name);
3164                else
3165                        verbose(env,
3166                                "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3167                                map->name);
3168                return -EINVAL;
3169        }
3170        if (map->spin_lock_off != val + reg->off) {
3171                verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3172                        val + reg->off);
3173                return -EINVAL;
3174        }
3175        if (is_lock) {
3176                if (cur->active_spin_lock) {
3177                        verbose(env,
3178                                "Locking two bpf_spin_locks are not allowed\n");
3179                        return -EINVAL;
3180                }
3181                cur->active_spin_lock = reg->id;
3182        } else {
3183                if (!cur->active_spin_lock) {
3184                        verbose(env, "bpf_spin_unlock without taking a lock\n");
3185                        return -EINVAL;
3186                }
3187                if (cur->active_spin_lock != reg->id) {
3188                        verbose(env, "bpf_spin_unlock of different lock\n");
3189                        return -EINVAL;
3190                }
3191                cur->active_spin_lock = 0;
3192        }
3193        return 0;
3194}
3195
3196static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3197{
3198        return type == ARG_PTR_TO_MEM ||
3199               type == ARG_PTR_TO_MEM_OR_NULL ||
3200               type == ARG_PTR_TO_UNINIT_MEM;
3201}
3202
3203static bool arg_type_is_mem_size(enum bpf_arg_type type)
3204{
3205        return type == ARG_CONST_SIZE ||
3206               type == ARG_CONST_SIZE_OR_ZERO;
3207}
3208
3209static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3210{
3211        return type == ARG_PTR_TO_INT ||
3212               type == ARG_PTR_TO_LONG;
3213}
3214
3215static int int_ptr_type_to_size(enum bpf_arg_type type)
3216{
3217        if (type == ARG_PTR_TO_INT)
3218                return sizeof(u32);
3219        else if (type == ARG_PTR_TO_LONG)
3220                return sizeof(u64);
3221
3222        return -EINVAL;
3223}
3224
3225static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
3226                          enum bpf_arg_type arg_type,
3227                          struct bpf_call_arg_meta *meta)
3228{
3229        struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3230        enum bpf_reg_type expected_type, type = reg->type;
3231        int err = 0;
3232
3233        if (arg_type == ARG_DONTCARE)
3234                return 0;
3235
3236        err = check_reg_arg(env, regno, SRC_OP);
3237        if (err)
3238                return err;
3239
3240        if (arg_type == ARG_ANYTHING) {
3241                if (is_pointer_value(env, regno)) {
3242                        verbose(env, "R%d leaks addr into helper function\n",
3243                                regno);
3244                        return -EACCES;
3245                }
3246                return 0;
3247        }
3248
3249        if (type_is_pkt_pointer(type) &&
3250            !may_access_direct_pkt_data(env, meta, BPF_READ)) {
3251                verbose(env, "helper access to the packet is not allowed\n");
3252                return -EACCES;
3253        }
3254
3255        if (arg_type == ARG_PTR_TO_MAP_KEY ||
3256            arg_type == ARG_PTR_TO_MAP_VALUE ||
3257            arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3258            arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
3259                expected_type = PTR_TO_STACK;
3260                if (register_is_null(reg) &&
3261                    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3262                        /* final test in check_stack_boundary() */;
3263                else if (!type_is_pkt_pointer(type) &&
3264                         type != PTR_TO_MAP_VALUE &&
3265                         type != expected_type)
3266                        goto err_type;
3267        } else if (arg_type == ARG_CONST_SIZE ||
3268                   arg_type == ARG_CONST_SIZE_OR_ZERO) {
3269                expected_type = SCALAR_VALUE;
3270                if (type != expected_type)
3271                        goto err_type;
3272        } else if (arg_type == ARG_CONST_MAP_PTR) {
3273                expected_type = CONST_PTR_TO_MAP;
3274                if (type != expected_type)
3275                        goto err_type;
3276        } else if (arg_type == ARG_PTR_TO_CTX) {
3277                expected_type = PTR_TO_CTX;
3278                if (type != expected_type)
3279                        goto err_type;
3280                err = check_ctx_reg(env, reg, regno);
3281                if (err < 0)
3282                        return err;
3283        } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3284                expected_type = PTR_TO_SOCK_COMMON;
3285                /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3286                if (!type_is_sk_pointer(type))
3287                        goto err_type;
3288                if (reg->ref_obj_id) {
3289                        if (meta->ref_obj_id) {
3290                                verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3291                                        regno, reg->ref_obj_id,
3292                                        meta->ref_obj_id);
3293                                return -EFAULT;
3294                        }
3295                        meta->ref_obj_id = reg->ref_obj_id;
3296                }
3297        } else if (arg_type == ARG_PTR_TO_SOCKET) {
3298                expected_type = PTR_TO_SOCKET;
3299                if (type != expected_type)
3300                        goto err_type;
3301        } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3302                if (meta->func_id == BPF_FUNC_spin_lock) {
3303                        if (process_spin_lock(env, regno, true))
3304                                return -EACCES;
3305                } else if (meta->func_id == BPF_FUNC_spin_unlock) {
3306                        if (process_spin_lock(env, regno, false))
3307                                return -EACCES;
3308                } else {
3309                        verbose(env, "verifier internal error\n");
3310                        return -EFAULT;
3311                }
3312        } else if (arg_type_is_mem_ptr(arg_type)) {
3313                expected_type = PTR_TO_STACK;
3314                /* One exception here. In case function allows for NULL to be
3315                 * passed in as argument, it's a SCALAR_VALUE type. Final test
3316                 * happens during stack boundary checking.
3317                 */
3318                if (register_is_null(reg) &&
3319                    arg_type == ARG_PTR_TO_MEM_OR_NULL)
3320                        /* final test in check_stack_boundary() */;
3321                else if (!type_is_pkt_pointer(type) &&
3322                         type != PTR_TO_MAP_VALUE &&
3323                         type != expected_type)
3324                        goto err_type;
3325                meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
3326        } else if (arg_type_is_int_ptr(arg_type)) {
3327                expected_type = PTR_TO_STACK;
3328                if (!type_is_pkt_pointer(type) &&
3329                    type != PTR_TO_MAP_VALUE &&
3330                    type != expected_type)
3331                        goto err_type;
3332        } else {
3333                verbose(env, "unsupported arg_type %d\n", arg_type);
3334                return -EFAULT;
3335        }
3336
3337        if (arg_type == ARG_CONST_MAP_PTR) {
3338                /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3339                meta->map_ptr = reg->map_ptr;
3340        } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3341                /* bpf_map_xxx(..., map_ptr, ..., key) call:
3342                 * check that [key, key + map->key_size) are within
3343                 * stack limits and initialized
3344                 */
3345                if (!meta->map_ptr) {
3346                        /* in function declaration map_ptr must come before
3347                         * map_key, so that it's verified and known before
3348                         * we have to check map_key here. Otherwise it means
3349                         * that kernel subsystem misconfigured verifier
3350                         */
3351                        verbose(env, "invalid map_ptr to access map->key\n");
3352                        return -EACCES;
3353                }
3354                err = check_helper_mem_access(env, regno,
3355                                              meta->map_ptr->key_size, false,
3356                                              NULL);
3357        } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
3358                   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3359                    !register_is_null(reg)) ||
3360                   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
3361                /* bpf_map_xxx(..., map_ptr, ..., value) call:
3362                 * check [value, value + map->value_size) validity
3363                 */
3364                if (!meta->map_ptr) {
3365                        /* kernel subsystem misconfigured verifier */
3366                        verbose(env, "invalid map_ptr to access map->value\n");
3367                        return -EACCES;
3368                }
3369                meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
3370                err = check_helper_mem_access(env, regno,
3371                                              meta->map_ptr->value_size, false,
3372                                              meta);
3373        } else if (arg_type_is_mem_size(arg_type)) {
3374                bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
3375
3376                /* remember the mem_size which may be used later
3377                 * to refine return values.
3378                 */
3379                meta->msize_smax_value = reg->smax_value;
3380                meta->msize_umax_value = reg->umax_value;
3381
3382                /* The register is SCALAR_VALUE; the access check
3383                 * happens using its boundaries.
3384                 */
3385                if (!tnum_is_const(reg->var_off))
3386                        /* For unprivileged variable accesses, disable raw
3387                         * mode so that the program is required to
3388                         * initialize all the memory that the helper could
3389                         * just partially fill up.
3390                         */
3391                        meta = NULL;
3392
3393                if (reg->smin_value < 0) {
3394                        verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
3395                                regno);
3396                        return -EACCES;
3397                }
3398
3399                if (reg->umin_value == 0) {
3400                        err = check_helper_mem_access(env, regno - 1, 0,
3401                                                      zero_size_allowed,
3402                                                      meta);
3403                        if (err)
3404                                return err;
3405                }
3406
3407                if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
3408                        verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
3409                                regno);
3410                        return -EACCES;
3411                }
3412                err = check_helper_mem_access(env, regno - 1,
3413                                              reg->umax_value,
3414                                              zero_size_allowed, meta);
3415                if (!err)
3416                        err = mark_chain_precision(env, regno);
3417        } else if (arg_type_is_int_ptr(arg_type)) {
3418                int size = int_ptr_type_to_size(arg_type);
3419
3420                err = check_helper_mem_access(env, regno, size, false, meta);
3421                if (err)
3422                        return err;
3423                err = check_ptr_alignment(env, reg, 0, size, true);
3424        }
3425
3426        return err;
3427err_type:
3428        verbose(env, "R%d type=%s expected=%s\n", regno,
3429                reg_type_str[type], reg_type_str[expected_type]);
3430        return -EACCES;
3431}
3432
3433static int check_map_func_compatibility(struct bpf_verifier_env *env,
3434                                        struct bpf_map *map, int func_id)
3435{
3436        if (!map)
3437                return 0;
3438
3439        /* We need a two way check, first is from map perspective ... */
3440        switch (map->map_type) {
3441        case BPF_MAP_TYPE_PROG_ARRAY:
3442                if (func_id != BPF_FUNC_tail_call)
3443                        goto error;
3444                break;
3445        case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
3446                if (func_id != BPF_FUNC_perf_event_read &&
3447                    func_id != BPF_FUNC_perf_event_output &&
3448                    func_id != BPF_FUNC_perf_event_read_value)
3449                        goto error;
3450                break;
3451        case BPF_MAP_TYPE_STACK_TRACE:
3452                if (func_id != BPF_FUNC_get_stackid)
3453                        goto error;
3454                break;
3455        case BPF_MAP_TYPE_CGROUP_ARRAY:
3456                if (func_id != BPF_FUNC_skb_under_cgroup &&
3457                    func_id != BPF_FUNC_current_task_under_cgroup)
3458                        goto error;
3459                break;
3460        case BPF_MAP_TYPE_CGROUP_STORAGE:
3461        case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
3462                if (func_id != BPF_FUNC_get_local_storage)
3463                        goto error;
3464                break;
3465        case BPF_MAP_TYPE_DEVMAP:
3466                if (func_id != BPF_FUNC_redirect_map &&
3467                    func_id != BPF_FUNC_map_lookup_elem)
3468                        goto error;
3469                break;
3470        /* Restrict bpf side of cpumap and xskmap, open when use-cases
3471         * appear.
3472         */
3473        case BPF_MAP_TYPE_CPUMAP:
3474                if (func_id != BPF_FUNC_redirect_map)
3475                        goto error;
3476                break;
3477        case BPF_MAP_TYPE_XSKMAP:
3478                if (func_id != BPF_FUNC_redirect_map &&
3479                    func_id != BPF_FUNC_map_lookup_elem)
3480                        goto error;
3481                break;
3482        case BPF_MAP_TYPE_ARRAY_OF_MAPS:
3483        case BPF_MAP_TYPE_HASH_OF_MAPS:
3484                if (func_id != BPF_FUNC_map_lookup_elem)
3485                        goto error;
3486                break;
3487        case BPF_MAP_TYPE_SOCKMAP:
3488                if (func_id != BPF_FUNC_sk_redirect_map &&
3489                    func_id != BPF_FUNC_sock_map_update &&
3490                    func_id != BPF_FUNC_map_delete_elem &&
3491                    func_id != BPF_FUNC_msg_redirect_map)
3492                        goto error;
3493                break;
3494        case BPF_MAP_TYPE_SOCKHASH:
3495                if (func_id != BPF_FUNC_sk_redirect_hash &&
3496                    func_id != BPF_FUNC_sock_hash_update &&
3497                    func_id != BPF_FUNC_map_delete_elem &&
3498                    func_id != BPF_FUNC_msg_redirect_hash)
3499                        goto error;
3500                break;
3501        case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
3502                if (func_id != BPF_FUNC_sk_select_reuseport)
3503                        goto error;
3504                break;
3505        case BPF_MAP_TYPE_QUEUE:
3506        case BPF_MAP_TYPE_STACK:
3507                if (func_id != BPF_FUNC_map_peek_elem &&
3508                    func_id != BPF_FUNC_map_pop_elem &&
3509                    func_id != BPF_FUNC_map_push_elem)
3510                        goto error;
3511                break;
3512        case BPF_MAP_TYPE_SK_STORAGE:
3513                if (func_id != BPF_FUNC_sk_storage_get &&
3514                    func_id != BPF_FUNC_sk_storage_delete)
3515                        goto error;
3516                break;
3517        default:
3518                break;
3519        }
3520
3521        /* ... and second from the function itself. */
3522        switch (func_id) {
3523        case BPF_FUNC_tail_call:
3524                if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
3525                        goto error;
3526                if (env->subprog_cnt > 1) {
3527                        verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
3528                        return -EINVAL;
3529                }
3530                break;
3531        case BPF_FUNC_perf_event_read:
3532        case BPF_FUNC_perf_event_output:
3533        case BPF_FUNC_perf_event_read_value:
3534                if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
3535                        goto error;
3536                break;
3537        case BPF_FUNC_get_stackid:
3538                if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
3539                        goto error;
3540                break;
3541        case BPF_FUNC_current_task_under_cgroup:
3542        case BPF_FUNC_skb_under_cgroup:
3543                if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
3544                        goto error;
3545                break;
3546        case BPF_FUNC_redirect_map:
3547                if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
3548                    map->map_type != BPF_MAP_TYPE_CPUMAP &&
3549                    map->map_type != BPF_MAP_TYPE_XSKMAP)
3550                        goto error;
3551                break;
3552        case BPF_FUNC_sk_redirect_map:
3553        case BPF_FUNC_msg_redirect_map:
3554        case BPF_FUNC_sock_map_update:
3555                if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
3556                        goto error;
3557                break;
3558        case BPF_FUNC_sk_redirect_hash:
3559        case BPF_FUNC_msg_redirect_hash:
3560        case BPF_FUNC_sock_hash_update:
3561                if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
3562                        goto error;
3563                break;
3564        case BPF_FUNC_get_local_storage:
3565                if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
3566                    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
3567                        goto error;
3568                break;
3569        case BPF_FUNC_sk_select_reuseport:
3570                if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
3571                        goto error;
3572                break;
3573        case BPF_FUNC_map_peek_elem:
3574        case BPF_FUNC_map_pop_elem:
3575        case BPF_FUNC_map_push_elem:
3576                if (map->map_type != BPF_MAP_TYPE_QUEUE &&
3577                    map->map_type != BPF_MAP_TYPE_STACK)
3578                        goto error;
3579                break;
3580        case BPF_FUNC_sk_storage_get:
3581        case BPF_FUNC_sk_storage_delete:
3582                if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
3583                        goto error;
3584                break;
3585        default:
3586                break;
3587        }
3588
3589        return 0;
3590error:
3591        verbose(env, "cannot pass map_type %d into func %s#%d\n",
3592                map->map_type, func_id_name(func_id), func_id);
3593        return -EINVAL;
3594}
3595
3596static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
3597{
3598        int count = 0;
3599
3600        if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
3601                count++;
3602        if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
3603                count++;
3604        if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
3605                count++;
3606        if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
3607                count++;
3608        if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
3609                count++;
3610
3611        /* We only support one arg being in raw mode at the moment,
3612         * which is sufficient for the helper functions we have
3613         * right now.
3614         */
3615        return count <= 1;
3616}
3617
3618static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
3619                                    enum bpf_arg_type arg_next)
3620{
3621        return (arg_type_is_mem_ptr(arg_curr) &&
3622                !arg_type_is_mem_size(arg_next)) ||
3623               (!arg_type_is_mem_ptr(arg_curr) &&
3624                arg_type_is_mem_size(arg_next));
3625}
3626
3627static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
3628{
3629        /* bpf_xxx(..., buf, len) call will access 'len'
3630         * bytes from memory 'buf'. Both arg types need
3631         * to be paired, so make sure there's no buggy
3632         * helper function specification.
3633         */
3634        if (arg_type_is_mem_size(fn->arg1_type) ||
3635            arg_type_is_mem_ptr(fn->arg5_type)  ||
3636            check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
3637            check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
3638            check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
3639            check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
3640                return false;
3641
3642        return true;
3643}
3644
3645static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
3646{
3647        int count = 0;
3648
3649        if (arg_type_may_be_refcounted(fn->arg1_type))
3650                count++;
3651        if (arg_type_may_be_refcounted(fn->arg2_type))
3652                count++;
3653        if (arg_type_may_be_refcounted(fn->arg3_type))
3654                count++;
3655        if (arg_type_may_be_refcounted(fn->arg4_type))
3656                count++;
3657        if (arg_type_may_be_refcounted(fn->arg5_type))
3658                count++;
3659
3660        /* A reference acquiring function cannot acquire
3661         * another refcounted ptr.
3662         */
3663        if (is_acquire_function(func_id) && count)
3664                return false;
3665
3666        /* We only support one arg being unreferenced at the moment,
3667         * which is sufficient for the helper functions we have right now.
3668         */
3669        return count <= 1;
3670}
3671
3672static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
3673{
3674        return check_raw_mode_ok(fn) &&
3675               check_arg_pair_ok(fn) &&
3676               check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
3677}
3678
3679/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
3680 * are now invalid, so turn them into unknown SCALAR_VALUE.
3681 */
3682static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
3683                                     struct bpf_func_state *state)
3684{
3685        struct bpf_reg_state *regs = state->regs, *reg;
3686        int i;
3687
3688        for (i = 0; i < MAX_BPF_REG; i++)
3689                if (reg_is_pkt_pointer_any(&regs[i]))
3690                        mark_reg_unknown(env, regs, i);
3691
3692        bpf_for_each_spilled_reg(i, state, reg) {
3693                if (!reg)
3694                        continue;
3695                if (reg_is_pkt_pointer_any(reg))
3696                        __mark_reg_unknown(reg);
3697        }
3698}
3699
3700static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
3701{
3702        struct bpf_verifier_state *vstate = env->cur_state;
3703        int i;
3704
3705        for (i = 0; i <= vstate->curframe; i++)
3706                __clear_all_pkt_pointers(env, vstate->frame[i]);
3707}
3708
3709static void release_reg_references(struct bpf_verifier_env *env,
3710                                   struct bpf_func_state *state,
3711                                   int ref_obj_id)
3712{
3713        struct bpf_reg_state *regs = state->regs, *reg;
3714        int i;
3715
3716        for (i = 0; i < MAX_BPF_REG; i++)
3717                if (regs[i].ref_obj_id == ref_obj_id)
3718                        mark_reg_unknown(env, regs, i);
3719
3720        bpf_for_each_spilled_reg(i, state, reg) {
3721                if (!reg)
3722                        continue;
3723                if (reg->ref_obj_id == ref_obj_id)
3724                        __mark_reg_unknown(reg);
3725        }
3726}
3727
3728/* The pointer with the specified id has released its reference to kernel
3729 * resources. Identify all copies of the same pointer and clear the reference.
3730 */
3731static int release_reference(struct bpf_verifier_env *env,
3732                             int ref_obj_id)
3733{
3734        struct bpf_verifier_state *vstate = env->cur_state;
3735        int err;
3736        int i;
3737
3738        err = release_reference_state(cur_func(env), ref_obj_id);
3739        if (err)
3740                return err;
3741
3742        for (i = 0; i <= vstate->curframe; i++)
3743                release_reg_references(env, vstate->frame[i], ref_obj_id);
3744
3745        return 0;
3746}
3747
3748static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3749                           int *insn_idx)
3750{
3751        struct bpf_verifier_state *state = env->cur_state;
3752        struct bpf_func_state *caller, *callee;
3753        int i, err, subprog, target_insn;
3754
3755        if (state->curframe + 1 >= MAX_CALL_FRAMES) {
3756                verbose(env, "the call stack of %d frames is too deep\n",
3757                        state->curframe + 2);
3758                return -E2BIG;
3759        }
3760
3761        target_insn = *insn_idx + insn->imm;
3762        subprog = find_subprog(env, target_insn + 1);
3763        if (subprog < 0) {
3764                verbose(env, "verifier bug. No program starts at insn %d\n",
3765                        target_insn + 1);
3766                return -EFAULT;
3767        }
3768
3769        caller = state->frame[state->curframe];
3770        if (state->frame[state->curframe + 1]) {
3771                verbose(env, "verifier bug. Frame %d already allocated\n",
3772                        state->curframe + 1);
3773                return -EFAULT;
3774        }
3775
3776        callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3777        if (!callee)
3778                return -ENOMEM;
3779        state->frame[state->curframe + 1] = callee;
3780
3781        /* callee cannot access r0, r6 - r9 for reading and has to write
3782         * into its own stack before reading from it.
3783         * callee can read/write into caller's stack
3784         */
3785        init_func_state(env, callee,
3786                        /* remember the callsite, it will be used by bpf_exit */
3787                        *insn_idx /* callsite */,
3788                        state->curframe + 1 /* frameno within this callchain */,
3789                        subprog /* subprog number within this prog */);
3790
3791        /* Transfer references to the callee */
3792        err = transfer_reference_state(callee, caller);
3793        if (err)
3794                return err;
3795
3796        /* copy r1 - r5 args that callee can access.  The copy includes parent
3797         * pointers, which connects us up to the liveness chain
3798         */
3799        for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3800                callee->regs[i] = caller->regs[i];
3801
3802        /* after the call registers r0 - r5 were scratched */
3803        for (i = 0; i < CALLER_SAVED_REGS; i++) {
3804                mark_reg_not_init(env, caller->regs, caller_saved[i]);
3805                check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3806        }
3807
3808        /* only increment it after check_reg_arg() finished */
3809        state->curframe++;
3810
3811        /* and go analyze first insn of the callee */
3812        *insn_idx = target_insn;
3813
3814        if (env->log.level & BPF_LOG_LEVEL) {
3815                verbose(env, "caller:\n");
3816                print_verifier_state(env, caller);
3817                verbose(env, "callee:\n");
3818                print_verifier_state(env, callee);
3819        }
3820        return 0;
3821}
3822
3823static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
3824{
3825        struct bpf_verifier_state *state = env->cur_state;
3826        struct bpf_func_state *caller, *callee;
3827        struct bpf_reg_state *r0;
3828        int err;
3829
3830        callee = state->frame[state->curframe];
3831        r0 = &callee->regs[BPF_REG_0];
3832        if (r0->type == PTR_TO_STACK) {
3833                /* technically it's ok to return caller's stack pointer
3834                 * (or caller's caller's pointer) back to the caller,
3835                 * since these pointers are valid. Only current stack
3836                 * pointer will be invalid as soon as function exits,
3837                 * but let's be conservative
3838                 */
3839                verbose(env, "cannot return stack pointer to the caller\n");
3840                return -EINVAL;
3841        }
3842
3843        state->curframe--;
3844        caller = state->frame[state->curframe];
3845        /* return to the caller whatever r0 had in the callee */
3846        caller->regs[BPF_REG_0] = *r0;
3847
3848        /* Transfer references to the caller */
3849        err = transfer_reference_state(caller, callee);
3850        if (err)
3851                return err;
3852
3853        *insn_idx = callee->callsite + 1;
3854        if (env->log.level & BPF_LOG_LEVEL) {
3855                verbose(env, "returning from callee:\n");
3856                print_verifier_state(env, callee);
3857                verbose(env, "to caller at %d:\n", *insn_idx);
3858                print_verifier_state(env, caller);
3859        }
3860        /* clear everything in the callee */
3861        free_func_state(callee);
3862        state->frame[state->curframe + 1] = NULL;
3863        return 0;
3864}
3865
3866static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
3867                                   int func_id,
3868                                   struct bpf_call_arg_meta *meta)
3869{
3870        struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
3871
3872        if (ret_type != RET_INTEGER ||
3873            (func_id != BPF_FUNC_get_stack &&
3874             func_id != BPF_FUNC_probe_read_str))
3875                return;
3876
3877        ret_reg->smax_value = meta->msize_smax_value;
3878        ret_reg->umax_value = meta->msize_umax_value;
3879        __reg_deduce_bounds(ret_reg);
3880        __reg_bound_offset(ret_reg);
3881}
3882
3883static int
3884record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
3885                int func_id, int insn_idx)
3886{
3887        struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
3888        struct bpf_map *map = meta->map_ptr;
3889
3890        if (func_id != BPF_FUNC_tail_call &&
3891            func_id != BPF_FUNC_map_lookup_elem &&
3892            func_id != BPF_FUNC_map_update_elem &&
3893            func_id != BPF_FUNC_map_delete_elem &&
3894            func_id != BPF_FUNC_map_push_elem &&
3895            func_id != BPF_FUNC_map_pop_elem &&
3896            func_id != BPF_FUNC_map_peek_elem)
3897                return 0;
3898
3899        if (map == NULL) {
3900                verbose(env, "kernel subsystem misconfigured verifier\n");
3901                return -EINVAL;
3902        }
3903
3904        /* In case of read-only, some additional restrictions
3905         * need to be applied in order to prevent altering the
3906         * state of the map from program side.
