linux/kernel/cgroup/cgroup.c
<<
>>
Prefs
   1/*
   2 *  Generic process-grouping system.
   3 *
   4 *  Based originally on the cpuset system, extracted by Paul Menage
   5 *  Copyright (C) 2006 Google, Inc
   6 *
   7 *  Notifications support
   8 *  Copyright (C) 2009 Nokia Corporation
   9 *  Author: Kirill A. Shutemov
  10 *
  11 *  Copyright notices from the original cpuset code:
  12 *  --------------------------------------------------
  13 *  Copyright (C) 2003 BULL SA.
  14 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15 *
  16 *  Portions derived from Patrick Mochel's sysfs code.
  17 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  18 *
  19 *  2003-10-10 Written by Simon Derr.
  20 *  2003-10-22 Updates by Stephen Hemminger.
  21 *  2004 May-July Rework by Paul Jackson.
  22 *  ---------------------------------------------------
  23 *
  24 *  This file is subject to the terms and conditions of the GNU General Public
  25 *  License.  See the file COPYING in the main directory of the Linux
  26 *  distribution for more details.
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include "cgroup-internal.h"
  32
  33#include <linux/cred.h>
  34#include <linux/errno.h>
  35#include <linux/init_task.h>
  36#include <linux/kernel.h>
  37#include <linux/magic.h>
  38#include <linux/mutex.h>
  39#include <linux/mount.h>
  40#include <linux/pagemap.h>
  41#include <linux/proc_fs.h>
  42#include <linux/rcupdate.h>
  43#include <linux/sched.h>
  44#include <linux/sched/task.h>
  45#include <linux/slab.h>
  46#include <linux/spinlock.h>
  47#include <linux/percpu-rwsem.h>
  48#include <linux/string.h>
  49#include <linux/hashtable.h>
  50#include <linux/idr.h>
  51#include <linux/kthread.h>
  52#include <linux/atomic.h>
  53#include <linux/cpuset.h>
  54#include <linux/proc_ns.h>
  55#include <linux/nsproxy.h>
  56#include <linux/file.h>
  57#include <linux/fs_parser.h>
  58#include <linux/sched/cputime.h>
  59#include <linux/psi.h>
  60#include <net/sock.h>
  61
  62#define CREATE_TRACE_POINTS
  63#include <trace/events/cgroup.h>
  64
  65#define CGROUP_FILE_NAME_MAX            (MAX_CGROUP_TYPE_NAMELEN +      \
  66                                         MAX_CFTYPE_NAME + 2)
  67/* let's not notify more than 100 times per second */
  68#define CGROUP_FILE_NOTIFY_MIN_INTV     DIV_ROUND_UP(HZ, 100)
  69
  70/*
  71 * cgroup_mutex is the master lock.  Any modification to cgroup or its
  72 * hierarchy must be performed while holding it.
  73 *
  74 * css_set_lock protects task->cgroups pointer, the list of css_set
  75 * objects, and the chain of tasks off each css_set.
  76 *
  77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
  78 * cgroup.h can use them for lockdep annotations.
  79 */
  80DEFINE_MUTEX(cgroup_mutex);
  81DEFINE_SPINLOCK(css_set_lock);
  82
  83#ifdef CONFIG_PROVE_RCU
  84EXPORT_SYMBOL_GPL(cgroup_mutex);
  85EXPORT_SYMBOL_GPL(css_set_lock);
  86#endif
  87
  88DEFINE_SPINLOCK(trace_cgroup_path_lock);
  89char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
  90bool cgroup_debug __read_mostly;
  91
  92/*
  93 * Protects cgroup_idr and css_idr so that IDs can be released without
  94 * grabbing cgroup_mutex.
  95 */
  96static DEFINE_SPINLOCK(cgroup_idr_lock);
  97
  98/*
  99 * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
 100 * against file removal/re-creation across css hiding.
 101 */
 102static DEFINE_SPINLOCK(cgroup_file_kn_lock);
 103
 104DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
 105
 106#define cgroup_assert_mutex_or_rcu_locked()                             \
 107        RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
 108                           !lockdep_is_held(&cgroup_mutex),             \
 109                           "cgroup_mutex or RCU read lock required");
 110
 111/*
 112 * cgroup destruction makes heavy use of work items and there can be a lot
 113 * of concurrent destructions.  Use a separate workqueue so that cgroup
 114 * destruction work items don't end up filling up max_active of system_wq
 115 * which may lead to deadlock.
 116 */
 117static struct workqueue_struct *cgroup_destroy_wq;
 118
 119/* generate an array of cgroup subsystem pointers */
 120#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
 121struct cgroup_subsys *cgroup_subsys[] = {
 122#include <linux/cgroup_subsys.h>
 123};
 124#undef SUBSYS
 125
 126/* array of cgroup subsystem names */
 127#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
 128static const char *cgroup_subsys_name[] = {
 129#include <linux/cgroup_subsys.h>
 130};
 131#undef SUBSYS
 132
 133/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
 134#define SUBSYS(_x)                                                              \
 135        DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);                 \
 136        DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);                  \
 137        EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);                      \
 138        EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
 139#include <linux/cgroup_subsys.h>
 140#undef SUBSYS
 141
 142#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
 143static struct static_key_true *cgroup_subsys_enabled_key[] = {
 144#include <linux/cgroup_subsys.h>
 145};
 146#undef SUBSYS
 147
 148#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
 149static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
 150#include <linux/cgroup_subsys.h>
 151};
 152#undef SUBSYS
 153
 154static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
 155
 156/*
 157 * The default hierarchy, reserved for the subsystems that are otherwise
 158 * unattached - it never has more than a single cgroup, and all tasks are
 159 * part of that cgroup.
 160 */
 161struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
 162EXPORT_SYMBOL_GPL(cgrp_dfl_root);
 163
 164/*
 165 * The default hierarchy always exists but is hidden until mounted for the
 166 * first time.  This is for backward compatibility.
 167 */
 168static bool cgrp_dfl_visible;
 169
 170/* some controllers are not supported in the default hierarchy */
 171static u16 cgrp_dfl_inhibit_ss_mask;
 172
 173/* some controllers are implicitly enabled on the default hierarchy */
 174static u16 cgrp_dfl_implicit_ss_mask;
 175
 176/* some controllers can be threaded on the default hierarchy */
 177static u16 cgrp_dfl_threaded_ss_mask;
 178
 179/* The list of hierarchy roots */
 180LIST_HEAD(cgroup_roots);
 181static int cgroup_root_count;
 182
 183/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
 184static DEFINE_IDR(cgroup_hierarchy_idr);
 185
 186/*
 187 * Assign a monotonically increasing serial number to csses.  It guarantees
 188 * cgroups with bigger numbers are newer than those with smaller numbers.
 189 * Also, as csses are always appended to the parent's ->children list, it
 190 * guarantees that sibling csses are always sorted in the ascending serial
 191 * number order on the list.  Protected by cgroup_mutex.
 192 */
 193static u64 css_serial_nr_next = 1;
 194
 195/*
 196 * These bitmasks identify subsystems with specific features to avoid
 197 * having to do iterative checks repeatedly.
 198 */
 199static u16 have_fork_callback __read_mostly;
 200static u16 have_exit_callback __read_mostly;
 201static u16 have_release_callback __read_mostly;
 202static u16 have_canfork_callback __read_mostly;
 203
 204/* cgroup namespace for init task */
 205struct cgroup_namespace init_cgroup_ns = {
 206        .count          = REFCOUNT_INIT(2),
 207        .user_ns        = &init_user_ns,
 208        .ns.ops         = &cgroupns_operations,
 209        .ns.inum        = PROC_CGROUP_INIT_INO,
 210        .root_cset      = &init_css_set,
 211};
 212
 213static struct file_system_type cgroup2_fs_type;
 214static struct cftype cgroup_base_files[];
 215
 216static int cgroup_apply_control(struct cgroup *cgrp);
 217static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
 218static void css_task_iter_skip(struct css_task_iter *it,
 219                               struct task_struct *task);
 220static int cgroup_destroy_locked(struct cgroup *cgrp);
 221static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
 222                                              struct cgroup_subsys *ss);
 223static void css_release(struct percpu_ref *ref);
 224static void kill_css(struct cgroup_subsys_state *css);
 225static int cgroup_addrm_files(struct cgroup_subsys_state *css,
 226                              struct cgroup *cgrp, struct cftype cfts[],
 227                              bool is_add);
 228
 229/**
 230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
 231 * @ssid: subsys ID of interest
 232 *
 233 * cgroup_subsys_enabled() can only be used with literal subsys names which
 234 * is fine for individual subsystems but unsuitable for cgroup core.  This
 235 * is slower static_key_enabled() based test indexed by @ssid.
 236 */
 237bool cgroup_ssid_enabled(int ssid)
 238{
 239        if (CGROUP_SUBSYS_COUNT == 0)
 240                return false;
 241
 242        return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
 243}
 244
 245/**
 246 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
 247 * @cgrp: the cgroup of interest
 248 *
 249 * The default hierarchy is the v2 interface of cgroup and this function
 250 * can be used to test whether a cgroup is on the default hierarchy for
 251 * cases where a subsystem should behave differnetly depending on the
 252 * interface version.
 253 *
 254 * The set of behaviors which change on the default hierarchy are still
 255 * being determined and the mount option is prefixed with __DEVEL__.
 256 *
 257 * List of changed behaviors:
 258 *
 259 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
 260 *   and "name" are disallowed.
 261 *
 262 * - When mounting an existing superblock, mount options should match.
 263 *
 264 * - Remount is disallowed.
 265 *
 266 * - rename(2) is disallowed.
 267 *
 268 * - "tasks" is removed.  Everything should be at process granularity.  Use
 269 *   "cgroup.procs" instead.
 270 *
 271 * - "cgroup.procs" is not sorted.  pids will be unique unless they got
 272 *   recycled inbetween reads.
 273 *
 274 * - "release_agent" and "notify_on_release" are removed.  Replacement
 275 *   notification mechanism will be implemented.
 276 *
 277 * - "cgroup.clone_children" is removed.
 278 *
 279 * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
 280 *   and its descendants contain no task; otherwise, 1.  The file also
 281 *   generates kernfs notification which can be monitored through poll and
 282 *   [di]notify when the value of the file changes.
 283 *
 284 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
 285 *   take masks of ancestors with non-empty cpus/mems, instead of being
 286 *   moved to an ancestor.
 287 *
 288 * - cpuset: a task can be moved into an empty cpuset, and again it takes
 289 *   masks of ancestors.
 290 *
 291 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
 292 *   is not created.
 293 *
 294 * - blkcg: blk-throttle becomes properly hierarchical.
 295 *
 296 * - debug: disallowed on the default hierarchy.
 297 */
 298bool cgroup_on_dfl(const struct cgroup *cgrp)
 299{
 300        return cgrp->root == &cgrp_dfl_root;
 301}
 302
 303/* IDR wrappers which synchronize using cgroup_idr_lock */
 304static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
 305                            gfp_t gfp_mask)
 306{
 307        int ret;
 308
 309        idr_preload(gfp_mask);
 310        spin_lock_bh(&cgroup_idr_lock);
 311        ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
 312        spin_unlock_bh(&cgroup_idr_lock);
 313        idr_preload_end();
 314        return ret;
 315}
 316
 317static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
 318{
 319        void *ret;
 320
 321        spin_lock_bh(&cgroup_idr_lock);
 322        ret = idr_replace(idr, ptr, id);
 323        spin_unlock_bh(&cgroup_idr_lock);
 324        return ret;
 325}
 326
 327static void cgroup_idr_remove(struct idr *idr, int id)
 328{
 329        spin_lock_bh(&cgroup_idr_lock);
 330        idr_remove(idr, id);
 331        spin_unlock_bh(&cgroup_idr_lock);
 332}
 333
 334static bool cgroup_has_tasks(struct cgroup *cgrp)
 335{
 336        return cgrp->nr_populated_csets;
 337}
 338
 339bool cgroup_is_threaded(struct cgroup *cgrp)
 340{
 341        return cgrp->dom_cgrp != cgrp;
 342}
 343
 344/* can @cgrp host both domain and threaded children? */
 345static bool cgroup_is_mixable(struct cgroup *cgrp)
 346{
 347        /*
 348         * Root isn't under domain level resource control exempting it from
 349         * the no-internal-process constraint, so it can serve as a thread
 350         * root and a parent of resource domains at the same time.
