linux/kernel/cgroup/cgroup-v1.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include "cgroup-internal.h"
   3
   4#include <linux/ctype.h>
   5#include <linux/kmod.h>
   6#include <linux/sort.h>
   7#include <linux/delay.h>
   8#include <linux/mm.h>
   9#include <linux/sched/signal.h>
  10#include <linux/sched/task.h>
  11#include <linux/magic.h>
  12#include <linux/slab.h>
  13#include <linux/vmalloc.h>
  14#include <linux/delayacct.h>
  15#include <linux/pid_namespace.h>
  16#include <linux/cgroupstats.h>
  17#include <linux/fs_parser.h>
  18
  19#include <trace/events/cgroup.h>
  20
  21#define cg_invalf(fc, fmt, ...) invalf(fc, fmt, ## __VA_ARGS__)
  22
  23/*
  24 * pidlists linger the following amount before being destroyed.  The goal
  25 * is avoiding frequent destruction in the middle of consecutive read calls
  26 * Expiring in the middle is a performance problem not a correctness one.
  27 * 1 sec should be enough.
  28 */
  29#define CGROUP_PIDLIST_DESTROY_DELAY    HZ
  30
  31/* Controllers blocked by the commandline in v1 */
  32static u16 cgroup_no_v1_mask;
  33
  34/* disable named v1 mounts */
  35static bool cgroup_no_v1_named;
  36
  37/*
  38 * pidlist destructions need to be flushed on cgroup destruction.  Use a
  39 * separate workqueue as flush domain.
  40 */
  41static struct workqueue_struct *cgroup_pidlist_destroy_wq;
  42
  43/*
  44 * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
  45 * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
  46 */
  47static DEFINE_SPINLOCK(release_agent_path_lock);
  48
  49bool cgroup1_ssid_disabled(int ssid)
  50{
  51        return cgroup_no_v1_mask & (1 << ssid);
  52}
  53
  54/**
  55 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
  56 * @from: attach to all cgroups of a given task
  57 * @tsk: the task to be attached
  58 */
  59int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
  60{
  61        struct cgroup_root *root;
  62        int retval = 0;
  63
  64        mutex_lock(&cgroup_mutex);
  65        percpu_down_write(&cgroup_threadgroup_rwsem);
  66        for_each_root(root) {
  67                struct cgroup *from_cgrp;
  68
  69                if (root == &cgrp_dfl_root)
  70                        continue;
  71
  72                spin_lock_irq(&css_set_lock);
  73                from_cgrp = task_cgroup_from_root(from, root);
  74                spin_unlock_irq(&css_set_lock);
  75
  76                retval = cgroup_attach_task(from_cgrp, tsk, false);
  77                if (retval)
  78                        break;
  79        }
  80        percpu_up_write(&cgroup_threadgroup_rwsem);
  81        mutex_unlock(&cgroup_mutex);
  82
  83        return retval;
  84}
  85EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
  86
  87/**
  88 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
  89 * @to: cgroup to which the tasks will be moved
  90 * @from: cgroup in which the tasks currently reside
  91 *
  92 * Locking rules between cgroup_post_fork() and the migration path
  93 * guarantee that, if a task is forking while being migrated, the new child
  94 * is guaranteed to be either visible in the source cgroup after the
  95 * parent's migration is complete or put into the target cgroup.  No task
  96 * can slip out of migration through forking.
  97 */
  98int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
  99{
 100        DEFINE_CGROUP_MGCTX(mgctx);
 101        struct cgrp_cset_link *link;
 102        struct css_task_iter it;
 103        struct task_struct *task;
 104        int ret;
 105
 106        if (cgroup_on_dfl(to))
 107                return -EINVAL;
 108
 109        ret = cgroup_migrate_vet_dst(to);
 110        if (ret)
 111                return ret;
 112
 113        mutex_lock(&cgroup_mutex);
 114
 115        percpu_down_write(&cgroup_threadgroup_rwsem);
 116
 117        /* all tasks in @from are being moved, all csets are source */
 118        spin_lock_irq(&css_set_lock);
 119        list_for_each_entry(link, &from->cset_links, cset_link)
 120                cgroup_migrate_add_src(link->cset, to, &mgctx);
 121        spin_unlock_irq(&css_set_lock);
 122
 123        ret = cgroup_migrate_prepare_dst(&mgctx);
 124        if (ret)
 125                goto out_err;
 126
 127        /*
 128         * Migrate tasks one-by-one until @from is empty.  This fails iff
 129         * ->can_attach() fails.
 130         */
 131        do {
 132                css_task_iter_start(&from->self, 0, &it);
 133
 134                do {
 135                        task = css_task_iter_next(&it);
 136                } while (task && (task->flags & PF_EXITING));
 137
 138                if (task)
 139                        get_task_struct(task);
 140                css_task_iter_end(&it);
 141
 142                if (task) {
 143                        ret = cgroup_migrate(task, false, &mgctx);
 144                        if (!ret)
 145                                TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
 146                        put_task_struct(task);
 147                }
 148        } while (task && !ret);
 149out_err:
 150        cgroup_migrate_finish(&mgctx);
 151        percpu_up_write(&cgroup_threadgroup_rwsem);
 152        mutex_unlock(&cgroup_mutex);
 153        return ret;
 154}
 155
 156/*
 157 * Stuff for reading the 'tasks'/'procs' files.