3907         */
3908        if ((map->map_flags & BPF_F_RDONLY_PROG) &&
3909            (func_id == BPF_FUNC_map_delete_elem ||
3910             func_id == BPF_FUNC_map_update_elem ||
3911             func_id == BPF_FUNC_map_push_elem ||
3912             func_id == BPF_FUNC_map_pop_elem)) {
3913                verbose(env, "write into map forbidden\n");
3914                return -EACCES;
3915        }
3916
3917        if (!BPF_MAP_PTR(aux->map_state))
3918                bpf_map_ptr_store(aux, meta->map_ptr,
3919                                  meta->map_ptr->unpriv_array);
3920        else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
3921                bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
3922                                  meta->map_ptr->unpriv_array);
3923        return 0;
3924}
3925
3926static int check_reference_leak(struct bpf_verifier_env *env)
3927{
3928        struct bpf_func_state *state = cur_func(env);
3929        int i;
3930
3931        for (i = 0; i < state->acquired_refs; i++) {
3932                verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3933                        state->refs[i].id, state->refs[i].insn_idx);
3934        }
3935        return state->acquired_refs ? -EINVAL : 0;
3936}
3937
3938static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
3939{
3940        const struct bpf_func_proto *fn = NULL;
3941        struct bpf_reg_state *regs;
3942        struct bpf_call_arg_meta meta;
3943        bool changes_data;
3944        int i, err;
3945
3946        /* find function prototype */
3947        if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
3948                verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3949                        func_id);
3950                return -EINVAL;
3951        }
3952
3953        if (env->ops->get_func_proto)
3954                fn = env->ops->get_func_proto(func_id, env->prog);
3955        if (!fn) {
3956                verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3957                        func_id);
3958                return -EINVAL;
3959        }
3960
3961        /* eBPF programs must be GPL compatible to use GPL-ed functions */
3962        if (!env->prog->gpl_compatible && fn->gpl_only) {
3963                verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
3964                return -EINVAL;
3965        }
3966
3967        /* With LD_ABS/IND some JITs save/restore skb from r1. */
3968        changes_data = bpf_helper_changes_pkt_data(fn->func);
3969        if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3970                verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3971                        func_id_name(func_id), func_id);
3972                return -EINVAL;
3973        }
3974
3975        memset(&meta, 0, sizeof(meta));
3976        meta.pkt_access = fn->pkt_access;
3977
3978        err = check_func_proto(fn, func_id);
3979        if (err) {
3980                verbose(env, "kernel subsystem misconfigured func %s#%d\n",
3981                        func_id_name(func_id), func_id);
3982                return err;
3983        }
3984
3985        meta.func_id = func_id;
3986        /* check args */
3987        err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
3988        if (err)
3989                return err;
3990        err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
3991        if (err)
3992                return err;
3993        err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
3994        if (err)
3995                return err;
3996        err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
3997        if (err)
3998                return err;
3999        err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
4000        if (err)
4001                return err;
4002
4003        err = record_func_map(env, &meta, func_id, insn_idx);
4004        if (err)
4005                return err;
4006
4007        /* Mark slots with STACK_MISC in case of raw mode, stack offset
4008         * is inferred from register state.
4009         */
4010        for (i = 0; i < meta.access_size; i++) {
4011                err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4012                                       BPF_WRITE, -1, false);
4013                if (err)
4014                        return err;
4015        }
4016
4017        if (func_id == BPF_FUNC_tail_call) {
4018                err = check_reference_leak(env);
4019                if (err) {
4020                        verbose(env, "tail_call would lead to reference leak\n");
4021                        return err;
4022                }
4023        } else if (is_release_function(func_id)) {
4024                err = release_reference(env, meta.ref_obj_id);
4025                if (err) {
4026                        verbose(env, "func %s#%d reference has not been acquired before\n",
4027                                func_id_name(func_id), func_id);
4028                        return err;
4029                }
4030        }
4031
4032        regs = cur_regs(env);
4033
4034        /* check that flags argument in get_local_storage(map, flags) is 0,
4035         * this is required because get_local_storage() can't return an error.
4036         */
4037        if (func_id == BPF_FUNC_get_local_storage &&
4038            !register_is_null(&regs[BPF_REG_2])) {
4039                verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4040                return -EINVAL;
4041        }
4042
4043        /* reset caller saved regs */
4044        for (i = 0; i < CALLER_SAVED_REGS; i++) {
4045                mark_reg_not_init(env, regs, caller_saved[i]);
4046                check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4047        }
4048
4049        /* helper call returns 64-bit value. */
4050        regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4051
4052        /* update return register (already marked as written above) */
4053        if (fn->ret_type == RET_INTEGER) {
4054                /* sets type to SCALAR_VALUE */
4055                mark_reg_unknown(env, regs, BPF_REG_0);
4056        } else if (fn->ret_type == RET_VOID) {
4057                regs[BPF_REG_0].type = NOT_INIT;
4058        } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4059                   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4060                /* There is no offset yet applied, variable or fixed */
4061                mark_reg_known_zero(env, regs, BPF_REG_0);
4062                /* remember map_ptr, so that check_map_access()
4063                 * can check 'value_size' boundary of memory access
4064                 * to map element returned from bpf_map_lookup_elem()
4065                 */
4066                if (meta.map_ptr == NULL) {
4067                        verbose(env,
4068                                "kernel subsystem misconfigured verifier\n");
4069                        return -EINVAL;
4070                }
4071                regs[BPF_REG_0].map_ptr = meta.map_ptr;
4072                if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4073                        regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
4074                        if (map_value_has_spin_lock(meta.map_ptr))
4075                                regs[BPF_REG_0].id = ++env->id_gen;
4076                } else {
4077                        regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4078                        regs[BPF_REG_0].id = ++env->id_gen;
4079                }
4080        } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4081                mark_reg_known_zero(env, regs, BPF_REG_0);
4082                regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
4083                regs[BPF_REG_0].id = ++env->id_gen;
4084        } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4085                mark_reg_known_zero(env, regs, BPF_REG_0);
4086                regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4087                regs[BPF_REG_0].id = ++env->id_gen;
4088        } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4089                mark_reg_known_zero(env, regs, BPF_REG_0);
4090                regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4091                regs[BPF_REG_0].id = ++env->id_gen;
4092        } else {
4093                verbose(env, "unknown return type %d of func %s#%d\n",
4094                        fn->ret_type, func_id_name(func_id), func_id);
4095                return -EINVAL;
4096        }
4097
4098        if (is_ptr_cast_function(func_id)) {
4099                /* For release_reference() */
4100                regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
4101        } else if (is_acquire_function(func_id)) {
4102                int id = acquire_reference_state(env, insn_idx);
4103
4104                if (id < 0)
4105                        return id;
4106                /* For mark_ptr_or_null_reg() */
4107                regs[BPF_REG_0].id = id;
4108                /* For release_reference() */
4109                regs[BPF_REG_0].ref_obj_id = id;
4110        }
4111
4112        do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4113
4114        err = check_map_func_compatibility(env, meta.map_ptr, func_id);
4115        if (err)
4116                return err;
4117
4118        if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4119                const char *err_str;
4120
4121#ifdef CONFIG_PERF_EVENTS
4122                err = get_callchain_buffers(sysctl_perf_event_max_stack);
4123                err_str = "cannot get callchain buffer for func %s#%d\n";
4124#else
4125                err = -ENOTSUPP;
4126                err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4127#endif
4128                if (err) {
4129                        verbose(env, err_str, func_id_name(func_id), func_id);
4130                        return err;
4131                }
4132
4133                env->prog->has_callchain_buf = true;
4134        }
4135
4136        if (changes_data)
4137                clear_all_pkt_pointers(env);
4138        return 0;
4139}
4140
4141static bool signed_add_overflows(s64 a, s64 b)
4142{
4143        /* Do the add in u64, where overflow is well-defined */
4144        s64 res = (s64)((u64)a + (u64)b);
4145
4146        if (b < 0)
4147                return res > a;
4148        return res < a;
4149}
4150
4151static bool signed_sub_overflows(s64 a, s64 b)
4152{
4153        /* Do the sub in u64, where overflow is well-defined */
4154        s64 res = (s64)((u64)a - (u64)b);
4155
4156        if (b < 0)
4157                return res < a;
4158        return res > a;
4159}
4160
4161static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4162                                  const struct bpf_reg_state *reg,
4163                                  enum bpf_reg_type type)
4164{
4165        bool known = tnum_is_const(reg->var_off);
4166        s64 val = reg->var_off.value;
4167        s64 smin = reg->smin_value;
4168
4169        if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4170                verbose(env, "math between %s pointer and %lld is not allowed\n",
4171                        reg_type_str[type], val);
4172                return false;
4173        }
4174
4175        if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4176                verbose(env, "%s pointer offset %d is not allowed\n",
4177                        reg_type_str[type], reg->off);
4178                return false;
4179        }
4180
4181        if (smin == S64_MIN) {
4182                verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4183                        reg_type_str[type]);
4184                return false;
4185        }
4186
4187        if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4188                verbose(env, "value %lld makes %s pointer be out of bounds\n",
4189                        smin, reg_type_str[type]);
4190                return false;
4191        }
4192
4193        return true;
4194}
4195
4196static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4197{
4198        return &env->insn_aux_data[env->insn_idx];
4199}
4200
4201static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4202                              u32 *ptr_limit, u8 opcode, bool off_is_neg)
4203{
4204        bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
4205                            (opcode == BPF_SUB && !off_is_neg);
4206        u32 off;
4207
4208        switch (ptr_reg->type) {
4209        case PTR_TO_STACK:
4210                /* Indirect variable offset stack access is prohibited in
4211                 * unprivileged mode so it's not handled here.
4212                 */
4213                off = ptr_reg->off + ptr_reg->var_off.value;
4214                if (mask_to_left)
4215                        *ptr_limit = MAX_BPF_STACK + off;
4216                else
4217                        *ptr_limit = -off;
4218                return 0;
4219        case PTR_TO_MAP_VALUE:
4220                if (mask_to_left) {
4221                        *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4222                } else {
4223                        off = ptr_reg->smin_value + ptr_reg->off;
4224                        *ptr_limit = ptr_reg->map_ptr->value_size - off;
4225                }
4226                return 0;
4227        default:
4228                return -EINVAL;
4229        }
4230}
4231
4232static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4233                                    const struct bpf_insn *insn)
4234{
4235        return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
4236}
4237
4238static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4239                                       u32 alu_state, u32 alu_limit)
4240{
4241        /* If we arrived here from different branches with different
4242         * state or limits to sanitize, then this won't work.
4243         */
4244        if (aux->alu_state &&
4245            (aux->alu_state != alu_state ||
4246             aux->alu_limit != alu_limit))
4247                return -EACCES;
4248
4249        /* Corresponding fixup done in fixup_bpf_calls(). */
4250        aux->alu_state = alu_state;
4251        aux->alu_limit = alu_limit;
4252        return 0;
4253}
4254
4255static int sanitize_val_alu(struct bpf_verifier_env *env,
4256                            struct bpf_insn *insn)
4257{
4258        struct bpf_insn_aux_data *aux = cur_aux(env);
4259
4260        if (can_skip_alu_sanitation(env, insn))
4261                return 0;
4262
4263        return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4264}
4265
4266static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4267                            struct bpf_insn *insn,
4268                            const struct bpf_reg_state *ptr_reg,
4269                            struct bpf_reg_state *dst_reg,
4270                            bool off_is_neg)
4271{
4272        struct bpf_verifier_state *vstate = env->cur_state;
4273        struct bpf_insn_aux_data *aux = cur_aux(env);
4274        bool ptr_is_dst_reg = ptr_reg == dst_reg;
4275        u8 opcode = BPF_OP(insn->code);
4276        u32 alu_state, alu_limit;
4277        struct bpf_reg_state tmp;
4278        bool ret;
4279
4280        if (can_skip_alu_sanitation(env, insn))
4281                return 0;
4282
4283        /* We already marked aux for masking from non-speculative
4284         * paths, thus we got here in the first place. We only care
4285         * to explore bad access from here.
4286         */
4287        if (vstate->speculative)
4288                goto do_sim;
4289
4290        alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4291        alu_state |= ptr_is_dst_reg ?
4292                     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4293
4294        if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
4295                return 0;
4296        if (update_alu_sanitation_state(aux, alu_state, alu_limit))
4297                return -EACCES;
4298do_sim:
4299        /* Simulate and find potential out-of-bounds access under
4300         * speculative execution from truncation as a result of
4301         * masking when off was not within expected range. If off
4302         * sits in dst, then we temporarily need to move ptr there
4303         * to simulate dst (== 0) +/-= ptr. Needed, for example,
4304         * for cases where we use K-based arithmetic in one direction
4305         * and truncated reg-based in the other in order to explore
4306         * bad access.
4307         */
4308        if (!ptr_is_dst_reg) {
4309                tmp = *dst_reg;
4310                *dst_reg = *ptr_reg;
4311        }
4312        ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
4313        if (!ptr_is_dst_reg && ret)
4314                *dst_reg = tmp;
4315        return !ret ? -EFAULT : 0;
4316}
4317
4318/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
4319 * Caller should also handle BPF_MOV case separately.
4320 * If we return -EACCES, caller may want to try again treating pointer as a
4321 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
4322 */
4323static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
4324                                   struct bpf_insn *insn,
4325                                   const struct bpf_reg_state *ptr_reg,
4326                                   const struct bpf_reg_state *off_reg)
4327{
4328        struct bpf_verifier_state *vstate = env->cur_state;
4329        struct bpf_func_state *state = vstate->frame[vstate->curframe];
4330        struct bpf_reg_state *regs = state->regs, *dst_reg;
4331        bool known = tnum_is_const(off_reg->var_off);
4332        s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
4333            smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
4334        u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
4335            umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
4336        u32 dst = insn->dst_reg, src = insn->src_reg;
4337        u8 opcode = BPF_OP(insn->code);
4338        int ret;
4339
4340        dst_reg = &regs[dst];
4341
4342        if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
4343            smin_val > smax_val || umin_val > umax_val) {
4344                /* Taint dst register if offset had invalid bounds derived from
4345                 * e.g. dead branches.
4346                 */
4347                __mark_reg_unknown(dst_reg);
4348                return 0;
4349        }
4350
4351        if (BPF_CLASS(insn->code) != BPF_ALU64) {
4352                /* 32-bit ALU ops on pointers produce (meaningless) scalars */
4353                verbose(env,
4354                        "R%d 32-bit pointer arithmetic prohibited\n",
4355                        dst);
4356                return -EACCES;
4357        }
4358
4359        switch (ptr_reg->type) {
4360        case PTR_TO_MAP_VALUE_OR_NULL:
4361                verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4362                        dst, reg_type_str[ptr_reg->type]);
4363                return -EACCES;
4364        case CONST_PTR_TO_MAP:
4365        case PTR_TO_PACKET_END:
4366        case PTR_TO_SOCKET:
4367        case PTR_TO_SOCKET_OR_NULL:
4368        case PTR_TO_SOCK_COMMON:
4369        case PTR_TO_SOCK_COMMON_OR_NULL:
4370        case PTR_TO_TCP_SOCK:
4371        case PTR_TO_TCP_SOCK_OR_NULL:
4372        case PTR_TO_XDP_SOCK:
4373                verbose(env, "R%d pointer arithmetic on %s prohibited\n",
4374                        dst, reg_type_str[ptr_reg->type]);
4375                return -EACCES;
4376        case PTR_TO_MAP_VALUE:
4377                if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
4378                        verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
4379                                off_reg == dst_reg ? dst : src);
4380                        return -EACCES;
4381                }
4382                /* fall-through */
4383        default:
4384                break;
4385        }
4386
4387        /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4388         * The id may be overwritten later if we create a new variable offset.
4389         */
4390        dst_reg->type = ptr_reg->type;
4391        dst_reg->id = ptr_reg->id;
4392
4393        if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
4394            !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
4395                return -EINVAL;
4396
4397        switch (opcode) {
4398        case BPF_ADD:
4399                ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4400                if (ret < 0) {
4401                        verbose(env, "R%d tried to add from different maps or paths\n", dst);
4402                        return ret;
4403                }
4404                /* We can take a fixed offset as long as it doesn't overflow
4405                 * the s32 'off' field
4406                 */
4407                if (known && (ptr_reg->off + smin_val ==
4408                              (s64)(s32)(ptr_reg->off + smin_val))) {
4409                        /* pointer += K.  Accumulate it into fixed offset */
4410                        dst_reg->smin_value = smin_ptr;
4411                        dst_reg->smax_value = smax_ptr;
4412                        dst_reg->umin_value = umin_ptr;
4413                        dst_reg->umax_value = umax_ptr;
4414                        dst_reg->var_off = ptr_reg->var_off;
4415                        dst_reg->off = ptr_reg->off + smin_val;
4416                        dst_reg->raw = ptr_reg->raw;
4417                        break;
4418                }
4419                /* A new variable offset is created.  Note that off_reg->off
4420                 * == 0, since it's a scalar.
4421                 * dst_reg gets the pointer type and since some positive
4422                 * integer value was added to the pointer, give it a new 'id'
4423                 * if it's a PTR_TO_PACKET.
4424                 * this creates a new 'base' pointer, off_reg (variable) gets
4425                 * added into the variable offset, and we copy the fixed offset
4426                 * from ptr_reg.
4427                 */
4428                if (signed_add_overflows(smin_ptr, smin_val) ||
4429                    signed_add_overflows(smax_ptr, smax_val)) {
4430                        dst_reg->smin_value = S64_MIN;
4431                        dst_reg->smax_value = S64_MAX;
4432                } else {
4433                        dst_reg->smin_value = smin_ptr + smin_val;
4434                        dst_reg->smax_value = smax_ptr + smax_val;
4435                }
4436                if (umin_ptr + umin_val < umin_ptr ||
4437                    umax_ptr + umax_val < umax_ptr) {
4438                        dst_reg->umin_value = 0;
4439                        dst_reg->umax_value = U64_MAX;
4440                } else {
4441                        dst_reg->umin_value = umin_ptr + umin_val;
4442                        dst_reg->umax_value = umax_ptr + umax_val;
4443                }
4444                dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
4445                dst_reg->off = ptr_reg->off;
4446                dst_reg->raw = ptr_reg->raw;
4447                if (reg_is_pkt_pointer(ptr_reg)) {
4448                        dst_reg->id = ++env->id_gen;
4449                        /* something was added to pkt_ptr, set range to zero */
4450                        dst_reg->raw = 0;
4451                }
4452                break;
4453        case BPF_SUB:
4454                ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4455                if (ret < 0) {
4456                        verbose(env, "R%d tried to sub from different maps or paths\n", dst);
4457                        return ret;
4458                }
4459                if (dst_reg == off_reg) {
4460                        /* scalar -= pointer.  Creates an unknown scalar */
4461                        verbose(env, "R%d tried to subtract pointer from scalar\n",
4462                                dst);
4463                        return -EACCES;
4464                }
4465                /* We don't allow subtraction from FP, because (according to
4466                 * test_verifier.c test "invalid fp arithmetic", JITs might not
4467                 * be able to deal with it.
4468                 */
4469                if (ptr_reg->type == PTR_TO_STACK) {
4470                        verbose(env, "R%d subtraction from stack pointer prohibited\n",
4471                                dst);
4472                        return -EACCES;
4473                }
4474                if (known && (ptr_reg->off - smin_val ==
4475                              (s64)(s32)(ptr_reg->off - smin_val))) {
4476                        /* pointer -= K.  Subtract it from fixed offset */
4477                        dst_reg->smin_value = smin_ptr;
4478                        dst_reg->smax_value = smax_ptr;
4479                        dst_reg->umin_value = umin_ptr;
4480                        dst_reg->umax_value = umax_ptr;
4481                        dst_reg->var_off = ptr_reg->var_off;
4482                        dst_reg->id = ptr_reg->id;
4483                        dst_reg->off = ptr_reg->off - smin_val;
4484                        dst_reg->raw = ptr_reg->raw;
4485                        break;
4486                }
4487                /* A new variable offset is created.  If the subtrahend is known
4488                 * nonnegative, then any reg->range we had before is still good.
4489                 */
4490                if (signed_sub_overflows(smin_ptr, smax_val) ||
4491                    signed_sub_overflows(smax_ptr, smin_val)) {
4492                        /* Overflow possible, we know nothing */
4493                        dst_reg->smin_value = S64_MIN;
4494                        dst_reg->smax_value = S64_MAX;
4495                } else {
4496                        dst_reg->smin_value = smin_ptr - smax_val;
4497                        dst_reg->smax_value = smax_ptr - smin_val;
4498                }
4499                if (umin_ptr < umax_val) {
4500                        /* Overflow possible, we know nothing */
4501                        dst_reg->umin_value = 0;
4502                        dst_reg->umax_value = U64_MAX;
4503                } else {
4504                        /* Cannot overflow (as long as bounds are consistent) */
4505                        dst_reg->umin_value = umin_ptr - umax_val;
4506                        dst_reg->umax_value = umax_ptr - umin_val;
4507                }
4508                dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
4509                dst_reg->off = ptr_reg->off;
4510                dst_reg->raw = ptr_reg->raw;
4511                if (reg_is_pkt_pointer(ptr_reg)) {
4512                        dst_reg->id = ++env->id_gen;
4513                        /* something was added to pkt_ptr, set range to zero */
4514                        if (smin_val < 0)
4515                                dst_reg->raw = 0;
4516                }
4517                break;
4518        case BPF_AND:
4519        case BPF_OR:
4520        case BPF_XOR:
4521                /* bitwise ops on pointers are troublesome, prohibit. */
4522                verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
4523                        dst, bpf_alu_string[opcode >> 4]);
4524                return -EACCES;
4525        default:
4526                /* other operators (e.g. MUL,LSH) produce non-pointer results */
4527                verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
4528                        dst, bpf_alu_string[opcode >> 4]);
4529                return -EACCES;
4530        }
4531
4532        if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
4533                return -EINVAL;
4534
4535        __update_reg_bounds(dst_reg);
4536        __reg_deduce_bounds(dst_reg);
4537        __reg_bound_offset(dst_reg);
4538
4539        /* For unprivileged we require that resulting offset must be in bounds
4540         * in order to be able to sanitize access later on.
4541         */
4542        if (!env->allow_ptr_leaks) {
4543                if (dst_reg->type == PTR_TO_MAP_VALUE &&
4544                    check_map_access(env, dst, dst_reg->off, 1, false)) {
4545                        verbose(env, "R%d pointer arithmetic of map value goes out of range, "
4546                                "prohibited for !root\n", dst);
4547                        return -EACCES;
4548                } else if (dst_reg->type == PTR_TO_STACK &&
4549                           check_stack_access(env, dst_reg, dst_reg->off +
4550                                              dst_reg->var_off.value, 1)) {
4551                        verbose(env, "R%d stack pointer arithmetic goes out of range, "
4552                                "prohibited for !root\n", dst);
4553                        return -EACCES;
4554                }
4555        }
4556
4557        return 0;
4558}
4559
4560/* WARNING: This function does calculations on 64-bit values, but the actual
4561 * execution may occur on 32-bit values. Therefore, things like bitshifts
4562 * need extra checks in the 32-bit case.
4563 */
4564static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
4565                                      struct bpf_insn *insn,
4566                                      struct bpf_reg_state *dst_reg,
4567                                      struct bpf_reg_state src_reg)
4568{
4569        struct bpf_reg_state *regs = cur_regs(env);
4570        u8 opcode = BPF_OP(insn->code);
4571        bool src_known, dst_known;
4572        s64 smin_val, smax_val;
4573        u64 umin_val, umax_val;
4574        u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
4575        u32 dst = insn->dst_reg;
4576        int ret;
4577
4578        if (insn_bitness == 32) {
4579                /* Relevant for 32-bit RSH: Information can propagate towards
4580                 * LSB, so it isn't sufficient to only truncate the output to
4581                 * 32 bits.
4582                 */
4583                coerce_reg_to_size(dst_reg, 4);
4584                coerce_reg_to_size(&src_reg, 4);
4585        }
4586
4587        smin_val = src_reg.smin_value;
4588        smax_val = src_reg.smax_value;
4589        umin_val = src_reg.umin_value;
4590        umax_val = src_reg.umax_value;
4591        src_known = tnum_is_const(src_reg.var_off);
4592        dst_known = tnum_is_const(dst_reg->var_off);
4593
4594        if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
4595            smin_val > smax_val || umin_val > umax_val) {
4596                /* Taint dst register if offset had invalid bounds derived from
4597                 * e.g. dead branches.
4598                 */
4599                __mark_reg_unknown(dst_reg);
4600                return 0;
4601        }
4602
4603        if (!src_known &&
4604            opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
4605                __mark_reg_unknown(dst_reg);
4606                return 0;
4607        }
4608
4609        switch (opcode) {
4610        case BPF_ADD:
4611                ret = sanitize_val_alu(env, insn);
4612                if (ret < 0) {
4613                        verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
4614                        return ret;
4615                }
4616                if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
4617                    signed_add_overflows(dst_reg->smax_value, smax_val)) {
4618                        dst_reg->smin_value = S64_MIN;
4619                        dst_reg->smax_value = S64_MAX;
4620                } else {
4621                        dst_reg->smin_value += smin_val;
4622                        dst_reg->smax_value += smax_val;
4623                }
4624                if (dst_reg->umin_value + umin_val < umin_val ||
4625                    dst_reg->umax_value + umax_val < umax_val) {
4626                        dst_reg->umin_value = 0;
4627                        dst_reg->umax_value = U64_MAX;
4628                } else {
4629                        dst_reg->umin_value += umin_val;
4630                        dst_reg->umax_value += umax_val;
4631                }
4632                dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
4633                break;
4634        case BPF_SUB:
4635                ret = sanitize_val_alu(env, insn);
4636                if (ret < 0) {
4637                        verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
4638                        return ret;
4639                }
4640                if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
4641                    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
4642                        /* Overflow possible, we know nothing */
4643                        dst_reg->smin_value = S64_MIN;
4644                        dst_reg->smax_value = S64_MAX;
4645                } else {
4646                        dst_reg->smin_value -= smax_val;
4647                        dst_reg->smax_value -= smin_val;
4648                }
4649                if (dst_reg->umin_value < umax_val) {
4650                        /* Overflow possible, we know nothing */
4651                        dst_reg->umin_value = 0;
4652                        dst_reg->umax_value = U64_MAX;
4653                } else {
4654                        /* Cannot overflow (as long as bounds are consistent) */
4655                        dst_reg->umin_value -= umax_val;
4656                        dst_reg->umax_value -= umin_val;
4657                }
4658                dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
4659                break;
4660        case BPF_MUL:
4661                dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
4662                if (smin_val < 0 || dst_reg->smin_value < 0) {
4663                        /* Ain't nobody got time to multiply that sign */
4664                        __mark_reg_unbounded(dst_reg);
4665                        __update_reg_bounds(dst_reg);
4666                        break;
4667                }
4668                /* Both values are positive, so we can work with unsigned and
4669                 * copy the result to signed (unless it exceeds S64_MAX).
4670                 */
4671                if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
4672                        /* Potential overflow, we know nothing */
4673                        __mark_reg_unbounded(dst_reg);
4674                        /* (except what we can learn from the var_off) */
4675                        __update_reg_bounds(dst_reg);
4676                        break;
4677                }
4678                dst_reg->umin_value *= umin_val;
4679                dst_reg->umax_value *= umax_val;
4680                if (dst_reg->umax_value > S64_MAX) {
4681                        /* Overflow possible, we know nothing */
4682                        dst_reg->smin_value = S64_MIN;
4683                        dst_reg->smax_value = S64_MAX;
4684                } else {
4685                        dst_reg->smin_value = dst_reg->umin_value;
4686                        dst_reg->smax_value = dst_reg->umax_value;
4687                }
4688                break;
4689        case BPF_AND:
4690                if (src_known && dst_known) {
4691                        __mark_reg_known(dst_reg, dst_reg->var_off.value &
4692                                                  src_reg.var_off.value);
4693                        break;
4694                }
4695                /* We get our minimum from the var_off, since that's inherently
4696                 * bitwise.  Our maximum is the minimum of the operands' maxima.
4697                 */
4698                dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
4699                dst_reg->umin_value = dst_reg->var_off.value;
4700                dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
4701                if (dst_reg->smin_value < 0 || smin_val < 0) {
4702                        /* Lose signed bounds when ANDing negative numbers,
4703                         * ain't nobody got time for that.