 351         */
 352        return !cgroup_parent(cgrp);
 353}
 354
 355/* can @cgrp become a thread root? should always be true for a thread root */
 356static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
 357{
 358        /* mixables don't care */
 359        if (cgroup_is_mixable(cgrp))
 360                return true;
 361
 362        /* domain roots can't be nested under threaded */
 363        if (cgroup_is_threaded(cgrp))
 364                return false;
 365
 366        /* can only have either domain or threaded children */
 367        if (cgrp->nr_populated_domain_children)
 368                return false;
 369
 370        /* and no domain controllers can be enabled */
 371        if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
 372                return false;
 373
 374        return true;
 375}
 376
 377/* is @cgrp root of a threaded subtree? */
 378bool cgroup_is_thread_root(struct cgroup *cgrp)
 379{
 380        /* thread root should be a domain */
 381        if (cgroup_is_threaded(cgrp))
 382                return false;
 383
 384        /* a domain w/ threaded children is a thread root */
 385        if (cgrp->nr_threaded_children)
 386                return true;
 387
 388        /*
 389         * A domain which has tasks and explicit threaded controllers
 390         * enabled is a thread root.
 391         */
 392        if (cgroup_has_tasks(cgrp) &&
 393            (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
 394                return true;
 395
 396        return false;
 397}
 398
 399/* a domain which isn't connected to the root w/o brekage can't be used */
 400static bool cgroup_is_valid_domain(struct cgroup *cgrp)
 401{
 402        /* the cgroup itself can be a thread root */
 403        if (cgroup_is_threaded(cgrp))
 404                return false;
 405
 406        /* but the ancestors can't be unless mixable */
 407        while ((cgrp = cgroup_parent(cgrp))) {
 408                if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
 409                        return false;
 410                if (cgroup_is_threaded(cgrp))
 411                        return false;
 412        }
 413
 414        return true;
 415}
 416
 417/* subsystems visibly enabled on a cgroup */
 418static u16 cgroup_control(struct cgroup *cgrp)
 419{
 420        struct cgroup *parent = cgroup_parent(cgrp);
 421        u16 root_ss_mask = cgrp->root->subsys_mask;
 422
 423        if (parent) {
 424                u16 ss_mask = parent->subtree_control;
 425
 426                /* threaded cgroups can only have threaded controllers */
 427                if (cgroup_is_threaded(cgrp))
 428                        ss_mask &= cgrp_dfl_threaded_ss_mask;
 429                return ss_mask;
 430        }
 431
 432        if (cgroup_on_dfl(cgrp))
 433                root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
 434                                  cgrp_dfl_implicit_ss_mask);
 435        return root_ss_mask;
 436}
 437
 438/* subsystems enabled on a cgroup */
 439static u16 cgroup_ss_mask(struct cgroup *cgrp)
 440{
 441        struct cgroup *parent = cgroup_parent(cgrp);
 442
 443        if (parent) {
 444                u16 ss_mask = parent->subtree_ss_mask;
 445
 446                /* threaded cgroups can only have threaded controllers */
 447                if (cgroup_is_threaded(cgrp))
 448                        ss_mask &= cgrp_dfl_threaded_ss_mask;
 449                return ss_mask;
 450        }
 451
 452        return cgrp->root->subsys_mask;
 453}
 454
 455/**
 456 * cgroup_css - obtain a cgroup's css for the specified subsystem
 457 * @cgrp: the cgroup of interest
 458 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 459 *
 460 * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
 461 * function must be called either under cgroup_mutex or rcu_read_lock() and
 462 * the caller is responsible for pinning the returned css if it wants to
 463 * keep accessing it outside the said locks.  This function may return
 464 * %NULL if @cgrp doesn't have @subsys_id enabled.
 465 */
 466static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
 467                                              struct cgroup_subsys *ss)
 468{
 469        if (ss)
 470                return rcu_dereference_check(cgrp->subsys[ss->id],
 471                                        lockdep_is_held(&cgroup_mutex));
 472        else
 473                return &cgrp->self;
 474}
 475
 476/**
 477 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
 478 * @cgrp: the cgroup of interest
 479 * @ss: the subsystem of interest
 480 *
 481 * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
 482 * or is offline, %NULL is returned.
 483 */
 484static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
 485                                                     struct cgroup_subsys *ss)
 486{
 487        struct cgroup_subsys_state *css;
 488
 489        rcu_read_lock();
 490        css = cgroup_css(cgrp, ss);
 491        if (!css || !css_tryget_online(css))
 492                css = NULL;
 493        rcu_read_unlock();
 494
 495        return css;
 496}
 497
 498/**
 499 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
 500 * @cgrp: the cgroup of interest
 501 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 502 *
 503 * Similar to cgroup_css() but returns the effective css, which is defined
 504 * as the matching css of the nearest ancestor including self which has @ss
 505 * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
 506 * function is guaranteed to return non-NULL css.
 507 */
 508static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
 509                                                        struct cgroup_subsys *ss)
 510{
 511        lockdep_assert_held(&cgroup_mutex);
 512
 513        if (!ss)
 514                return &cgrp->self;
 515
 516        /*
 517         * This function is used while updating css associations and thus
 518         * can't test the csses directly.  Test ss_mask.
 519         */
 520        while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
 521                cgrp = cgroup_parent(cgrp);
 522                if (!cgrp)
 523                        return NULL;
 524        }
 525
 526        return cgroup_css(cgrp, ss);
 527}
 528
 529/**
 530 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
 531 * @cgrp: the cgroup of interest
 532 * @ss: the subsystem of interest
 533 *
 534 * Find and get the effective css of @cgrp for @ss.  The effective css is
 535 * defined as the matching css of the nearest ancestor including self which
 536 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 537 * the root css is returned, so this function always returns a valid css.
 538 *
 539 * The returned css is not guaranteed to be online, and therefore it is the
 540 * callers responsiblity to tryget a reference for it.
 541 */
 542struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
 543                                         struct cgroup_subsys *ss)
 544{
 545        struct cgroup_subsys_state *css;
 546
 547        do {
 548                css = cgroup_css(cgrp, ss);
 549
 550                if (css)
 551                        return css;
 552                cgrp = cgroup_parent(cgrp);
 553        } while (cgrp);
 554
 555        return init_css_set.subsys[ss->id];
 556}
 557
 558/**
 559 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
 560 * @cgrp: the cgroup of interest
 561 * @ss: the subsystem of interest
 562 *
 563 * Find and get the effective css of @cgrp for @ss.  The effective css is
 564 * defined as the matching css of the nearest ancestor including self which
 565 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 566 * the root css is returned, so this function always returns a valid css.
 567 * The returned css must be put using css_put().
 568 */
 569struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
 570                                             struct cgroup_subsys *ss)
 571{
 572        struct cgroup_subsys_state *css;
 573
 574        rcu_read_lock();
 575
 576        do {
 577                css = cgroup_css(cgrp, ss);
 578
 579                if (css && css_tryget_online(css))
 580                        goto out_unlock;
 581                cgrp = cgroup_parent(cgrp);
 582        } while (cgrp);
 583
 584        css = init_css_set.subsys[ss->id];
 585        css_get(css);
 586out_unlock:
 587        rcu_read_unlock();
 588        return css;
 589}
 590
 591static void cgroup_get_live(struct cgroup *cgrp)
 592{
 593        WARN_ON_ONCE(cgroup_is_dead(cgrp));
 594        css_get(&cgrp->self);
 595}
 596
 597/**
 598 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
 599 * is responsible for taking the css_set_lock.
 600 * @cgrp: the cgroup in question
 601 */
 602int __cgroup_task_count(const struct cgroup *cgrp)
 603{
 604        int count = 0;
 605        struct cgrp_cset_link *link;
 606
 607        lockdep_assert_held(&css_set_lock);
 608
 609        list_for_each_entry(link, &cgrp->cset_links, cset_link)
 610                count += link->cset->nr_tasks;
 611
 612        return count;
 613}
 614
 615/**
 616 * cgroup_task_count - count the number of tasks in a cgroup.
 617 * @cgrp: the cgroup in question
 618 */
 619int cgroup_task_count(const struct cgroup *cgrp)
 620{
 621        int count;
 622
 623        spin_lock_irq(&css_set_lock);
 624        count = __cgroup_task_count(cgrp);
 625        spin_unlock_irq(&css_set_lock);
 626
 627        return count;
 628}
 629
 630struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
 631{
 632        struct cgroup *cgrp = of->kn->parent->priv;
 633        struct cftype *cft = of_cft(of);
 634
 635        /*
 636         * This is open and unprotected implementation of cgroup_css().
 637         * seq_css() is only called from a kernfs file operation which has
 638         * an active reference on the file.  Because all the subsystem
 639         * files are drained before a css is disassociated with a cgroup,
 640         * the matching css from the cgroup's subsys table is guaranteed to
 641         * be and stay valid until the enclosing operation is complete.
 642         */
 643        if (cft->ss)
 644                return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
 645        else
 646                return &cgrp->self;
 647}
 648EXPORT_SYMBOL_GPL(of_css);
 649
 650/**
 651 * for_each_css - iterate all css's of a cgroup
 652 * @css: the iteration cursor
 653 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 654 * @cgrp: the target cgroup to iterate css's of
 655 *
 656 * Should be called under cgroup_[tree_]mutex.
 657 */
 658#define for_each_css(css, ssid, cgrp)                                   \
 659        for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)        \
 660                if (!((css) = rcu_dereference_check(                    \
 661                                (cgrp)->subsys[(ssid)],                 \
 662                                lockdep_is_held(&cgroup_mutex)))) { }   \
 663                else
 664
 665/**
 666 * for_each_e_css - iterate all effective css's of a cgroup
 667 * @css: the iteration cursor
 668 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 669 * @cgrp: the target cgroup to iterate css's of
 670 *
 671 * Should be called under cgroup_[tree_]mutex.
 672 */
 673#define for_each_e_css(css, ssid, cgrp)                                     \
 674        for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)            \
 675                if (!((css) = cgroup_e_css_by_mask(cgrp,                    \
 676                                                   cgroup_subsys[(ssid)]))) \
 677                        ;                                                   \
 678                else
 679
 680/**
 681 * do_each_subsys_mask - filter for_each_subsys with a bitmask
 682 * @ss: the iteration cursor
 683 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
 684 * @ss_mask: the bitmask
 685 *
 686 * The block will only run for cases where the ssid-th bit (1 << ssid) of
 687 * @ss_mask is set.
 688 */
 689#define do_each_subsys_mask(ss, ssid, ss_mask) do {                     \
 690        unsigned long __ss_mask = (ss_mask);                            \
 691        if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
 692                (ssid) = 0;                                             \
 693                break;                                                  \
 694        }                                                               \
 695        for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {       \
 696                (ss) = cgroup_subsys[ssid];                             \
 697                {
 698
 699#define while_each_subsys_mask()                                        \
 700                }                                                       \
 701        }                                                               \
 702} while (false)
 703
 704/* iterate over child cgrps, lock should be held throughout iteration */
 705#define cgroup_for_each_live_child(child, cgrp)                         \
 706        list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
 707                if (({ lockdep_assert_held(&cgroup_mutex);              \
 708                       cgroup_is_dead(child); }))                       \
 709                        ;                                               \
 710                else
 711
 712/* walk live descendants in preorder */
 713#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)          \
 714        css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))  \
 715                if (({ lockdep_assert_held(&cgroup_mutex);              \
 716                       (dsct) = (d_css)->cgroup;                        \
 717                       cgroup_is_dead(dsct); }))                        \
 718                        ;                                               \
 719                else
 720
 721/* walk live descendants in postorder */
 722#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)         \
 723        css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
 724                if (({ lockdep_assert_held(&cgroup_mutex);              \
 725                       (dsct) = (d_css)->cgroup;                        \
 726                       cgroup_is_dead(dsct); }))                        \
 727                        ;                                               \
 728                else
 729
 730/*
 731 * The default css_set - used by init and its children prior to any
 732 * hierarchies being mounted. It contains a pointer to the root state
 733 * for each subsystem. Also used to anchor the list of css_sets. Not
 734 * reference-counted, to improve performance when child cgroups
 735 * haven't been created.