 158 *
 159 * Reading this file can return large amounts of data if a cgroup has
 160 * *lots* of attached tasks. So it may need several calls to read(),
 161 * but we cannot guarantee that the information we produce is correct
 162 * unless we produce it entirely atomically.
 163 *
 164 */
 165
 166/* which pidlist file are we talking about? */
 167enum cgroup_filetype {
 168        CGROUP_FILE_PROCS,
 169        CGROUP_FILE_TASKS,
 170};
 171
 172/*
 173 * A pidlist is a list of pids that virtually represents the contents of one
 174 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
 175 * a pair (one each for procs, tasks) for each pid namespace that's relevant
 176 * to the cgroup.
 177 */
 178struct cgroup_pidlist {
 179        /*
 180         * used to find which pidlist is wanted. doesn't change as long as
 181         * this particular list stays in the list.
 182        */
 183        struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
 184        /* array of xids */
 185        pid_t *list;
 186        /* how many elements the above list has */
 187        int length;
 188        /* each of these stored in a list by its cgroup */
 189        struct list_head links;
 190        /* pointer to the cgroup we belong to, for list removal purposes */
 191        struct cgroup *owner;
 192        /* for delayed destruction */
 193        struct delayed_work destroy_dwork;
 194};
 195
 196/*
 197 * The following two functions "fix" the issue where there are more pids
 198 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
 199 * TODO: replace with a kernel-wide solution to this problem
 200 */
 201#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
 202static void *pidlist_allocate(int count)
 203{
 204        if (PIDLIST_TOO_LARGE(count))
 205                return vmalloc(array_size(count, sizeof(pid_t)));
 206        else
 207                return kmalloc_array(count, sizeof(pid_t), GFP_KERNEL);
 208}
 209
 210static void pidlist_free(void *p)
 211{
 212        kvfree(p);
 213}
 214
 215/*
 216 * Used to destroy all pidlists lingering waiting for destroy timer.  None
 217 * should be left afterwards.
 218 */
 219void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
 220{
 221        struct cgroup_pidlist *l, *tmp_l;
 222
 223        mutex_lock(&cgrp->pidlist_mutex);
 224        list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
 225                mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
 226        mutex_unlock(&cgrp->pidlist_mutex);
 227
 228        flush_workqueue(cgroup_pidlist_destroy_wq);
 229        BUG_ON(!list_empty(&cgrp->pidlists));
 230}
 231
 232static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
 233{
 234        struct delayed_work *dwork = to_delayed_work(work);
 235        struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
 236                                                destroy_dwork);
 237        struct cgroup_pidlist *tofree = NULL;
 238
 239        mutex_lock(&l->owner->pidlist_mutex);
 240
 241        /*
 242         * Destroy iff we didn't get queued again.  The state won't change
 243         * as destroy_dwork can only be queued while locked.
 244         */
 245        if (!delayed_work_pending(dwork)) {
 246                list_del(&l->links);
 247                pidlist_free(l->list);
 248                put_pid_ns(l->key.ns);
 249                tofree = l;
 250        }
 251
 252        mutex_unlock(&l->owner->pidlist_mutex);
 253        kfree(tofree);
 254}
 255
 256/*
 257 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 258 * Returns the number of unique elements.
 259 */
 260static int pidlist_uniq(pid_t *list, int length)
 261{
 262        int src, dest = 1;
 263
 264        /*
 265         * we presume the 0th element is unique, so i starts at 1. trivial
 266         * edge cases first; no work needs to be done for either
 267         */
 268        if (length == 0 || length == 1)
 269                return length;
 270        /* src and dest walk down the list; dest counts unique elements */
 271        for (src = 1; src < length; src++) {
 272                /* find next unique element */
 273                while (list[src] == list[src-1]) {
 274                        src++;
 275                        if (src == length)
 276                                goto after;
 277                }
 278                /* dest always points to where the next unique element goes */
 279                list[dest] = list[src];
 280                dest++;
 281        }
 282after:
 283        return dest;
 284}
 285
 286/*
 287 * The two pid files - task and cgroup.procs - guaranteed that the result
 288 * is sorted, which forced this whole pidlist fiasco.  As pid order is
 289 * different per namespace, each namespace needs differently sorted list,
 290 * making it impossible to use, for example, single rbtree of member tasks
 291 * sorted by task pointer.  As pidlists can be fairly large, allocating one
 292 * per open file is dangerous, so cgroup had to implement shared pool of
 293 * pidlists keyed by cgroup and namespace.
 294 */
 295static int cmppid(const void *a, const void *b)
 296{
 297        return *(pid_t *)a - *(pid_t *)b;
 298}
 299
 300static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
 301                                                  enum cgroup_filetype type)
 302{
 303        struct cgroup_pidlist *l;
 304        /* don't need task_nsproxy() if we're looking at ourself */
 305        struct pid_namespace *ns = task_active_pid_ns(current);
 306
 307        lockdep_assert_held(&cgrp->pidlist_mutex);
 308
 309        list_for_each_entry(l, &cgrp->pidlists, links)
 310                if (l->key.type == type && l->key.ns == ns)
 311                        return l;
 312        return NULL;
 313}
 314
 315/*
 316 * find the appropriate pidlist for our purpose (given procs vs tasks)
 317 * returns with the lock on that pidlist already held, and takes care
 318 * of the use count, or returns NULL with no locks held if we're out of
 319 * memory.