4704                         */
4705                        dst_reg->smin_value = S64_MIN;
4706                        dst_reg->smax_value = S64_MAX;
4707                } else {
4708                        /* ANDing two positives gives a positive, so safe to
4709                         * cast result into s64.
4710                         */
4711                        dst_reg->smin_value = dst_reg->umin_value;
4712                        dst_reg->smax_value = dst_reg->umax_value;
4713                }
4714                /* We may learn something more from the var_off */
4715                __update_reg_bounds(dst_reg);
4716                break;
4717        case BPF_OR:
4718                if (src_known && dst_known) {
4719                        __mark_reg_known(dst_reg, dst_reg->var_off.value |
4720                                                  src_reg.var_off.value);
4721                        break;
4722                }
4723                /* We get our maximum from the var_off, and our minimum is the
4724                 * maximum of the operands' minima
4725                 */
4726                dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
4727                dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4728                dst_reg->umax_value = dst_reg->var_off.value |
4729                                      dst_reg->var_off.mask;
4730                if (dst_reg->smin_value < 0 || smin_val < 0) {
4731                        /* Lose signed bounds when ORing negative numbers,
4732                         * ain't nobody got time for that.
4733                         */
4734                        dst_reg->smin_value = S64_MIN;
4735                        dst_reg->smax_value = S64_MAX;
4736                } else {
4737                        /* ORing two positives gives a positive, so safe to
4738                         * cast result into s64.
4739                         */
4740                        dst_reg->smin_value = dst_reg->umin_value;
4741                        dst_reg->smax_value = dst_reg->umax_value;
4742                }
4743                /* We may learn something more from the var_off */
4744                __update_reg_bounds(dst_reg);
4745                break;
4746        case BPF_LSH:
4747                if (umax_val >= insn_bitness) {
4748                        /* Shifts greater than 31 or 63 are undefined.
4749                         * This includes shifts by a negative number.
4750                         */
4751                        mark_reg_unknown(env, regs, insn->dst_reg);
4752                        break;
4753                }
4754                /* We lose all sign bit information (except what we can pick
4755                 * up from var_off)
4756                 */
4757                dst_reg->smin_value = S64_MIN;
4758                dst_reg->smax_value = S64_MAX;
4759                /* If we might shift our top bit out, then we know nothing */
4760                if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
4761                        dst_reg->umin_value = 0;
4762                        dst_reg->umax_value = U64_MAX;
4763                } else {
4764                        dst_reg->umin_value <<= umin_val;
4765                        dst_reg->umax_value <<= umax_val;
4766                }
4767                dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
4768                /* We may learn something more from the var_off */
4769                __update_reg_bounds(dst_reg);
4770                break;
4771        case BPF_RSH:
4772                if (umax_val >= insn_bitness) {
4773                        /* Shifts greater than 31 or 63 are undefined.
4774                         * This includes shifts by a negative number.
4775                         */
4776                        mark_reg_unknown(env, regs, insn->dst_reg);
4777                        break;
4778                }
4779                /* BPF_RSH is an unsigned shift.  If the value in dst_reg might
4780                 * be negative, then either:
4781                 * 1) src_reg might be zero, so the sign bit of the result is
4782                 *    unknown, so we lose our signed bounds
4783                 * 2) it's known negative, thus the unsigned bounds capture the
4784                 *    signed bounds
4785                 * 3) the signed bounds cross zero, so they tell us nothing
4786                 *    about the result
4787                 * If the value in dst_reg is known nonnegative, then again the
4788                 * unsigned bounts capture the signed bounds.
4789                 * Thus, in all cases it suffices to blow away our signed bounds
4790                 * and rely on inferring new ones from the unsigned bounds and
4791                 * var_off of the result.
4792                 */
4793                dst_reg->smin_value = S64_MIN;
4794                dst_reg->smax_value = S64_MAX;
4795                dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
4796                dst_reg->umin_value >>= umax_val;
4797                dst_reg->umax_value >>= umin_val;
4798                /* We may learn something more from the var_off */
4799                __update_reg_bounds(dst_reg);
4800                break;
4801        case BPF_ARSH:
4802                if (umax_val >= insn_bitness) {
4803                        /* Shifts greater than 31 or 63 are undefined.
4804                         * This includes shifts by a negative number.
4805                         */
4806                        mark_reg_unknown(env, regs, insn->dst_reg);
4807                        break;
4808                }
4809
4810                /* Upon reaching here, src_known is true and
4811                 * umax_val is equal to umin_val.
4812                 */
4813                dst_reg->smin_value >>= umin_val;
4814                dst_reg->smax_value >>= umin_val;
4815                dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
4816
4817                /* blow away the dst_reg umin_value/umax_value and rely on
4818                 * dst_reg var_off to refine the result.
4819                 */
4820                dst_reg->umin_value = 0;
4821                dst_reg->umax_value = U64_MAX;
4822                __update_reg_bounds(dst_reg);
4823                break;
4824        default:
4825                mark_reg_unknown(env, regs, insn->dst_reg);
4826                break;
4827        }
4828
4829        if (BPF_CLASS(insn->code) != BPF_ALU64) {
4830                /* 32-bit ALU ops are (32,32)->32 */
4831                coerce_reg_to_size(dst_reg, 4);
4832        }
4833
4834        __reg_deduce_bounds(dst_reg);
4835        __reg_bound_offset(dst_reg);
4836        return 0;
4837}
4838
4839/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
4840 * and var_off.
4841 */
4842static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
4843                                   struct bpf_insn *insn)
4844{
4845        struct bpf_verifier_state *vstate = env->cur_state;
4846        struct bpf_func_state *state = vstate->frame[vstate->curframe];
4847        struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
4848        struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
4849        u8 opcode = BPF_OP(insn->code);
4850        int err;
4851
4852        dst_reg = &regs[insn->dst_reg];
4853        src_reg = NULL;
4854        if (dst_reg->type != SCALAR_VALUE)
4855                ptr_reg = dst_reg;
4856        if (BPF_SRC(insn->code) == BPF_X) {
4857                src_reg = &regs[insn->src_reg];
4858                if (src_reg->type != SCALAR_VALUE) {
4859                        if (dst_reg->type != SCALAR_VALUE) {
4860                                /* Combining two pointers by any ALU op yields
4861                                 * an arbitrary scalar. Disallow all math except
4862                                 * pointer subtraction
4863                                 */
4864                                if (opcode == BPF_SUB && env->allow_ptr_leaks) {
4865                                        mark_reg_unknown(env, regs, insn->dst_reg);
4866                                        return 0;
4867                                }
4868                                verbose(env, "R%d pointer %s pointer prohibited\n",
4869                                        insn->dst_reg,
4870                                        bpf_alu_string[opcode >> 4]);
4871                                return -EACCES;
4872                        } else {
4873                                /* scalar += pointer
4874                                 * This is legal, but we have to reverse our
4875                                 * src/dest handling in computing the range
4876                                 */
4877                                err = mark_chain_precision(env, insn->dst_reg);
4878                                if (err)
4879                                        return err;
4880                                return adjust_ptr_min_max_vals(env, insn,
4881                                                               src_reg, dst_reg);
4882                        }
4883                } else if (ptr_reg) {
4884                        /* pointer += scalar */
4885                        err = mark_chain_precision(env, insn->src_reg);
4886                        if (err)
4887                                return err;
4888                        return adjust_ptr_min_max_vals(env, insn,
4889                                                       dst_reg, src_reg);
4890                }
4891        } else {
4892                /* Pretend the src is a reg with a known value, since we only
4893                 * need to be able to read from this state.
4894                 */
4895                off_reg.type = SCALAR_VALUE;
4896                __mark_reg_known(&off_reg, insn->imm);
4897                src_reg = &off_reg;
4898                if (ptr_reg) /* pointer += K */
4899                        return adjust_ptr_min_max_vals(env, insn,
4900                                                       ptr_reg, src_reg);
4901        }
4902
4903        /* Got here implies adding two SCALAR_VALUEs */
4904        if (WARN_ON_ONCE(ptr_reg)) {
4905                print_verifier_state(env, state);
4906                verbose(env, "verifier internal error: unexpected ptr_reg\n");
4907                return -EINVAL;
4908        }
4909        if (WARN_ON(!src_reg)) {
4910                print_verifier_state(env, state);
4911                verbose(env, "verifier internal error: no src_reg\n");
4912                return -EINVAL;
4913        }
4914        return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
4915}
4916
4917/* check validity of 32-bit and 64-bit arithmetic operations */
4918static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
4919{
4920        struct bpf_reg_state *regs = cur_regs(env);
4921        u8 opcode = BPF_OP(insn->code);
4922        int err;
4923
4924        if (opcode == BPF_END || opcode == BPF_NEG) {
4925                if (opcode == BPF_NEG) {
4926                        if (BPF_SRC(insn->code) != 0 ||
4927                            insn->src_reg != BPF_REG_0 ||
4928                            insn->off != 0 || insn->imm != 0) {
4929                                verbose(env, "BPF_NEG uses reserved fields\n");
4930                                return -EINVAL;
4931                        }
4932                } else {
4933                        if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
4934                            (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
4935                            BPF_CLASS(insn->code) == BPF_ALU64) {
4936                                verbose(env, "BPF_END uses reserved fields\n");
4937                                return -EINVAL;
4938                        }
4939                }
4940
4941                /* check src operand */
4942                err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4943                if (err)
4944                        return err;
4945
4946                if (is_pointer_value(env, insn->dst_reg)) {
4947                        verbose(env, "R%d pointer arithmetic prohibited\n",
4948                                insn->dst_reg);
4949                        return -EACCES;
4950                }
4951
4952                /* check dest operand */
4953                err = check_reg_arg(env, insn->dst_reg, DST_OP);
4954                if (err)
4955                        return err;
4956
4957        } else if (opcode == BPF_MOV) {
4958
4959                if (BPF_SRC(insn->code) == BPF_X) {
4960                        if (insn->imm != 0 || insn->off != 0) {
4961                                verbose(env, "BPF_MOV uses reserved fields\n");
4962                                return -EINVAL;
4963                        }
4964
4965                        /* check src operand */
4966                        err = check_reg_arg(env, insn->src_reg, SRC_OP);
4967                        if (err)
4968                                return err;
4969                } else {
4970                        if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4971                                verbose(env, "BPF_MOV uses reserved fields\n");
4972                                return -EINVAL;
4973                        }
4974                }
4975
4976                /* check dest operand, mark as required later */
4977                err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4978                if (err)
4979                        return err;
4980
4981                if (BPF_SRC(insn->code) == BPF_X) {
4982                        struct bpf_reg_state *src_reg = regs + insn->src_reg;
4983                        struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4984
4985                        if (BPF_CLASS(insn->code) == BPF_ALU64) {
4986                                /* case: R1 = R2
4987                                 * copy register state to dest reg
4988                                 */
4989                                *dst_reg = *src_reg;
4990                                dst_reg->live |= REG_LIVE_WRITTEN;
4991                                dst_reg->subreg_def = DEF_NOT_SUBREG;
4992                        } else {
4993                                /* R1 = (u32) R2 */
4994                                if (is_pointer_value(env, insn->src_reg)) {
4995                                        verbose(env,
4996                                                "R%d partial copy of pointer\n",
4997                                                insn->src_reg);
4998                                        return -EACCES;
4999                                } else if (src_reg->type == SCALAR_VALUE) {
5000                                        *dst_reg = *src_reg;
5001                                        dst_reg->live |= REG_LIVE_WRITTEN;
5002                                        dst_reg->subreg_def = env->insn_idx + 1;
5003                                } else {
5004                                        mark_reg_unknown(env, regs,
5005                                                         insn->dst_reg);
5006                                }
5007                                coerce_reg_to_size(dst_reg, 4);
5008                        }
5009                } else {
5010                        /* case: R = imm
5011                         * remember the value we stored into this reg
5012                         */
5013                        /* clear any state __mark_reg_known doesn't set */
5014                        mark_reg_unknown(env, regs, insn->dst_reg);
5015                        regs[insn->dst_reg].type = SCALAR_VALUE;
5016                        if (BPF_CLASS(insn->code) == BPF_ALU64) {
5017                                __mark_reg_known(regs + insn->dst_reg,
5018                                                 insn->imm);
5019                        } else {
5020                                __mark_reg_known(regs + insn->dst_reg,
5021                                                 (u32)insn->imm);
5022                        }
5023                }
5024
5025        } else if (opcode > BPF_END) {
5026                verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
5027                return -EINVAL;
5028
5029        } else {        /* all other ALU ops: and, sub, xor, add, ... */
5030
5031                if (BPF_SRC(insn->code) == BPF_X) {
5032                        if (insn->imm != 0 || insn->off != 0) {
5033                                verbose(env, "BPF_ALU uses reserved fields\n");
5034                                return -EINVAL;
5035                        }
5036                        /* check src1 operand */
5037                        err = check_reg_arg(env, insn->src_reg, SRC_OP);
5038                        if (err)
5039                                return err;
5040                } else {
5041                        if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
5042                                verbose(env, "BPF_ALU uses reserved fields\n");
5043                                return -EINVAL;
5044                        }
5045                }
5046
5047                /* check src2 operand */
5048                err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5049                if (err)
5050                        return err;
5051
5052                if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
5053                    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
5054                        verbose(env, "div by zero\n");
5055                        return -EINVAL;
5056                }
5057
5058                if ((opcode == BPF_LSH || opcode == BPF_RSH ||
5059                     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
5060                        int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
5061
5062                        if (insn->imm < 0 || insn->imm >= size) {
5063                                verbose(env, "invalid shift %d\n", insn->imm);
5064                                return -EINVAL;
5065                        }
5066                }
5067
5068                /* check dest operand */
5069                err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5070                if (err)
5071                        return err;
5072
5073                return adjust_reg_min_max_vals(env, insn);
5074        }
5075
5076        return 0;
5077}
5078
5079static void __find_good_pkt_pointers(struct bpf_func_state *state,
5080                                     struct bpf_reg_state *dst_reg,
5081                                     enum bpf_reg_type type, u16 new_range)
5082{
5083        struct bpf_reg_state *reg;
5084        int i;
5085
5086        for (i = 0; i < MAX_BPF_REG; i++) {
5087                reg = &state->regs[i];
5088                if (reg->type == type && reg->id == dst_reg->id)
5089                        /* keep the maximum range already checked */
5090                        reg->range = max(reg->range, new_range);
5091        }
5092
5093        bpf_for_each_spilled_reg(i, state, reg) {
5094                if (!reg)
5095                        continue;
5096                if (reg->type == type && reg->id == dst_reg->id)
5097                        reg->range = max(reg->range, new_range);
5098        }
5099}
5100
5101static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
5102                                   struct bpf_reg_state *dst_reg,
5103                                   enum bpf_reg_type type,
5104                                   bool range_right_open)
5105{
5106        u16 new_range;
5107        int i;
5108
5109        if (dst_reg->off < 0 ||
5110            (dst_reg->off == 0 && range_right_open))
5111                /* This doesn't give us any range */
5112                return;
5113
5114        if (dst_reg->umax_value > MAX_PACKET_OFF ||
5115            dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
5116                /* Risk of overflow.  For instance, ptr + (1<<63) may be less
5117                 * than pkt_end, but that's because it's also less than pkt.
5118                 */
5119                return;
5120
5121        new_range = dst_reg->off;
5122        if (range_right_open)
5123                new_range--;
5124
5125        /* Examples for register markings:
5126         *
5127         * pkt_data in dst register:
5128         *
5129         *   r2 = r3;
5130         *   r2 += 8;
5131         *   if (r2 > pkt_end) goto <handle exception>
5132         *   <access okay>
5133         *
5134         *   r2 = r3;
5135         *   r2 += 8;
5136         *   if (r2 < pkt_end) goto <access okay>
5137         *   <handle exception>
5138         *
5139         *   Where:
5140         *     r2 == dst_reg, pkt_end == src_reg
5141         *     r2=pkt(id=n,off=8,r=0)
5142         *     r3=pkt(id=n,off=0,r=0)
5143         *
5144         * pkt_data in src register:
5145         *
5146         *   r2 = r3;
5147         *   r2 += 8;
5148         *   if (pkt_end >= r2) goto <access okay>
5149         *   <handle exception>
5150         *
5151         *   r2 = r3;
5152         *   r2 += 8;
5153         *   if (pkt_end <= r2) goto <handle exception>
5154         *   <access okay>
5155         *
5156         *   Where:
5157         *     pkt_end == dst_reg, r2 == src_reg
5158         *     r2=pkt(id=n,off=8,r=0)
5159         *     r3=pkt(id=n,off=0,r=0)
5160         *
5161         * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
5162         * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
5163         * and [r3, r3 + 8-1) respectively is safe to access depending on
5164         * the check.
5165         */
5166
5167        /* If our ids match, then we must have the same max_value.  And we
5168         * don't care about the other reg's fixed offset, since if it's too big
5169         * the range won't allow anything.
5170         * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
5171         */
5172        for (i = 0; i <= vstate->curframe; i++)
5173                __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
5174                                         new_range);
5175}
5176
5177/* compute branch direction of the expression "if (reg opcode val) goto target;"
5178 * and return:
5179 *  1 - branch will be taken and "goto target" will be executed
5180 *  0 - branch will not be taken and fall-through to next insn
5181 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
5182 */
5183static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
5184                           bool is_jmp32)
5185{
5186        struct bpf_reg_state reg_lo;
5187        s64 sval;
5188
5189        if (__is_pointer_value(false, reg))
5190                return -1;
5191
5192        if (is_jmp32) {
5193                reg_lo = *reg;
5194                reg = &reg_lo;
5195                /* For JMP32, only low 32 bits are compared, coerce_reg_to_size
5196                 * could truncate high bits and update umin/umax according to
5197                 * information of low bits.
5198                 */
5199                coerce_reg_to_size(reg, 4);
5200                /* smin/smax need special handling. For example, after coerce,
5201                 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
5202                 * used as operand to JMP32. It is a negative number from s32's
5203                 * point of view, while it is a positive number when seen as
5204                 * s64. The smin/smax are kept as s64, therefore, when used with
5205                 * JMP32, they need to be transformed into s32, then sign
5206                 * extended back to s64.
5207                 *
5208                 * Also, smin/smax were copied from umin/umax. If umin/umax has
5209                 * different sign bit, then min/max relationship doesn't
5210                 * maintain after casting into s32, for this case, set smin/smax
5211                 * to safest range.
5212                 */
5213                if ((reg->umax_value ^ reg->umin_value) &
5214                    (1ULL << 31)) {
5215                        reg->smin_value = S32_MIN;
5216                        reg->smax_value = S32_MAX;
5217                }
5218                reg->smin_value = (s64)(s32)reg->smin_value;
5219                reg->smax_value = (s64)(s32)reg->smax_value;
5220
5221                val = (u32)val;
5222                sval = (s64)(s32)val;
5223        } else {
5224                sval = (s64)val;
5225        }
5226
5227        switch (opcode) {
5228        case BPF_JEQ:
5229                if (tnum_is_const(reg->var_off))
5230                        return !!tnum_equals_const(reg->var_off, val);
5231                break;
5232        case BPF_JNE:
5233                if (tnum_is_const(reg->var_off))
5234                        return !tnum_equals_const(reg->var_off, val);
5235                break;
5236        case BPF_JSET:
5237                if ((~reg->var_off.mask & reg->var_off.value) & val)
5238                        return 1;
5239                if (!((reg->var_off.mask | reg->var_off.value) & val))
5240                        return 0;
5241                break;
5242        case BPF_JGT:
5243                if (reg->umin_value > val)
5244                        return 1;
5245                else if (reg->umax_value <= val)
5246                        return 0;
5247                break;
5248        case BPF_JSGT:
5249                if (reg->smin_value > sval)
5250                        return 1;
5251                else if (reg->smax_value < sval)
5252                        return 0;
5253                break;
5254        case BPF_JLT:
5255                if (reg->umax_value < val)
5256                        return 1;
5257                else if (reg->umin_value >= val)
5258                        return 0;
5259                break;
5260        case BPF_JSLT:
5261                if (reg->smax_value < sval)
5262                        return 1;
5263                else if (reg->smin_value >= sval)
5264                        return 0;
5265                break;
5266        case BPF_JGE:
5267                if (reg->umin_value >= val)
5268                        return 1;
5269                else if (reg->umax_value < val)
5270                        return 0;
5271                break;
5272        case BPF_JSGE:
5273                if (reg->smin_value >= sval)
5274                        return 1;
5275                else if (reg->smax_value < sval)
5276                        return 0;
5277                break;
5278        case BPF_JLE:
5279                if (reg->umax_value <= val)
5280                        return 1;
5281                else if (reg->umin_value > val)
5282                        return 0;
5283                break;
5284        case BPF_JSLE:
5285                if (reg->smax_value <= sval)
5286                        return 1;
5287                else if (reg->smin_value > sval)
5288                        return 0;
5289                break;
5290        }
5291
5292        return -1;
5293}
5294
5295/* Generate min value of the high 32-bit from TNUM info. */
5296static u64 gen_hi_min(struct tnum var)
5297{
5298        return var.value & ~0xffffffffULL;
5299}
5300
5301/* Generate max value of the high 32-bit from TNUM info. */
5302static u64 gen_hi_max(struct tnum var)
5303{
5304        return (var.value | var.mask) & ~0xffffffffULL;
5305}
5306
5307/* Return true if VAL is compared with a s64 sign extended from s32, and they
5308 * are with the same signedness.
5309 */
5310static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
5311{
5312        return ((s32)sval >= 0 &&
5313                reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
5314               ((s32)sval < 0 &&
5315                reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
5316}
5317
5318/* Adjusts the register min/max values in the case that the dst_reg is the
5319 * variable register that we are working on, and src_reg is a constant or we're
5320 * simply doing a BPF_K check.
5321 * In JEQ/JNE cases we also adjust the var_off values.
5322 */
5323static void reg_set_min_max(struct bpf_reg_state *true_reg,
5324                            struct bpf_reg_state *false_reg, u64 val,
5325                            u8 opcode, bool is_jmp32)
5326{
5327        s64 sval;
5328
5329        /* If the dst_reg is a pointer, we can't learn anything about its
5330         * variable offset from the compare (unless src_reg were a pointer into
5331         * the same object, but we don't bother with that.
5332         * Since false_reg and true_reg have the same type by construction, we
5333         * only need to check one of them for pointerness.
5334         */
5335        if (__is_pointer_value(false, false_reg))
5336                return;
5337
5338        val = is_jmp32 ? (u32)val : val;
5339        sval = is_jmp32 ? (s64)(s32)val : (s64)val;
5340
5341        switch (opcode) {
5342        case BPF_JEQ:
5343        case BPF_JNE:
5344        {
5345                struct bpf_reg_state *reg =
5346                        opcode == BPF_JEQ ? true_reg : false_reg;
5347
5348                /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
5349                 * if it is true we know the value for sure. Likewise for
5350                 * BPF_JNE.
5351                 */
5352                if (is_jmp32) {
5353                        u64 old_v = reg->var_off.value;
5354                        u64 hi_mask = ~0xffffffffULL;
5355
5356                        reg->var_off.value = (old_v & hi_mask) | val;
5357                        reg->var_off.mask &= hi_mask;
5358                } else {
5359                        __mark_reg_known(reg, val);
5360                }
5361                break;
5362        }
5363        case BPF_JSET:
5364                false_reg->var_off = tnum_and(false_reg->var_off,
5365                                              tnum_const(~val));
5366                if (is_power_of_2(val))
5367                        true_reg->var_off = tnum_or(true_reg->var_off,
5368                                                    tnum_const(val));
5369                break;
5370        case BPF_JGE:
5371        case BPF_JGT:
5372        {
5373                u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
5374                u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
5375
5376                if (is_jmp32) {
5377                        false_umax += gen_hi_max(false_reg->var_off);
5378                        true_umin += gen_hi_min(true_reg->var_off);
5379                }
5380                false_reg->umax_value = min(false_reg->umax_value, false_umax);
5381                true_reg->umin_value = max(true_reg->umin_value, true_umin);
5382                break;
5383        }
5384        case BPF_JSGE:
5385        case BPF_JSGT:
5386        {
5387                s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
5388                s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
5389
5390                /* If the full s64 was not sign-extended from s32 then don't
5391                 * deduct further info.
5392                 */
5393                if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5394                        break;
5395                false_reg->smax_value = min(false_reg->smax_value, false_smax);
5396                true_reg->smin_value = max(true_reg->smin_value, true_smin);
5397                break;
5398        }
5399        case BPF_JLE:
5400        case BPF_JLT:
5401        {
5402                u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
5403                u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
5404
5405                if (is_jmp32) {
5406                        false_umin += gen_hi_min(false_reg->var_off);
5407                        true_umax += gen_hi_max(true_reg->var_off);
5408                }
5409                false_reg->umin_value = max(false_reg->umin_value, false_umin);
5410                true_reg->umax_value = min(true_reg->umax_value, true_umax);
5411                break;
5412        }
5413        case BPF_JSLE:
5414        case BPF_JSLT:
5415        {
5416                s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
5417                s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
5418
5419                if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5420                        break;
5421                false_reg->smin_value = max(false_reg->smin_value, false_smin);
5422                true_reg->smax_value = min(true_reg->smax_value, true_smax);
5423                break;
5424        }
5425        default:
5426                break;
5427        }
5428
5429        __reg_deduce_bounds(false_reg);
5430        __reg_deduce_bounds(true_reg);
5431        /* We might have learned some bits from the bounds. */
5432        __reg_bound_offset(false_reg);
5433        __reg_bound_offset(true_reg);
5434        /* Intersecting with the old var_off might have improved our bounds
5435         * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5436         * then new var_off is (0; 0x7f...fc) which improves our umax.
5437         */
5438        __update_reg_bounds(false_reg);
5439        __update_reg_bounds(true_reg);
5440}
5441
5442/* Same as above, but for the case that dst_reg holds a constant and src_reg is
5443 * the variable reg.