 736 */
 737struct css_set init_css_set = {
 738        .refcount               = REFCOUNT_INIT(1),
 739        .dom_cset               = &init_css_set,
 740        .tasks                  = LIST_HEAD_INIT(init_css_set.tasks),
 741        .mg_tasks               = LIST_HEAD_INIT(init_css_set.mg_tasks),
 742        .dying_tasks            = LIST_HEAD_INIT(init_css_set.dying_tasks),
 743        .task_iters             = LIST_HEAD_INIT(init_css_set.task_iters),
 744        .threaded_csets         = LIST_HEAD_INIT(init_css_set.threaded_csets),
 745        .cgrp_links             = LIST_HEAD_INIT(init_css_set.cgrp_links),
 746        .mg_preload_node        = LIST_HEAD_INIT(init_css_set.mg_preload_node),
 747        .mg_node                = LIST_HEAD_INIT(init_css_set.mg_node),
 748
 749        /*
 750         * The following field is re-initialized when this cset gets linked
 751         * in cgroup_init().  However, let's initialize the field
 752         * statically too so that the default cgroup can be accessed safely
 753         * early during boot.
 754         */
 755        .dfl_cgrp               = &cgrp_dfl_root.cgrp,
 756};
 757
 758static int css_set_count        = 1;    /* 1 for init_css_set */
 759
 760static bool css_set_threaded(struct css_set *cset)
 761{
 762        return cset->dom_cset != cset;
 763}
 764
 765/**
 766 * css_set_populated - does a css_set contain any tasks?
 767 * @cset: target css_set
 768 *
 769 * css_set_populated() should be the same as !!cset->nr_tasks at steady
 770 * state. However, css_set_populated() can be called while a task is being
 771 * added to or removed from the linked list before the nr_tasks is
 772 * properly updated. Hence, we can't just look at ->nr_tasks here.
 773 */
 774static bool css_set_populated(struct css_set *cset)
 775{
 776        lockdep_assert_held(&css_set_lock);
 777
 778        return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
 779}
 780
 781/**
 782 * cgroup_update_populated - update the populated count of a cgroup
 783 * @cgrp: the target cgroup
 784 * @populated: inc or dec populated count
 785 *
 786 * One of the css_sets associated with @cgrp is either getting its first
 787 * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
 788 * count is propagated towards root so that a given cgroup's
 789 * nr_populated_children is zero iff none of its descendants contain any
 790 * tasks.
 791 *
 792 * @cgrp's interface file "cgroup.populated" is zero if both
 793 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
 794 * 1 otherwise.  When the sum changes from or to zero, userland is notified
 795 * that the content of the interface file has changed.  This can be used to
 796 * detect when @cgrp and its descendants become populated or empty.
 797 */
 798static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
 799{
 800        struct cgroup *child = NULL;
 801        int adj = populated ? 1 : -1;
 802
 803        lockdep_assert_held(&css_set_lock);
 804
 805        do {
 806                bool was_populated = cgroup_is_populated(cgrp);
 807
 808                if (!child) {
 809                        cgrp->nr_populated_csets += adj;
 810                } else {
 811                        if (cgroup_is_threaded(child))
 812                                cgrp->nr_populated_threaded_children += adj;
 813                        else
 814                                cgrp->nr_populated_domain_children += adj;
 815                }
 816
 817                if (was_populated == cgroup_is_populated(cgrp))
 818                        break;
 819
 820                cgroup1_check_for_release(cgrp);
 821                TRACE_CGROUP_PATH(notify_populated, cgrp,
 822                                  cgroup_is_populated(cgrp));
 823                cgroup_file_notify(&cgrp->events_file);
 824
 825                child = cgrp;
 826                cgrp = cgroup_parent(cgrp);
 827        } while (cgrp);
 828}
 829
 830/**
 831 * css_set_update_populated - update populated state of a css_set
 832 * @cset: target css_set
 833 * @populated: whether @cset is populated or depopulated
 834 *
 835 * @cset is either getting the first task or losing the last.  Update the
 836 * populated counters of all associated cgroups accordingly.
 837 */
 838static void css_set_update_populated(struct css_set *cset, bool populated)
 839{
 840        struct cgrp_cset_link *link;
 841
 842        lockdep_assert_held(&css_set_lock);
 843
 844        list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
 845                cgroup_update_populated(link->cgrp, populated);
 846}
 847
 848/*
 849 * @task is leaving, advance task iterators which are pointing to it so
 850 * that they can resume at the next position.  Advancing an iterator might
 851 * remove it from the list, use safe walk.  See css_task_iter_skip() for
 852 * details.
 853 */
 854static void css_set_skip_task_iters(struct css_set *cset,
 855                                    struct task_struct *task)
 856{
 857        struct css_task_iter *it, *pos;
 858
 859        list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
 860                css_task_iter_skip(it, task);
 861}
 862
 863/**
 864 * css_set_move_task - move a task from one css_set to another
 865 * @task: task being moved
 866 * @from_cset: css_set @task currently belongs to (may be NULL)
 867 * @to_cset: new css_set @task is being moved to (may be NULL)
 868 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
 869 *
 870 * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
 871 * css_set, @from_cset can be NULL.  If @task is being disassociated
 872 * instead of moved, @to_cset can be NULL.
 873 *
 874 * This function automatically handles populated counter updates and
 875 * css_task_iter adjustments but the caller is responsible for managing
 876 * @from_cset and @to_cset's reference counts.
 877 */
 878static void css_set_move_task(struct task_struct *task,
 879                              struct css_set *from_cset, struct css_set *to_cset,
 880                              bool use_mg_tasks)
 881{
 882        lockdep_assert_held(&css_set_lock);
 883
 884        if (to_cset && !css_set_populated(to_cset))
 885                css_set_update_populated(to_cset, true);
 886
 887        if (from_cset) {
 888                WARN_ON_ONCE(list_empty(&task->cg_list));
 889
 890                css_set_skip_task_iters(from_cset, task);
 891                list_del_init(&task->cg_list);
 892                if (!css_set_populated(from_cset))
 893                        css_set_update_populated(from_cset, false);
 894        } else {
 895                WARN_ON_ONCE(!list_empty(&task->cg_list));
 896        }
 897
 898        if (to_cset) {
 899                /*
 900                 * We are synchronized through cgroup_threadgroup_rwsem
 901                 * against PF_EXITING setting such that we can't race
 902                 * against cgroup_exit() changing the css_set to
 903                 * init_css_set and dropping the old one.
 904                 */
 905                WARN_ON_ONCE(task->flags & PF_EXITING);
 906
 907                cgroup_move_task(task, to_cset);
 908                list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
 909                                                             &to_cset->tasks);
 910        }
 911}
 912
 913/*
 914 * hash table for cgroup groups. This improves the performance to find
 915 * an existing css_set. This hash doesn't (currently) take into
 916 * account cgroups in empty hierarchies.
 917 */
 918#define CSS_SET_HASH_BITS       7
 919static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
 920
 921static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
 922{
 923        unsigned long key = 0UL;
 924        struct cgroup_subsys *ss;
 925        int i;
 926
 927        for_each_subsys(ss, i)
 928                key += (unsigned long)css[i];
 929        key = (key >> 16) ^ key;
 930
 931        return key;
 932}
 933
 934void put_css_set_locked(struct css_set *cset)
 935{
 936        struct cgrp_cset_link *link, *tmp_link;
 937        struct cgroup_subsys *ss;
 938        int ssid;
 939
 940        lockdep_assert_held(&css_set_lock);
 941
 942        if (!refcount_dec_and_test(&cset->refcount))
 943                return;
 944
 945        WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
 946
 947        /* This css_set is dead. unlink it and release cgroup and css refs */
 948        for_each_subsys(ss, ssid) {
 949                list_del(&cset->e_cset_node[ssid]);
 950                css_put(cset->subsys[ssid]);
 951        }
 952        hash_del(&cset->hlist);
 953        css_set_count--;
 954
 955        list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
 956                list_del(&link->cset_link);
 957                list_del(&link->cgrp_link);
 958                if (cgroup_parent(link->cgrp))
 959                        cgroup_put(link->cgrp);
 960                kfree(link);
 961        }
 962
 963        if (css_set_threaded(cset)) {
 964                list_del(&cset->threaded_csets_node);
 965                put_css_set_locked(cset->dom_cset);
 966        }
 967
 968        kfree_rcu(cset, rcu_head);
 969}
 970
 971/**
 972 * compare_css_sets - helper function for find_existing_css_set().
 973 * @cset: candidate css_set being tested
 974 * @old_cset: existing css_set for a task
 975 * @new_cgrp: cgroup that's being entered by the task
 976 * @template: desired set of css pointers in css_set (pre-calculated)
 977 *
 978 * Returns true if "cset" matches "old_cset" except for the hierarchy
 979 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 980 */
 981static bool compare_css_sets(struct css_set *cset,
 982                             struct css_set *old_cset,
 983                             struct cgroup *new_cgrp,
 984                             struct cgroup_subsys_state *template[])
 985{
 986        struct cgroup *new_dfl_cgrp;
 987        struct list_head *l1, *l2;
 988
 989        /*
 990         * On the default hierarchy, there can be csets which are
 991         * associated with the same set of cgroups but different csses.
 992         * Let's first ensure that csses match.
 993         */
 994        if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
 995                return false;
 996
 997
 998        /* @cset's domain should match the default cgroup's */
 999        if (cgroup_on_dfl(new_cgrp))
1000                new_dfl_cgrp = new_cgrp;
1001        else
1002                new_dfl_cgrp = old_cset->dfl_cgrp;
1003
1004        if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1005                return false;
1006
1007        /*
1008         * Compare cgroup pointers in order to distinguish between
1009         * different cgroups in hierarchies.  As different cgroups may
1010         * share the same effective css, this comparison is always
1011         * necessary.
1012         */
1013        l1 = &cset->cgrp_links;
1014        l2 = &old_cset->cgrp_links;
1015        while (1) {
1016                struct cgrp_cset_link *link1, *link2;
1017                struct cgroup *cgrp1, *cgrp2;
1018
1019                l1 = l1->next;
1020                l2 = l2->next;
1021                /* See if we reached the end - both lists are equal length. */
1022                if (l1 == &cset->cgrp_links) {
1023                        BUG_ON(l2 != &old_cset->cgrp_links);
1024                        break;
1025                } else {
1026                        BUG_ON(l2 == &old_cset->cgrp_links);
1027                }
1028                /* Locate the cgroups associated with these links. */
1029                link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1030                link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1031                cgrp1 = link1->cgrp;
1032                cgrp2 = link2->cgrp;
1033                /* Hierarchies should be linked in the same order. */
1034                BUG_ON(cgrp1->root != cgrp2->root);
1035
1036                /*
1037                 * If this hierarchy is the hierarchy of the cgroup
1038                 * that's changing, then we need to check that this
1039                 * css_set points to the new cgroup; if it's any other
1040                 * hierarchy, then this css_set should point to the
1041                 * same cgroup as the old css_set.
1042                 */
1043                if (cgrp1->root == new_cgrp->root) {
1044                        if (cgrp1 != new_cgrp)
1045                                return false;
1046                } else {
1047                        if (cgrp1 != cgrp2)
1048                                return false;
1049                }
1050        }
1051        return true;
1052}
1053
1054/**
1055 * find_existing_css_set - init css array and find the matching css_set
1056 * @old_cset: the css_set that we're using before the cgroup transition
1057 * @cgrp: the cgroup that we're moving into
1058 * @template: out param for the new set of csses, should be clear on entry
1059 */
1060static struct css_set *find_existing_css_set(struct css_set *old_cset,
1061                                        struct cgroup *cgrp,
1062                                        struct cgroup_subsys_state *template[])
1063{
1064        struct cgroup_root *root = cgrp->root;
1065        struct cgroup_subsys *ss;
1066        struct css_set *cset;
1067        unsigned long key;
1068        int i;
1069
1070        /*
1071         * Build the set of subsystem state objects that we want to see in the
1072         * new css_set. while subsystems can change globally, the entries here
1073         * won't change, so no need for locking.
1074         */
1075        for_each_subsys(ss, i) {
1076                if (root->subsys_mask & (1UL << i)) {
1077                        /*
1078                         * @ss is in this hierarchy, so we want the
1079                         * effective css from @cgrp.
1080                         */
1081                        template[i] = cgroup_e_css_by_mask(cgrp, ss);
1082                } else {
1083                        /*
1084                         * @ss is not in this hierarchy, so we don't want
1085                         * to change the css.
1086                         */
1087                        template[i] = old_cset->subsys[i];
1088                }
1089        }
1090
1091        key = css_set_hash(template);
1092        hash_for_each_possible(css_set_table, cset, hlist, key) {
1093                if (!compare_css_sets(cset, old_cset, cgrp, template))
1094                        continue;
1095
1096                /* This css_set matches what we need */
1097                return cset;
1098        }
1099
1100        /* No existing cgroup group matched */
1101        return NULL;
1102}
1103
1104static void free_cgrp_cset_links(struct list_head *links_to_free)
1105{
1106        struct cgrp_cset_link *link, *tmp_link;
1107
1108        list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1109                list_del(&link->cset_link);
1110                kfree(link);
1111        }
1112}
1113
1114/**
1115 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1116 * @count: the number of links to allocate
1117 * @tmp_links: list_head the allocated links are put on
1118 *
1119 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1120 * through ->cset_link.  Returns 0 on success or -errno.