 320 */
 321static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
 322                                                enum cgroup_filetype type)
 323{
 324        struct cgroup_pidlist *l;
 325
 326        lockdep_assert_held(&cgrp->pidlist_mutex);
 327
 328        l = cgroup_pidlist_find(cgrp, type);
 329        if (l)
 330                return l;
 331
 332        /* entry not found; create a new one */
 333        l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
 334        if (!l)
 335                return l;
 336
 337        INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
 338        l->key.type = type;
 339        /* don't need task_nsproxy() if we're looking at ourself */
 340        l->key.ns = get_pid_ns(task_active_pid_ns(current));
 341        l->owner = cgrp;
 342        list_add(&l->links, &cgrp->pidlists);
 343        return l;
 344}
 345
 346/*
 347 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 348 */
 349static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
 350                              struct cgroup_pidlist **lp)
 351{
 352        pid_t *array;
 353        int length;
 354        int pid, n = 0; /* used for populating the array */
 355        struct css_task_iter it;
 356        struct task_struct *tsk;
 357        struct cgroup_pidlist *l;
 358
 359        lockdep_assert_held(&cgrp->pidlist_mutex);
 360
 361        /*
 362         * If cgroup gets more users after we read count, we won't have
 363         * enough space - tough.  This race is indistinguishable to the
 364         * caller from the case that the additional cgroup users didn't
 365         * show up until sometime later on.
 366         */
 367        length = cgroup_task_count(cgrp);
 368        array = pidlist_allocate(length);
 369        if (!array)
 370                return -ENOMEM;
 371        /* now, populate the array */
 372        css_task_iter_start(&cgrp->self, 0, &it);
 373        while ((tsk = css_task_iter_next(&it))) {
 374                if (unlikely(n == length))
 375                        break;
 376                /* get tgid or pid for procs or tasks file respectively */
 377                if (type == CGROUP_FILE_PROCS)
 378                        pid = task_tgid_vnr(tsk);
 379                else
 380                        pid = task_pid_vnr(tsk);
 381                if (pid > 0) /* make sure to only use valid results */
 382                        array[n++] = pid;
 383        }
 384        css_task_iter_end(&it);
 385        length = n;
 386        /* now sort & (if procs) strip out duplicates */
 387        sort(array, length, sizeof(pid_t), cmppid, NULL);
 388        if (type == CGROUP_FILE_PROCS)
 389                length = pidlist_uniq(array, length);
 390
 391        l = cgroup_pidlist_find_create(cgrp, type);
 392        if (!l) {
 393                pidlist_free(array);
 394                return -ENOMEM;
 395        }
 396
 397        /* store array, freeing old if necessary */
 398        pidlist_free(l->list);
 399        l->list = array;
 400        l->length = length;
 401        *lp = l;
 402        return 0;
 403}
 404
 405/*
 406 * seq_file methods for the tasks/procs files. The seq_file position is the
 407 * next pid to display; the seq_file iterator is a pointer to the pid
 408 * in the cgroup->l->list array.
 409 */
 410
 411static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
 412{
 413        /*
 414         * Initially we receive a position value that corresponds to
 415         * one more than the last pid shown (or 0 on the first call or
 416         * after a seek to the start). Use a binary-search to find the
 417         * next pid to display, if any
 418         */
 419        struct kernfs_open_file *of = s->private;
 420        struct cgroup *cgrp = seq_css(s)->cgroup;
 421        struct cgroup_pidlist *l;
 422        enum cgroup_filetype type = seq_cft(s)->private;
 423        int index = 0, pid = *pos;
 424        int *iter, ret;
 425
 426        mutex_lock(&cgrp->pidlist_mutex);
 427
 428        /*
 429         * !NULL @of->priv indicates that this isn't the first start()
 430         * after open.  If the matching pidlist is around, we can use that.
 431         * Look for it.  Note that @of->priv can't be used directly.  It
 432         * could already have been destroyed.
 433         */
 434        if (of->priv)
 435                of->priv = cgroup_pidlist_find(cgrp, type);
 436
 437        /*
 438         * Either this is the first start() after open or the matching
 439         * pidlist has been destroyed inbetween.  Create a new one.