5444 */
5445static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
5446                                struct bpf_reg_state *false_reg, u64 val,
5447                                u8 opcode, bool is_jmp32)
5448{
5449        s64 sval;
5450
5451        if (__is_pointer_value(false, false_reg))
5452                return;
5453
5454        val = is_jmp32 ? (u32)val : val;
5455        sval = is_jmp32 ? (s64)(s32)val : (s64)val;
5456
5457        switch (opcode) {
5458        case BPF_JEQ:
5459        case BPF_JNE:
5460        {
5461                struct bpf_reg_state *reg =
5462                        opcode == BPF_JEQ ? true_reg : false_reg;
5463
5464                if (is_jmp32) {
5465                        u64 old_v = reg->var_off.value;
5466                        u64 hi_mask = ~0xffffffffULL;
5467
5468                        reg->var_off.value = (old_v & hi_mask) | val;
5469                        reg->var_off.mask &= hi_mask;
5470                } else {
5471                        __mark_reg_known(reg, val);
5472                }
5473                break;
5474        }
5475        case BPF_JSET:
5476                false_reg->var_off = tnum_and(false_reg->var_off,
5477                                              tnum_const(~val));
5478                if (is_power_of_2(val))
5479                        true_reg->var_off = tnum_or(true_reg->var_off,
5480                                                    tnum_const(val));
5481                break;
5482        case BPF_JGE:
5483        case BPF_JGT:
5484        {
5485                u64 false_umin = opcode == BPF_JGT ? val    : val + 1;
5486                u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
5487
5488                if (is_jmp32) {
5489                        false_umin += gen_hi_min(false_reg->var_off);
5490                        true_umax += gen_hi_max(true_reg->var_off);
5491                }
5492                false_reg->umin_value = max(false_reg->umin_value, false_umin);
5493                true_reg->umax_value = min(true_reg->umax_value, true_umax);
5494                break;
5495        }
5496        case BPF_JSGE:
5497        case BPF_JSGT:
5498        {
5499                s64 false_smin = opcode == BPF_JSGT ? sval    : sval + 1;
5500                s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
5501
5502                if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5503                        break;
5504                false_reg->smin_value = max(false_reg->smin_value, false_smin);
5505                true_reg->smax_value = min(true_reg->smax_value, true_smax);
5506                break;
5507        }
5508        case BPF_JLE:
5509        case BPF_JLT:
5510        {
5511                u64 false_umax = opcode == BPF_JLT ? val    : val - 1;
5512                u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
5513
5514                if (is_jmp32) {
5515                        false_umax += gen_hi_max(false_reg->var_off);
5516                        true_umin += gen_hi_min(true_reg->var_off);
5517                }
5518                false_reg->umax_value = min(false_reg->umax_value, false_umax);
5519                true_reg->umin_value = max(true_reg->umin_value, true_umin);
5520                break;
5521        }
5522        case BPF_JSLE:
5523        case BPF_JSLT:
5524        {
5525                s64 false_smax = opcode == BPF_JSLT ? sval    : sval - 1;
5526                s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
5527
5528                if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5529                        break;
5530                false_reg->smax_value = min(false_reg->smax_value, false_smax);
5531                true_reg->smin_value = max(true_reg->smin_value, true_smin);
5532                break;
5533        }
5534        default:
5535                break;
5536        }
5537
5538        __reg_deduce_bounds(false_reg);
5539        __reg_deduce_bounds(true_reg);
5540        /* We might have learned some bits from the bounds. */
5541        __reg_bound_offset(false_reg);
5542        __reg_bound_offset(true_reg);
5543        /* Intersecting with the old var_off might have improved our bounds
5544         * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5545         * then new var_off is (0; 0x7f...fc) which improves our umax.
5546         */
5547        __update_reg_bounds(false_reg);
5548        __update_reg_bounds(true_reg);
5549}
5550
5551/* Regs are known to be equal, so intersect their min/max/var_off */
5552static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
5553                                  struct bpf_reg_state *dst_reg)
5554{
5555        src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
5556                                                        dst_reg->umin_value);
5557        src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
5558                                                        dst_reg->umax_value);
5559        src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
5560                                                        dst_reg->smin_value);
5561        src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
5562                                                        dst_reg->smax_value);
5563        src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
5564                                                             dst_reg->var_off);
5565        /* We might have learned new bounds from the var_off. */
5566        __update_reg_bounds(src_reg);
5567        __update_reg_bounds(dst_reg);
5568        /* We might have learned something about the sign bit. */
5569        __reg_deduce_bounds(src_reg);
5570        __reg_deduce_bounds(dst_reg);
5571        /* We might have learned some bits from the bounds. */
5572        __reg_bound_offset(src_reg);
5573        __reg_bound_offset(dst_reg);
5574        /* Intersecting with the old var_off might have improved our bounds
5575         * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5576         * then new var_off is (0; 0x7f...fc) which improves our umax.
5577         */
5578        __update_reg_bounds(src_reg);
5579        __update_reg_bounds(dst_reg);
5580}
5581
5582static void reg_combine_min_max(struct bpf_reg_state *true_src,
5583                                struct bpf_reg_state *true_dst,
5584                                struct bpf_reg_state *false_src,
5585                                struct bpf_reg_state *false_dst,
5586                                u8 opcode)
5587{
5588        switch (opcode) {
5589        case BPF_JEQ:
5590                __reg_combine_min_max(true_src, true_dst);
5591                break;
5592        case BPF_JNE:
5593                __reg_combine_min_max(false_src, false_dst);
5594                break;
5595        }
5596}
5597
5598static void mark_ptr_or_null_reg(struct bpf_func_state *state,
5599                                 struct bpf_reg_state *reg, u32 id,
5600                                 bool is_null)
5601{
5602        if (reg_type_may_be_null(reg->type) && reg->id == id) {
5603                /* Old offset (both fixed and variable parts) should
5604                 * have been known-zero, because we don't allow pointer
5605                 * arithmetic on pointers that might be NULL.
5606                 */
5607                if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
5608                                 !tnum_equals_const(reg->var_off, 0) ||
5609                                 reg->off)) {
5610                        __mark_reg_known_zero(reg);
5611                        reg->off = 0;
5612                }
5613                if (is_null) {
5614                        reg->type = SCALAR_VALUE;
5615                } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
5616                        if (reg->map_ptr->inner_map_meta) {
5617                                reg->type = CONST_PTR_TO_MAP;
5618                                reg->map_ptr = reg->map_ptr->inner_map_meta;
5619                        } else if (reg->map_ptr->map_type ==
5620                                   BPF_MAP_TYPE_XSKMAP) {
5621                                reg->type = PTR_TO_XDP_SOCK;
5622                        } else {
5623                                reg->type = PTR_TO_MAP_VALUE;
5624                        }
5625                } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
5626                        reg->type = PTR_TO_SOCKET;
5627                } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
5628                        reg->type = PTR_TO_SOCK_COMMON;
5629                } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
5630                        reg->type = PTR_TO_TCP_SOCK;
5631                }
5632                if (is_null) {
5633                        /* We don't need id and ref_obj_id from this point
5634                         * onwards anymore, thus we should better reset it,
5635                         * so that state pruning has chances to take effect.
5636                         */
5637                        reg->id = 0;
5638                        reg->ref_obj_id = 0;
5639                } else if (!reg_may_point_to_spin_lock(reg)) {
5640                        /* For not-NULL ptr, reg->ref_obj_id will be reset
5641                         * in release_reg_references().
5642                         *
5643                         * reg->id is still used by spin_lock ptr. Other
5644                         * than spin_lock ptr type, reg->id can be reset.
5645                         */
5646                        reg->id = 0;
5647                }
5648        }
5649}
5650
5651static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
5652                                    bool is_null)
5653{
5654        struct bpf_reg_state *reg;
5655        int i;
5656
5657        for (i = 0; i < MAX_BPF_REG; i++)
5658                mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
5659
5660        bpf_for_each_spilled_reg(i, state, reg) {
5661                if (!reg)
5662                        continue;
5663                mark_ptr_or_null_reg(state, reg, id, is_null);
5664        }
5665}
5666
5667/* The logic is similar to find_good_pkt_pointers(), both could eventually
5668 * be folded together at some point.
5669 */
5670static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
5671                                  bool is_null)
5672{
5673        struct bpf_func_state *state = vstate->frame[vstate->curframe];
5674        struct bpf_reg_state *regs = state->regs;
5675        u32 ref_obj_id = regs[regno].ref_obj_id;
5676        u32 id = regs[regno].id;
5677        int i;
5678
5679        if (ref_obj_id && ref_obj_id == id && is_null)
5680                /* regs[regno] is in the " == NULL" branch.
5681                 * No one could have freed the reference state before
5682                 * doing the NULL check.
5683                 */
5684                WARN_ON_ONCE(release_reference_state(state, id));
5685
5686        for (i = 0; i <= vstate->curframe; i++)
5687                __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
5688}
5689
5690static bool try_match_pkt_pointers(const struct bpf_insn *insn,
5691                                   struct bpf_reg_state *dst_reg,
5692                                   struct bpf_reg_state *src_reg,
5693                                   struct bpf_verifier_state *this_branch,
5694                                   struct bpf_verifier_state *other_branch)
5695{
5696        if (BPF_SRC(insn->code) != BPF_X)
5697                return false;
5698
5699        /* Pointers are always 64-bit. */
5700        if (BPF_CLASS(insn->code) == BPF_JMP32)
5701                return false;
5702
5703        switch (BPF_OP(insn->code)) {
5704        case BPF_JGT:
5705                if ((dst_reg->type == PTR_TO_PACKET &&
5706                     src_reg->type == PTR_TO_PACKET_END) ||
5707                    (dst_reg->type == PTR_TO_PACKET_META &&
5708                     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5709                        /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
5710                        find_good_pkt_pointers(this_branch, dst_reg,
5711                                               dst_reg->type, false);
5712                } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5713                            src_reg->type == PTR_TO_PACKET) ||
5714                           (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5715                            src_reg->type == PTR_TO_PACKET_META)) {
5716                        /* pkt_end > pkt_data', pkt_data > pkt_meta' */
5717                        find_good_pkt_pointers(other_branch, src_reg,
5718                                               src_reg->type, true);
5719                } else {
5720                        return false;
5721                }
5722                break;
5723        case BPF_JLT:
5724                if ((dst_reg->type == PTR_TO_PACKET &&
5725                     src_reg->type == PTR_TO_PACKET_END) ||
5726                    (dst_reg->type == PTR_TO_PACKET_META &&
5727                     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5728                        /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
5729                        find_good_pkt_pointers(other_branch, dst_reg,
5730                                               dst_reg->type, true);
5731                } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5732                            src_reg->type == PTR_TO_PACKET) ||
5733                           (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5734                            src_reg->type == PTR_TO_PACKET_META)) {
5735                        /* pkt_end < pkt_data', pkt_data > pkt_meta' */
5736                        find_good_pkt_pointers(this_branch, src_reg,
5737                                               src_reg->type, false);
5738                } else {
5739                        return false;
5740                }
5741                break;
5742        case BPF_JGE:
5743                if ((dst_reg->type == PTR_TO_PACKET &&
5744                     src_reg->type == PTR_TO_PACKET_END) ||
5745                    (dst_reg->type == PTR_TO_PACKET_META &&
5746                     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5747                        /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
5748                        find_good_pkt_pointers(this_branch, dst_reg,
5749                                               dst_reg->type, true);
5750                } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5751                            src_reg->type == PTR_TO_PACKET) ||
5752                           (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5753                            src_reg->type == PTR_TO_PACKET_META)) {
5754                        /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
5755                        find_good_pkt_pointers(other_branch, src_reg,
5756                                               src_reg->type, false);
5757                } else {
5758                        return false;
5759                }
5760                break;
5761        case BPF_JLE:
5762                if ((dst_reg->type == PTR_TO_PACKET &&
5763                     src_reg->type == PTR_TO_PACKET_END) ||
5764                    (dst_reg->type == PTR_TO_PACKET_META &&
5765                     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5766                        /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
5767                        find_good_pkt_pointers(other_branch, dst_reg,
5768                                               dst_reg->type, false);
5769                } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5770                            src_reg->type == PTR_TO_PACKET) ||
5771                           (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5772                            src_reg->type == PTR_TO_PACKET_META)) {
5773                        /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
5774                        find_good_pkt_pointers(this_branch, src_reg,
5775                                               src_reg->type, true);
5776                } else {
5777                        return false;
5778                }
5779                break;
5780        default:
5781                return false;
5782        }
5783
5784        return true;
5785}
5786
5787static int check_cond_jmp_op(struct bpf_verifier_env *env,
5788                             struct bpf_insn *insn, int *insn_idx)
5789{
5790        struct bpf_verifier_state *this_branch = env->cur_state;
5791        struct bpf_verifier_state *other_branch;
5792        struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
5793        struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
5794        u8 opcode = BPF_OP(insn->code);
5795        bool is_jmp32;
5796        int pred = -1;
5797        int err;
5798
5799        /* Only conditional jumps are expected to reach here. */
5800        if (opcode == BPF_JA || opcode > BPF_JSLE) {
5801                verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
5802                return -EINVAL;
5803        }
5804
5805        if (BPF_SRC(insn->code) == BPF_X) {
5806                if (insn->imm != 0) {
5807                        verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5808                        return -EINVAL;
5809                }
5810
5811                /* check src1 operand */
5812                err = check_reg_arg(env, insn->src_reg, SRC_OP);
5813                if (err)
5814                        return err;
5815
5816                if (is_pointer_value(env, insn->src_reg)) {
5817                        verbose(env, "R%d pointer comparison prohibited\n",
5818                                insn->src_reg);
5819                        return -EACCES;
5820                }
5821                src_reg = &regs[insn->src_reg];
5822        } else {
5823                if (insn->src_reg != BPF_REG_0) {
5824                        verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5825                        return -EINVAL;
5826                }
5827        }
5828
5829        /* check src2 operand */
5830        err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5831        if (err)
5832                return err;
5833
5834        dst_reg = &regs[insn->dst_reg];
5835        is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
5836
5837        if (BPF_SRC(insn->code) == BPF_K)
5838                pred = is_branch_taken(dst_reg, insn->imm,
5839                                       opcode, is_jmp32);
5840        else if (src_reg->type == SCALAR_VALUE &&
5841                 tnum_is_const(src_reg->var_off))
5842                pred = is_branch_taken(dst_reg, src_reg->var_off.value,
5843                                       opcode, is_jmp32);
5844        if (pred >= 0) {
5845                err = mark_chain_precision(env, insn->dst_reg);
5846                if (BPF_SRC(insn->code) == BPF_X && !err)
5847                        err = mark_chain_precision(env, insn->src_reg);
5848                if (err)
5849                        return err;
5850        }
5851        if (pred == 1) {
5852                /* only follow the goto, ignore fall-through */
5853                *insn_idx += insn->off;
5854                return 0;
5855        } else if (pred == 0) {
5856                /* only follow fall-through branch, since
5857                 * that's where the program will go
5858                 */
5859                return 0;
5860        }
5861
5862        other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
5863                                  false);
5864        if (!other_branch)
5865                return -EFAULT;
5866        other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
5867
5868        /* detect if we are comparing against a constant value so we can adjust
5869         * our min/max values for our dst register.
5870         * this is only legit if both are scalars (or pointers to the same
5871         * object, I suppose, but we don't support that right now), because
5872         * otherwise the different base pointers mean the offsets aren't
5873         * comparable.
5874         */
5875        if (BPF_SRC(insn->code) == BPF_X) {
5876                struct bpf_reg_state *src_reg = &regs[insn->src_reg];
5877                struct bpf_reg_state lo_reg0 = *dst_reg;
5878                struct bpf_reg_state lo_reg1 = *src_reg;
5879                struct bpf_reg_state *src_lo, *dst_lo;
5880
5881                dst_lo = &lo_reg0;
5882                src_lo = &lo_reg1;
5883                coerce_reg_to_size(dst_lo, 4);
5884                coerce_reg_to_size(src_lo, 4);
5885
5886                if (dst_reg->type == SCALAR_VALUE &&
5887                    src_reg->type == SCALAR_VALUE) {
5888                        if (tnum_is_const(src_reg->var_off) ||
5889                            (is_jmp32 && tnum_is_const(src_lo->var_off)))
5890                                reg_set_min_max(&other_branch_regs[insn->dst_reg],
5891                                                dst_reg,
5892                                                is_jmp32
5893                                                ? src_lo->var_off.value
5894                                                : src_reg->var_off.value,
5895                                                opcode, is_jmp32);
5896                        else if (tnum_is_const(dst_reg->var_off) ||
5897                                 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
5898                                reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
5899                                                    src_reg,
5900                                                    is_jmp32
5901                                                    ? dst_lo->var_off.value
5902                                                    : dst_reg->var_off.value,
5903                                                    opcode, is_jmp32);
5904                        else if (!is_jmp32 &&
5905                                 (opcode == BPF_JEQ || opcode == BPF_JNE))
5906                                /* Comparing for equality, we can combine knowledge */
5907                                reg_combine_min_max(&other_branch_regs[insn->src_reg],
5908                                                    &other_branch_regs[insn->dst_reg],
5909                                                    src_reg, dst_reg, opcode);
5910                }
5911        } else if (dst_reg->type == SCALAR_VALUE) {
5912                reg_set_min_max(&other_branch_regs[insn->dst_reg],
5913                                        dst_reg, insn->imm, opcode, is_jmp32);
5914        }
5915
5916        /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
5917         * NOTE: these optimizations below are related with pointer comparison
5918         *       which will never be JMP32.
5919         */
5920        if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
5921            insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
5922            reg_type_may_be_null(dst_reg->type)) {
5923                /* Mark all identical registers in each branch as either
5924                 * safe or unknown depending R == 0 or R != 0 conditional.
5925                 */
5926                mark_ptr_or_null_regs(this_branch, insn->dst_reg,
5927                                      opcode == BPF_JNE);
5928                mark_ptr_or_null_regs(other_branch, insn->dst_reg,
5929                                      opcode == BPF_JEQ);
5930        } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
5931                                           this_branch, other_branch) &&
5932                   is_pointer_value(env, insn->dst_reg)) {
5933                verbose(env, "R%d pointer comparison prohibited\n",
5934                        insn->dst_reg);
5935                return -EACCES;
5936        }
5937        if (env->log.level & BPF_LOG_LEVEL)
5938                print_verifier_state(env, this_branch->frame[this_branch->curframe]);
5939        return 0;
5940}
5941
5942/* verify BPF_LD_IMM64 instruction */
5943static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
5944{
5945        struct bpf_insn_aux_data *aux = cur_aux(env);
5946        struct bpf_reg_state *regs = cur_regs(env);
5947        struct bpf_map *map;
5948        int err;
5949
5950        if (BPF_SIZE(insn->code) != BPF_DW) {
5951                verbose(env, "invalid BPF_LD_IMM insn\n");
5952                return -EINVAL;
5953        }
5954        if (insn->off != 0) {
5955                verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
5956                return -EINVAL;
5957        }
5958
5959        err = check_reg_arg(env, insn->dst_reg, DST_OP);
5960        if (err)
5961                return err;
5962
5963        if (insn->src_reg == 0) {
5964                u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
5965
5966                regs[insn->dst_reg].type = SCALAR_VALUE;
5967                __mark_reg_known(&regs[insn->dst_reg], imm);
5968                return 0;
5969        }
5970
5971        map = env->used_maps[aux->map_index];
5972        mark_reg_known_zero(env, regs, insn->dst_reg);
5973        regs[insn->dst_reg].map_ptr = map;
5974
5975        if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
5976                regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
5977                regs[insn->dst_reg].off = aux->map_off;
5978                if (map_value_has_spin_lock(map))
5979                        regs[insn->dst_reg].id = ++env->id_gen;
5980        } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
5981                regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
5982        } else {
5983                verbose(env, "bpf verifier is misconfigured\n");
5984                return -EINVAL;
5985        }
5986
5987        return 0;
5988}
5989
5990static bool may_access_skb(enum bpf_prog_type type)
5991{
5992        switch (type) {
5993        case BPF_PROG_TYPE_SOCKET_FILTER:
5994        case BPF_PROG_TYPE_SCHED_CLS:
5995        case BPF_PROG_TYPE_SCHED_ACT:
5996                return true;
5997        default:
5998                return false;
5999        }
6000}
6001
6002/* verify safety of LD_ABS|LD_IND instructions:
6003 * - they can only appear in the programs where ctx == skb
6004 * - since they are wrappers of function calls, they scratch R1-R5 registers,
6005 *   preserve R6-R9, and store return value into R0
6006 *
6007 * Implicit input:
6008 *   ctx == skb == R6 == CTX
6009 *
6010 * Explicit input:
6011 *   SRC == any register
6012 *   IMM == 32-bit immediate
6013 *
6014 * Output:
6015 *   R0 - 8/16/32-bit skb data converted to cpu endianness
6016 */
6017static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
6018{
6019        struct bpf_reg_state *regs = cur_regs(env);
6020        u8 mode = BPF_MODE(insn->code);
6021        int i, err;
6022
6023        if (!may_access_skb(env->prog->type)) {
6024                verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
6025                return -EINVAL;
6026        }
6027
6028        if (!env->ops->gen_ld_abs) {
6029                verbose(env, "bpf verifier is misconfigured\n");
6030                return -EINVAL;
6031        }
6032
6033        if (env->subprog_cnt > 1) {
6034                /* when program has LD_ABS insn JITs and interpreter assume
6035                 * that r1 == ctx == skb which is not the case for callees
6036                 * that can have arbitrary arguments. It's problematic
6037                 * for main prog as well since JITs would need to analyze
6038                 * all functions in order to make proper register save/restore
6039                 * decisions in the main prog. Hence disallow LD_ABS with calls
6040                 */
6041                verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
6042                return -EINVAL;
6043        }
6044
6045        if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
6046            BPF_SIZE(insn->code) == BPF_DW ||
6047            (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
6048                verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
6049                return -EINVAL;
6050        }
6051
6052        /* check whether implicit source operand (register R6) is readable */
6053        err = check_reg_arg(env, BPF_REG_6, SRC_OP);
6054        if (err)
6055                return err;
6056
6057        /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
6058         * gen_ld_abs() may terminate the program at runtime, leading to
6059         * reference leak.
6060         */
6061        err = check_reference_leak(env);
6062        if (err) {
6063                verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
6064                return err;
6065        }
6066
6067        if (env->cur_state->active_spin_lock) {
6068                verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
6069                return -EINVAL;
6070        }
6071
6072        if (regs[BPF_REG_6].type != PTR_TO_CTX) {
6073                verbose(env,
6074                        "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
6075                return -EINVAL;
6076        }
6077
6078        if (mode == BPF_IND) {
6079                /* check explicit source operand */
6080                err = check_reg_arg(env, insn->src_reg, SRC_OP);
6081                if (err)
6082                        return err;
6083        }
6084
6085        /* reset caller saved regs to unreadable */
6086        for (i = 0; i < CALLER_SAVED_REGS; i++) {
6087                mark_reg_not_init(env, regs, caller_saved[i]);
6088                check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6089        }
6090
6091        /* mark destination R0 register as readable, since it contains
6092         * the value fetched from the packet.
6093         * Already marked as written above.
6094         */
6095        mark_reg_unknown(env, regs, BPF_REG_0);
6096        /* ld_abs load up to 32-bit skb data. */
6097        regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
6098        return 0;
6099}
6100
6101static int check_return_code(struct bpf_verifier_env *env)
6102{
6103        struct tnum enforce_attach_type_range = tnum_unknown;
6104        struct bpf_reg_state *reg;
6105        struct tnum range = tnum_range(0, 1);
6106
6107        switch (env->prog->type) {
6108        case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
6109                if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
6110                    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
6111                        range = tnum_range(1, 1);
6112                break;
6113        case BPF_PROG_TYPE_CGROUP_SKB:
6114                if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
6115                        range = tnum_range(0, 3);
6116                        enforce_attach_type_range = tnum_range(2, 3);
6117                }
6118                break;
6119        case BPF_PROG_TYPE_CGROUP_SOCK:
6120        case BPF_PROG_TYPE_SOCK_OPS:
6121        case BPF_PROG_TYPE_CGROUP_DEVICE:
6122        case BPF_PROG_TYPE_CGROUP_SYSCTL:
6123        case BPF_PROG_TYPE_CGROUP_SOCKOPT:
6124                break;
6125        default:
6126                return 0;
6127        }
6128
6129        reg = cur_regs(env) + BPF_REG_0;
6130        if (reg->type != SCALAR_VALUE) {
6131                verbose(env, "At program exit the register R0 is not a known value (%s)\n",
6132                        reg_type_str[reg->type]);
6133                return -EINVAL;
6134        }
6135
6136        if (!tnum_in(range, reg->var_off)) {
6137                char tn_buf[48];
6138
6139                verbose(env, "At program exit the register R0 ");
6140                if (!tnum_is_unknown(reg->var_off)) {
6141                        tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6142                        verbose(env, "has value %s", tn_buf);
6143                } else {
6144                        verbose(env, "has unknown scalar value");
6145                }
6146                tnum_strn(tn_buf, sizeof(tn_buf), range);
6147                verbose(env, " should have been in %s\n", tn_buf);
6148                return -EINVAL;
6149        }
6150
6151        if (!tnum_is_unknown(enforce_attach_type_range) &&
6152            tnum_in(enforce_attach_type_range, reg->var_off))
6153                env->prog->enforce_expected_attach_type = 1;
6154        return 0;
6155}
6156
6157/* non-recursive DFS pseudo code
6158 * 1  procedure DFS-iterative(G,v):
6159 * 2      label v as discovered
6160 * 3      let S be a stack
6161 * 4      S.push(v)
6162 * 5      while S is not empty
6163 * 6            t <- S.pop()
6164 * 7            if t is what we're looking for:
6165 * 8                return t
6166 * 9            for all edges e in G.adjacentEdges(t) do
6167 * 10               if edge e is already labelled
6168 * 11                   continue with the next edge
6169 * 12               w <- G.adjacentVertex(t,e)
6170 * 13               if vertex w is not discovered and not explored
6171 * 14                   label e as tree-edge
6172 * 15                   label w as discovered
6173 * 16                   S.push(w)
6174 * 17                   continue at 5
6175 * 18               else if vertex w is discovered
6176 * 19                   label e as back-edge
6177 * 20               else
6178 * 21                   // vertex w is explored
6179 * 22                   label e as forward- or cross-edge
6180 * 23           label t as explored
6181 * 24           S.pop()
6182 *
6183 * convention:
6184 * 0x10 - discovered
6185 * 0x11 - discovered and fall-through edge labelled
6186 * 0x12 - discovered and fall-through and branch edges labelled
6187 * 0x20 - explored
6188 */
6189
6190enum {
6191        DISCOVERED = 0x10,
6192        EXPLORED = 0x20,
6193        FALLTHROUGH = 1,
6194        BRANCH = 2,
6195};
6196
6197static u32 state_htab_size(struct bpf_verifier_env *env)
6198{
6199        return env->prog->len;
6200}
6201
6202static struct bpf_verifier_state_list **explored_state(
6203                                        struct bpf_verifier_env *env,
6204                                        int idx)
6205{
6206        struct bpf_verifier_state *cur = env->cur_state;
6207        struct bpf_func_state *state = cur->frame[cur->curframe];
6208
6209        return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
6210}
6211
6212static void init_explored_state(struct bpf_verifier_env *env, int idx)
6213{
6214        env->insn_aux_data[idx].prune_point = true;
6215}
6216
6217/* t, w, e - match pseudo-code above:
6218 * t - index of current instruction
6219 * w - next instruction
6220 * e - edge
6221 */
6222static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
6223                     bool loop_ok)
6224{
6225        int *insn_stack = env->cfg.insn_stack;
6226        int *insn_state = env->cfg.insn_state;
6227
6228        if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
6229                return 0;
6230
6231        if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
6232                return 0;
6233
6234        if (w < 0 || w >= env->prog->len) {
6235                verbose_linfo(env, t, "%d: ", t);
6236                verbose(env, "jump out of range from insn %d to %d\n", t, w);
6237                return -EINVAL;
6238        }
6239
6240        if (e == BRANCH)
6241                /* mark branch target for state pruning */
6242                init_explored_state(env, w);
6243
6244        if (insn_state[w] == 0) {
6245                /* tree-edge */
6246                insn_state[t] = DISCOVERED | e;
6247                insn_state[w] = DISCOVERED;
6248                if (env->cfg.cur_stack >= env->prog->len)
6249                        return -E2BIG;
6250                insn_stack[env->cfg.cur_stack++] = w;
6251                return 1;
6252        } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
6253                if (loop_ok && env->allow_ptr_leaks)
6254                        return 0;
6255                verbose_linfo(env, t, "%d: ", t);
6256                verbose_linfo(env, w, "%d: ", w);
6257                verbose(env, "back-edge from insn %d to %d\n", t, w);
6258                return -EINVAL;
6259        } else if (insn_state[w] == EXPLORED) {
6260                /* forward- or cross-edge */
6261                insn_state[t] = DISCOVERED | e;
6262        } else {
6263                verbose(env, "insn state internal bug\n");
6264                return -EFAULT;
6265        }
6266        return 0;
6267}
6268
6269/* non-recursive depth-first-search to detect loops in BPF program
6270 * loop == back-edge in directed graph
6271 */
6272static int check_cfg(struct bpf_verifier_env *env)
6273{
6274        struct bpf_insn *insns = env->prog->insnsi;
6275        int insn_cnt = env->prog->len;
6276        int *insn_stack, *insn_state;
6277        int ret = 0;
6278        int i, t;
6279
6280        insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
6281        if (!insn_state)
6282                return -ENOMEM;
6283
6284        insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
6285        if (!insn_stack) {
6286                kvfree(insn_state);
6287                return -ENOMEM;
6288        }
6289
6290        insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
6291        insn_stack[0] = 0; /* 0 is the first instruction */
6292        env->cfg.cur_stack = 1;
6293
6294peek_stack:
6295        if (env->cfg.cur_stack == 0)
6296                goto check_state;
6297        t = insn_stack[env->cfg.cur_stack - 1];
6298
6299        if (BPF_CLASS(insns[t].code) == BPF_JMP ||
6300            BPF_CLASS(insns[t].code) == BPF_JMP32) {
6301                u8 opcode = BPF_OP(insns[t].code);
6302
6303                if (opcode == BPF_EXIT) {
6304                        goto mark_explored;
6305                } else if (opcode == BPF_CALL) {
6306                        ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
6307                        if (ret == 1)
6308                                goto peek_stack;
6309                        else if (ret < 0)
6310                                goto err_free;
6311                        if (t + 1 < insn_cnt)
6312                                init_explored_state(env, t + 1);
6313                        if (insns[t].src_reg == BPF_PSEUDO_CALL) {
6314                                init_explored_state(env, t);
6315                                ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
6316                                                env, false);
6317                                if (ret == 1)
6318                                        goto peek_stack;
6319                                else if (ret < 0)
6320                                        goto err_free;
6321                        }
6322                } else if (opcode == BPF_JA) {
6323                        if (BPF_SRC(insns[t].code) != BPF_K) {
6324                                ret = -EINVAL;
6325                                goto err_free;
6326                        }
6327                        /* unconditional jump with single edge */
6328                        ret = push_insn(t, t + insns[t].off + 1,
6329                                        FALLTHROUGH, env, true);
6330                        if (ret == 1)
6331                                goto peek_stack;
6332                        else if (ret < 0)
6333                                goto err_free;
6334                        /* unconditional jmp is not a good pruning point,
6335                         * but it's marked, since backtracking needs
6336                         * to record jmp history in is_state_visited().