1121 */
1122static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1123{
1124        struct cgrp_cset_link *link;
1125        int i;
1126
1127        INIT_LIST_HEAD(tmp_links);
1128
1129        for (i = 0; i < count; i++) {
1130                link = kzalloc(sizeof(*link), GFP_KERNEL);
1131                if (!link) {
1132                        free_cgrp_cset_links(tmp_links);
1133                        return -ENOMEM;
1134                }
1135                list_add(&link->cset_link, tmp_links);
1136        }
1137        return 0;
1138}
1139
1140/**
1141 * link_css_set - a helper function to link a css_set to a cgroup
1142 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1143 * @cset: the css_set to be linked
1144 * @cgrp: the destination cgroup
1145 */
1146static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1147                         struct cgroup *cgrp)
1148{
1149        struct cgrp_cset_link *link;
1150
1151        BUG_ON(list_empty(tmp_links));
1152
1153        if (cgroup_on_dfl(cgrp))
1154                cset->dfl_cgrp = cgrp;
1155
1156        link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1157        link->cset = cset;
1158        link->cgrp = cgrp;
1159
1160        /*
1161         * Always add links to the tail of the lists so that the lists are
1162         * in choronological order.
1163         */
1164        list_move_tail(&link->cset_link, &cgrp->cset_links);
1165        list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1166
1167        if (cgroup_parent(cgrp))
1168                cgroup_get_live(cgrp);
1169}
1170
1171/**
1172 * find_css_set - return a new css_set with one cgroup updated
1173 * @old_cset: the baseline css_set
1174 * @cgrp: the cgroup to be updated
1175 *
1176 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1177 * substituted into the appropriate hierarchy.
1178 */
1179static struct css_set *find_css_set(struct css_set *old_cset,
1180                                    struct cgroup *cgrp)
1181{
1182        struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1183        struct css_set *cset;
1184        struct list_head tmp_links;
1185        struct cgrp_cset_link *link;
1186        struct cgroup_subsys *ss;
1187        unsigned long key;
1188        int ssid;
1189
1190        lockdep_assert_held(&cgroup_mutex);
1191
1192        /* First see if we already have a cgroup group that matches
1193         * the desired set */
1194        spin_lock_irq(&css_set_lock);
1195        cset = find_existing_css_set(old_cset, cgrp, template);
1196        if (cset)
1197                get_css_set(cset);
1198        spin_unlock_irq(&css_set_lock);
1199
1200        if (cset)
1201                return cset;
1202
1203        cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1204        if (!cset)
1205                return NULL;
1206
1207        /* Allocate all the cgrp_cset_link objects that we'll need */
1208        if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1209                kfree(cset);
1210                return NULL;
1211        }
1212
1213        refcount_set(&cset->refcount, 1);
1214        cset->dom_cset = cset;
1215        INIT_LIST_HEAD(&cset->tasks);
1216        INIT_LIST_HEAD(&cset->mg_tasks);
1217        INIT_LIST_HEAD(&cset->dying_tasks);
1218        INIT_LIST_HEAD(&cset->task_iters);
1219        INIT_LIST_HEAD(&cset->threaded_csets);
1220        INIT_HLIST_NODE(&cset->hlist);
1221        INIT_LIST_HEAD(&cset->cgrp_links);
1222        INIT_LIST_HEAD(&cset->mg_preload_node);
1223        INIT_LIST_HEAD(&cset->mg_node);
1224
1225        /* Copy the set of subsystem state objects generated in
1226         * find_existing_css_set() */
1227        memcpy(cset->subsys, template, sizeof(cset->subsys));
1228
1229        spin_lock_irq(&css_set_lock);
1230        /* Add reference counts and links from the new css_set. */
1231        list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1232                struct cgroup *c = link->cgrp;
1233
1234                if (c->root == cgrp->root)
1235                        c = cgrp;
1236                link_css_set(&tmp_links, cset, c);
1237        }
1238
1239        BUG_ON(!list_empty(&tmp_links));
1240
1241        css_set_count++;
1242
1243        /* Add @cset to the hash table */
1244        key = css_set_hash(cset->subsys);
1245        hash_add(css_set_table, &cset->hlist, key);
1246
1247        for_each_subsys(ss, ssid) {
1248                struct cgroup_subsys_state *css = cset->subsys[ssid];
1249
1250                list_add_tail(&cset->e_cset_node[ssid],
1251                              &css->cgroup->e_csets[ssid]);
1252                css_get(css);
1253        }
1254
1255        spin_unlock_irq(&css_set_lock);
1256
1257        /*
1258         * If @cset should be threaded, look up the matching dom_cset and
1259         * link them up.  We first fully initialize @cset then look for the
1260         * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1261         * to stay empty until we return.
1262         */
1263        if (cgroup_is_threaded(cset->dfl_cgrp)) {
1264                struct css_set *dcset;
1265
1266                dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1267                if (!dcset) {
1268                        put_css_set(cset);
1269                        return NULL;
1270                }
1271
1272                spin_lock_irq(&css_set_lock);
1273                cset->dom_cset = dcset;
1274                list_add_tail(&cset->threaded_csets_node,
1275                              &dcset->threaded_csets);
1276                spin_unlock_irq(&css_set_lock);
1277        }
1278
1279        return cset;
1280}
1281
1282struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1283{
1284        struct cgroup *root_cgrp = kf_root->kn->priv;
1285
1286        return root_cgrp->root;
1287}
1288
1289static int cgroup_init_root_id(struct cgroup_root *root)
1290{
1291        int id;
1292
1293        lockdep_assert_held(&cgroup_mutex);
1294
1295        id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1296        if (id < 0)
1297                return id;
1298
1299        root->hierarchy_id = id;
1300        return 0;
1301}
1302
1303static void cgroup_exit_root_id(struct cgroup_root *root)
1304{
1305        lockdep_assert_held(&cgroup_mutex);
1306
1307        idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1308}
1309
1310void cgroup_free_root(struct cgroup_root *root)
1311{
1312        if (root) {
1313                idr_destroy(&root->cgroup_idr);
1314                kfree(root);
1315        }
1316}
1317
1318static void cgroup_destroy_root(struct cgroup_root *root)
1319{
1320        struct cgroup *cgrp = &root->cgrp;
1321        struct cgrp_cset_link *link, *tmp_link;
1322
1323        trace_cgroup_destroy_root(root);
1324
1325        cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1326
1327        BUG_ON(atomic_read(&root->nr_cgrps));
1328        BUG_ON(!list_empty(&cgrp->self.children));
1329
1330        /* Rebind all subsystems back to the default hierarchy */
1331        WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1332
1333        /*
1334         * Release all the links from cset_links to this hierarchy's
1335         * root cgroup
1336         */
1337        spin_lock_irq(&css_set_lock);
1338
1339        list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1340                list_del(&link->cset_link);
1341                list_del(&link->cgrp_link);
1342                kfree(link);
1343        }
1344
1345        spin_unlock_irq(&css_set_lock);
1346
1347        if (!list_empty(&root->root_list)) {
1348                list_del(&root->root_list);
1349                cgroup_root_count--;
1350        }
1351
1352        cgroup_exit_root_id(root);
1353
1354        mutex_unlock(&cgroup_mutex);
1355
1356        kernfs_destroy_root(root->kf_root);
1357        cgroup_free_root(root);
1358}
1359
1360/*
1361 * look up cgroup associated with current task's cgroup namespace on the
1362 * specified hierarchy
1363 */
1364static struct cgroup *
1365current_cgns_cgroup_from_root(struct cgroup_root *root)
1366{
1367        struct cgroup *res = NULL;
1368        struct css_set *cset;
1369
1370        lockdep_assert_held(&css_set_lock);
1371
1372        rcu_read_lock();
1373
1374        cset = current->nsproxy->cgroup_ns->root_cset;
1375        if (cset == &init_css_set) {
1376                res = &root->cgrp;
1377        } else {
1378                struct cgrp_cset_link *link;
1379
1380                list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1381                        struct cgroup *c = link->cgrp;
1382
1383                        if (c->root == root) {
1384                                res = c;
1385                                break;
1386                        }
1387                }
1388        }
1389        rcu_read_unlock();
1390
1391        BUG_ON(!res);
1392        return res;
1393}
1394
1395/* look up cgroup associated with given css_set on the specified hierarchy */
1396static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1397                                            struct cgroup_root *root)
1398{
1399        struct cgroup *res = NULL;
1400
1401        lockdep_assert_held(&cgroup_mutex);
1402        lockdep_assert_held(&css_set_lock);
1403
1404        if (cset == &init_css_set) {
1405                res = &root->cgrp;
1406        } else if (root == &cgrp_dfl_root) {
1407                res = cset->dfl_cgrp;
1408        } else {
1409                struct cgrp_cset_link *link;
1410
1411                list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1412                        struct cgroup *c = link->cgrp;
1413
1414                        if (c->root == root) {
1415                                res = c;
1416                                break;
1417                        }
1418                }
1419        }
1420
1421        BUG_ON(!res);
1422        return res;
1423}
1424
1425/*
1426 * Return the cgroup for "task" from the given hierarchy. Must be
1427 * called with cgroup_mutex and css_set_lock held.
1428 */
1429struct cgroup *task_cgroup_from_root(struct task_struct *task,
1430                                     struct cgroup_root *root)
1431{
1432        /*
1433         * No need to lock the task - since we hold cgroup_mutex the
1434         * task can't change groups, so the only thing that can happen
1435         * is that it exits and its css is set back to init_css_set.
1436         */
1437        return cset_cgroup_from_root(task_css_set(task), root);
1438}
1439
1440/*
1441 * A task must hold cgroup_mutex to modify cgroups.
1442 *
1443 * Any task can increment and decrement the count field without lock.
1444 * So in general, code holding cgroup_mutex can't rely on the count
1445 * field not changing.  However, if the count goes to zero, then only
1446 * cgroup_attach_task() can increment it again.  Because a count of zero
1447 * means that no tasks are currently attached, therefore there is no
1448 * way a task attached to that cgroup can fork (the other way to
1449 * increment the count).  So code holding cgroup_mutex can safely
1450 * assume that if the count is zero, it will stay zero. Similarly, if
1451 * a task holds cgroup_mutex on a cgroup with zero count, it
1452 * knows that the cgroup won't be removed, as cgroup_rmdir()
1453 * needs that mutex.
1454 *
1455 * A cgroup can only be deleted if both its 'count' of using tasks
1456 * is zero, and its list of 'children' cgroups is empty.  Since all
1457 * tasks in the system use _some_ cgroup, and since there is always at
1458 * least one task in the system (init, pid == 1), therefore, root cgroup
1459 * always has either children cgroups and/or using tasks.  So we don't
1460 * need a special hack to ensure that root cgroup cannot be deleted.
1461 *
1462 * P.S.  One more locking exception.  RCU is used to guard the
1463 * update of a tasks cgroup pointer by cgroup_attach_task()
1464 */
1465
1466static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1467
1468static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1469                              char *buf)
1470{
1471        struct cgroup_subsys *ss = cft->ss;
1472
1473        if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1474            !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1475                const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1476
1477                snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1478                         dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1479                         cft->name);
1480        } else {
1481                strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1482        }
1483        return buf;
1484}
1485
1486/**
1487 * cgroup_file_mode - deduce file mode of a control file
1488 * @cft: the control file in question
1489 *
1490 * S_IRUGO for read, S_IWUSR for write.
1491 */
1492static umode_t cgroup_file_mode(const struct cftype *cft)
1493{
1494        umode_t mode = 0;
1495
1496        if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1497                mode |= S_IRUGO;
1498
1499        if (cft->write_u64 || cft->write_s64 || cft->write) {
1500                if (cft->flags & CFTYPE_WORLD_WRITABLE)
1501                        mode |= S_IWUGO;
1502                else
1503                        mode |= S_IWUSR;
1504        }
1505
1506        return mode;
1507}
1508
1509/**
1510 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1511 * @subtree_control: the new subtree_control mask to consider
1512 * @this_ss_mask: available subsystems
1513 *
1514 * On the default hierarchy, a subsystem may request other subsystems to be
1515 * enabled together through its ->depends_on mask.  In such cases, more
1516 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1517 *
1518 * This function calculates which subsystems need to be enabled if
1519 * @subtree_control is to be applied while restricted to @this_ss_mask.