 440         */
 441        if (!of->priv) {
 442                ret = pidlist_array_load(cgrp, type,
 443                                         (struct cgroup_pidlist **)&of->priv);
 444                if (ret)
 445                        return ERR_PTR(ret);
 446        }
 447        l = of->priv;
 448
 449        if (pid) {
 450                int end = l->length;
 451
 452                while (index < end) {
 453                        int mid = (index + end) / 2;
 454                        if (l->list[mid] == pid) {
 455                                index = mid;
 456                                break;
 457                        } else if (l->list[mid] <= pid)
 458                                index = mid + 1;
 459                        else
 460                                end = mid;
 461                }
 462        }
 463        /* If we're off the end of the array, we're done */
 464        if (index >= l->length)
 465                return NULL;
 466        /* Update the abstract position to be the actual pid that we found */
 467        iter = l->list + index;
 468        *pos = *iter;
 469        return iter;
 470}
 471
 472static void cgroup_pidlist_stop(struct seq_file *s, void *v)
 473{
 474        struct kernfs_open_file *of = s->private;
 475        struct cgroup_pidlist *l = of->priv;
 476
 477        if (l)
 478                mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
 479                                 CGROUP_PIDLIST_DESTROY_DELAY);
 480        mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
 481}
 482
 483static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
 484{
 485        struct kernfs_open_file *of = s->private;
 486        struct cgroup_pidlist *l = of->priv;
 487        pid_t *p = v;
 488        pid_t *end = l->list + l->length;
 489        /*
 490         * Advance to the next pid in the array. If this goes off the
 491         * end, we're done
 492         */
 493        p++;
 494        if (p >= end) {
 495                return NULL;
 496        } else {
 497                *pos = *p;
 498                return p;
 499        }
 500}
 501
 502static int cgroup_pidlist_show(struct seq_file *s, void *v)
 503{
 504        seq_printf(s, "%d\n", *(int *)v);
 505
 506        return 0;
 507}
 508
 509static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
 510                                     char *buf, size_t nbytes, loff_t off,
 511                                     bool threadgroup)
 512{
 513        struct cgroup *cgrp;
 514        struct task_struct *task;
 515        const struct cred *cred, *tcred;
 516        ssize_t ret;
 517
 518        cgrp = cgroup_kn_lock_live(of->kn, false);
 519        if (!cgrp)
 520                return -ENODEV;
 521
 522        task = cgroup_procs_write_start(buf, threadgroup);
 523        ret = PTR_ERR_OR_ZERO(task);
 524        if (ret)
 525                goto out_unlock;
 526
 527        /*
 528         * Even if we're attaching all tasks in the thread group, we only
 529         * need to check permissions on one of them.
 530         */
 531        cred = current_cred();
 532        tcred = get_task_cred(task);
 533        if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
 534            !uid_eq(cred->euid, tcred->uid) &&
 535            !uid_eq(cred->euid, tcred->suid))
 536                ret = -EACCES;
 537        put_cred(tcred);
 538        if (ret)
 539                goto out_finish;
 540
 541        ret = cgroup_attach_task(cgrp, task, threadgroup);
 542
 543out_finish:
 544        cgroup_procs_write_finish(task);
 545out_unlock:
 546        cgroup_kn_unlock(of->kn);
 547
 548        return ret ?: nbytes;
 549}
 550
 551static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
 552                                   char *buf, size_t nbytes, loff_t off)
 553{
 554        return __cgroup1_procs_write(of, buf, nbytes, off, true);
 555}
 556
 557static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
 558                                   char *buf, size_t nbytes, loff_t off)
 559{
 560        return __cgroup1_procs_write(of, buf, nbytes, off, false);
 561}
 562
 563static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
 564                                          char *buf, size_t nbytes, loff_t off)
 565{
 566        struct cgroup *cgrp;
 567
 568        BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
 569
 570        cgrp = cgroup_kn_lock_live(of->kn, false);
 571        if (!cgrp)
 572                return -ENODEV;
 573        spin_lock(&release_agent_path_lock);
 574        strlcpy(cgrp->root->release_agent_path, strstrip(buf),
 575                sizeof(cgrp->root->release_agent_path));
 576        spin_unlock(&release_agent_path_lock);
 577        cgroup_kn_unlock(of->kn);
 578        return nbytes;
 579}
 580
 581static int cgroup_release_agent_show(struct seq_file *seq, void *v)
 582{
 583        struct cgroup *cgrp = seq_css(seq)->cgroup;
 584
 585        spin_lock(&release_agent_path_lock);
 586        seq_puts(seq, cgrp->root->release_agent_path);
 587        spin_unlock(&release_agent_path_lock);
 588        seq_putc(seq, '\n');
 589        return 0;
 590}
 591
 592static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
 593{
 594        seq_puts(seq, "0\n");
 595        return 0;
 596}
 597
 598static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
 599                                         struct cftype *cft)
 600{
 601        return notify_on_release(css->cgroup);
 602}
 603
 604static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
 605                                          struct cftype *cft, u64 val)
 606{
 607        if (val)
 608                set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
 609        else
 610                clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
 611        return 0;
 612}
 613
 614static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
 615                                      struct cftype *cft)
 616{
 617        return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 618}
 619
 620static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
 621                                       struct cftype *cft, u64 val)
 622{
 623        if (val)
 624                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 625        else
 626                clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 627        return 0;
 628}
 629
 630/* cgroup core interface files for the legacy hierarchies */
 631struct cftype cgroup1_base_files[] = {
 632        {
 633                .name = "cgroup.procs",
 634                .seq_start = cgroup_pidlist_start,
 635                .seq_next = cgroup_pidlist_next,
 636                .seq_stop = cgroup_pidlist_stop,
 637                .seq_show = cgroup_pidlist_show,
 638                .private = CGROUP_FILE_PROCS,
 639                .write = cgroup1_procs_write,
 640        },
 641        {
 642                .name = "cgroup.clone_children",
 643                .read_u64 = cgroup_clone_children_read,
 644                .write_u64 = cgroup_clone_children_write,
 645        },
 646        {
 647                .name = "cgroup.sane_behavior",
 648                .flags = CFTYPE_ONLY_ON_ROOT,
 649                .seq_show = cgroup_sane_behavior_show,
 650        },
 651        {
 652                .name = "tasks",
 653                .seq_start = cgroup_pidlist_start,
 654                .seq_next = cgroup_pidlist_next,
 655                .seq_stop = cgroup_pidlist_stop,
 656                .seq_show = cgroup_pidlist_show,
 657                .private = CGROUP_FILE_TASKS,
 658                .write = cgroup1_tasks_write,
 659        },
 660        {
 661                .name = "notify_on_release",
 662                .read_u64 = cgroup_read_notify_on_release,
 663                .write_u64 = cgroup_write_notify_on_release,
 664        },
 665        {
 666                .name = "release_agent",
 667                .flags = CFTYPE_ONLY_ON_ROOT,
 668                .seq_show = cgroup_release_agent_show,
 669                .write = cgroup_release_agent_write,
 670                .max_write_len = PATH_MAX - 1,
 671        },
 672        { }     /* terminate */
 673};
 674
 675/* Display information about each subsystem and each hierarchy */
 676int proc_cgroupstats_show(struct seq_file *m, void *v)
 677{
 678        struct cgroup_subsys *ss;
 679        int i;
 680
 681        seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
 682        /*
 683         * ideally we don't want subsystems moving around while we do this.