6337                         */
6338                        init_explored_state(env, t + insns[t].off + 1);
6339                        /* tell verifier to check for equivalent states
6340                         * after every call and jump
6341                         */
6342                        if (t + 1 < insn_cnt)
6343                                init_explored_state(env, t + 1);
6344                } else {
6345                        /* conditional jump with two edges */
6346                        init_explored_state(env, t);
6347                        ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
6348                        if (ret == 1)
6349                                goto peek_stack;
6350                        else if (ret < 0)
6351                                goto err_free;
6352
6353                        ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
6354                        if (ret == 1)
6355                                goto peek_stack;
6356                        else if (ret < 0)
6357                                goto err_free;
6358                }
6359        } else {
6360                /* all other non-branch instructions with single
6361                 * fall-through edge
6362                 */
6363                ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
6364                if (ret == 1)
6365                        goto peek_stack;
6366                else if (ret < 0)
6367                        goto err_free;
6368        }
6369
6370mark_explored:
6371        insn_state[t] = EXPLORED;
6372        if (env->cfg.cur_stack-- <= 0) {
6373                verbose(env, "pop stack internal bug\n");
6374                ret = -EFAULT;
6375                goto err_free;
6376        }
6377        goto peek_stack;
6378
6379check_state:
6380        for (i = 0; i < insn_cnt; i++) {
6381                if (insn_state[i] != EXPLORED) {
6382                        verbose(env, "unreachable insn %d\n", i);
6383                        ret = -EINVAL;
6384                        goto err_free;
6385                }
6386        }
6387        ret = 0; /* cfg looks good */
6388
6389err_free:
6390        kvfree(insn_state);
6391        kvfree(insn_stack);
6392        env->cfg.insn_state = env->cfg.insn_stack = NULL;
6393        return ret;
6394}
6395
6396/* The minimum supported BTF func info size */
6397#define MIN_BPF_FUNCINFO_SIZE   8
6398#define MAX_FUNCINFO_REC_SIZE   252
6399
6400static int check_btf_func(struct bpf_verifier_env *env,
6401                          const union bpf_attr *attr,
6402                          union bpf_attr __user *uattr)
6403{
6404        u32 i, nfuncs, urec_size, min_size;
6405        u32 krec_size = sizeof(struct bpf_func_info);
6406        struct bpf_func_info *krecord;
6407        const struct btf_type *type;
6408        struct bpf_prog *prog;
6409        const struct btf *btf;
6410        void __user *urecord;
6411        u32 prev_offset = 0;
6412        int ret = 0;
6413
6414        nfuncs = attr->func_info_cnt;
6415        if (!nfuncs)
6416                return 0;
6417
6418        if (nfuncs != env->subprog_cnt) {
6419                verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
6420                return -EINVAL;
6421        }
6422
6423        urec_size = attr->func_info_rec_size;
6424        if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
6425            urec_size > MAX_FUNCINFO_REC_SIZE ||
6426            urec_size % sizeof(u32)) {
6427                verbose(env, "invalid func info rec size %u\n", urec_size);
6428                return -EINVAL;
6429        }
6430
6431        prog = env->prog;
6432        btf = prog->aux->btf;
6433
6434        urecord = u64_to_user_ptr(attr->func_info);
6435        min_size = min_t(u32, krec_size, urec_size);
6436
6437        krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
6438        if (!krecord)
6439                return -ENOMEM;
6440
6441        for (i = 0; i < nfuncs; i++) {
6442                ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
6443                if (ret) {
6444                        if (ret == -E2BIG) {
6445                                verbose(env, "nonzero tailing record in func info");
6446                                /* set the size kernel expects so loader can zero
6447                                 * out the rest of the record.
6448                                 */
6449                                if (put_user(min_size, &uattr->func_info_rec_size))
6450                                        ret = -EFAULT;
6451                        }
6452                        goto err_free;
6453                }
6454
6455                if (copy_from_user(&krecord[i], urecord, min_size)) {
6456                        ret = -EFAULT;
6457                        goto err_free;
6458                }
6459
6460                /* check insn_off */
6461                if (i == 0) {
6462                        if (krecord[i].insn_off) {
6463                                verbose(env,
6464                                        "nonzero insn_off %u for the first func info record",
6465                                        krecord[i].insn_off);
6466                                ret = -EINVAL;
6467                                goto err_free;
6468                        }
6469                } else if (krecord[i].insn_off <= prev_offset) {
6470                        verbose(env,
6471                                "same or smaller insn offset (%u) than previous func info record (%u)",
6472                                krecord[i].insn_off, prev_offset);
6473                        ret = -EINVAL;
6474                        goto err_free;
6475                }
6476
6477                if (env->subprog_info[i].start != krecord[i].insn_off) {
6478                        verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
6479                        ret = -EINVAL;
6480                        goto err_free;
6481                }
6482
6483                /* check type_id */
6484                type = btf_type_by_id(btf, krecord[i].type_id);
6485                if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
6486                        verbose(env, "invalid type id %d in func info",
6487                                krecord[i].type_id);
6488                        ret = -EINVAL;
6489                        goto err_free;
6490                }
6491
6492                prev_offset = krecord[i].insn_off;
6493                urecord += urec_size;
6494        }
6495
6496        prog->aux->func_info = krecord;
6497        prog->aux->func_info_cnt = nfuncs;
6498        return 0;
6499
6500err_free:
6501        kvfree(krecord);
6502        return ret;
6503}
6504
6505static void adjust_btf_func(struct bpf_verifier_env *env)
6506{
6507        int i;
6508
6509        if (!env->prog->aux->func_info)
6510                return;
6511
6512        for (i = 0; i < env->subprog_cnt; i++)
6513                env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
6514}
6515
6516#define MIN_BPF_LINEINFO_SIZE   (offsetof(struct bpf_line_info, line_col) + \
6517                sizeof(((struct bpf_line_info *)(0))->line_col))
6518#define MAX_LINEINFO_REC_SIZE   MAX_FUNCINFO_REC_SIZE
6519
6520static int check_btf_line(struct bpf_verifier_env *env,
6521                          const union bpf_attr *attr,
6522                          union bpf_attr __user *uattr)
6523{
6524        u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
6525        struct bpf_subprog_info *sub;
6526        struct bpf_line_info *linfo;
6527        struct bpf_prog *prog;
6528        const struct btf *btf;
6529        void __user *ulinfo;
6530        int err;
6531
6532        nr_linfo = attr->line_info_cnt;
6533        if (!nr_linfo)
6534                return 0;
6535
6536        rec_size = attr->line_info_rec_size;
6537        if (rec_size < MIN_BPF_LINEINFO_SIZE ||
6538            rec_size > MAX_LINEINFO_REC_SIZE ||
6539            rec_size & (sizeof(u32) - 1))
6540                return -EINVAL;
6541
6542        /* Need to zero it in case the userspace may
6543         * pass in a smaller bpf_line_info object.
6544         */
6545        linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
6546                         GFP_KERNEL | __GFP_NOWARN);
6547        if (!linfo)
6548                return -ENOMEM;
6549
6550        prog = env->prog;
6551        btf = prog->aux->btf;
6552
6553        s = 0;
6554        sub = env->subprog_info;
6555        ulinfo = u64_to_user_ptr(attr->line_info);
6556        expected_size = sizeof(struct bpf_line_info);
6557        ncopy = min_t(u32, expected_size, rec_size);
6558        for (i = 0; i < nr_linfo; i++) {
6559                err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
6560                if (err) {
6561                        if (err == -E2BIG) {
6562                                verbose(env, "nonzero tailing record in line_info");
6563                                if (put_user(expected_size,
6564                                             &uattr->line_info_rec_size))
6565                                        err = -EFAULT;
6566                        }
6567                        goto err_free;
6568                }
6569
6570                if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
6571                        err = -EFAULT;
6572                        goto err_free;
6573                }
6574
6575                /*
6576                 * Check insn_off to ensure
6577                 * 1) strictly increasing AND
6578                 * 2) bounded by prog->len
6579                 *
6580                 * The linfo[0].insn_off == 0 check logically falls into
6581                 * the later "missing bpf_line_info for func..." case
6582                 * because the first linfo[0].insn_off must be the
6583                 * first sub also and the first sub must have
6584                 * subprog_info[0].start == 0.
6585                 */
6586                if ((i && linfo[i].insn_off <= prev_offset) ||
6587                    linfo[i].insn_off >= prog->len) {
6588                        verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
6589                                i, linfo[i].insn_off, prev_offset,
6590                                prog->len);
6591                        err = -EINVAL;
6592                        goto err_free;
6593                }
6594
6595                if (!prog->insnsi[linfo[i].insn_off].code) {
6596                        verbose(env,
6597                                "Invalid insn code at line_info[%u].insn_off\n",
6598                                i);
6599                        err = -EINVAL;
6600                        goto err_free;
6601                }
6602
6603                if (!btf_name_by_offset(btf, linfo[i].line_off) ||
6604                    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
6605                        verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
6606                        err = -EINVAL;
6607                        goto err_free;
6608                }
6609
6610                if (s != env->subprog_cnt) {
6611                        if (linfo[i].insn_off == sub[s].start) {
6612                                sub[s].linfo_idx = i;
6613                                s++;
6614                        } else if (sub[s].start < linfo[i].insn_off) {
6615                                verbose(env, "missing bpf_line_info for func#%u\n", s);
6616                                err = -EINVAL;
6617                                goto err_free;
6618                        }
6619                }
6620
6621                prev_offset = linfo[i].insn_off;
6622                ulinfo += rec_size;
6623        }
6624
6625        if (s != env->subprog_cnt) {
6626                verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
6627                        env->subprog_cnt - s, s);
6628                err = -EINVAL;
6629                goto err_free;
6630        }
6631
6632        prog->aux->linfo = linfo;
6633        prog->aux->nr_linfo = nr_linfo;
6634
6635        return 0;
6636
6637err_free:
6638        kvfree(linfo);
6639        return err;
6640}
6641
6642static int check_btf_info(struct bpf_verifier_env *env,
6643                          const union bpf_attr *attr,
6644                          union bpf_attr __user *uattr)
6645{
6646        struct btf *btf;
6647        int err;
6648
6649        if (!attr->func_info_cnt && !attr->line_info_cnt)
6650                return 0;
6651
6652        btf = btf_get_by_fd(attr->prog_btf_fd);
6653        if (IS_ERR(btf))
6654                return PTR_ERR(btf);
6655        env->prog->aux->btf = btf;
6656
6657        err = check_btf_func(env, attr, uattr);
6658        if (err)
6659                return err;
6660
6661        err = check_btf_line(env, attr, uattr);
6662        if (err)
6663                return err;
6664
6665        return 0;
6666}
6667
6668/* check %cur's range satisfies %old's */
6669static bool range_within(struct bpf_reg_state *old,
6670                         struct bpf_reg_state *cur)
6671{
6672        return old->umin_value <= cur->umin_value &&
6673               old->umax_value >= cur->umax_value &&
6674               old->smin_value <= cur->smin_value &&
6675               old->smax_value >= cur->smax_value;
6676}
6677
6678/* Maximum number of register states that can exist at once */
6679#define ID_MAP_SIZE     (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
6680struct idpair {
6681        u32 old;
6682        u32 cur;
6683};
6684
6685/* If in the old state two registers had the same id, then they need to have
6686 * the same id in the new state as well.  But that id could be different from
6687 * the old state, so we need to track the mapping from old to new ids.
6688 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
6689 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
6690 * regs with a different old id could still have new id 9, we don't care about
6691 * that.
6692 * So we look through our idmap to see if this old id has been seen before.  If
6693 * so, we require the new id to match; otherwise, we add the id pair to the map.
6694 */
6695static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
6696{
6697        unsigned int i;
6698
6699        for (i = 0; i < ID_MAP_SIZE; i++) {
6700                if (!idmap[i].old) {
6701                        /* Reached an empty slot; haven't seen this id before */
6702                        idmap[i].old = old_id;
6703                        idmap[i].cur = cur_id;
6704                        return true;
6705                }
6706                if (idmap[i].old == old_id)
6707                        return idmap[i].cur == cur_id;
6708        }
6709        /* We ran out of idmap slots, which should be impossible */
6710        WARN_ON_ONCE(1);
6711        return false;
6712}
6713
6714static void clean_func_state(struct bpf_verifier_env *env,
6715                             struct bpf_func_state *st)
6716{
6717        enum bpf_reg_liveness live;
6718        int i, j;
6719
6720        for (i = 0; i < BPF_REG_FP; i++) {
6721                live = st->regs[i].live;
6722                /* liveness must not touch this register anymore */
6723                st->regs[i].live |= REG_LIVE_DONE;
6724                if (!(live & REG_LIVE_READ))
6725                        /* since the register is unused, clear its state
6726                         * to make further comparison simpler
6727                         */
6728                        __mark_reg_not_init(&st->regs[i]);
6729        }
6730
6731        for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
6732                live = st->stack[i].spilled_ptr.live;
6733                /* liveness must not touch this stack slot anymore */
6734                st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
6735                if (!(live & REG_LIVE_READ)) {
6736                        __mark_reg_not_init(&st->stack[i].spilled_ptr);
6737                        for (j = 0; j < BPF_REG_SIZE; j++)
6738                                st->stack[i].slot_type[j] = STACK_INVALID;
6739                }
6740        }
6741}
6742
6743static void clean_verifier_state(struct bpf_verifier_env *env,
6744                                 struct bpf_verifier_state *st)
6745{
6746        int i;
6747
6748        if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
6749                /* all regs in this state in all frames were already marked */
6750                return;
6751
6752        for (i = 0; i <= st->curframe; i++)
6753                clean_func_state(env, st->frame[i]);
6754}
6755
6756/* the parentage chains form a tree.
6757 * the verifier states are added to state lists at given insn and
6758 * pushed into state stack for future exploration.
6759 * when the verifier reaches bpf_exit insn some of the verifer states
6760 * stored in the state lists have their final liveness state already,
6761 * but a lot of states will get revised from liveness point of view when
6762 * the verifier explores other branches.
6763 * Example:
6764 * 1: r0 = 1
6765 * 2: if r1 == 100 goto pc+1
6766 * 3: r0 = 2
6767 * 4: exit
6768 * when the verifier reaches exit insn the register r0 in the state list of
6769 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
6770 * of insn 2 and goes exploring further. At the insn 4 it will walk the
6771 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
6772 *
6773 * Since the verifier pushes the branch states as it sees them while exploring
6774 * the program the condition of walking the branch instruction for the second
6775 * time means that all states below this branch were already explored and
6776 * their final liveness markes are already propagated.
6777 * Hence when the verifier completes the search of state list in is_state_visited()
6778 * we can call this clean_live_states() function to mark all liveness states
6779 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
6780 * will not be used.
6781 * This function also clears the registers and stack for states that !READ
6782 * to simplify state merging.
6783 *
6784 * Important note here that walking the same branch instruction in the callee
6785 * doesn't meant that the states are DONE. The verifier has to compare
6786 * the callsites
6787 */
6788static void clean_live_states(struct bpf_verifier_env *env, int insn,
6789                              struct bpf_verifier_state *cur)
6790{
6791        struct bpf_verifier_state_list *sl;
6792        int i;
6793
6794        sl = *explored_state(env, insn);
6795        while (sl) {
6796                if (sl->state.branches)
6797                        goto next;
6798                if (sl->state.insn_idx != insn ||
6799                    sl->state.curframe != cur->curframe)
6800                        goto next;
6801                for (i = 0; i <= cur->curframe; i++)
6802                        if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
6803                                goto next;
6804                clean_verifier_state(env, &sl->state);
6805next:
6806                sl = sl->next;
6807        }
6808}
6809
6810/* Returns true if (rold safe implies rcur safe) */
6811static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
6812                    struct idpair *idmap)
6813{
6814        bool equal;
6815
6816        if (!(rold->live & REG_LIVE_READ))
6817                /* explored state didn't use this */
6818                return true;
6819
6820        equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
6821
6822        if (rold->type == PTR_TO_STACK)
6823                /* two stack pointers are equal only if they're pointing to
6824                 * the same stack frame, since fp-8 in foo != fp-8 in bar
6825                 */
6826                return equal && rold->frameno == rcur->frameno;
6827
6828        if (equal)
6829                return true;
6830
6831        if (rold->type == NOT_INIT)
6832                /* explored state can't have used this */
6833                return true;
6834        if (rcur->type == NOT_INIT)
6835                return false;
6836        switch (rold->type) {
6837        case SCALAR_VALUE:
6838                if (rcur->type == SCALAR_VALUE) {
6839                        if (!rold->precise && !rcur->precise)
6840                                return true;
6841                        /* new val must satisfy old val knowledge */
6842                        return range_within(rold, rcur) &&
6843                               tnum_in(rold->var_off, rcur->var_off);
6844                } else {
6845                        /* We're trying to use a pointer in place of a scalar.
6846                         * Even if the scalar was unbounded, this could lead to
6847                         * pointer leaks because scalars are allowed to leak
6848                         * while pointers are not. We could make this safe in
6849                         * special cases if root is calling us, but it's
6850                         * probably not worth the hassle.
6851                         */
6852                        return false;
6853                }
6854        case PTR_TO_MAP_VALUE:
6855                /* If the new min/max/var_off satisfy the old ones and
6856                 * everything else matches, we are OK.
6857                 * 'id' is not compared, since it's only used for maps with
6858                 * bpf_spin_lock inside map element and in such cases if
6859                 * the rest of the prog is valid for one map element then
6860                 * it's valid for all map elements regardless of the key
6861                 * used in bpf_map_lookup()
6862                 */
6863                return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
6864                       range_within(rold, rcur) &&
6865                       tnum_in(rold->var_off, rcur->var_off);
6866        case PTR_TO_MAP_VALUE_OR_NULL:
6867                /* a PTR_TO_MAP_VALUE could be safe to use as a
6868                 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
6869                 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
6870                 * checked, doing so could have affected others with the same
6871                 * id, and we can't check for that because we lost the id when
6872                 * we converted to a PTR_TO_MAP_VALUE.
6873                 */
6874                if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
6875                        return false;
6876                if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
6877                        return false;
6878                /* Check our ids match any regs they're supposed to */
6879                return check_ids(rold->id, rcur->id, idmap);
6880        case PTR_TO_PACKET_META:
6881        case PTR_TO_PACKET:
6882                if (rcur->type != rold->type)
6883                        return false;
6884                /* We must have at least as much range as the old ptr
6885                 * did, so that any accesses which were safe before are
6886                 * still safe.  This is true even if old range < old off,
6887                 * since someone could have accessed through (ptr - k), or
6888                 * even done ptr -= k in a register, to get a safe access.
6889                 */
6890                if (rold->range > rcur->range)
6891                        return false;
6892                /* If the offsets don't match, we can't trust our alignment;
6893                 * nor can we be sure that we won't fall out of range.
6894                 */
6895                if (rold->off != rcur->off)
6896                        return false;
6897                /* id relations must be preserved */
6898                if (rold->id && !check_ids(rold->id, rcur->id, idmap))
6899                        return false;
6900                /* new val must satisfy old val knowledge */
6901                return range_within(rold, rcur) &&
6902                       tnum_in(rold->var_off, rcur->var_off);
6903        case PTR_TO_CTX:
6904        case CONST_PTR_TO_MAP:
6905        case PTR_TO_PACKET_END:
6906        case PTR_TO_FLOW_KEYS:
6907        case PTR_TO_SOCKET:
6908        case PTR_TO_SOCKET_OR_NULL:
6909        case PTR_TO_SOCK_COMMON:
6910        case PTR_TO_SOCK_COMMON_OR_NULL:
6911        case PTR_TO_TCP_SOCK:
6912        case PTR_TO_TCP_SOCK_OR_NULL:
6913        case PTR_TO_XDP_SOCK:
6914                /* Only valid matches are exact, which memcmp() above
6915                 * would have accepted
6916                 */
6917        default:
6918                /* Don't know what's going on, just say it's not safe */
6919                return false;
6920        }
6921
6922        /* Shouldn't get here; if we do, say it's not safe */
6923        WARN_ON_ONCE(1);
6924        return false;
6925}
6926
6927static bool stacksafe(struct bpf_func_state *old,
6928                      struct bpf_func_state *cur,
6929                      struct idpair *idmap)
6930{
6931        int i, spi;
6932
6933        /* walk slots of the explored stack and ignore any additional
6934         * slots in the current stack, since explored(safe) state
6935         * didn't use them
6936         */
6937        for (i = 0; i < old->allocated_stack; i++) {
6938                spi = i / BPF_REG_SIZE;
6939
6940                if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
6941                        i += BPF_REG_SIZE - 1;
6942                        /* explored state didn't use this */
6943                        continue;
6944                }
6945
6946                if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
6947                        continue;
6948
6949                /* explored stack has more populated slots than current stack
6950                 * and these slots were used
6951                 */
6952                if (i >= cur->allocated_stack)
6953                        return false;
6954
6955                /* if old state was safe with misc data in the stack
6956                 * it will be safe with zero-initialized stack.
6957                 * The opposite is not true
6958                 */
6959                if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
6960                    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
6961                        continue;
6962                if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
6963                    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
6964                        /* Ex: old explored (safe) state has STACK_SPILL in
6965                         * this stack slot, but current has has STACK_MISC ->
6966                         * this verifier states are not equivalent,
6967                         * return false to continue verification of this path
6968                         */
6969                        return false;
6970                if (i % BPF_REG_SIZE)
6971                        continue;
6972                if (old->stack[spi].slot_type[0] != STACK_SPILL)
6973                        continue;
6974                if (!regsafe(&old->stack[spi].spilled_ptr,
6975                             &cur->stack[spi].spilled_ptr,
6976                             idmap))
6977                        /* when explored and current stack slot are both storing
6978                         * spilled registers, check that stored pointers types
6979                         * are the same as well.
6980                         * Ex: explored safe path could have stored
6981                         * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
6982                         * but current path has stored:
6983                         * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
6984                         * such verifier states are not equivalent.
6985                         * return false to continue verification of this path
6986                         */
6987                        return false;
6988        }
6989        return true;
6990}
6991
6992static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
6993{
6994        if (old->acquired_refs != cur->acquired_refs)
6995                return false;
6996        return !memcmp(old->refs, cur->refs,
6997                       sizeof(*old->refs) * old->acquired_refs);
6998}
6999
7000/* compare two verifier states
7001 *
7002 * all states stored in state_list are known to be valid, since
7003 * verifier reached 'bpf_exit' instruction through them
7004 *
7005 * this function is called when verifier exploring different branches of
7006 * execution popped from the state stack. If it sees an old state that has
7007 * more strict register state and more strict stack state then this execution
7008 * branch doesn't need to be explored further, since verifier already
7009 * concluded that more strict state leads to valid finish.
7010 *
7011 * Therefore two states are equivalent if register state is more conservative
7012 * and explored stack state is more conservative than the current one.