1520 */
1521static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1522{
1523        u16 cur_ss_mask = subtree_control;
1524        struct cgroup_subsys *ss;
1525        int ssid;
1526
1527        lockdep_assert_held(&cgroup_mutex);
1528
1529        cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1530
1531        while (true) {
1532                u16 new_ss_mask = cur_ss_mask;
1533
1534                do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1535                        new_ss_mask |= ss->depends_on;
1536                } while_each_subsys_mask();
1537
1538                /*
1539                 * Mask out subsystems which aren't available.  This can
1540                 * happen only if some depended-upon subsystems were bound
1541                 * to non-default hierarchies.
1542                 */
1543                new_ss_mask &= this_ss_mask;
1544
1545                if (new_ss_mask == cur_ss_mask)
1546                        break;
1547                cur_ss_mask = new_ss_mask;
1548        }
1549
1550        return cur_ss_mask;
1551}
1552
1553/**
1554 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1555 * @kn: the kernfs_node being serviced
1556 *
1557 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1558 * the method finishes if locking succeeded.  Note that once this function
1559 * returns the cgroup returned by cgroup_kn_lock_live() may become
1560 * inaccessible any time.  If the caller intends to continue to access the
1561 * cgroup, it should pin it before invoking this function.
1562 */
1563void cgroup_kn_unlock(struct kernfs_node *kn)
1564{
1565        struct cgroup *cgrp;
1566
1567        if (kernfs_type(kn) == KERNFS_DIR)
1568                cgrp = kn->priv;
1569        else
1570                cgrp = kn->parent->priv;
1571
1572        mutex_unlock(&cgroup_mutex);
1573
1574        kernfs_unbreak_active_protection(kn);
1575        cgroup_put(cgrp);
1576}
1577
1578/**
1579 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1580 * @kn: the kernfs_node being serviced
1581 * @drain_offline: perform offline draining on the cgroup
1582 *
1583 * This helper is to be used by a cgroup kernfs method currently servicing
1584 * @kn.  It breaks the active protection, performs cgroup locking and
1585 * verifies that the associated cgroup is alive.  Returns the cgroup if
1586 * alive; otherwise, %NULL.  A successful return should be undone by a
1587 * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1588 * cgroup is drained of offlining csses before return.
1589 *
1590 * Any cgroup kernfs method implementation which requires locking the
1591 * associated cgroup should use this helper.  It avoids nesting cgroup
1592 * locking under kernfs active protection and allows all kernfs operations
1593 * including self-removal.
1594 */
1595struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1596{
1597        struct cgroup *cgrp;
1598
1599        if (kernfs_type(kn) == KERNFS_DIR)
1600                cgrp = kn->priv;
1601        else
1602                cgrp = kn->parent->priv;
1603
1604        /*
1605         * We're gonna grab cgroup_mutex which nests outside kernfs
1606         * active_ref.  cgroup liveliness check alone provides enough
1607         * protection against removal.  Ensure @cgrp stays accessible and
1608         * break the active_ref protection.
1609         */
1610        if (!cgroup_tryget(cgrp))
1611                return NULL;
1612        kernfs_break_active_protection(kn);
1613
1614        if (drain_offline)
1615                cgroup_lock_and_drain_offline(cgrp);
1616        else
1617                mutex_lock(&cgroup_mutex);
1618
1619        if (!cgroup_is_dead(cgrp))
1620                return cgrp;
1621
1622        cgroup_kn_unlock(kn);
1623        return NULL;
1624}
1625
1626static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1627{
1628        char name[CGROUP_FILE_NAME_MAX];
1629
1630        lockdep_assert_held(&cgroup_mutex);
1631
1632        if (cft->file_offset) {
1633                struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1634                struct cgroup_file *cfile = (void *)css + cft->file_offset;
1635
1636                spin_lock_irq(&cgroup_file_kn_lock);
1637                cfile->kn = NULL;
1638                spin_unlock_irq(&cgroup_file_kn_lock);
1639
1640                del_timer_sync(&cfile->notify_timer);
1641        }
1642
1643        kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1644}
1645
1646/**
1647 * css_clear_dir - remove subsys files in a cgroup directory
1648 * @css: taget css
1649 */
1650static void css_clear_dir(struct cgroup_subsys_state *css)
1651{
1652        struct cgroup *cgrp = css->cgroup;
1653        struct cftype *cfts;
1654
1655        if (!(css->flags & CSS_VISIBLE))
1656                return;
1657
1658        css->flags &= ~CSS_VISIBLE;
1659
1660        if (!css->ss) {
1661                if (cgroup_on_dfl(cgrp))
1662                        cfts = cgroup_base_files;
1663                else
1664                        cfts = cgroup1_base_files;
1665
1666                cgroup_addrm_files(css, cgrp, cfts, false);
1667        } else {
1668                list_for_each_entry(cfts, &css->ss->cfts, node)
1669                        cgroup_addrm_files(css, cgrp, cfts, false);
1670        }
1671}
1672
1673/**
1674 * css_populate_dir - create subsys files in a cgroup directory
1675 * @css: target css
1676 *
1677 * On failure, no file is added.
1678 */
1679static int css_populate_dir(struct cgroup_subsys_state *css)
1680{
1681        struct cgroup *cgrp = css->cgroup;
1682        struct cftype *cfts, *failed_cfts;
1683        int ret;
1684
1685        if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1686                return 0;
1687
1688        if (!css->ss) {
1689                if (cgroup_on_dfl(cgrp))
1690                        cfts = cgroup_base_files;
1691                else
1692                        cfts = cgroup1_base_files;
1693
1694                ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1695                if (ret < 0)
1696                        return ret;
1697        } else {
1698                list_for_each_entry(cfts, &css->ss->cfts, node) {
1699                        ret = cgroup_addrm_files(css, cgrp, cfts, true);
1700                        if (ret < 0) {
1701                                failed_cfts = cfts;
1702                                goto err;
1703                        }
1704                }
1705        }
1706
1707        css->flags |= CSS_VISIBLE;
1708
1709        return 0;
1710err:
1711        list_for_each_entry(cfts, &css->ss->cfts, node) {
1712                if (cfts == failed_cfts)
1713                        break;
1714                cgroup_addrm_files(css, cgrp, cfts, false);
1715        }
1716        return ret;
1717}
1718
1719int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1720{
1721        struct cgroup *dcgrp = &dst_root->cgrp;
1722        struct cgroup_subsys *ss;
1723        int ssid, i, ret;
1724
1725        lockdep_assert_held(&cgroup_mutex);
1726
1727        do_each_subsys_mask(ss, ssid, ss_mask) {
1728                /*
1729                 * If @ss has non-root csses attached to it, can't move.
1730                 * If @ss is an implicit controller, it is exempt from this
1731                 * rule and can be stolen.
1732                 */
1733                if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1734                    !ss->implicit_on_dfl)
1735                        return -EBUSY;
1736
1737                /* can't move between two non-dummy roots either */
1738                if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1739                        return -EBUSY;
1740        } while_each_subsys_mask();
1741
1742        do_each_subsys_mask(ss, ssid, ss_mask) {
1743                struct cgroup_root *src_root = ss->root;
1744                struct cgroup *scgrp = &src_root->cgrp;
1745                struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1746                struct css_set *cset;
1747
1748                WARN_ON(!css || cgroup_css(dcgrp, ss));
1749
1750                /* disable from the source */
1751                src_root->subsys_mask &= ~(1 << ssid);
1752                WARN_ON(cgroup_apply_control(scgrp));
1753                cgroup_finalize_control(scgrp, 0);
1754
1755                /* rebind */
1756                RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1757                rcu_assign_pointer(dcgrp->subsys[ssid], css);
1758                ss->root = dst_root;
1759                css->cgroup = dcgrp;
1760
1761                spin_lock_irq(&css_set_lock);
1762                hash_for_each(css_set_table, i, cset, hlist)
1763                        list_move_tail(&cset->e_cset_node[ss->id],
1764                                       &dcgrp->e_csets[ss->id]);
1765                spin_unlock_irq(&css_set_lock);
1766
1767                /* default hierarchy doesn't enable controllers by default */
1768                dst_root->subsys_mask |= 1 << ssid;
1769                if (dst_root == &cgrp_dfl_root) {
1770                        static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1771                } else {
1772                        dcgrp->subtree_control |= 1 << ssid;
1773                        static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1774                }
1775
1776                ret = cgroup_apply_control(dcgrp);
1777                if (ret)
1778                        pr_warn("partial failure to rebind %s controller (err=%d)\n",
1779                                ss->name, ret);
1780
1781                if (ss->bind)
1782                        ss->bind(css);
1783        } while_each_subsys_mask();
1784
1785        kernfs_activate(dcgrp->kn);
1786        return 0;
1787}
1788
1789int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1790                     struct kernfs_root *kf_root)
1791{
1792        int len = 0;
1793        char *buf = NULL;
1794        struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1795        struct cgroup *ns_cgroup;
1796
1797        buf = kmalloc(PATH_MAX, GFP_KERNEL);
1798        if (!buf)
1799                return -ENOMEM;
1800
1801        spin_lock_irq(&css_set_lock);
1802        ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1803        len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1804        spin_unlock_irq(&css_set_lock);
1805
1806        if (len >= PATH_MAX)
1807                len = -ERANGE;
1808        else if (len > 0) {
1809                seq_escape(sf, buf, " \t\n\\");
1810                len = 0;
1811        }
1812        kfree(buf);
1813        return len;
1814}
1815
1816enum cgroup2_param {
1817        Opt_nsdelegate,
1818        Opt_memory_localevents,
1819        nr__cgroup2_params
1820};
1821
1822static const struct fs_parameter_spec cgroup2_param_specs[] = {
1823        fsparam_flag("nsdelegate",              Opt_nsdelegate),
1824        fsparam_flag("memory_localevents",      Opt_memory_localevents),
1825        {}
1826};
1827
1828static const struct fs_parameter_description cgroup2_fs_parameters = {
1829        .name           = "cgroup2",
1830        .specs          = cgroup2_param_specs,
1831};
1832
1833static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1834{
1835        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1836        struct fs_parse_result result;
1837        int opt;
1838
1839        opt = fs_parse(fc, &cgroup2_fs_parameters, param, &result);
1840        if (opt < 0)
1841                return opt;
1842
1843        switch (opt) {
1844        case Opt_nsdelegate:
1845                ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1846                return 0;
1847        case Opt_memory_localevents:
1848                ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1849                return 0;
1850        }
1851        return -EINVAL;
1852}
1853
1854static void apply_cgroup_root_flags(unsigned int root_flags)
1855{
1856        if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1857                if (root_flags & CGRP_ROOT_NS_DELEGATE)
1858                        cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1859                else
1860                        cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1861
1862                if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1863                        cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1864                else
1865                        cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1866        }
1867}
1868
1869static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1870{
1871        if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1872                seq_puts(seq, ",nsdelegate");
1873        if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1874                seq_puts(seq, ",memory_localevents");
1875        return 0;
1876}
1877
1878static int cgroup_reconfigure(struct fs_context *fc)
1879{
1880        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1881
1882        apply_cgroup_root_flags(ctx->flags);
1883        return 0;
1884}
1885
1886/*
1887 * To reduce the fork() overhead for systems that are not actually using
1888 * their cgroups capability, we don't maintain the lists running through
1889 * each css_set to its tasks until we see the list actually used - in other
1890 * words after the first mount.
1891 */
1892static bool use_task_css_set_links __read_mostly;
1893
1894static void cgroup_enable_task_cg_lists(void)
1895{
1896        struct task_struct *p, *g;
1897
1898        /*
1899         * We need tasklist_lock because RCU is not safe against
1900         * while_each_thread(). Besides, a forking task that has passed
1901         * cgroup_post_fork() without seeing use_task_css_set_links = 1
1902         * is not guaranteed to have its child immediately visible in the
1903         * tasklist if we walk through it with RCU.
1904         */
1905        read_lock(&tasklist_lock);
1906        spin_lock_irq(&css_set_lock);
1907
1908        if (use_task_css_set_links)
1909                goto out_unlock;
1910
1911        use_task_css_set_links = true;
1912
1913        do_each_thread(g, p) {
1914                WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1915                             task_css_set(p) != &init_css_set);
1916
1917                /*
1918                 * We should check if the process is exiting, otherwise
1919                 * it will race with cgroup_exit() in that the list
1920                 * entry won't be deleted though the process has exited.