 684         * cgroup_mutex is also necessary to guarantee an atomic snapshot of
 685         * subsys/hierarchy state.
 686         */
 687        mutex_lock(&cgroup_mutex);
 688
 689        for_each_subsys(ss, i)
 690                seq_printf(m, "%s\t%d\t%d\t%d\n",
 691                           ss->legacy_name, ss->root->hierarchy_id,
 692                           atomic_read(&ss->root->nr_cgrps),
 693                           cgroup_ssid_enabled(i));
 694
 695        mutex_unlock(&cgroup_mutex);
 696        return 0;
 697}
 698
 699/**
 700 * cgroupstats_build - build and fill cgroupstats
 701 * @stats: cgroupstats to fill information into
 702 * @dentry: A dentry entry belonging to the cgroup for which stats have
 703 * been requested.
 704 *
 705 * Build and fill cgroupstats so that taskstats can export it to user
 706 * space.
 707 */
 708int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
 709{
 710        struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
 711        struct cgroup *cgrp;
 712        struct css_task_iter it;
 713        struct task_struct *tsk;
 714
 715        /* it should be kernfs_node belonging to cgroupfs and is a directory */
 716        if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
 717            kernfs_type(kn) != KERNFS_DIR)
 718                return -EINVAL;
 719
 720        mutex_lock(&cgroup_mutex);
 721
 722        /*
 723         * We aren't being called from kernfs and there's no guarantee on
 724         * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
 725         * @kn->priv is RCU safe.  Let's do the RCU dancing.
 726         */
 727        rcu_read_lock();
 728        cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
 729        if (!cgrp || cgroup_is_dead(cgrp)) {
 730                rcu_read_unlock();
 731                mutex_unlock(&cgroup_mutex);
 732                return -ENOENT;
 733        }
 734        rcu_read_unlock();
 735
 736        css_task_iter_start(&cgrp->self, 0, &it);
 737        while ((tsk = css_task_iter_next(&it))) {
 738                switch (tsk->state) {
 739                case TASK_RUNNING:
 740                        stats->nr_running++;
 741                        break;
 742                case TASK_INTERRUPTIBLE:
 743                        stats->nr_sleeping++;
 744                        break;
 745                case TASK_UNINTERRUPTIBLE:
 746                        stats->nr_uninterruptible++;
 747                        break;
 748                case TASK_STOPPED:
 749                        stats->nr_stopped++;
 750                        break;
 751                default:
 752                        if (delayacct_is_task_waiting_on_io(tsk))
 753                                stats->nr_io_wait++;
 754                        break;
 755                }
 756        }
 757        css_task_iter_end(&it);
 758
 759        mutex_unlock(&cgroup_mutex);
 760        return 0;
 761}
 762
 763void cgroup1_check_for_release(struct cgroup *cgrp)
 764{
 765        if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
 766            !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
 767                schedule_work(&cgrp->release_agent_work);
 768}
 769
 770/*
 771 * Notify userspace when a cgroup is released, by running the
 772 * configured release agent with the name of the cgroup (path
 773 * relative to the root of cgroup file system) as the argument.
 774 *
 775 * Most likely, this user command will try to rmdir this cgroup.
 776 *
 777 * This races with the possibility that some other task will be
 778 * attached to this cgroup before it is removed, or that some other
 779 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 780 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 781 * unused, and this cgroup will be reprieved from its death sentence,
 782 * to continue to serve a useful existence.  Next time it's released,
 783 * we will get notified again, if it still has 'notify_on_release' set.
 784 *
 785 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 786 * means only wait until the task is successfully execve()'d.  The
 787 * separate release agent task is forked by call_usermodehelper(),
 788 * then control in this thread returns here, without waiting for the
 789 * release agent task.  We don't bother to wait because the caller of
 790 * this routine has no use for the exit status of the release agent
 791 * task, so no sense holding our caller up for that.