7013 * Example:
7014 *       explored                   current
7015 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
7016 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
7017 *
7018 * In other words if current stack state (one being explored) has more
7019 * valid slots than old one that already passed validation, it means
7020 * the verifier can stop exploring and conclude that current state is valid too
7021 *
7022 * Similarly with registers. If explored state has register type as invalid
7023 * whereas register type in current state is meaningful, it means that
7024 * the current state will reach 'bpf_exit' instruction safely
7025 */
7026static bool func_states_equal(struct bpf_func_state *old,
7027                              struct bpf_func_state *cur)
7028{
7029        struct idpair *idmap;
7030        bool ret = false;
7031        int i;
7032
7033        idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
7034        /* If we failed to allocate the idmap, just say it's not safe */
7035        if (!idmap)
7036                return false;
7037
7038        for (i = 0; i < MAX_BPF_REG; i++) {
7039                if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
7040                        goto out_free;
7041        }
7042
7043        if (!stacksafe(old, cur, idmap))
7044                goto out_free;
7045
7046        if (!refsafe(old, cur))
7047                goto out_free;
7048        ret = true;
7049out_free:
7050        kfree(idmap);
7051        return ret;
7052}
7053
7054static bool states_equal(struct bpf_verifier_env *env,
7055                         struct bpf_verifier_state *old,
7056                         struct bpf_verifier_state *cur)
7057{
7058        int i;
7059
7060        if (old->curframe != cur->curframe)
7061                return false;
7062
7063        /* Verification state from speculative execution simulation
7064         * must never prune a non-speculative execution one.
7065         */
7066        if (old->speculative && !cur->speculative)
7067                return false;
7068
7069        if (old->active_spin_lock != cur->active_spin_lock)
7070                return false;
7071
7072        /* for states to be equal callsites have to be the same
7073         * and all frame states need to be equivalent
7074         */
7075        for (i = 0; i <= old->curframe; i++) {
7076                if (old->frame[i]->callsite != cur->frame[i]->callsite)
7077                        return false;
7078                if (!func_states_equal(old->frame[i], cur->frame[i]))
7079                        return false;
7080        }
7081        return true;
7082}
7083
7084/* Return 0 if no propagation happened. Return negative error code if error
7085 * happened. Otherwise, return the propagated bit.
7086 */
7087static int propagate_liveness_reg(struct bpf_verifier_env *env,
7088                                  struct bpf_reg_state *reg,
7089                                  struct bpf_reg_state *parent_reg)
7090{
7091        u8 parent_flag = parent_reg->live & REG_LIVE_READ;
7092        u8 flag = reg->live & REG_LIVE_READ;
7093        int err;
7094
7095        /* When comes here, read flags of PARENT_REG or REG could be any of
7096         * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
7097         * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
7098         */
7099        if (parent_flag == REG_LIVE_READ64 ||
7100            /* Or if there is no read flag from REG. */
7101            !flag ||
7102            /* Or if the read flag from REG is the same as PARENT_REG. */
7103            parent_flag == flag)
7104                return 0;
7105
7106        err = mark_reg_read(env, reg, parent_reg, flag);
7107        if (err)
7108                return err;
7109
7110        return flag;
7111}
7112
7113/* A write screens off any subsequent reads; but write marks come from the
7114 * straight-line code between a state and its parent.  When we arrive at an
7115 * equivalent state (jump target or such) we didn't arrive by the straight-line
7116 * code, so read marks in the state must propagate to the parent regardless
7117 * of the state's write marks. That's what 'parent == state->parent' comparison
7118 * in mark_reg_read() is for.
7119 */
7120static int propagate_liveness(struct bpf_verifier_env *env,
7121                              const struct bpf_verifier_state *vstate,
7122                              struct bpf_verifier_state *vparent)
7123{
7124        struct bpf_reg_state *state_reg, *parent_reg;
7125        struct bpf_func_state *state, *parent;
7126        int i, frame, err = 0;
7127
7128        if (vparent->curframe != vstate->curframe) {
7129                WARN(1, "propagate_live: parent frame %d current frame %d\n",
7130                     vparent->curframe, vstate->curframe);
7131                return -EFAULT;
7132        }
7133        /* Propagate read liveness of registers... */
7134        BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
7135        for (frame = 0; frame <= vstate->curframe; frame++) {
7136                parent = vparent->frame[frame];
7137                state = vstate->frame[frame];
7138                parent_reg = parent->regs;
7139                state_reg = state->regs;
7140                /* We don't need to worry about FP liveness, it's read-only */
7141                for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
7142                        err = propagate_liveness_reg(env, &state_reg[i],
7143                                                     &parent_reg[i]);
7144                        if (err < 0)
7145                                return err;
7146                        if (err == REG_LIVE_READ64)
7147                                mark_insn_zext(env, &parent_reg[i]);
7148                }
7149
7150                /* Propagate stack slots. */
7151                for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
7152                            i < parent->allocated_stack / BPF_REG_SIZE; i++) {
7153                        parent_reg = &parent->stack[i].spilled_ptr;
7154                        state_reg = &state->stack[i].spilled_ptr;
7155                        err = propagate_liveness_reg(env, state_reg,
7156                                                     parent_reg);
7157                        if (err < 0)
7158                                return err;
7159                }
7160        }
7161        return 0;
7162}
7163
7164/* find precise scalars in the previous equivalent state and
7165 * propagate them into the current state
7166 */
7167static int propagate_precision(struct bpf_verifier_env *env,
7168                               const struct bpf_verifier_state *old)
7169{
7170        struct bpf_reg_state *state_reg;
7171        struct bpf_func_state *state;
7172        int i, err = 0;
7173
7174        state = old->frame[old->curframe];
7175        state_reg = state->regs;
7176        for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
7177                if (state_reg->type != SCALAR_VALUE ||
7178                    !state_reg->precise)
7179                        continue;
7180                if (env->log.level & BPF_LOG_LEVEL2)
7181                        verbose(env, "propagating r%d\n", i);
7182                err = mark_chain_precision(env, i);
7183                if (err < 0)
7184                        return err;
7185        }
7186
7187        for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
7188                if (state->stack[i].slot_type[0] != STACK_SPILL)
7189                        continue;
7190                state_reg = &state->stack[i].spilled_ptr;
7191                if (state_reg->type != SCALAR_VALUE ||
7192                    !state_reg->precise)
7193                        continue;
7194                if (env->log.level & BPF_LOG_LEVEL2)
7195                        verbose(env, "propagating fp%d\n",
7196                                (-i - 1) * BPF_REG_SIZE);
7197                err = mark_chain_precision_stack(env, i);
7198                if (err < 0)
7199                        return err;
7200        }
7201        return 0;
7202}
7203
7204static bool states_maybe_looping(struct bpf_verifier_state *old,
7205                                 struct bpf_verifier_state *cur)
7206{
7207        struct bpf_func_state *fold, *fcur;
7208        int i, fr = cur->curframe;
7209
7210        if (old->curframe != fr)
7211                return false;
7212
7213        fold = old->frame[fr];
7214        fcur = cur->frame[fr];
7215        for (i = 0; i < MAX_BPF_REG; i++)
7216                if (memcmp(&fold->regs[i], &fcur->regs[i],
7217                           offsetof(struct bpf_reg_state, parent)))
7218                        return false;
7219        return true;
7220}
7221
7222
7223static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
7224{
7225        struct bpf_verifier_state_list *new_sl;
7226        struct bpf_verifier_state_list *sl, **pprev;
7227        struct bpf_verifier_state *cur = env->cur_state, *new;
7228        int i, j, err, states_cnt = 0;
7229        bool add_new_state = false;
7230
7231        cur->last_insn_idx = env->prev_insn_idx;
7232        if (!env->insn_aux_data[insn_idx].prune_point)
7233                /* this 'insn_idx' instruction wasn't marked, so we will not
7234                 * be doing state search here
7235                 */
7236                return 0;
7237
7238        /* bpf progs typically have pruning point every 4 instructions
7239         * http://vger.kernel.org/bpfconf2019.html#session-1
7240         * Do not add new state for future pruning if the verifier hasn't seen
7241         * at least 2 jumps and at least 8 instructions.
7242         * This heuristics helps decrease 'total_states' and 'peak_states' metric.
7243         * In tests that amounts to up to 50% reduction into total verifier
7244         * memory consumption and 20% verifier time speedup.
7245         */
7246        if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
7247            env->insn_processed - env->prev_insn_processed >= 8)
7248                add_new_state = true;
7249
7250        pprev = explored_state(env, insn_idx);
7251        sl = *pprev;
7252
7253        clean_live_states(env, insn_idx, cur);
7254
7255        while (sl) {
7256                states_cnt++;
7257                if (sl->state.insn_idx != insn_idx)
7258                        goto next;
7259                if (sl->state.branches) {
7260                        if (states_maybe_looping(&sl->state, cur) &&
7261                            states_equal(env, &sl->state, cur)) {
7262                                verbose_linfo(env, insn_idx, "; ");
7263                                verbose(env, "infinite loop detected at insn %d\n", insn_idx);
7264                                return -EINVAL;
7265                        }
7266                        /* if the verifier is processing a loop, avoid adding new state
7267                         * too often, since different loop iterations have distinct
7268                         * states and may not help future pruning.
7269                         * This threshold shouldn't be too low to make sure that
7270                         * a loop with large bound will be rejected quickly.
7271                         * The most abusive loop will be:
7272                         * r1 += 1
7273                         * if r1 < 1000000 goto pc-2
7274                         * 1M insn_procssed limit / 100 == 10k peak states.
7275                         * This threshold shouldn't be too high either, since states
7276                         * at the end of the loop are likely to be useful in pruning.
7277                         */
7278                        if (env->jmps_processed - env->prev_jmps_processed < 20 &&
7279                            env->insn_processed - env->prev_insn_processed < 100)
7280                                add_new_state = false;
7281                        goto miss;
7282                }
7283                if (states_equal(env, &sl->state, cur)) {
7284                        sl->hit_cnt++;
7285                        /* reached equivalent register/stack state,
7286                         * prune the search.
7287                         * Registers read by the continuation are read by us.
7288                         * If we have any write marks in env->cur_state, they
7289                         * will prevent corresponding reads in the continuation
7290                         * from reaching our parent (an explored_state).  Our
7291                         * own state will get the read marks recorded, but
7292                         * they'll be immediately forgotten as we're pruning
7293                         * this state and will pop a new one.
7294                         */
7295                        err = propagate_liveness(env, &sl->state, cur);
7296
7297                        /* if previous state reached the exit with precision and
7298                         * current state is equivalent to it (except precsion marks)
7299                         * the precision needs to be propagated back in
7300                         * the current state.
7301                         */
7302                        err = err ? : push_jmp_history(env, cur);
7303                        err = err ? : propagate_precision(env, &sl->state);
7304                        if (err)
7305                                return err;
7306                        return 1;
7307                }
7308miss:
7309                /* when new state is not going to be added do not increase miss count.
7310                 * Otherwise several loop iterations will remove the state
7311                 * recorded earlier. The goal of these heuristics is to have
7312                 * states from some iterations of the loop (some in the beginning
7313                 * and some at the end) to help pruning.
7314                 */
7315                if (add_new_state)
7316                        sl->miss_cnt++;
7317                /* heuristic to determine whether this state is beneficial
7318                 * to keep checking from state equivalence point of view.
7319                 * Higher numbers increase max_states_per_insn and verification time,
7320                 * but do not meaningfully decrease insn_processed.
7321                 */
7322                if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
7323                        /* the state is unlikely to be useful. Remove it to
7324                         * speed up verification
7325                         */
7326                        *pprev = sl->next;
7327                        if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
7328                                u32 br = sl->state.branches;
7329
7330                                WARN_ONCE(br,
7331                                          "BUG live_done but branches_to_explore %d\n",
7332                                          br);
7333                                free_verifier_state(&sl->state, false);
7334                                kfree(sl);
7335                                env->peak_states--;
7336                        } else {
7337                                /* cannot free this state, since parentage chain may
7338                                 * walk it later. Add it for free_list instead to
7339                                 * be freed at the end of verification
7340                                 */
7341                                sl->next = env->free_list;
7342                                env->free_list = sl;
7343                        }
7344                        sl = *pprev;
7345                        continue;
7346                }
7347next:
7348                pprev = &sl->next;
7349                sl = *pprev;
7350        }
7351
7352        if (env->max_states_per_insn < states_cnt)
7353                env->max_states_per_insn = states_cnt;
7354
7355        if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
7356                return push_jmp_history(env, cur);
7357
7358        if (!add_new_state)
7359                return push_jmp_history(env, cur);
7360
7361        /* There were no equivalent states, remember the current one.
7362         * Technically the current state is not proven to be safe yet,
7363         * but it will either reach outer most bpf_exit (which means it's safe)
7364         * or it will be rejected. When there are no loops the verifier won't be
7365         * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
7366         * again on the way to bpf_exit.
7367         * When looping the sl->state.branches will be > 0 and this state
7368         * will not be considered for equivalence until branches == 0.
7369         */
7370        new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
7371        if (!new_sl)
7372                return -ENOMEM;
7373        env->total_states++;
7374        env->peak_states++;
7375        env->prev_jmps_processed = env->jmps_processed;
7376        env->prev_insn_processed = env->insn_processed;
7377
7378        /* add new state to the head of linked list */
7379        new = &new_sl->state;
7380        err = copy_verifier_state(new, cur);
7381        if (err) {
7382                free_verifier_state(new, false);
7383                kfree(new_sl);
7384                return err;
7385        }
7386        new->insn_idx = insn_idx;
7387        WARN_ONCE(new->branches != 1,
7388                  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
7389
7390        cur->parent = new;
7391        cur->first_insn_idx = insn_idx;
7392        clear_jmp_history(cur);
7393        new_sl->next = *explored_state(env, insn_idx);
7394        *explored_state(env, insn_idx) = new_sl;
7395        /* connect new state to parentage chain. Current frame needs all
7396         * registers connected. Only r6 - r9 of the callers are alive (pushed
7397         * to the stack implicitly by JITs) so in callers' frames connect just
7398         * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
7399         * the state of the call instruction (with WRITTEN set), and r0 comes
7400         * from callee with its full parentage chain, anyway.
7401         */
7402        /* clear write marks in current state: the writes we did are not writes
7403         * our child did, so they don't screen off its reads from us.
7404         * (There are no read marks in current state, because reads always mark
7405         * their parent and current state never has children yet.  Only
7406         * explored_states can get read marks.)
7407         */
7408        for (j = 0; j <= cur->curframe; j++) {
7409                for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
7410                        cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
7411                for (i = 0; i < BPF_REG_FP; i++)
7412                        cur->frame[j]->regs[i].live = REG_LIVE_NONE;
7413        }
7414
7415        /* all stack frames are accessible from callee, clear them all */
7416        for (j = 0; j <= cur->curframe; j++) {
7417                struct bpf_func_state *frame = cur->frame[j];
7418                struct bpf_func_state *newframe = new->frame[j];
7419
7420                for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
7421                        frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
7422                        frame->stack[i].spilled_ptr.parent =
7423                                                &newframe->stack[i].spilled_ptr;
7424                }
7425        }
7426        return 0;
7427}
7428
7429/* Return true if it's OK to have the same insn return a different type. */
7430static bool reg_type_mismatch_ok(enum bpf_reg_type type)
7431{
7432        switch (type) {
7433        case PTR_TO_CTX:
7434        case PTR_TO_SOCKET:
7435        case PTR_TO_SOCKET_OR_NULL:
7436        case PTR_TO_SOCK_COMMON:
7437        case PTR_TO_SOCK_COMMON_OR_NULL:
7438        case PTR_TO_TCP_SOCK:
7439        case PTR_TO_TCP_SOCK_OR_NULL:
7440        case PTR_TO_XDP_SOCK:
7441                return false;
7442        default:
7443                return true;
7444        }
7445}
7446
7447/* If an instruction was previously used with particular pointer types, then we
7448 * need to be careful to avoid cases such as the below, where it may be ok
7449 * for one branch accessing the pointer, but not ok for the other branch:
7450 *
7451 * R1 = sock_ptr
7452 * goto X;
7453 * ...
7454 * R1 = some_other_valid_ptr;
7455 * goto X;
7456 * ...
7457 * R2 = *(u32 *)(R1 + 0);
7458 */
7459static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
7460{
7461        return src != prev && (!reg_type_mismatch_ok(src) ||
7462                               !reg_type_mismatch_ok(prev));
7463}
7464
7465static int do_check(struct bpf_verifier_env *env)
7466{
7467        struct bpf_verifier_state *state;
7468        struct bpf_insn *insns = env->prog->insnsi;
7469        struct bpf_reg_state *regs;
7470        int insn_cnt = env->prog->len;
7471        bool do_print_state = false;
7472        int prev_insn_idx = -1;
7473
7474        env->prev_linfo = NULL;
7475
7476        state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
7477        if (!state)
7478                return -ENOMEM;
7479        state->curframe = 0;
7480        state->speculative = false;
7481        state->branches = 1;
7482        state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
7483        if (!state->frame[0]) {
7484                kfree(state);
7485                return -ENOMEM;
7486        }
7487        env->cur_state = state;
7488        init_func_state(env, state->frame[0],
7489                        BPF_MAIN_FUNC /* callsite */,
7490                        0 /* frameno */,
7491                        0 /* subprogno, zero == main subprog */);
7492
7493        for (;;) {
7494                struct bpf_insn *insn;
7495                u8 class;
7496                int err;
7497
7498                env->prev_insn_idx = prev_insn_idx;
7499                if (env->insn_idx >= insn_cnt) {
7500                        verbose(env, "invalid insn idx %d insn_cnt %d\n",
7501                                env->insn_idx, insn_cnt);
7502                        return -EFAULT;
7503                }
7504
7505                insn = &insns[env->insn_idx];
7506                class = BPF_CLASS(insn->code);
7507
7508                if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
7509                        verbose(env,
7510                                "BPF program is too large. Processed %d insn\n",
7511                                env->insn_processed);
7512                        return -E2BIG;
7513                }
7514
7515                err = is_state_visited(env, env->insn_idx);
7516                if (err < 0)
7517                        return err;
7518                if (err == 1) {
7519                        /* found equivalent state, can prune the search */
7520                        if (env->log.level & BPF_LOG_LEVEL) {
7521                                if (do_print_state)
7522                                        verbose(env, "\nfrom %d to %d%s: safe\n",
7523                                                env->prev_insn_idx, env->insn_idx,
7524                                                env->cur_state->speculative ?
7525                                                " (speculative execution)" : "");
7526                                else
7527                                        verbose(env, "%d: safe\n", env->insn_idx);
7528                        }
7529                        goto process_bpf_exit;
7530                }
7531
7532                if (signal_pending(current))
7533                        return -EAGAIN;
7534
7535                if (need_resched())
7536                        cond_resched();
7537
7538                if (env->log.level & BPF_LOG_LEVEL2 ||
7539                    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
7540                        if (env->log.level & BPF_LOG_LEVEL2)
7541                                verbose(env, "%d:", env->insn_idx);
7542                        else
7543                                verbose(env, "\nfrom %d to %d%s:",
7544                                        env->prev_insn_idx, env->insn_idx,
7545                                        env->cur_state->speculative ?
7546                                        " (speculative execution)" : "");
7547                        print_verifier_state(env, state->frame[state->curframe]);
7548                        do_print_state = false;
7549                }
7550
7551                if (env->log.level & BPF_LOG_LEVEL) {
7552                        const struct bpf_insn_cbs cbs = {
7553                                .cb_print       = verbose,
7554                                .private_data   = env,
7555                        };
7556
7557                        verbose_linfo(env, env->insn_idx, "; ");
7558                        verbose(env, "%d: ", env->insn_idx);
7559                        print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
7560                }
7561
7562                if (bpf_prog_is_dev_bound(env->prog->aux)) {
7563                        err = bpf_prog_offload_verify_insn(env, env->insn_idx,
7564                                                           env->prev_insn_idx);
7565                        if (err)
7566                                return err;
7567                }
7568
7569                regs = cur_regs(env);
7570                env->insn_aux_data[env->insn_idx].seen = true;
7571                prev_insn_idx = env->insn_idx;
7572
7573                if (class == BPF_ALU || class == BPF_ALU64) {
7574                        err = check_alu_op(env, insn);
7575                        if (err)
7576                                return err;
7577
7578                } else if (class == BPF_LDX) {
7579                        enum bpf_reg_type *prev_src_type, src_reg_type;
7580
7581                        /* check for reserved fields is already done */
7582
7583                        /* check src operand */
7584                        err = check_reg_arg(env, insn->src_reg, SRC_OP);
7585                        if (err)
7586                                return err;
7587
7588                        err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7589                        if (err)
7590                                return err;
7591
7592                        src_reg_type = regs[insn->src_reg].type;
7593
7594                        /* check that memory (src_reg + off) is readable,
7595                         * the state of dst_reg will be updated by this func
7596                         */
7597                        err = check_mem_access(env, env->insn_idx, insn->src_reg,
7598                                               insn->off, BPF_SIZE(insn->code),
7599                                               BPF_READ, insn->dst_reg, false);
7600                        if (err)
7601                                return err;
7602
7603                        prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
7604
7605                        if (*prev_src_type == NOT_INIT) {
7606                                /* saw a valid insn
7607                                 * dst_reg = *(u32 *)(src_reg + off)
7608                                 * save type to validate intersecting paths
7609                                 */
7610                                *prev_src_type = src_reg_type;
7611
7612                        } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
7613                                /* ABuser program is trying to use the same insn
7614                                 * dst_reg = *(u32*) (src_reg + off)
7615                                 * with different pointer types:
7616                                 * src_reg == ctx in one branch and
7617                                 * src_reg == stack|map in some other branch.
7618                                 * Reject it.
7619                                 */
7620                                verbose(env, "same insn cannot be used with different pointers\n");
7621                                return -EINVAL;
7622                        }
7623
7624                } else if (class == BPF_STX) {
7625                        enum bpf_reg_type *prev_dst_type, dst_reg_type;
7626
7627                        if (BPF_MODE(insn->code) == BPF_XADD) {
7628                                err = check_xadd(env, env->insn_idx, insn);
7629                                if (err)
7630                                        return err;
7631                                env->insn_idx++;
7632                                continue;
7633                        }
7634
7635                        /* check src1 operand */
7636                        err = check_reg_arg(env, insn->src_reg, SRC_OP);
7637                        if (err)
7638                                return err;
7639                        /* check src2 operand */
7640                        err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7641                        if (err)
7642                                return err;
7643
7644                        dst_reg_type = regs[insn->dst_reg].type;
7645
7646                        /* check that memory (dst_reg + off) is writeable */
7647                        err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7648                                               insn->off, BPF_SIZE(insn->code),
7649                                               BPF_WRITE, insn->src_reg, false);
7650                        if (err)
7651                                return err;
7652
7653                        prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
7654
7655                        if (*prev_dst_type == NOT_INIT) {
7656                                *prev_dst_type = dst_reg_type;
7657                        } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
7658                                verbose(env, "same insn cannot be used with different pointers\n");
7659                                return -EINVAL;
7660                        }
7661
7662                } else if (class == BPF_ST) {
7663                        if (BPF_MODE(insn->code) != BPF_MEM ||
7664                            insn->src_reg != BPF_REG_0) {
7665                                verbose(env, "BPF_ST uses reserved fields\n");
7666                                return -EINVAL;
7667                        }
7668                        /* check src operand */
7669                        err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7670                        if (err)
7671                                return err;
7672
7673                        if (is_ctx_reg(env, insn->dst_reg)) {
7674                                verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
7675                                        insn->dst_reg,
7676                                        reg_type_str[reg_state(env, insn->dst_reg)->type]);
7677                                return -EACCES;
7678                        }
7679
7680                        /* check that memory (dst_reg + off) is writeable */
7681                        err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7682                                               insn->off, BPF_SIZE(insn->code),
7683                                               BPF_WRITE, -1, false);
7684                        if (err)
7685                                return err;
7686
7687                } else if (class == BPF_JMP || class == BPF_JMP32) {
7688                        u8 opcode = BPF_OP(insn->code);
7689
7690                        env->jmps_processed++;
7691                        if (opcode == BPF_CALL) {
7692                                if (BPF_SRC(insn->code) != BPF_K ||
7693                                    insn->off != 0 ||
7694                                    (insn->src_reg != BPF_REG_0 &&
7695                                     insn->src_reg != BPF_PSEUDO_CALL) ||
7696                                    insn->dst_reg != BPF_REG_0 ||
7697                                    class == BPF_JMP32) {
7698                                        verbose(env, "BPF_CALL uses reserved fields\n");
7699                                        return -EINVAL;
7700                                }
7701
7702                                if (env->cur_state->active_spin_lock &&
7703                                    (insn->src_reg == BPF_PSEUDO_CALL ||
7704                                     insn->imm != BPF_FUNC_spin_unlock)) {
7705                                        verbose(env, "function calls are not allowed while holding a lock\n");
7706                                        return -EINVAL;
7707                                }
7708                                if (insn->src_reg == BPF_PSEUDO_CALL)
7709                                        err = check_func_call(env, insn, &env->insn_idx);
7710                                else
7711                                        err = check_helper_call(env, insn->imm, env->insn_idx);
7712                                if (err)
7713                                        return err;
7714
7715                        } else if (opcode == BPF_JA) {
7716                                if (BPF_SRC(insn->code) != BPF_K ||
7717                                    insn->imm != 0 ||
7718                                    insn->src_reg != BPF_REG_0 ||
7719                                    insn->dst_reg != BPF_REG_0 ||
7720                                    class == BPF_JMP32) {
7721                                        verbose(env, "BPF_JA uses reserved fields\n");
7722                                        return -EINVAL;
7723                                }
7724
7725                                env->insn_idx += insn->off + 1;
7726                                continue;
7727
7728                        } else if (opcode == BPF_EXIT) {
7729                                if (BPF_SRC(insn->code) != BPF_K ||
7730                                    insn->imm != 0 ||
7731                                    insn->src_reg != BPF_REG_0 ||
7732                                    insn->dst_reg != BPF_REG_0 ||
7733                                    class == BPF_JMP32) {
7734                                        verbose(env, "BPF_EXIT uses reserved fields\n");
7735                                        return -EINVAL;
7736                                }
7737
7738                                if (env->cur_state->active_spin_lock) {
7739                                        verbose(env, "bpf_spin_unlock is missing\n");
7740                                        return -EINVAL;
7741                                }
7742
7743                                if (state->curframe) {
7744                                        /* exit from nested function */
7745                                        err = prepare_func_exit(env, &env->insn_idx);
7746                                        if (err)
7747                                                return err;
7748                                        do_print_state = true;
7749                                        continue;
7750                                }
7751
7752                                err = check_reference_leak(env);
7753                                if (err)
7754                                        return err;
7755
7756                                /* eBPF calling convetion is such that R0 is used
7757                                 * to return the value from eBPF program.