1921                 * Do it while holding siglock so that we don't end up
1922                 * racing against cgroup_exit().
1923                 *
1924                 * Interrupts were already disabled while acquiring
1925                 * the css_set_lock, so we do not need to disable it
1926                 * again when acquiring the sighand->siglock here.
1927                 */
1928                spin_lock(&p->sighand->siglock);
1929                if (!(p->flags & PF_EXITING)) {
1930                        struct css_set *cset = task_css_set(p);
1931
1932                        if (!css_set_populated(cset))
1933                                css_set_update_populated(cset, true);
1934                        list_add_tail(&p->cg_list, &cset->tasks);
1935                        get_css_set(cset);
1936                        cset->nr_tasks++;
1937                }
1938                spin_unlock(&p->sighand->siglock);
1939        } while_each_thread(g, p);
1940out_unlock:
1941        spin_unlock_irq(&css_set_lock);
1942        read_unlock(&tasklist_lock);
1943}
1944
1945static void init_cgroup_housekeeping(struct cgroup *cgrp)
1946{
1947        struct cgroup_subsys *ss;
1948        int ssid;
1949
1950        INIT_LIST_HEAD(&cgrp->self.sibling);
1951        INIT_LIST_HEAD(&cgrp->self.children);
1952        INIT_LIST_HEAD(&cgrp->cset_links);
1953        INIT_LIST_HEAD(&cgrp->pidlists);
1954        mutex_init(&cgrp->pidlist_mutex);
1955        cgrp->self.cgroup = cgrp;
1956        cgrp->self.flags |= CSS_ONLINE;
1957        cgrp->dom_cgrp = cgrp;
1958        cgrp->max_descendants = INT_MAX;
1959        cgrp->max_depth = INT_MAX;
1960        INIT_LIST_HEAD(&cgrp->rstat_css_list);
1961        prev_cputime_init(&cgrp->prev_cputime);
1962
1963        for_each_subsys(ss, ssid)
1964                INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1965
1966        init_waitqueue_head(&cgrp->offline_waitq);
1967        INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1968}
1969
1970void init_cgroup_root(struct cgroup_fs_context *ctx)
1971{
1972        struct cgroup_root *root = ctx->root;
1973        struct cgroup *cgrp = &root->cgrp;
1974
1975        INIT_LIST_HEAD(&root->root_list);
1976        atomic_set(&root->nr_cgrps, 1);
1977        cgrp->root = root;
1978        init_cgroup_housekeeping(cgrp);
1979        idr_init(&root->cgroup_idr);
1980
1981        root->flags = ctx->flags;
1982        if (ctx->release_agent)
1983                strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1984        if (ctx->name)
1985                strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1986        if (ctx->cpuset_clone_children)
1987                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1988}
1989
1990int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1991{
1992        LIST_HEAD(tmp_links);
1993        struct cgroup *root_cgrp = &root->cgrp;
1994        struct kernfs_syscall_ops *kf_sops;
1995        struct css_set *cset;
1996        int i, ret;
1997
1998        lockdep_assert_held(&cgroup_mutex);
1999
2000        ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
2001        if (ret < 0)
2002                goto out;
2003        root_cgrp->id = ret;
2004        root_cgrp->ancestor_ids[0] = ret;
2005
2006        ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2007                              0, GFP_KERNEL);
2008        if (ret)
2009                goto out;
2010
2011        /*
2012         * We're accessing css_set_count without locking css_set_lock here,
2013         * but that's OK - it can only be increased by someone holding
2014         * cgroup_lock, and that's us.  Later rebinding may disable
2015         * controllers on the default hierarchy and thus create new csets,
2016         * which can't be more than the existing ones.  Allocate 2x.
2017         */
2018        ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2019        if (ret)
2020                goto cancel_ref;
2021
2022        ret = cgroup_init_root_id(root);
2023        if (ret)
2024                goto cancel_ref;
2025
2026        kf_sops = root == &cgrp_dfl_root ?
2027                &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2028
2029        root->kf_root = kernfs_create_root(kf_sops,
2030                                           KERNFS_ROOT_CREATE_DEACTIVATED |
2031                                           KERNFS_ROOT_SUPPORT_EXPORTOP,
2032                                           root_cgrp);
2033        if (IS_ERR(root->kf_root)) {
2034                ret = PTR_ERR(root->kf_root);
2035                goto exit_root_id;
2036        }
2037        root_cgrp->kn = root->kf_root->kn;
2038
2039        ret = css_populate_dir(&root_cgrp->self);
2040        if (ret)
2041                goto destroy_root;
2042
2043        ret = rebind_subsystems(root, ss_mask);
2044        if (ret)
2045                goto destroy_root;
2046
2047        ret = cgroup_bpf_inherit(root_cgrp);
2048        WARN_ON_ONCE(ret);
2049
2050        trace_cgroup_setup_root(root);
2051
2052        /*
2053         * There must be no failure case after here, since rebinding takes
2054         * care of subsystems' refcounts, which are explicitly dropped in
2055         * the failure exit path.
2056         */
2057        list_add(&root->root_list, &cgroup_roots);
2058        cgroup_root_count++;
2059
2060        /*
2061         * Link the root cgroup in this hierarchy into all the css_set
2062         * objects.
2063         */
2064        spin_lock_irq(&css_set_lock);
2065        hash_for_each(css_set_table, i, cset, hlist) {
2066                link_css_set(&tmp_links, cset, root_cgrp);
2067                if (css_set_populated(cset))
2068                        cgroup_update_populated(root_cgrp, true);
2069        }
2070        spin_unlock_irq(&css_set_lock);
2071
2072        BUG_ON(!list_empty(&root_cgrp->self.children));
2073        BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2074
2075        kernfs_activate(root_cgrp->kn);
2076        ret = 0;
2077        goto out;
2078
2079destroy_root:
2080        kernfs_destroy_root(root->kf_root);
2081        root->kf_root = NULL;
2082exit_root_id:
2083        cgroup_exit_root_id(root);
2084cancel_ref:
2085        percpu_ref_exit(&root_cgrp->self.refcnt);
2086out:
2087        free_cgrp_cset_links(&tmp_links);
2088        return ret;
2089}
2090
2091int cgroup_do_get_tree(struct fs_context *fc)
2092{
2093        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2094        int ret;
2095
2096        ctx->kfc.root = ctx->root->kf_root;
2097        if (fc->fs_type == &cgroup2_fs_type)
2098                ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2099        else
2100                ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2101        ret = kernfs_get_tree(fc);
2102
2103        /*
2104         * In non-init cgroup namespace, instead of root cgroup's dentry,
2105         * we return the dentry corresponding to the cgroupns->root_cgrp.
2106         */
2107        if (!ret && ctx->ns != &init_cgroup_ns) {
2108                struct dentry *nsdentry;
2109                struct super_block *sb = fc->root->d_sb;
2110                struct cgroup *cgrp;
2111
2112                mutex_lock(&cgroup_mutex);
2113                spin_lock_irq(&css_set_lock);
2114
2115                cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2116
2117                spin_unlock_irq(&css_set_lock);
2118                mutex_unlock(&cgroup_mutex);
2119
2120                nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2121                dput(fc->root);
2122                fc->root = nsdentry;
2123                if (IS_ERR(nsdentry)) {
2124                        ret = PTR_ERR(nsdentry);
2125                        deactivate_locked_super(sb);
2126                }
2127        }
2128
2129        if (!ctx->kfc.new_sb_created)
2130                cgroup_put(&ctx->root->cgrp);
2131
2132        return ret;
2133}
2134
2135/*
2136 * Destroy a cgroup filesystem context.
2137 */
2138static void cgroup_fs_context_free(struct fs_context *fc)
2139{
2140        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2141
2142        kfree(ctx->name);
2143        kfree(ctx->release_agent);
2144        put_cgroup_ns(ctx->ns);
2145        kernfs_free_fs_context(fc);
2146        kfree(ctx);
2147}
2148
2149static int cgroup_get_tree(struct fs_context *fc)
2150{
2151        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2152        int ret;
2153
2154        cgrp_dfl_visible = true;
2155        cgroup_get_live(&cgrp_dfl_root.cgrp);
2156        ctx->root = &cgrp_dfl_root;
2157
2158        ret = cgroup_do_get_tree(fc);
2159        if (!ret)
2160                apply_cgroup_root_flags(ctx->flags);
2161        return ret;
2162}
2163
2164static const struct fs_context_operations cgroup_fs_context_ops = {
2165        .free           = cgroup_fs_context_free,
2166        .parse_param    = cgroup2_parse_param,
2167        .get_tree       = cgroup_get_tree,
2168        .reconfigure    = cgroup_reconfigure,
2169};
2170
2171static const struct fs_context_operations cgroup1_fs_context_ops = {
2172        .free           = cgroup_fs_context_free,
2173        .parse_param    = cgroup1_parse_param,
2174        .get_tree       = cgroup1_get_tree,
2175        .reconfigure    = cgroup1_reconfigure,
2176};
2177
2178/*
2179 * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2180 * we select the namespace we're going to use.
2181 */
2182static int cgroup_init_fs_context(struct fs_context *fc)
2183{
2184        struct cgroup_fs_context *ctx;
2185
2186        ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2187        if (!ctx)
2188                return -ENOMEM;
2189
2190        /*
2191         * The first time anyone tries to mount a cgroup, enable the list
2192         * linking each css_set to its tasks and fix up all existing tasks.
2193         */
2194        if (!use_task_css_set_links)
2195                cgroup_enable_task_cg_lists();
2196
2197        ctx->ns = current->nsproxy->cgroup_ns;
2198        get_cgroup_ns(ctx->ns);
2199        fc->fs_private = &ctx->kfc;
2200        if (fc->fs_type == &cgroup2_fs_type)
2201                fc->ops = &cgroup_fs_context_ops;
2202        else
2203                fc->ops = &cgroup1_fs_context_ops;
2204        put_user_ns(fc->user_ns);
2205        fc->user_ns = get_user_ns(ctx->ns->user_ns);
2206        fc->global = true;
2207        return 0;
2208}
2209
2210static void cgroup_kill_sb(struct super_block *sb)
2211{
2212        struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2213        struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2214
2215        /*
2216         * If @root doesn't have any children, start killing it.
2217         * This prevents new mounts by disabling percpu_ref_tryget_live().
2218         * cgroup_mount() may wait for @root's release.
2219         *
2220         * And don't kill the default root.
2221         */
2222        if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2223            !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2224                percpu_ref_kill(&root->cgrp.self.refcnt);
2225        cgroup_put(&root->cgrp);
2226        kernfs_kill_sb(sb);
2227}
2228
2229struct file_system_type cgroup_fs_type = {
2230        .name                   = "cgroup",
2231        .init_fs_context        = cgroup_init_fs_context,
2232        .parameters             = &cgroup1_fs_parameters,
2233        .kill_sb                = cgroup_kill_sb,
2234        .fs_flags               = FS_USERNS_MOUNT,
2235};
2236
2237static struct file_system_type cgroup2_fs_type = {
2238        .name                   = "cgroup2",
2239        .init_fs_context        = cgroup_init_fs_context,
2240        .parameters             = &cgroup2_fs_parameters,
2241        .kill_sb                = cgroup_kill_sb,
2242        .fs_flags               = FS_USERNS_MOUNT,
2243};
2244
2245#ifdef CONFIG_CPUSETS
2246static const struct fs_context_operations cpuset_fs_context_ops = {
2247        .get_tree       = cgroup1_get_tree,
2248        .free           = cgroup_fs_context_free,
2249};
2250
2251/*
2252 * This is ugly, but preserves the userspace API for existing cpuset
2253 * users. If someone tries to mount the "cpuset" filesystem, we
2254 * silently switch it to mount "cgroup" instead
2255 */
2256static int cpuset_init_fs_context(struct fs_context *fc)
2257{
2258        char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2259        struct cgroup_fs_context *ctx;
2260        int err;
2261
2262        err = cgroup_init_fs_context(fc);
2263        if (err) {
2264                kfree(agent);
2265                return err;
2266        }
2267
2268        fc->ops = &cpuset_fs_context_ops;
2269
2270        ctx = cgroup_fc2context(fc);
2271        ctx->subsys_mask = 1 << cpuset_cgrp_id;
2272        ctx->flags |= CGRP_ROOT_NOPREFIX;
2273        ctx->release_agent = agent;
2274
2275        get_filesystem(&cgroup_fs_type);
2276        put_filesystem(fc->fs_type);
2277        fc->fs_type = &cgroup_fs_type;
2278
2279        return 0;
2280}
2281
2282static struct file_system_type cpuset_fs_type = {
2283        .name                   = "cpuset",
2284        .init_fs_context        = cpuset_init_fs_context,
2285        .fs_flags               = FS_USERNS_MOUNT,
2286};
2287#endif
2288
2289int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2290                          struct cgroup_namespace *ns)
2291{
2292        struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2293
2294        return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2295}
2296
2297int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2298                   struct cgroup_namespace *ns)
2299{
2300        int ret;
2301
2302        mutex_lock(&cgroup_mutex);
2303        spin_lock_irq(&css_set_lock);
2304
2305        ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2306
2307        spin_unlock_irq(&css_set_lock);
2308        mutex_unlock(&cgroup_mutex);
2309
2310        return ret;
2311}
2312EXPORT_SYMBOL_GPL(cgroup_path_ns);
2313
2314/**
2315 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2316 * @task: target task
2317 * @buf: the buffer to write the path into
2318 * @buflen: the length of the buffer
2319 *
2320 * Determine @task's cgroup on the first (the one with the lowest non-zero
2321 * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2322 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2323 * cgroup controller callbacks.