 792 */
 793void cgroup1_release_agent(struct work_struct *work)
 794{
 795        struct cgroup *cgrp =
 796                container_of(work, struct cgroup, release_agent_work);
 797        char *pathbuf = NULL, *agentbuf = NULL;
 798        char *argv[3], *envp[3];
 799        int ret;
 800
 801        mutex_lock(&cgroup_mutex);
 802
 803        pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
 804        agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
 805        if (!pathbuf || !agentbuf)
 806                goto out;
 807
 808        spin_lock_irq(&css_set_lock);
 809        ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
 810        spin_unlock_irq(&css_set_lock);
 811        if (ret < 0 || ret >= PATH_MAX)
 812                goto out;
 813
 814        argv[0] = agentbuf;
 815        argv[1] = pathbuf;
 816        argv[2] = NULL;
 817
 818        /* minimal command environment */
 819        envp[0] = "HOME=/";
 820        envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
 821        envp[2] = NULL;
 822
 823        mutex_unlock(&cgroup_mutex);
 824        call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
 825        goto out_free;
 826out:
 827        mutex_unlock(&cgroup_mutex);
 828out_free:
 829        kfree(agentbuf);
 830        kfree(pathbuf);
 831}
 832
 833/*
 834 * cgroup_rename - Only allow simple rename of directories in place.
 835 */
 836static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
 837                          const char *new_name_str)
 838{
 839        struct cgroup *cgrp = kn->priv;
 840        int ret;
 841
 842        if (kernfs_type(kn) != KERNFS_DIR)
 843                return -ENOTDIR;
 844        if (kn->parent != new_parent)
 845                return -EIO;
 846
 847        /*
 848         * We're gonna grab cgroup_mutex which nests outside kernfs
 849         * active_ref.  kernfs_rename() doesn't require active_ref
 850         * protection.  Break them before grabbing cgroup_mutex.
 851         */
 852        kernfs_break_active_protection(new_parent);
 853        kernfs_break_active_protection(kn);
 854
 855        mutex_lock(&cgroup_mutex);
 856
 857        ret = kernfs_rename(kn, new_parent, new_name_str);
 858        if (!ret)
 859                TRACE_CGROUP_PATH(rename, cgrp);
 860
 861        mutex_unlock(&cgroup_mutex);
 862
 863        kernfs_unbreak_active_protection(kn);
 864        kernfs_unbreak_active_protection(new_parent);
 865        return ret;
 866}
 867
 868static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
 869{
 870        struct cgroup_root *root = cgroup_root_from_kf(kf_root);
 871        struct cgroup_subsys *ss;
 872        int ssid;
 873
 874        for_each_subsys(ss, ssid)
 875                if (root->subsys_mask & (1 << ssid))
 876                        seq_show_option(seq, ss->legacy_name, NULL);
 877        if (root->flags & CGRP_ROOT_NOPREFIX)
 878                seq_puts(seq, ",noprefix");
 879        if (root->flags & CGRP_ROOT_XATTR)
 880                seq_puts(seq, ",xattr");
 881        if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
 882                seq_puts(seq, ",cpuset_v2_mode");
 883
 884        spin_lock(&release_agent_path_lock);
 885        if (strlen(root->release_agent_path))
 886                seq_show_option(seq, "release_agent",
 887                                root->release_agent_path);
 888        spin_unlock(&release_agent_path_lock);
 889
 890        if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
 891                seq_puts(seq, ",clone_children");
 892        if (strlen(root->name))
 893                seq_show_option(seq, "name", root->name);
 894        return 0;
 895}
 896
 897enum cgroup1_param {
 898        Opt_all,
 899        Opt_clone_children,
 900        Opt_cpuset_v2_mode,
 901        Opt_name,
 902        Opt_none,
 903        Opt_noprefix,
 904        Opt_release_agent,
 905        Opt_xattr,
 906};
 907
 908static const struct fs_parameter_spec cgroup1_param_specs[] = {
 909        fsparam_flag  ("all",           Opt_all),
 910        fsparam_flag  ("clone_children", Opt_clone_children),
 911        fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
 912        fsparam_string("name",          Opt_name),
 913        fsparam_flag  ("none",          Opt_none),
 914        fsparam_flag  ("noprefix",      Opt_noprefix),
 915        fsparam_string("release_agent", Opt_release_agent),
 916        fsparam_flag  ("xattr",         Opt_xattr),
 917        {}
 918};
 919
 920const struct fs_parameter_description cgroup1_fs_parameters = {
 921        .name           = "cgroup1",
 922        .specs          = cgroup1_param_specs,
 923};
 924
 925int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
 926{
 927        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 928        struct cgroup_subsys *ss;
 929        struct fs_parse_result result;
 930        int opt, i;
 931
 932        opt = fs_parse(fc, &cgroup1_fs_parameters, param, &result);
 933        if (opt == -ENOPARAM) {
 934                if (strcmp(param->key, "source") == 0) {
 935                        fc->source = param->string;
 936                        param->string = NULL;
 937                        return 0;
 938                }
 939                for_each_subsys(ss, i) {
 940                        if (strcmp(param->key, ss->legacy_name))
 941                                continue;
 942                        ctx->subsys_mask |= (1 << i);
 943                        return 0;
 944                }
 945                return cg_invalf(fc, "cgroup1: Unknown subsys name '%s'", param->key);
 946        }
 947        if (opt < 0)
 948                return opt;
 949
 950        switch (opt) {
 951        case Opt_none:
 952                /* Explicitly have no subsystems */
 953                ctx->none = true;
 954                break;
 955        case Opt_all:
 956                ctx->all_ss = true;
 957                break;
 958        case Opt_noprefix:
 959                ctx->flags |= CGRP_ROOT_NOPREFIX;
 960                break;
 961        case Opt_clone_children:
 962                ctx->cpuset_clone_children = true;
 963                break;
 964        case Opt_cpuset_v2_mode:
 965                ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
 966                break;