7758                                 * Make sure that it's readable at this time
7759                                 * of bpf_exit, which means that program wrote
7760                                 * something into it earlier
7761                                 */
7762                                err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7763                                if (err)
7764                                        return err;
7765
7766                                if (is_pointer_value(env, BPF_REG_0)) {
7767                                        verbose(env, "R0 leaks addr as return value\n");
7768                                        return -EACCES;
7769                                }
7770
7771                                err = check_return_code(env);
7772                                if (err)
7773                                        return err;
7774process_bpf_exit:
7775                                update_branch_counts(env, env->cur_state);
7776                                err = pop_stack(env, &prev_insn_idx,
7777                                                &env->insn_idx);
7778                                if (err < 0) {
7779                                        if (err != -ENOENT)
7780                                                return err;
7781                                        break;
7782                                } else {
7783                                        do_print_state = true;
7784                                        continue;
7785                                }
7786                        } else {
7787                                err = check_cond_jmp_op(env, insn, &env->insn_idx);
7788                                if (err)
7789                                        return err;
7790                        }
7791                } else if (class == BPF_LD) {
7792                        u8 mode = BPF_MODE(insn->code);
7793
7794                        if (mode == BPF_ABS || mode == BPF_IND) {
7795                                err = check_ld_abs(env, insn);
7796                                if (err)
7797                                        return err;
7798
7799                        } else if (mode == BPF_IMM) {
7800                                err = check_ld_imm(env, insn);
7801                                if (err)
7802                                        return err;
7803
7804                                env->insn_idx++;
7805                                env->insn_aux_data[env->insn_idx].seen = true;
7806                        } else {
7807                                verbose(env, "invalid BPF_LD mode\n");
7808                                return -EINVAL;
7809                        }
7810                } else {
7811                        verbose(env, "unknown insn class %d\n", class);
7812                        return -EINVAL;
7813                }
7814
7815                env->insn_idx++;
7816        }
7817
7818        env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
7819        return 0;
7820}
7821
7822static int check_map_prealloc(struct bpf_map *map)
7823{
7824        return (map->map_type != BPF_MAP_TYPE_HASH &&
7825                map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
7826                map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
7827                !(map->map_flags & BPF_F_NO_PREALLOC);
7828}
7829
7830static bool is_tracing_prog_type(enum bpf_prog_type type)
7831{
7832        switch (type) {
7833        case BPF_PROG_TYPE_KPROBE:
7834        case BPF_PROG_TYPE_TRACEPOINT:
7835        case BPF_PROG_TYPE_PERF_EVENT:
7836        case BPF_PROG_TYPE_RAW_TRACEPOINT:
7837                return true;
7838        default:
7839                return false;
7840        }
7841}
7842
7843static int check_map_prog_compatibility(struct bpf_verifier_env *env,
7844                                        struct bpf_map *map,
7845                                        struct bpf_prog *prog)
7846
7847{
7848        /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
7849         * preallocated hash maps, since doing memory allocation
7850         * in overflow_handler can crash depending on where nmi got
7851         * triggered.
7852         */
7853        if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
7854                if (!check_map_prealloc(map)) {
7855                        verbose(env, "perf_event programs can only use preallocated hash map\n");
7856                        return -EINVAL;
7857                }
7858                if (map->inner_map_meta &&
7859                    !check_map_prealloc(map->inner_map_meta)) {
7860                        verbose(env, "perf_event programs can only use preallocated inner hash map\n");
7861                        return -EINVAL;
7862                }
7863        }
7864
7865        if ((is_tracing_prog_type(prog->type) ||
7866             prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
7867            map_value_has_spin_lock(map)) {
7868                verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
7869                return -EINVAL;
7870        }
7871
7872        if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
7873            !bpf_offload_prog_map_match(prog, map)) {
7874                verbose(env, "offload device mismatch between prog and map\n");
7875                return -EINVAL;
7876        }
7877
7878        return 0;
7879}
7880
7881static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
7882{
7883        return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
7884                map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
7885}
7886
7887/* look for pseudo eBPF instructions that access map FDs and
7888 * replace them with actual map pointers
7889 */
7890static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
7891{
7892        struct bpf_insn *insn = env->prog->insnsi;
7893        int insn_cnt = env->prog->len;
7894        int i, j, err;
7895
7896        err = bpf_prog_calc_tag(env->prog);
7897        if (err)
7898                return err;
7899
7900        for (i = 0; i < insn_cnt; i++, insn++) {
7901                if (BPF_CLASS(insn->code) == BPF_LDX &&
7902                    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
7903                        verbose(env, "BPF_LDX uses reserved fields\n");
7904                        return -EINVAL;
7905                }
7906
7907                if (BPF_CLASS(insn->code) == BPF_STX &&
7908                    ((BPF_MODE(insn->code) != BPF_MEM &&
7909                      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
7910                        verbose(env, "BPF_STX uses reserved fields\n");
7911                        return -EINVAL;
7912                }
7913
7914                if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
7915                        struct bpf_insn_aux_data *aux;
7916                        struct bpf_map *map;
7917                        struct fd f;
7918                        u64 addr;
7919
7920                        if (i == insn_cnt - 1 || insn[1].code != 0 ||
7921                            insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
7922                            insn[1].off != 0) {
7923                                verbose(env, "invalid bpf_ld_imm64 insn\n");
7924                                return -EINVAL;
7925                        }
7926
7927                        if (insn[0].src_reg == 0)
7928                                /* valid generic load 64-bit imm */
7929                                goto next_insn;
7930
7931                        /* In final convert_pseudo_ld_imm64() step, this is
7932                         * converted into regular 64-bit imm load insn.
7933                         */
7934                        if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
7935                             insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
7936                            (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
7937                             insn[1].imm != 0)) {
7938                                verbose(env,
7939                                        "unrecognized bpf_ld_imm64 insn\n");
7940                                return -EINVAL;
7941                        }
7942
7943                        f = fdget(insn[0].imm);
7944                        map = __bpf_map_get(f);
7945                        if (IS_ERR(map)) {
7946                                verbose(env, "fd %d is not pointing to valid bpf_map\n",
7947                                        insn[0].imm);
7948                                return PTR_ERR(map);
7949                        }
7950
7951                        err = check_map_prog_compatibility(env, map, env->prog);
7952                        if (err) {
7953                                fdput(f);
7954                                return err;
7955                        }
7956
7957                        aux = &env->insn_aux_data[i];
7958                        if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7959                                addr = (unsigned long)map;
7960                        } else {
7961                                u32 off = insn[1].imm;
7962
7963                                if (off >= BPF_MAX_VAR_OFF) {
7964                                        verbose(env, "direct value offset of %u is not allowed\n", off);
7965                                        fdput(f);
7966                                        return -EINVAL;
7967                                }
7968
7969                                if (!map->ops->map_direct_value_addr) {
7970                                        verbose(env, "no direct value access support for this map type\n");
7971                                        fdput(f);
7972                                        return -EINVAL;
7973                                }
7974
7975                                err = map->ops->map_direct_value_addr(map, &addr, off);
7976                                if (err) {
7977                                        verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
7978                                                map->value_size, off);
7979                                        fdput(f);
7980                                        return err;
7981                                }
7982
7983                                aux->map_off = off;
7984                                addr += off;
7985                        }
7986
7987                        insn[0].imm = (u32)addr;
7988                        insn[1].imm = addr >> 32;
7989
7990                        /* check whether we recorded this map already */
7991                        for (j = 0; j < env->used_map_cnt; j++) {
7992                                if (env->used_maps[j] == map) {
7993                                        aux->map_index = j;
7994                                        fdput(f);
7995                                        goto next_insn;
7996                                }
7997                        }
7998
7999                        if (env->used_map_cnt >= MAX_USED_MAPS) {
8000                                fdput(f);
8001                                return -E2BIG;
8002                        }
8003
8004                        /* hold the map. If the program is rejected by verifier,
8005                         * the map will be released by release_maps() or it
8006                         * will be used by the valid program until it's unloaded
8007                         * and all maps are released in free_used_maps()
8008                         */
8009                        map = bpf_map_inc(map, false);
8010                        if (IS_ERR(map)) {
8011                                fdput(f);
8012                                return PTR_ERR(map);
8013                        }
8014
8015                        aux->map_index = env->used_map_cnt;
8016                        env->used_maps[env->used_map_cnt++] = map;
8017
8018                        if (bpf_map_is_cgroup_storage(map) &&
8019                            bpf_cgroup_storage_assign(env->prog, map)) {
8020                                verbose(env, "only one cgroup storage of each type is allowed\n");
8021                                fdput(f);
8022                                return -EBUSY;
8023                        }
8024
8025                        fdput(f);
8026next_insn:
8027                        insn++;
8028                        i++;
8029                        continue;
8030                }
8031
8032                /* Basic sanity check before we invest more work here. */
8033                if (!bpf_opcode_in_insntable(insn->code)) {
8034                        verbose(env, "unknown opcode %02x\n", insn->code);
8035                        return -EINVAL;
8036                }
8037        }
8038
8039        /* now all pseudo BPF_LD_IMM64 instructions load valid
8040         * 'struct bpf_map *' into a register instead of user map_fd.
8041         * These pointers will be used later by verifier to validate map access.
8042         */
8043        return 0;
8044}
8045
8046/* drop refcnt of maps used by the rejected program */
8047static void release_maps(struct bpf_verifier_env *env)
8048{
8049        enum bpf_cgroup_storage_type stype;
8050        int i;
8051
8052        for_each_cgroup_storage_type(stype) {
8053                if (!env->prog->aux->cgroup_storage[stype])
8054                        continue;
8055                bpf_cgroup_storage_release(env->prog,
8056                        env->prog->aux->cgroup_storage[stype]);
8057        }
8058
8059        for (i = 0; i < env->used_map_cnt; i++)
8060                bpf_map_put(env->used_maps[i]);
8061}
8062
8063/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
8064static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
8065{
8066        struct bpf_insn *insn = env->prog->insnsi;
8067        int insn_cnt = env->prog->len;
8068        int i;
8069
8070        for (i = 0; i < insn_cnt; i++, insn++)
8071                if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
8072                        insn->src_reg = 0;
8073}
8074
8075/* single env->prog->insni[off] instruction was replaced with the range
8076 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
8077 * [0, off) and [off, end) to new locations, so the patched range stays zero
8078 */
8079static int adjust_insn_aux_data(struct bpf_verifier_env *env,
8080                                struct bpf_prog *new_prog, u32 off, u32 cnt)
8081{
8082        struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
8083        struct bpf_insn *insn = new_prog->insnsi;
8084        u32 prog_len;
8085        int i;
8086
8087        /* aux info at OFF always needs adjustment, no matter fast path
8088         * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
8089         * original insn at old prog.
8090         */
8091        old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
8092
8093        if (cnt == 1)
8094                return 0;
8095        prog_len = new_prog->len;
8096        new_data = vzalloc(array_size(prog_len,
8097                                      sizeof(struct bpf_insn_aux_data)));
8098        if (!new_data)
8099                return -ENOMEM;
8100        memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
8101        memcpy(new_data + off + cnt - 1, old_data + off,
8102               sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
8103        for (i = off; i < off + cnt - 1; i++) {
8104                new_data[i].seen = true;
8105                new_data[i].zext_dst = insn_has_def32(env, insn + i);
8106        }
8107        env->insn_aux_data = new_data;
8108        vfree(old_data);
8109        return 0;
8110}
8111
8112static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
8113{
8114        int i;
8115
8116        if (len == 1)
8117                return;
8118        /* NOTE: fake 'exit' subprog should be updated as well. */
8119        for (i = 0; i <= env->subprog_cnt; i++) {
8120                if (env->subprog_info[i].start <= off)
8121                        continue;
8122                env->subprog_info[i].start += len - 1;
8123        }
8124}
8125
8126static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
8127                                            const struct bpf_insn *patch, u32 len)
8128{
8129        struct bpf_prog *new_prog;
8130
8131        new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
8132        if (IS_ERR(new_prog)) {
8133                if (PTR_ERR(new_prog) == -ERANGE)
8134                        verbose(env,
8135                                "insn %d cannot be patched due to 16-bit range\n",
8136                                env->insn_aux_data[off].orig_idx);
8137                return NULL;
8138        }
8139        if (adjust_insn_aux_data(env, new_prog, off, len))
8140                return NULL;
8141        adjust_subprog_starts(env, off, len);
8142        return new_prog;
8143}
8144
8145static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
8146                                              u32 off, u32 cnt)
8147{
8148        int i, j;
8149
8150        /* find first prog starting at or after off (first to remove) */
8151        for (i = 0; i < env->subprog_cnt; i++)
8152                if (env->subprog_info[i].start >= off)
8153                        break;
8154        /* find first prog starting at or after off + cnt (first to stay) */
8155        for (j = i; j < env->subprog_cnt; j++)
8156                if (env->subprog_info[j].start >= off + cnt)
8157                        break;
8158        /* if j doesn't start exactly at off + cnt, we are just removing
8159         * the front of previous prog
8160         */
8161        if (env->subprog_info[j].start != off + cnt)
8162                j--;
8163
8164        if (j > i) {
8165                struct bpf_prog_aux *aux = env->prog->aux;
8166                int move;
8167
8168                /* move fake 'exit' subprog as well */
8169                move = env->subprog_cnt + 1 - j;
8170
8171                memmove(env->subprog_info + i,
8172                        env->subprog_info + j,
8173                        sizeof(*env->subprog_info) * move);
8174                env->subprog_cnt -= j - i;
8175
8176                /* remove func_info */
8177                if (aux->func_info) {
8178                        move = aux->func_info_cnt - j;
8179
8180                        memmove(aux->func_info + i,
8181                                aux->func_info + j,
8182                                sizeof(*aux->func_info) * move);
8183                        aux->func_info_cnt -= j - i;
8184                        /* func_info->insn_off is set after all code rewrites,
8185                         * in adjust_btf_func() - no need to adjust
8186                         */
8187                }
8188        } else {
8189                /* convert i from "first prog to remove" to "first to adjust" */
8190                if (env->subprog_info[i].start == off)
8191                        i++;
8192        }
8193
8194        /* update fake 'exit' subprog as well */
8195        for (; i <= env->subprog_cnt; i++)
8196                env->subprog_info[i].start -= cnt;
8197
8198        return 0;
8199}
8200
8201static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
8202                                      u32 cnt)
8203{
8204        struct bpf_prog *prog = env->prog;
8205        u32 i, l_off, l_cnt, nr_linfo;
8206        struct bpf_line_info *linfo;
8207
8208        nr_linfo = prog->aux->nr_linfo;
8209        if (!nr_linfo)
8210                return 0;
8211
8212        linfo = prog->aux->linfo;
8213
8214        /* find first line info to remove, count lines to be removed */
8215        for (i = 0; i < nr_linfo; i++)
8216                if (linfo[i].insn_off >= off)
8217                        break;
8218
8219        l_off = i;
8220        l_cnt = 0;
8221        for (; i < nr_linfo; i++)
8222                if (linfo[i].insn_off < off + cnt)
8223                        l_cnt++;
8224                else
8225                        break;
8226
8227        /* First live insn doesn't match first live linfo, it needs to "inherit"
8228         * last removed linfo.  prog is already modified, so prog->len == off
8229         * means no live instructions after (tail of the program was removed).
8230         */
8231        if (prog->len != off && l_cnt &&
8232            (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
8233                l_cnt--;
8234                linfo[--i].insn_off = off + cnt;
8235        }
8236
8237        /* remove the line info which refer to the removed instructions */
8238        if (l_cnt) {
8239                memmove(linfo + l_off, linfo + i,
8240                        sizeof(*linfo) * (nr_linfo - i));
8241
8242                prog->aux->nr_linfo -= l_cnt;
8243                nr_linfo = prog->aux->nr_linfo;
8244        }
8245
8246        /* pull all linfo[i].insn_off >= off + cnt in by cnt */
8247        for (i = l_off; i < nr_linfo; i++)
8248                linfo[i].insn_off -= cnt;
8249
8250        /* fix up all subprogs (incl. 'exit') which start >= off */
8251        for (i = 0; i <= env->subprog_cnt; i++)
8252                if (env->subprog_info[i].linfo_idx > l_off) {
8253                        /* program may have started in the removed region but
8254                         * may not be fully removed
8255                         */
8256                        if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
8257                                env->subprog_info[i].linfo_idx -= l_cnt;
8258                        else
8259                                env->subprog_info[i].linfo_idx = l_off;
8260                }
8261
8262        return 0;
8263}
8264
8265static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
8266{
8267        struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8268        unsigned int orig_prog_len = env->prog->len;
8269        int err;
8270
8271        if (bpf_prog_is_dev_bound(env->prog->aux))
8272                bpf_prog_offload_remove_insns(env, off, cnt);
8273
8274        err = bpf_remove_insns(env->prog, off, cnt);
8275        if (err)
8276                return err;
8277
8278        err = adjust_subprog_starts_after_remove(env, off, cnt);
8279        if (err)
8280                return err;
8281
8282        err = bpf_adj_linfo_after_remove(env, off, cnt);
8283        if (err)
8284                return err;
8285
8286        memmove(aux_data + off, aux_data + off + cnt,
8287                sizeof(*aux_data) * (orig_prog_len - off - cnt));
8288
8289        return 0;
8290}
8291
8292/* The verifier does more data flow analysis than llvm and will not
8293 * explore branches that are dead at run time. Malicious programs can
8294 * have dead code too. Therefore replace all dead at-run-time code
8295 * with 'ja -1'.
8296 *
8297 * Just nops are not optimal, e.g. if they would sit at the end of the
8298 * program and through another bug we would manage to jump there, then
8299 * we'd execute beyond program memory otherwise. Returning exception
8300 * code also wouldn't work since we can have subprogs where the dead
8301 * code could be located.
8302 */
8303static void sanitize_dead_code(struct bpf_verifier_env *env)
8304{
8305        struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8306        struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
8307        struct bpf_insn *insn = env->prog->insnsi;
8308        const int insn_cnt = env->prog->len;
8309        int i;
8310
8311        for (i = 0; i < insn_cnt; i++) {
8312                if (aux_data[i].seen)
8313                        continue;
8314                memcpy(insn + i, &trap, sizeof(trap));
8315        }
8316}
8317
8318static bool insn_is_cond_jump(u8 code)
8319{
8320        u8 op;
8321
8322        if (BPF_CLASS(code) == BPF_JMP32)
8323                return true;
8324
8325        if (BPF_CLASS(code) != BPF_JMP)
8326                return false;
8327
8328        op = BPF_OP(code);
8329        return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
8330}
8331
8332static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
8333{
8334        struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8335        struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8336        struct bpf_insn *insn = env->prog->insnsi;
8337        const int insn_cnt = env->prog->len;
8338        int i;
8339
8340        for (i = 0; i < insn_cnt; i++, insn++) {
8341                if (!insn_is_cond_jump(insn->code))
8342                        continue;
8343
8344                if (!aux_data[i + 1].seen)
8345                        ja.off = insn->off;
8346                else if (!aux_data[i + 1 + insn->off].seen)
8347                        ja.off = 0;
8348                else
8349                        continue;
8350
8351                if (bpf_prog_is_dev_bound(env->prog->aux))
8352                        bpf_prog_offload_replace_insn(env, i, &ja);
8353
8354                memcpy(insn, &ja, sizeof(ja));
8355        }
8356}
8357
8358static int opt_remove_dead_code(struct bpf_verifier_env *env)
8359{
8360        struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8361        int insn_cnt = env->prog->len;
8362        int i, err;
8363
8364        for (i = 0; i < insn_cnt; i++) {
8365                int j;
8366
8367                j = 0;
8368                while (i + j < insn_cnt && !aux_data[i + j].seen)
8369                        j++;
8370                if (!j)
8371                        continue;
8372
8373                err = verifier_remove_insns(env, i, j);
8374                if (err)
8375                        return err;
8376                insn_cnt = env->prog->len;
8377        }
8378
8379        return 0;
8380}
8381
8382static int opt_remove_nops(struct bpf_verifier_env *env)
8383{
8384        const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8385        struct bpf_insn *insn = env->prog->insnsi;
8386        int insn_cnt = env->prog->len;
8387        int i, err;
8388
8389        for (i = 0; i < insn_cnt; i++) {
8390                if (memcmp(&insn[i], &ja, sizeof(ja)))
8391                        continue;
8392
8393                err = verifier_remove_insns(env, i, 1);
8394                if (err)
8395                        return err;
8396                insn_cnt--;
8397                i--;
8398        }
8399
8400        return 0;
8401}
8402
8403static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
8404                                         const union bpf_attr *attr)
8405{
8406        struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
8407        struct bpf_insn_aux_data *aux = env->insn_aux_data;
8408        int i, patch_len, delta = 0, len = env->prog->len;
8409        struct bpf_insn *insns = env->prog->insnsi;
8410        struct bpf_prog *new_prog;
8411        bool rnd_hi32;
8412
8413        rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
8414        zext_patch[1] = BPF_ZEXT_REG(0);
8415        rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
8416        rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
8417        rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
8418        for (i = 0; i < len; i++) {
8419                int adj_idx = i + delta;
8420                struct bpf_insn insn;
8421
8422                insn = insns[adj_idx];
8423                if (!aux[adj_idx].zext_dst) {
8424                        u8 code, class;
8425                        u32 imm_rnd;
8426
8427                        if (!rnd_hi32)
8428                                continue;
8429
8430                        code = insn.code;
8431                        class = BPF_CLASS(code);
8432                        if (insn_no_def(&insn))
8433                                continue;
8434
8435                        /* NOTE: arg "reg" (the fourth one) is only used for
8436                         *       BPF_STX which has been ruled out in above
8437                         *       check, it is safe to pass NULL here.
8438                         */
8439                        if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
8440                                if (class == BPF_LD &&
8441                                    BPF_MODE(code) == BPF_IMM)
8442                                        i++;
8443                                continue;
8444                        }
8445
8446                        /* ctx load could be transformed into wider load. */
8447                        if (class == BPF_LDX &&
8448                            aux[adj_idx].ptr_type == PTR_TO_CTX)
8449                                continue;
8450
8451                        imm_rnd = get_random_int();
8452                        rnd_hi32_patch[0] = insn;
8453                        rnd_hi32_patch[1].imm = imm_rnd;
8454                        rnd_hi32_patch[3].dst_reg = insn.dst_reg;
8455                        patch = rnd_hi32_patch;
8456                        patch_len = 4;
8457                        goto apply_patch_buffer;
8458                }
8459
8460                if (!bpf_jit_needs_zext())
8461                        continue;
8462
8463                zext_patch[0] = insn;
8464                zext_patch[1].dst_reg = insn.dst_reg;
8465                zext_patch[1].src_reg = insn.dst_reg;
8466                patch = zext_patch;
8467                patch_len = 2;
8468apply_patch_buffer:
8469                new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
8470                if (!new_prog)
8471                        return -ENOMEM;
8472                env->prog = new_prog;
8473                insns = new_prog->insnsi;
8474                aux = env->insn_aux_data;
8475                delta += patch_len - 1;
8476        }
8477
8478        return 0;
8479}
8480
8481/* convert load instructions that access fields of a context type into a
8482 * sequence of instructions that access fields of the underlying structure:
8483 *     struct __sk_buff    -> struct sk_buff
8484 *     struct bpf_sock_ops -> struct sock
8485 */
8486static int convert_ctx_accesses(struct bpf_verifier_env *env)
8487{
8488        const struct bpf_verifier_ops *ops = env->ops;
8489        int i, cnt, size, ctx_field_size, delta = 0;
8490        const int insn_cnt = env->prog->len;
8491        struct bpf_insn insn_buf[16], *insn;
8492        u32 target_size, size_default, off;
8493        struct bpf_prog *new_prog;
8494        enum bpf_access_type type;
8495        bool is_narrower_load;
8496
8497        if (ops->gen_prologue || env->seen_direct_write) {
8498                if (!ops->gen_prologue) {
8499                        verbose(env, "bpf verifier is misconfigured\n");
8500                        return -EINVAL;
8501                }
8502                cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
8503                                        env->prog);
8504                if (cnt >= ARRAY_SIZE(insn_buf)) {
8505                        verbose(env, "bpf verifier is misconfigured\n");
8506                        return -EINVAL;
8507                } else if (cnt) {
8508                        new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
8509                        if (!new_prog)
8510                                return -ENOMEM;
8511
8512                        env->prog = new_prog;
8513                        delta += cnt - 1;
8514                }
8515        }
8516
8517        if (bpf_prog_is_dev_bound(env->prog->aux))
8518                return 0;
8519
8520        insn = env->prog->insnsi + delta;
8521
8522        for (i = 0; i < insn_cnt; i++, insn++) {
8523                bpf_convert_ctx_access_t convert_ctx_access;
8524
8525                if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
8526                    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
8527                    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
8528                    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
8529                        type = BPF_READ;
8530                else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
8531                         insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
8532                         insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
8533                         insn->code == (BPF_STX | BPF_MEM | BPF_DW))
8534                        type = BPF_WRITE;
8535                else
8536                        continue;
8537
8538                if (type == BPF_WRITE &&
8539                    env->insn_aux_data[i + delta].sanitize_stack_off) {
8540                        struct bpf_insn patch[] = {
8541                                /* Sanitize suspicious stack slot with zero.
8542                                 * There are no memory dependencies for this store,
8543                                 * since it's only using frame pointer and immediate
8544                                 * constant of zero
8545                                 */
8546                                BPF_ST_MEM(BPF_DW, BPF_REG_FP,
8547                                           env->insn_aux_data[i + delta].sanitize_stack_off,
8548                                           0),
8549                                /* the original STX instruction will immediately
8550                                 * overwrite the same stack slot with appropriate value
8551                                 */
8552                                *insn,
8553                        };
8554
8555                        cnt = ARRAY_SIZE(patch);
8556                        new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
8557                        if (!new_prog)
8558                                return -ENOMEM;
8559
8560                        delta    += cnt - 1;
8561                        env->prog = new_prog;
8562                        insn      = new_prog->insnsi + i + delta;
8563                        continue;
8564                }
8565
8566                switch (env->insn_aux_data[i + delta].ptr_type) {
8567                case PTR_TO_CTX:
8568                        if (!ops->convert_ctx_access)
8569                                continue;
8570                        convert_ctx_access = ops->convert_ctx_access;
8571                        break;
8572                case PTR_TO_SOCKET:
8573                case PTR_TO_SOCK_COMMON:
8574                        convert_ctx_access = bpf_sock_convert_ctx_access;
8575                        break;
8576                case PTR_TO_TCP_SOCK:
8577                        convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
8578                        break;
8579                case PTR_TO_XDP_SOCK:
8580                        convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
8581                        break;
8582                default:
8583                        continue;
8584                }
8585
8586                ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
8587                size = BPF_LDST_BYTES(insn);
8588
8589                /* If the read access is a narrower load of the field,
8590                 * convert to a 4/8-byte load, to minimum program type specific
8591                 * convert_ctx_access changes. If conversion is successful,
8592                 * we will apply proper mask to the result.