2324 *
2325 * Return value is the same as kernfs_path().
2326 */
2327int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2328{
2329        struct cgroup_root *root;
2330        struct cgroup *cgrp;
2331        int hierarchy_id = 1;
2332        int ret;
2333
2334        mutex_lock(&cgroup_mutex);
2335        spin_lock_irq(&css_set_lock);
2336
2337        root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2338
2339        if (root) {
2340                cgrp = task_cgroup_from_root(task, root);
2341                ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2342        } else {
2343                /* if no hierarchy exists, everyone is in "/" */
2344                ret = strlcpy(buf, "/", buflen);
2345        }
2346
2347        spin_unlock_irq(&css_set_lock);
2348        mutex_unlock(&cgroup_mutex);
2349        return ret;
2350}
2351EXPORT_SYMBOL_GPL(task_cgroup_path);
2352
2353/**
2354 * cgroup_migrate_add_task - add a migration target task to a migration context
2355 * @task: target task
2356 * @mgctx: target migration context
2357 *
2358 * Add @task, which is a migration target, to @mgctx->tset.  This function
2359 * becomes noop if @task doesn't need to be migrated.  @task's css_set
2360 * should have been added as a migration source and @task->cg_list will be
2361 * moved from the css_set's tasks list to mg_tasks one.
2362 */
2363static void cgroup_migrate_add_task(struct task_struct *task,
2364                                    struct cgroup_mgctx *mgctx)
2365{
2366        struct css_set *cset;
2367
2368        lockdep_assert_held(&css_set_lock);
2369
2370        /* @task either already exited or can't exit until the end */
2371        if (task->flags & PF_EXITING)
2372                return;
2373
2374        /* leave @task alone if post_fork() hasn't linked it yet */
2375        if (list_empty(&task->cg_list))
2376                return;
2377
2378        cset = task_css_set(task);
2379        if (!cset->mg_src_cgrp)
2380                return;
2381
2382        mgctx->tset.nr_tasks++;
2383
2384        list_move_tail(&task->cg_list, &cset->mg_tasks);
2385        if (list_empty(&cset->mg_node))
2386                list_add_tail(&cset->mg_node,
2387                              &mgctx->tset.src_csets);
2388        if (list_empty(&cset->mg_dst_cset->mg_node))
2389                list_add_tail(&cset->mg_dst_cset->mg_node,
2390                              &mgctx->tset.dst_csets);
2391}
2392
2393/**
2394 * cgroup_taskset_first - reset taskset and return the first task
2395 * @tset: taskset of interest
2396 * @dst_cssp: output variable for the destination css
2397 *
2398 * @tset iteration is initialized and the first task is returned.
2399 */
2400struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2401                                         struct cgroup_subsys_state **dst_cssp)
2402{
2403        tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2404        tset->cur_task = NULL;
2405
2406        return cgroup_taskset_next(tset, dst_cssp);
2407}
2408
2409/**
2410 * cgroup_taskset_next - iterate to the next task in taskset
2411 * @tset: taskset of interest
2412 * @dst_cssp: output variable for the destination css
2413 *
2414 * Return the next task in @tset.  Iteration must have been initialized
2415 * with cgroup_taskset_first().
2416 */
2417struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2418                                        struct cgroup_subsys_state **dst_cssp)
2419{
2420        struct css_set *cset = tset->cur_cset;
2421        struct task_struct *task = tset->cur_task;
2422
2423        while (&cset->mg_node != tset->csets) {
2424                if (!task)
2425                        task = list_first_entry(&cset->mg_tasks,
2426                                                struct task_struct, cg_list);
2427                else
2428                        task = list_next_entry(task, cg_list);
2429
2430                if (&task->cg_list != &cset->mg_tasks) {
2431                        tset->cur_cset = cset;
2432                        tset->cur_task = task;
2433
2434                        /*
2435                         * This function may be called both before and
2436                         * after cgroup_taskset_migrate().  The two cases
2437                         * can be distinguished by looking at whether @cset
2438                         * has its ->mg_dst_cset set.
2439                         */
2440                        if (cset->mg_dst_cset)
2441                                *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2442                        else
2443                                *dst_cssp = cset->subsys[tset->ssid];
2444
2445                        return task;
2446                }
2447
2448                cset = list_next_entry(cset, mg_node);
2449                task = NULL;
2450        }
2451
2452        return NULL;
2453}
2454
2455/**
2456 * cgroup_taskset_migrate - migrate a taskset
2457 * @mgctx: migration context
2458 *
2459 * Migrate tasks in @mgctx as setup by migration preparation functions.
2460 * This function fails iff one of the ->can_attach callbacks fails and
2461 * guarantees that either all or none of the tasks in @mgctx are migrated.
2462 * @mgctx is consumed regardless of success.
2463 */
2464static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2465{
2466        struct cgroup_taskset *tset = &mgctx->tset;
2467        struct cgroup_subsys *ss;
2468        struct task_struct *task, *tmp_task;
2469        struct css_set *cset, *tmp_cset;
2470        int ssid, failed_ssid, ret;
2471
2472        /* check that we can legitimately attach to the cgroup */
2473        if (tset->nr_tasks) {
2474                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2475                        if (ss->can_attach) {
2476                                tset->ssid = ssid;
2477                                ret = ss->can_attach(tset);
2478                                if (ret) {
2479                                        failed_ssid = ssid;
2480                                        goto out_cancel_attach;
2481                                }
2482                        }
2483                } while_each_subsys_mask();
2484        }
2485
2486        /*
2487         * Now that we're guaranteed success, proceed to move all tasks to
2488         * the new cgroup.  There are no failure cases after here, so this
2489         * is the commit point.
2490         */
2491        spin_lock_irq(&css_set_lock);
2492        list_for_each_entry(cset, &tset->src_csets, mg_node) {
2493                list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2494                        struct css_set *from_cset = task_css_set(task);
2495                        struct css_set *to_cset = cset->mg_dst_cset;
2496
2497                        get_css_set(to_cset);
2498                        to_cset->nr_tasks++;
2499                        css_set_move_task(task, from_cset, to_cset, true);
2500                        from_cset->nr_tasks--;
2501                        /*
2502                         * If the source or destination cgroup is frozen,
2503                         * the task might require to change its state.
2504                         */
2505                        cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2506                                                    to_cset->dfl_cgrp);
2507                        put_css_set_locked(from_cset);
2508
2509                }
2510        }
2511        spin_unlock_irq(&css_set_lock);
2512
2513        /*
2514         * Migration is committed, all target tasks are now on dst_csets.
2515         * Nothing is sensitive to fork() after this point.  Notify
2516         * controllers that migration is complete.
2517         */
2518        tset->csets = &tset->dst_csets;
2519
2520        if (tset->nr_tasks) {
2521                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2522                        if (ss->attach) {
2523                                tset->ssid = ssid;
2524                                ss->attach(tset);
2525                        }
2526                } while_each_subsys_mask();
2527        }
2528
2529        ret = 0;
2530        goto out_release_tset;
2531
2532out_cancel_attach:
2533        if (tset->nr_tasks) {
2534                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2535                        if (ssid == failed_ssid)
2536                                break;
2537                        if (ss->cancel_attach) {
2538                                tset->ssid = ssid;
2539                                ss->cancel_attach(tset);
2540                        }
2541                } while_each_subsys_mask();
2542        }
2543out_release_tset:
2544        spin_lock_irq(&css_set_lock);
2545        list_splice_init(&tset->dst_csets, &tset->src_csets);
2546        list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2547                list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2548                list_del_init(&cset->mg_node);
2549        }
2550        spin_unlock_irq(&css_set_lock);
2551
2552        /*
2553         * Re-initialize the cgroup_taskset structure in case it is reused
2554         * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2555         * iteration.
2556         */
2557        tset->nr_tasks = 0;
2558        tset->csets    = &tset->src_csets;
2559        return ret;
2560}
2561
2562/**
2563 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2564 * @dst_cgrp: destination cgroup to test
2565 *
2566 * On the default hierarchy, except for the mixable, (possible) thread root
2567 * and threaded cgroups, subtree_control must be zero for migration
2568 * destination cgroups with tasks so that child cgroups don't compete
2569 * against tasks.
2570 */
2571int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2572{
2573        /* v1 doesn't have any restriction */
2574        if (!cgroup_on_dfl(dst_cgrp))
2575                return 0;
2576
2577        /* verify @dst_cgrp can host resources */
2578        if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2579                return -EOPNOTSUPP;
2580
2581        /* mixables don't care */
2582        if (cgroup_is_mixable(dst_cgrp))
2583                return 0;
2584
2585        /*
2586         * If @dst_cgrp is already or can become a thread root or is
2587         * threaded, it doesn't matter.
2588         */
2589        if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2590                return 0;
2591
2592        /* apply no-internal-process constraint */
2593        if (dst_cgrp->subtree_control)
2594                return -EBUSY;
2595
2596        return 0;
2597}
2598
2599/**
2600 * cgroup_migrate_finish - cleanup after attach
2601 * @mgctx: migration context
2602 *
2603 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2604 * those functions for details.
2605 */
2606void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2607{
2608        LIST_HEAD(preloaded);
2609        struct css_set *cset, *tmp_cset;
2610
2611        lockdep_assert_held(&cgroup_mutex);
2612
2613        spin_lock_irq(&css_set_lock);
2614
2615        list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2616        list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2617
2618        list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2619                cset->mg_src_cgrp = NULL;
2620                cset->mg_dst_cgrp = NULL;
2621                cset->mg_dst_cset = NULL;
2622                list_del_init(&cset->mg_preload_node);
2623                put_css_set_locked(cset);
2624        }
2625
2626        spin_unlock_irq(&css_set_lock);
2627}
2628
2629/**
2630 * cgroup_migrate_add_src - add a migration source css_set
2631 * @src_cset: the source css_set to add
2632 * @dst_cgrp: the destination cgroup
2633 * @mgctx: migration context
2634 *
2635 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2636 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2637 * up by cgroup_migrate_finish().
2638 *
2639 * This function may be called without holding cgroup_threadgroup_rwsem
2640 * even if the target is a process.  Threads may be created and destroyed
2641 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2642 * into play and the preloaded css_sets are guaranteed to cover all
2643 * migrations.
2644 */
2645void cgroup_migrate_add_src(struct css_set *src_cset,
2646                            struct cgroup *dst_cgrp,
2647                            struct cgroup_mgctx *mgctx)
2648{
2649        struct cgroup *src_cgrp;
2650
2651        lockdep_assert_held(&cgroup_mutex);
2652        lockdep_assert_held(&css_set_lock);
2653
2654        /*
2655         * If ->dead, @src_set is associated with one or more dead cgroups
2656         * and doesn't contain any migratable tasks.  Ignore it early so
2657         * that the rest of migration path doesn't get confused by it.
2658         */
2659        if (src_cset->dead)
2660                return;
2661
2662        src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2663
2664        if (!list_empty(&src_cset->mg_preload_node))
2665                return;
2666
2667        WARN_ON(src_cset->mg_src_cgrp);
2668        WARN_ON(src_cset->mg_dst_cgrp);
2669        WARN_ON(!list_empty(&src_cset->mg_tasks));
2670        WARN_ON(!list_empty(&src_cset->mg_node));
2671
2672        src_cset->mg_src_cgrp = src_cgrp;
2673        src_cset->mg_dst_cgrp = dst_cgrp;
2674        get_css_set(src_cset);
2675        list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2676}
2677
2678/**
2679 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2680 * @mgctx: migration context
2681 *
2682 * Tasks are about to be moved and all the source css_sets have been
2683 * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2684 * pins all destination css_sets, links each to its source, and append them
2685 * to @mgctx->preloaded_dst_csets.