 967        case Opt_xattr:
 968                ctx->flags |= CGRP_ROOT_XATTR;
 969                break;
 970        case Opt_release_agent:
 971                /* Specifying two release agents is forbidden */
 972                if (ctx->release_agent)
 973                        return cg_invalf(fc, "cgroup1: release_agent respecified");
 974                ctx->release_agent = param->string;
 975                param->string = NULL;
 976                break;
 977        case Opt_name:
 978                /* blocked by boot param? */
 979                if (cgroup_no_v1_named)
 980                        return -ENOENT;
 981                /* Can't specify an empty name */
 982                if (!param->size)
 983                        return cg_invalf(fc, "cgroup1: Empty name");
 984                if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
 985                        return cg_invalf(fc, "cgroup1: Name too long");
 986                /* Must match [\w.-]+ */
 987                for (i = 0; i < param->size; i++) {
 988                        char c = param->string[i];
 989                        if (isalnum(c))
 990                                continue;
 991                        if ((c == '.') || (c == '-') || (c == '_'))
 992                                continue;
 993                        return cg_invalf(fc, "cgroup1: Invalid name");
 994                }
 995                /* Specifying two names is forbidden */
 996                if (ctx->name)
 997                        return cg_invalf(fc, "cgroup1: name respecified");
 998                ctx->name = param->string;
 999                param->string = NULL;
1000                break;
1001        }
1002        return 0;
1003}
1004
1005static int check_cgroupfs_options(struct fs_context *fc)
1006{
1007        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1008        u16 mask = U16_MAX;
1009        u16 enabled = 0;
1010        struct cgroup_subsys *ss;
1011        int i;
1012
1013#ifdef CONFIG_CPUSETS
1014        mask = ~((u16)1 << cpuset_cgrp_id);
1015#endif
1016        for_each_subsys(ss, i)
1017                if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1018                        enabled |= 1 << i;
1019
1020        ctx->subsys_mask &= enabled;
1021
1022        /*
1023         * In absense of 'none', 'name=' or subsystem name options,
1024         * let's default to 'all'.
1025         */
1026        if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1027                ctx->all_ss = true;
1028
1029        if (ctx->all_ss) {
1030                /* Mutually exclusive option 'all' + subsystem name */
1031                if (ctx->subsys_mask)
1032                        return cg_invalf(fc, "cgroup1: subsys name conflicts with all");
1033                /* 'all' => select all the subsystems */
1034                ctx->subsys_mask = enabled;
1035        }
1036
1037        /*
1038         * We either have to specify by name or by subsystems. (So all
1039         * empty hierarchies must have a name).
1040         */
1041        if (!ctx->subsys_mask && !ctx->name)
1042                return cg_invalf(fc, "cgroup1: Need name or subsystem set");
1043
1044        /*
1045         * Option noprefix was introduced just for backward compatibility
1046         * with the old cpuset, so we allow noprefix only if mounting just
1047         * the cpuset subsystem.
1048         */
1049        if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1050                return cg_invalf(fc, "cgroup1: noprefix used incorrectly");
1051
1052        /* Can't specify "none" and some subsystems */
1053        if (ctx->subsys_mask && ctx->none)
1054                return cg_invalf(fc, "cgroup1: none used incorrectly");
1055
1056        return 0;
1057}
1058
1059int cgroup1_reconfigure(struct fs_context *fc)
1060{
1061        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1062        struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1063        struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1064        int ret = 0;
1065        u16 added_mask, removed_mask;
1066
1067        cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1068
1069        /* See what subsystems are wanted */
1070        ret = check_cgroupfs_options(fc);
1071        if (ret)
1072                goto out_unlock;
1073
1074        if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1075                pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1076                        task_tgid_nr(current), current->comm);
1077
1078        added_mask = ctx->subsys_mask & ~root->subsys_mask;
1079        removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1080
1081        /* Don't allow flags or name to change at remount */
1082        if ((ctx->flags ^ root->flags) ||
1083            (ctx->name && strcmp(ctx->name, root->name))) {
1084                cg_invalf(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1085                       ctx->flags, ctx->name ?: "", root->flags, root->name);
1086                ret = -EINVAL;
1087                goto out_unlock;
1088        }
1089
1090        /* remounting is not allowed for populated hierarchies */
1091        if (!list_empty(&root->cgrp.self.children)) {
1092                ret = -EBUSY;
1093                goto out_unlock;
1094        }
1095
1096        ret = rebind_subsystems(root, added_mask);
1097        if (ret)
1098                goto out_unlock;
1099
1100        WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1101
1102        if (ctx->release_agent) {
1103                spin_lock(&release_agent_path_lock);
1104                strcpy(root->release_agent_path, ctx->release_agent);
1105                spin_unlock(&release_agent_path_lock);
1106        }
1107
1108        trace_cgroup_remount(root);
1109
1110 out_unlock:
1111        mutex_unlock(&cgroup_mutex);
1112        return ret;
1113}
1114
1115struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1116        .rename                 = cgroup1_rename,
1117        .show_options           = cgroup1_show_options,
1118        .mkdir                  = cgroup_mkdir,
1119        .rmdir                  = cgroup_rmdir,
1120        .show_path              = cgroup_show_path,
1121};
1122
1123/*
1124 * The guts of cgroup1 mount - find or create cgroup_root to use.