8593                 */
8594                is_narrower_load = size < ctx_field_size;
8595                size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
8596                off = insn->off;
8597                if (is_narrower_load) {
8598                        u8 size_code;
8599
8600                        if (type == BPF_WRITE) {
8601                                verbose(env, "bpf verifier narrow ctx access misconfigured\n");
8602                                return -EINVAL;
8603                        }
8604
8605                        size_code = BPF_H;
8606                        if (ctx_field_size == 4)
8607                                size_code = BPF_W;
8608                        else if (ctx_field_size == 8)
8609                                size_code = BPF_DW;
8610
8611                        insn->off = off & ~(size_default - 1);
8612                        insn->code = BPF_LDX | BPF_MEM | size_code;
8613                }
8614
8615                target_size = 0;
8616                cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
8617                                         &target_size);
8618                if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
8619                    (ctx_field_size && !target_size)) {
8620                        verbose(env, "bpf verifier is misconfigured\n");
8621                        return -EINVAL;
8622                }
8623
8624                if (is_narrower_load && size < target_size) {
8625                        u8 shift = bpf_ctx_narrow_load_shift(off, size,
8626                                                             size_default);
8627                        if (ctx_field_size <= 4) {
8628                                if (shift)
8629                                        insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
8630                                                                        insn->dst_reg,
8631                                                                        shift);
8632                                insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
8633                                                                (1 << size * 8) - 1);
8634                        } else {
8635                                if (shift)
8636                                        insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
8637                                                                        insn->dst_reg,
8638                                                                        shift);
8639                                insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
8640                                                                (1ULL << size * 8) - 1);
8641                        }
8642                }
8643
8644                new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8645                if (!new_prog)
8646                        return -ENOMEM;
8647
8648                delta += cnt - 1;
8649
8650                /* keep walking new program and skip insns we just inserted */
8651                env->prog = new_prog;
8652                insn      = new_prog->insnsi + i + delta;
8653        }
8654
8655        return 0;
8656}
8657
8658static int jit_subprogs(struct bpf_verifier_env *env)
8659{
8660        struct bpf_prog *prog = env->prog, **func, *tmp;
8661        int i, j, subprog_start, subprog_end = 0, len, subprog;
8662        struct bpf_insn *insn;
8663        void *old_bpf_func;
8664        int err;
8665
8666        if (env->subprog_cnt <= 1)
8667                return 0;
8668
8669        for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8670                if (insn->code != (BPF_JMP | BPF_CALL) ||
8671                    insn->src_reg != BPF_PSEUDO_CALL)
8672                        continue;
8673                /* Upon error here we cannot fall back to interpreter but
8674                 * need a hard reject of the program. Thus -EFAULT is
8675                 * propagated in any case.
8676                 */
8677                subprog = find_subprog(env, i + insn->imm + 1);
8678                if (subprog < 0) {
8679                        WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
8680                                  i + insn->imm + 1);
8681                        return -EFAULT;
8682                }
8683                /* temporarily remember subprog id inside insn instead of
8684                 * aux_data, since next loop will split up all insns into funcs
8685                 */
8686                insn->off = subprog;
8687                /* remember original imm in case JIT fails and fallback
8688                 * to interpreter will be needed
8689                 */
8690                env->insn_aux_data[i].call_imm = insn->imm;
8691                /* point imm to __bpf_call_base+1 from JITs point of view */
8692                insn->imm = 1;
8693        }
8694
8695        err = bpf_prog_alloc_jited_linfo(prog);
8696        if (err)
8697                goto out_undo_insn;
8698
8699        err = -ENOMEM;
8700        func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
8701        if (!func)
8702                goto out_undo_insn;
8703
8704        for (i = 0; i < env->subprog_cnt; i++) {
8705                subprog_start = subprog_end;
8706                subprog_end = env->subprog_info[i + 1].start;
8707
8708                len = subprog_end - subprog_start;
8709                /* BPF_PROG_RUN doesn't call subprogs directly,
8710                 * hence main prog stats include the runtime of subprogs.
8711                 * subprogs don't have IDs and not reachable via prog_get_next_id
8712                 * func[i]->aux->stats will never be accessed and stays NULL
8713                 */
8714                func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
8715                if (!func[i])
8716                        goto out_free;
8717                memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
8718                       len * sizeof(struct bpf_insn));
8719                func[i]->type = prog->type;
8720                func[i]->len = len;
8721                if (bpf_prog_calc_tag(func[i]))
8722                        goto out_free;
8723                func[i]->is_func = 1;
8724                func[i]->aux->func_idx = i;
8725                /* the btf and func_info will be freed only at prog->aux */
8726                func[i]->aux->btf = prog->aux->btf;
8727                func[i]->aux->func_info = prog->aux->func_info;
8728
8729                /* Use bpf_prog_F_tag to indicate functions in stack traces.
8730                 * Long term would need debug info to populate names
8731                 */
8732                func[i]->aux->name[0] = 'F';
8733                func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
8734                func[i]->jit_requested = 1;
8735                func[i]->aux->linfo = prog->aux->linfo;
8736                func[i]->aux->nr_linfo = prog->aux->nr_linfo;
8737                func[i]->aux->jited_linfo = prog->aux->jited_linfo;
8738                func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
8739                func[i] = bpf_int_jit_compile(func[i]);
8740                if (!func[i]->jited) {
8741                        err = -ENOTSUPP;
8742                        goto out_free;
8743                }
8744                cond_resched();
8745        }
8746        /* at this point all bpf functions were successfully JITed
8747         * now populate all bpf_calls with correct addresses and
8748         * run last pass of JIT
8749         */
8750        for (i = 0; i < env->subprog_cnt; i++) {
8751                insn = func[i]->insnsi;
8752                for (j = 0; j < func[i]->len; j++, insn++) {
8753                        if (insn->code != (BPF_JMP | BPF_CALL) ||
8754                            insn->src_reg != BPF_PSEUDO_CALL)
8755                                continue;
8756                        subprog = insn->off;
8757                        insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
8758                                    __bpf_call_base;
8759                }
8760
8761                /* we use the aux data to keep a list of the start addresses
8762                 * of the JITed images for each function in the program
8763                 *
8764                 * for some architectures, such as powerpc64, the imm field
8765                 * might not be large enough to hold the offset of the start
8766                 * address of the callee's JITed image from __bpf_call_base
8767                 *
8768                 * in such cases, we can lookup the start address of a callee
8769                 * by using its subprog id, available from the off field of
8770                 * the call instruction, as an index for this list
8771                 */
8772                func[i]->aux->func = func;
8773                func[i]->aux->func_cnt = env->subprog_cnt;
8774        }
8775        for (i = 0; i < env->subprog_cnt; i++) {
8776                old_bpf_func = func[i]->bpf_func;
8777                tmp = bpf_int_jit_compile(func[i]);
8778                if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
8779                        verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
8780                        err = -ENOTSUPP;
8781                        goto out_free;
8782                }
8783                cond_resched();
8784        }
8785
8786        /* finally lock prog and jit images for all functions and
8787         * populate kallsysm
8788         */
8789        for (i = 0; i < env->subprog_cnt; i++) {
8790                bpf_prog_lock_ro(func[i]);
8791                bpf_prog_kallsyms_add(func[i]);
8792        }
8793
8794        /* Last step: make now unused interpreter insns from main
8795         * prog consistent for later dump requests, so they can
8796         * later look the same as if they were interpreted only.
8797         */
8798        for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8799                if (insn->code != (BPF_JMP | BPF_CALL) ||
8800                    insn->src_reg != BPF_PSEUDO_CALL)
8801                        continue;
8802                insn->off = env->insn_aux_data[i].call_imm;
8803                subprog = find_subprog(env, i + insn->off + 1);
8804                insn->imm = subprog;
8805        }
8806
8807        prog->jited = 1;
8808        prog->bpf_func = func[0]->bpf_func;
8809        prog->aux->func = func;
8810        prog->aux->func_cnt = env->subprog_cnt;
8811        bpf_prog_free_unused_jited_linfo(prog);
8812        return 0;
8813out_free:
8814        for (i = 0; i < env->subprog_cnt; i++)
8815                if (func[i])
8816                        bpf_jit_free(func[i]);
8817        kfree(func);
8818out_undo_insn:
8819        /* cleanup main prog to be interpreted */
8820        prog->jit_requested = 0;
8821        for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8822                if (insn->code != (BPF_JMP | BPF_CALL) ||
8823                    insn->src_reg != BPF_PSEUDO_CALL)
8824                        continue;
8825                insn->off = 0;
8826                insn->imm = env->insn_aux_data[i].call_imm;
8827        }
8828        bpf_prog_free_jited_linfo(prog);
8829        return err;
8830}
8831
8832static int fixup_call_args(struct bpf_verifier_env *env)
8833{
8834#ifndef CONFIG_BPF_JIT_ALWAYS_ON
8835        struct bpf_prog *prog = env->prog;
8836        struct bpf_insn *insn = prog->insnsi;
8837        int i, depth;
8838#endif
8839        int err = 0;
8840
8841        if (env->prog->jit_requested &&
8842            !bpf_prog_is_dev_bound(env->prog->aux)) {
8843                err = jit_subprogs(env);
8844                if (err == 0)
8845                        return 0;
8846                if (err == -EFAULT)
8847                        return err;
8848        }
8849#ifndef CONFIG_BPF_JIT_ALWAYS_ON
8850        for (i = 0; i < prog->len; i++, insn++) {
8851                if (insn->code != (BPF_JMP | BPF_CALL) ||
8852                    insn->src_reg != BPF_PSEUDO_CALL)
8853                        continue;
8854                depth = get_callee_stack_depth(env, insn, i);
8855                if (depth < 0)
8856                        return depth;
8857                bpf_patch_call_args(insn, depth);
8858        }
8859        err = 0;
8860#endif
8861        return err;
8862}
8863
8864/* fixup insn->imm field of bpf_call instructions
8865 * and inline eligible helpers as explicit sequence of BPF instructions
8866 *
8867 * this function is called after eBPF program passed verification
8868 */
8869static int fixup_bpf_calls(struct bpf_verifier_env *env)
8870{
8871        struct bpf_prog *prog = env->prog;
8872        struct bpf_insn *insn = prog->insnsi;
8873        const struct bpf_func_proto *fn;
8874        const int insn_cnt = prog->len;
8875        const struct bpf_map_ops *ops;
8876        struct bpf_insn_aux_data *aux;
8877        struct bpf_insn insn_buf[16];
8878        struct bpf_prog *new_prog;
8879        struct bpf_map *map_ptr;
8880        int i, cnt, delta = 0;
8881
8882        for (i = 0; i < insn_cnt; i++, insn++) {
8883                if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
8884                    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8885                    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
8886                    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
8887                        bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
8888                        struct bpf_insn mask_and_div[] = {
8889                                BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8890                                /* Rx div 0 -> 0 */
8891                                BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
8892                                BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
8893                                BPF_JMP_IMM(BPF_JA, 0, 0, 1),
8894                                *insn,
8895                        };
8896                        struct bpf_insn mask_and_mod[] = {
8897                                BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8898                                /* Rx mod 0 -> Rx */
8899                                BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
8900                                *insn,
8901                        };
8902                        struct bpf_insn *patchlet;
8903
8904                        if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8905                            insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
8906                                patchlet = mask_and_div + (is64 ? 1 : 0);
8907                                cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
8908                        } else {
8909                                patchlet = mask_and_mod + (is64 ? 1 : 0);
8910                                cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
8911                        }
8912
8913                        new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
8914                        if (!new_prog)
8915                                return -ENOMEM;
8916
8917                        delta    += cnt - 1;
8918                        env->prog = prog = new_prog;
8919                        insn      = new_prog->insnsi + i + delta;
8920                        continue;
8921                }
8922
8923                if (BPF_CLASS(insn->code) == BPF_LD &&
8924                    (BPF_MODE(insn->code) == BPF_ABS ||
8925                     BPF_MODE(insn->code) == BPF_IND)) {
8926                        cnt = env->ops->gen_ld_abs(insn, insn_buf);
8927                        if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
8928                                verbose(env, "bpf verifier is misconfigured\n");
8929                                return -EINVAL;
8930                        }
8931
8932                        new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8933                        if (!new_prog)
8934                                return -ENOMEM;
8935
8936                        delta    += cnt - 1;
8937                        env->prog = prog = new_prog;
8938                        insn      = new_prog->insnsi + i + delta;
8939                        continue;
8940                }
8941
8942                if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
8943                    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
8944                        const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
8945                        const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
8946                        struct bpf_insn insn_buf[16];
8947                        struct bpf_insn *patch = &insn_buf[0];
8948                        bool issrc, isneg;
8949                        u32 off_reg;
8950
8951                        aux = &env->insn_aux_data[i + delta];
8952                        if (!aux->alu_state ||
8953                            aux->alu_state == BPF_ALU_NON_POINTER)
8954                                continue;
8955
8956                        isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
8957                        issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
8958                                BPF_ALU_SANITIZE_SRC;
8959
8960                        off_reg = issrc ? insn->src_reg : insn->dst_reg;
8961                        if (isneg)
8962                                *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
8963                        *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
8964                        *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
8965                        *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
8966                        *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
8967                        *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
8968                        if (issrc) {
8969                                *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
8970                                                         off_reg);
8971                                insn->src_reg = BPF_REG_AX;
8972                        } else {
8973                                *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
8974                                                         BPF_REG_AX);
8975                        }
8976                        if (isneg)
8977                                insn->code = insn->code == code_add ?
8978                                             code_sub : code_add;
8979                        *patch++ = *insn;
8980                        if (issrc && isneg)
8981                                *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
8982                        cnt = patch - insn_buf;
8983
8984                        new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8985                        if (!new_prog)
8986                                return -ENOMEM;
8987
8988                        delta    += cnt - 1;
8989                        env->prog = prog = new_prog;
8990                        insn      = new_prog->insnsi + i + delta;
8991                        continue;
8992                }
8993
8994                if (insn->code != (BPF_JMP | BPF_CALL))
8995                        continue;
8996                if (insn->src_reg == BPF_PSEUDO_CALL)
8997                        continue;
8998
8999                if (insn->imm == BPF_FUNC_get_route_realm)
9000                        prog->dst_needed = 1;
9001                if (insn->imm == BPF_FUNC_get_prandom_u32)
9002                        bpf_user_rnd_init_once();
9003                if (insn->imm == BPF_FUNC_override_return)
9004                        prog->kprobe_override = 1;
9005                if (insn->imm == BPF_FUNC_tail_call) {
9006                        /* If we tail call into other programs, we
9007                         * cannot make any assumptions since they can
9008                         * be replaced dynamically during runtime in
9009                         * the program array.
9010                         */
9011                        prog->cb_access = 1;
9012                        env->prog->aux->stack_depth = MAX_BPF_STACK;
9013                        env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
9014
9015                        /* mark bpf_tail_call as different opcode to avoid
9016                         * conditional branch in the interpeter for every normal
9017                         * call and to prevent accidental JITing by JIT compiler
9018                         * that doesn't support bpf_tail_call yet
9019                         */
9020                        insn->imm = 0;
9021                        insn->code = BPF_JMP | BPF_TAIL_CALL;
9022
9023                        aux = &env->insn_aux_data[i + delta];
9024                        if (!bpf_map_ptr_unpriv(aux))
9025                                continue;
9026
9027                        /* instead of changing every JIT dealing with tail_call
9028                         * emit two extra insns:
9029                         * if (index >= max_entries) goto out;
9030                         * index &= array->index_mask;
9031                         * to avoid out-of-bounds cpu speculation
9032                         */
9033                        if (bpf_map_ptr_poisoned(aux)) {
9034                                verbose(env, "tail_call abusing map_ptr\n");
9035                                return -EINVAL;
9036                        }
9037
9038                        map_ptr = BPF_MAP_PTR(aux->map_state);
9039                        insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
9040                                                  map_ptr->max_entries, 2);
9041                        insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
9042                                                    container_of(map_ptr,
9043                                                                 struct bpf_array,
9044                                                                 map)->index_mask);
9045                        insn_buf[2] = *insn;
9046                        cnt = 3;
9047                        new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9048                        if (!new_prog)
9049                                return -ENOMEM;
9050
9051                        delta    += cnt - 1;
9052                        env->prog = prog = new_prog;
9053                        insn      = new_prog->insnsi + i + delta;
9054                        continue;
9055                }
9056
9057                /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
9058                 * and other inlining handlers are currently limited to 64 bit
9059                 * only.
9060                 */
9061                if (prog->jit_requested && BITS_PER_LONG == 64 &&
9062                    (insn->imm == BPF_FUNC_map_lookup_elem ||
9063                     insn->imm == BPF_FUNC_map_update_elem ||
9064                     insn->imm == BPF_FUNC_map_delete_elem ||
9065                     insn->imm == BPF_FUNC_map_push_elem   ||
9066                     insn->imm == BPF_FUNC_map_pop_elem    ||
9067                     insn->imm == BPF_FUNC_map_peek_elem)) {
9068                        aux = &env->insn_aux_data[i + delta];
9069                        if (bpf_map_ptr_poisoned(aux))
9070                                goto patch_call_imm;
9071
9072                        map_ptr = BPF_MAP_PTR(aux->map_state);
9073                        ops = map_ptr->ops;
9074                        if (insn->imm == BPF_FUNC_map_lookup_elem &&
9075                            ops->map_gen_lookup) {
9076                                cnt = ops->map_gen_lookup(map_ptr, insn_buf);
9077                                if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9078                                        verbose(env, "bpf verifier is misconfigured\n");
9079                                        return -EINVAL;
9080                                }
9081
9082                                new_prog = bpf_patch_insn_data(env, i + delta,
9083                                                               insn_buf, cnt);
9084                                if (!new_prog)
9085                                        return -ENOMEM;
9086
9087                                delta    += cnt - 1;
9088                                env->prog = prog = new_prog;
9089                                insn      = new_prog->insnsi + i + delta;
9090                                continue;
9091                        }
9092
9093                        BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
9094                                     (void *(*)(struct bpf_map *map, void *key))NULL));
9095                        BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
9096                                     (int (*)(struct bpf_map *map, void *key))NULL));
9097                        BUILD_BUG_ON(!__same_type(ops->map_update_elem,
9098                                     (int (*)(struct bpf_map *map, void *key, void *value,
9099                                              u64 flags))NULL));
9100                        BUILD_BUG_ON(!__same_type(ops->map_push_elem,
9101                                     (int (*)(struct bpf_map *map, void *value,
9102                                              u64 flags))NULL));
9103                        BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
9104                                     (int (*)(struct bpf_map *map, void *value))NULL));
9105                        BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
9106                                     (int (*)(struct bpf_map *map, void *value))NULL));
9107
9108                        switch (insn->imm) {
9109                        case BPF_FUNC_map_lookup_elem:
9110                                insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
9111                                            __bpf_call_base;
9112                                continue;
9113                        case BPF_FUNC_map_update_elem:
9114                                insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
9115                                            __bpf_call_base;
9116                                continue;
9117                        case BPF_FUNC_map_delete_elem:
9118                                insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
9119                                            __bpf_call_base;
9120                                continue;
9121                        case BPF_FUNC_map_push_elem:
9122                                insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
9123                                            __bpf_call_base;
9124                                continue;
9125                        case BPF_FUNC_map_pop_elem:
9126                                insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
9127                                            __bpf_call_base;
9128                                continue;
9129                        case BPF_FUNC_map_peek_elem:
9130                                insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
9131                                            __bpf_call_base;
9132                                continue;
9133                        }
9134
9135                        goto patch_call_imm;
9136                }
9137
9138patch_call_imm:
9139                fn = env->ops->get_func_proto(insn->imm, env->prog);
9140                /* all functions that have prototype and verifier allowed
9141                 * programs to call them, must be real in-kernel functions
9142                 */
9143                if (!fn->func) {
9144                        verbose(env,
9145                                "kernel subsystem misconfigured func %s#%d\n",
9146                                func_id_name(insn->imm), insn->imm);
9147                        return -EFAULT;
9148                }
9149                insn->imm = fn->func - __bpf_call_base;
9150        }
9151
9152        return 0;
9153}
9154
9155static void free_states(struct bpf_verifier_env *env)
9156{
9157        struct bpf_verifier_state_list *sl, *sln;
9158        int i;
9159
9160        sl = env->free_list;
9161        while (sl) {
9162                sln = sl->next;
9163                free_verifier_state(&sl->state, false);
9164                kfree(sl);
9165                sl = sln;
9166        }
9167
9168        if (!env->explored_states)
9169                return;
9170
9171        for (i = 0; i < state_htab_size(env); i++) {
9172                sl = env->explored_states[i];
9173
9174                while (sl) {
9175                        sln = sl->next;
9176                        free_verifier_state(&sl->state, false);
9177                        kfree(sl);
9178                        sl = sln;
9179                }
9180        }
9181
9182        kvfree(env->explored_states);
9183}
9184
9185static void print_verification_stats(struct bpf_verifier_env *env)
9186{
9187        int i;
9188
9189        if (env->log.level & BPF_LOG_STATS) {
9190                verbose(env, "verification time %lld usec\n",
9191                        div_u64(env->verification_time, 1000));
9192                verbose(env, "stack depth ");
9193                for (i = 0; i < env->subprog_cnt; i++) {
9194                        u32 depth = env->subprog_info[i].stack_depth;
9195
9196                        verbose(env, "%d", depth);
9197                        if (i + 1 < env->subprog_cnt)
9198                                verbose(env, "+");
9199                }
9200                verbose(env, "\n");
9201        }
9202        verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
9203                "total_states %d peak_states %d mark_read %d\n",
9204                env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
9205                env->max_states_per_insn, env->total_states,
9206                env->peak_states, env->longest_mark_read_walk);
9207}
9208
9209int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
9210              union bpf_attr __user *uattr)
9211{
9212        u64 start_time = ktime_get_ns();
9213        struct bpf_verifier_env *env;
9214        struct bpf_verifier_log *log;
9215        int i, len, ret = -EINVAL;
9216        bool is_priv;
9217
9218        /* no program is valid */
9219        if (ARRAY_SIZE(bpf_verifier_ops) == 0)
9220                return -EINVAL;
9221
9222        /* 'struct bpf_verifier_env' can be global, but since it's not small,
9223         * allocate/free it every time bpf_check() is called
9224         */
9225        env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
9226        if (!env)
9227                return -ENOMEM;
9228        log = &env->log;
9229
9230        len = (*prog)->len;
9231        env->insn_aux_data =
9232                vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
9233        ret = -ENOMEM;
9234        if (!env->insn_aux_data)
9235                goto err_free_env;
9236        for (i = 0; i < len; i++)
9237                env->insn_aux_data[i].orig_idx = i;
9238        env->prog = *prog;
9239        env->ops = bpf_verifier_ops[env->prog->type];
9240        is_priv = capable(CAP_SYS_ADMIN);
9241
9242        /* grab the mutex to protect few globals used by verifier */
9243        if (!is_priv)
9244                mutex_lock(&bpf_verifier_lock);
9245
9246        if (attr->log_level || attr->log_buf || attr->log_size) {
9247                /* user requested verbose verifier output
9248                 * and supplied buffer to store the verification trace
9249                 */
9250                log->level = attr->log_level;
9251                log->ubuf = (char __user *) (unsigned long) attr->log_buf;
9252                log->len_total = attr->log_size;
9253
9254                ret = -EINVAL;
9255                /* log attributes have to be sane */
9256                if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
9257                    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
9258                        goto err_unlock;
9259        }
9260
9261        env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
9262        if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
9263                env->strict_alignment = true;
9264        if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
9265                env->strict_alignment = false;
9266
9267        env->allow_ptr_leaks = is_priv;
9268
9269        ret = replace_map_fd_with_map_ptr(env);
9270        if (ret < 0)
9271                goto skip_full_check;
9272
9273        if (bpf_prog_is_dev_bound(env->prog->aux)) {
9274                ret = bpf_prog_offload_verifier_prep(env->prog);
9275                if (ret)
9276                        goto skip_full_check;
9277        }
9278
9279        env->explored_states = kvcalloc(state_htab_size(env),
9280                                       sizeof(struct bpf_verifier_state_list *),
9281                                       GFP_USER);
9282        ret = -ENOMEM;
9283        if (!env->explored_states)
9284                goto skip_full_check;
9285
9286        ret = check_subprogs(env);
9287        if (ret < 0)
9288                goto skip_full_check;
9289
9290        ret = check_btf_info(env, attr, uattr);
9291        if (ret < 0)
9292                goto skip_full_check;
9293
9294        ret = check_cfg(env);
9295        if (ret < 0)
9296                goto skip_full_check;
9297
9298        ret = do_check(env);
9299        if (env->cur_state) {
9300                free_verifier_state(env->cur_state, true);
9301                env->cur_state = NULL;
9302        }
9303
9304        if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
9305                ret = bpf_prog_offload_finalize(env);
9306
9307skip_full_check:
9308        while (!pop_stack(env, NULL, NULL));
9309        free_states(env);
9310
9311        if (ret == 0)
9312                ret = check_max_stack_depth(env);
9313
9314        /* instruction rewrites happen after this point */
9315        if (is_priv) {
9316                if (ret == 0)
9317                        opt_hard_wire_dead_code_branches(env);
9318                if (ret == 0)
9319                        ret = opt_remove_dead_code(env);
9320                if (ret == 0)
9321                        ret = opt_remove_nops(env);
9322        } else {
9323                if (ret == 0)
9324                        sanitize_dead_code(env);
9325        }
9326
9327        if (ret == 0)
9328                /* program is valid, convert *(u32*)(ctx + off) accesses */
9329                ret = convert_ctx_accesses(env);
9330
9331        if (ret == 0)
9332                ret = fixup_bpf_calls(env);
9333
9334        /* do 32-bit optimization after insn patching has done so those patched
9335         * insns could be handled correctly.
9336         */
9337        if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
9338                ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
9339                env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
9340                                                                     : false;
9341        }
9342
9343        if (ret == 0)
9344                ret = fixup_call_args(env);
9345
9346        env->verification_time = ktime_get_ns() - start_time;
9347        print_verification_stats(env);
9348
9349        if (log->level && bpf_verifier_log_full(log))
9350                ret = -ENOSPC;
9351        if (log->level && !log->ubuf) {
9352                ret = -EFAULT;
9353                goto err_release_maps;
9354        }
9355
9356        if (ret == 0 && env->used_map_cnt) {
9357                /* if program passed verifier, update used_maps in bpf_prog_info */
9358                env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
9359                                                          sizeof(env->used_maps[0]),
9360                                                          GFP_KERNEL);
9361
9362                if (!env->prog->aux->used_maps) {
9363                        ret = -ENOMEM;
9364                        goto err_release_maps;
9365                }
9366
9367                memcpy(env->prog->aux->used_maps, env->used_maps,
9368                       sizeof(env->used_maps[0]) * env->used_map_cnt);
9369                env->prog->aux->used_map_cnt = env->used_map_cnt;
9370
9371                /* program is valid. Convert pseudo bpf_ld_imm64 into generic
9372                 * bpf_ld_imm64 instructions
9373                 */
9374                convert_pseudo_ld_imm64(env);
9375        }
9376
9377        if (ret == 0)
9378                adjust_btf_func(env);
9379
9380err_release_maps:
9381        if (!env->prog->aux->used_maps)
9382                /* if we didn't copy map pointers into bpf_prog_info, release
9383                 * them now. Otherwise free_used_maps() will release them.
9384                 */
9385                release_maps(env);
9386        *prog = env->prog;
9387err_unlock:
9388        if (!is_priv)
9389                mutex_unlock(&bpf_verifier_lock);
9390        vfree(env->insn_aux_data);
9391err_free_env:
9392        kfree(env);
9393        return ret;
9394}
9395