1125 * Called with cgroup_mutex held; returns 0 on success, -E... on
1126 * error and positive - in case when the candidate is busy dying.
1127 * On success it stashes a reference to cgroup_root into given
1128 * cgroup_fs_context; that reference is *NOT* counting towards the
1129 * cgroup_root refcount.
1130 */
1131static int cgroup1_root_to_use(struct fs_context *fc)
1132{
1133        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1134        struct cgroup_root *root;
1135        struct cgroup_subsys *ss;
1136        int i, ret;
1137
1138        /* First find the desired set of subsystems */
1139        ret = check_cgroupfs_options(fc);
1140        if (ret)
1141                return ret;
1142
1143        /*
1144         * Destruction of cgroup root is asynchronous, so subsystems may
1145         * still be dying after the previous unmount.  Let's drain the
1146         * dying subsystems.  We just need to ensure that the ones
1147         * unmounted previously finish dying and don't care about new ones
1148         * starting.  Testing ref liveliness is good enough.
1149         */
1150        for_each_subsys(ss, i) {
1151                if (!(ctx->subsys_mask & (1 << i)) ||
1152                    ss->root == &cgrp_dfl_root)
1153                        continue;
1154
1155                if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1156                        return 1;       /* restart */
1157                cgroup_put(&ss->root->cgrp);
1158        }
1159
1160        for_each_root(root) {
1161                bool name_match = false;
1162
1163                if (root == &cgrp_dfl_root)
1164                        continue;
1165
1166                /*
1167                 * If we asked for a name then it must match.  Also, if
1168                 * name matches but sybsys_mask doesn't, we should fail.
1169                 * Remember whether name matched.
1170                 */
1171                if (ctx->name) {
1172                        if (strcmp(ctx->name, root->name))
1173                                continue;
1174                        name_match = true;
1175                }
1176
1177                /*
1178                 * If we asked for subsystems (or explicitly for no
1179                 * subsystems) then they must match.
1180                 */
1181                if ((ctx->subsys_mask || ctx->none) &&
1182                    (ctx->subsys_mask != root->subsys_mask)) {
1183                        if (!name_match)
1184                                continue;
1185                        return -EBUSY;
1186                }
1187
1188                if (root->flags ^ ctx->flags)
1189                        pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1190
1191                ctx->root = root;
1192                return 0;
1193        }
1194
1195        /*
1196         * No such thing, create a new one.  name= matching without subsys
1197         * specification is allowed for already existing hierarchies but we
1198         * can't create new one without subsys specification.
1199         */
1200        if (!ctx->subsys_mask && !ctx->none)
1201                return cg_invalf(fc, "cgroup1: No subsys list or none specified");
1202
1203        /* Hierarchies may only be created in the initial cgroup namespace. */
1204        if (ctx->ns != &init_cgroup_ns)
1205                return -EPERM;
1206
1207        root = kzalloc(sizeof(*root), GFP_KERNEL);
1208        if (!root)
1209                return -ENOMEM;
1210
1211        ctx->root = root;
1212        init_cgroup_root(ctx);
1213
1214        ret = cgroup_setup_root(root, ctx->subsys_mask);
1215        if (ret)
1216                cgroup_free_root(root);
1217        return ret;
1218}
1219
1220int cgroup1_get_tree(struct fs_context *fc)
1221{
1222        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1223        int ret;
1224
1225        /* Check if the caller has permission to mount. */
1226        if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1227                return -EPERM;
1228
1229        cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1230
1231        ret = cgroup1_root_to_use(fc);
1232        if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1233                ret = 1;        /* restart */
1234
1235        mutex_unlock(&cgroup_mutex);
1236
1237        if (!ret)
1238                ret = cgroup_do_get_tree(fc);
1239
1240        if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1241                struct super_block *sb = fc->root->d_sb;
1242                dput(fc->root);
1243                deactivate_locked_super(sb);
1244                ret = 1;
1245        }
1246
1247        if (unlikely(ret > 0)) {
1248                msleep(10);
1249                return restart_syscall();
1250        }
1251        return ret;
1252}
1253
1254static int __init cgroup1_wq_init(void)
1255{
1256        /*
1257         * Used to destroy pidlists and separate to serve as flush domain.
1258         * Cap @max_active to 1 too.
1259         */
1260        cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1261                                                    0, 1);
1262        BUG_ON(!cgroup_pidlist_destroy_wq);
1263        return 0;
1264}
1265core_initcall(cgroup1_wq_init);
1266
1267static int __init cgroup_no_v1(char *str)
1268{
1269        struct cgroup_subsys *ss;
1270        char *token;
1271        int i;
1272
1273        while ((token = strsep(&str, ",")) != NULL) {
1274                if (!*token)
1275                        continue;
1276
1277                if (!strcmp(token, "all")) {
1278                        cgroup_no_v1_mask = U16_MAX;
1279                        continue;
1280                }
1281
1282                if (!strcmp(token, "named")) {
1283                        cgroup_no_v1_named = true;
1284                        continue;
1285                }
1286
1287                for_each_subsys(ss, i) {
1288                        if (strcmp(token, ss->name) &&
1289                            strcmp(token, ss->legacy_name))
1290                                continue;
1291
1292                        cgroup_no_v1_mask |= 1 << i;
1293                }
1294        }
1295        return 1;
1296}
1297__setup("cgroup_no_v1=", cgroup_no_v1);
1298