2686 *
2687 * This function must be called after cgroup_migrate_add_src() has been
2688 * called on each migration source css_set.  After migration is performed
2689 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2690 * @mgctx.
2691 */
2692int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2693{
2694        struct css_set *src_cset, *tmp_cset;
2695
2696        lockdep_assert_held(&cgroup_mutex);
2697
2698        /* look up the dst cset for each src cset and link it to src */
2699        list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2700                                 mg_preload_node) {
2701                struct css_set *dst_cset;
2702                struct cgroup_subsys *ss;
2703                int ssid;
2704
2705                dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2706                if (!dst_cset)
2707                        return -ENOMEM;
2708
2709                WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2710
2711                /*
2712                 * If src cset equals dst, it's noop.  Drop the src.
2713                 * cgroup_migrate() will skip the cset too.  Note that we
2714                 * can't handle src == dst as some nodes are used by both.
2715                 */
2716                if (src_cset == dst_cset) {
2717                        src_cset->mg_src_cgrp = NULL;
2718                        src_cset->mg_dst_cgrp = NULL;
2719                        list_del_init(&src_cset->mg_preload_node);
2720                        put_css_set(src_cset);
2721                        put_css_set(dst_cset);
2722                        continue;
2723                }
2724
2725                src_cset->mg_dst_cset = dst_cset;
2726
2727                if (list_empty(&dst_cset->mg_preload_node))
2728                        list_add_tail(&dst_cset->mg_preload_node,
2729                                      &mgctx->preloaded_dst_csets);
2730                else
2731                        put_css_set(dst_cset);
2732
2733                for_each_subsys(ss, ssid)
2734                        if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2735                                mgctx->ss_mask |= 1 << ssid;
2736        }
2737
2738        return 0;
2739}
2740
2741/**
2742 * cgroup_migrate - migrate a process or task to a cgroup
2743 * @leader: the leader of the process or the task to migrate
2744 * @threadgroup: whether @leader points to the whole process or a single task
2745 * @mgctx: migration context
2746 *
2747 * Migrate a process or task denoted by @leader.  If migrating a process,
2748 * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2749 * responsible for invoking cgroup_migrate_add_src() and
2750 * cgroup_migrate_prepare_dst() on the targets before invoking this
2751 * function and following up with cgroup_migrate_finish().
2752 *
2753 * As long as a controller's ->can_attach() doesn't fail, this function is
2754 * guaranteed to succeed.  This means that, excluding ->can_attach()
2755 * failure, when migrating multiple targets, the success or failure can be
2756 * decided for all targets by invoking group_migrate_prepare_dst() before
2757 * actually starting migrating.
2758 */
2759int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2760                   struct cgroup_mgctx *mgctx)
2761{
2762        struct task_struct *task;
2763
2764        /*
2765         * Prevent freeing of tasks while we take a snapshot. Tasks that are
2766         * already PF_EXITING could be freed from underneath us unless we
2767         * take an rcu_read_lock.
2768         */
2769        spin_lock_irq(&css_set_lock);
2770        rcu_read_lock();
2771        task = leader;
2772        do {
2773                cgroup_migrate_add_task(task, mgctx);
2774                if (!threadgroup)
2775                        break;
2776        } while_each_thread(leader, task);
2777        rcu_read_unlock();
2778        spin_unlock_irq(&css_set_lock);
2779
2780        return cgroup_migrate_execute(mgctx);
2781}
2782
2783/**
2784 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2785 * @dst_cgrp: the cgroup to attach to
2786 * @leader: the task or the leader of the threadgroup to be attached
2787 * @threadgroup: attach the whole threadgroup?
2788 *
2789 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2790 */
2791int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2792                       bool threadgroup)
2793{
2794        DEFINE_CGROUP_MGCTX(mgctx);
2795        struct task_struct *task;
2796        int ret;
2797
2798        ret = cgroup_migrate_vet_dst(dst_cgrp);
2799        if (ret)
2800                return ret;
2801
2802        /* look up all src csets */
2803        spin_lock_irq(&css_set_lock);
2804        rcu_read_lock();
2805        task = leader;
2806        do {
2807                cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2808                if (!threadgroup)
2809                        break;
2810        } while_each_thread(leader, task);
2811        rcu_read_unlock();
2812        spin_unlock_irq(&css_set_lock);
2813
2814        /* prepare dst csets and commit */
2815        ret = cgroup_migrate_prepare_dst(&mgctx);
2816        if (!ret)
2817                ret = cgroup_migrate(leader, threadgroup, &mgctx);
2818
2819        cgroup_migrate_finish(&mgctx);
2820
2821        if (!ret)
2822                TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2823
2824        return ret;
2825}
2826
2827struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2828        __acquires(&cgroup_threadgroup_rwsem)
2829{
2830        struct task_struct *tsk;
2831        pid_t pid;
2832
2833        if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2834                return ERR_PTR(-EINVAL);
2835
2836        percpu_down_write(&cgroup_threadgroup_rwsem);
2837
2838        rcu_read_lock();
2839        if (pid) {
2840                tsk = find_task_by_vpid(pid);
2841                if (!tsk) {
2842                        tsk = ERR_PTR(-ESRCH);
2843                        goto out_unlock_threadgroup;
2844                }
2845        } else {
2846                tsk = current;
2847        }
2848
2849        if (threadgroup)
2850                tsk = tsk->group_leader;
2851
2852        /*
2853         * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2854         * If userland migrates such a kthread to a non-root cgroup, it can
2855         * become trapped in a cpuset, or RT kthread may be born in a
2856         * cgroup with no rt_runtime allocated.  Just say no.
2857         */
2858        if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2859                tsk = ERR_PTR(-EINVAL);
2860                goto out_unlock_threadgroup;
2861        }
2862
2863        get_task_struct(tsk);
2864        goto out_unlock_rcu;
2865
2866out_unlock_threadgroup:
2867        percpu_up_write(&cgroup_threadgroup_rwsem);
2868out_unlock_rcu:
2869        rcu_read_unlock();
2870        return tsk;
2871}
2872
2873void cgroup_procs_write_finish(struct task_struct *task)
2874        __releases(&cgroup_threadgroup_rwsem)
2875{
2876        struct cgroup_subsys *ss;
2877        int ssid;
2878
2879        /* release reference from cgroup_procs_write_start() */
2880        put_task_struct(task);
2881
2882        percpu_up_write(&cgroup_threadgroup_rwsem);
2883        for_each_subsys(ss, ssid)
2884                if (ss->post_attach)
2885                        ss->post_attach();
2886}
2887
2888static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2889{
2890        struct cgroup_subsys *ss;
2891        bool printed = false;
2892        int ssid;
2893
2894        do_each_subsys_mask(ss, ssid, ss_mask) {
2895                if (printed)
2896                        seq_putc(seq, ' ');
2897                seq_printf(seq, "%s", ss->name);
2898                printed = true;
2899        } while_each_subsys_mask();
2900        if (printed)
2901                seq_putc(seq, '\n');
2902}
2903
2904/* show controllers which are enabled from the parent */
2905static int cgroup_controllers_show(struct seq_file *seq, void *v)
2906{
2907        struct cgroup *cgrp = seq_css(seq)->cgroup;
2908
2909        cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2910        return 0;
2911}
2912
2913/* show controllers which are enabled for a given cgroup's children */
2914static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2915{
2916        struct cgroup *cgrp = seq_css(seq)->cgroup;
2917
2918        cgroup_print_ss_mask(seq, cgrp->subtree_control);
2919        return 0;
2920}
2921
2922/**
2923 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2924 * @cgrp: root of the subtree to update csses for
2925 *
2926 * @cgrp's control masks have changed and its subtree's css associations
2927 * need to be updated accordingly.  This function looks up all css_sets
2928 * which are attached to the subtree, creates the matching updated css_sets
2929 * and migrates the tasks to the new ones.
2930 */
2931static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2932{
2933        DEFINE_CGROUP_MGCTX(mgctx);
2934        struct cgroup_subsys_state *d_css;
2935        struct cgroup *dsct;
2936        struct css_set *src_cset;
2937        int ret;
2938
2939        lockdep_assert_held(&cgroup_mutex);
2940
2941        percpu_down_write(&cgroup_threadgroup_rwsem);
2942
2943        /* look up all csses currently attached to @cgrp's subtree */
2944        spin_lock_irq(&css_set_lock);
2945        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2946                struct cgrp_cset_link *link;
2947
2948                list_for_each_entry(link, &dsct->cset_links, cset_link)
2949                        cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2950        }
2951        spin_unlock_irq(&css_set_lock);
2952
2953        /* NULL dst indicates self on default hierarchy */
2954        ret = cgroup_migrate_prepare_dst(&mgctx);
2955        if (ret)
2956                goto out_finish;
2957
2958        spin_lock_irq(&css_set_lock);
2959        list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2960                struct task_struct *task, *ntask;
2961
2962                /* all tasks in src_csets need to be migrated */
2963                list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2964                        cgroup_migrate_add_task(task, &mgctx);
2965        }
2966        spin_unlock_irq(&css_set_lock);
2967
2968        ret = cgroup_migrate_execute(&mgctx);
2969out_finish:
2970        cgroup_migrate_finish(&mgctx);
2971        percpu_up_write(&cgroup_threadgroup_rwsem);
2972        return ret;
2973}
2974
2975/**
2976 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2977 * @cgrp: root of the target subtree
2978 *
2979 * Because css offlining is asynchronous, userland may try to re-enable a
2980 * controller while the previous css is still around.  This function grabs
2981 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2982 */
2983void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2984        __acquires(&cgroup_mutex)
2985{
2986        struct cgroup *dsct;
2987        struct cgroup_subsys_state *d_css;
2988        struct cgroup_subsys *ss;
2989        int ssid;
2990
2991restart:
2992        mutex_lock(&cgroup_mutex);
2993
2994        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2995                for_each_subsys(ss, ssid) {
2996                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2997                        DEFINE_WAIT(wait);
2998
2999                        if (!css || !percpu_ref_is_dying(&css->refcnt))
3000                                continue;
3001
3002                        cgroup_get_live(dsct);
3003                        prepare_to_wait(&dsct->offline_waitq, &wait,
3004                                        TASK_UNINTERRUPTIBLE);
3005
3006                        mutex_unlock(&cgroup_mutex);
3007                        schedule();
3008                        finish_wait(&dsct->offline_waitq, &wait);
3009
3010                        cgroup_put(dsct);
3011                        goto restart;
3012                }
3013        }
3014}
3015
3016/**
3017 * cgroup_save_control - save control masks and dom_cgrp of a subtree
3018 * @cgrp: root of the target subtree
3019 *
3020 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3021 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3022 * itself.
3023 */
3024static void cgroup_save_control(struct cgroup *cgrp)
3025{
3026        struct cgroup *dsct;
3027        struct cgroup_subsys_state *d_css;
3028
3029        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3030                dsct->old_subtree_control = dsct->subtree_control;
3031                dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3032                dsct->old_dom_cgrp = dsct->dom_cgrp;
3033        }
3034}
3035
3036/**
3037 * cgroup_propagate_control - refresh control masks of a subtree
3038 * @cgrp: root of the target subtree
3039 *
3040 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3041 * ->subtree_control and propagate controller availability through the
3042 * subtree so that descendants don't have unavailable controllers enabled.
3043 */
3044static void cgroup_propagate_control(struct cgroup *cgrp)
3045{
3046        struct cgroup *dsct;
3047        struct cgroup_subsys_state *d_css;
3048
3049        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3050                dsct->subtree_control &= cgroup_control(dsct);
3051                dsct->subtree_ss_mask =
3052                        cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3053                                                    cgroup_ss_mask(dsct));
3054        }
3055}
3056
3057/**
3058 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3059 * @cgrp: root of the target subtree
3060 *
3061 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3062 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3063 * itself.
3064 */
3065static void cgroup_restore_control(struct cgroup *cgrp)
3066{
3067        struct cgroup *dsct;
3068        struct cgroup_subsys_state *d_css;
3069
3070        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3071                dsct->subtree_control = dsct->old_subtree_control;
3072                dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3073                dsct->dom_cgrp = dsct->old_dom_cgrp;
3074        }
3075}
3076
3077static bool css_visible(struct cgroup_subsys_state *css)
3078{
3079        struct cgroup_subsys *ss = css->ss;
3080        struct cgroup *cgrp = css->cgroup;
3081
3082        if (cgroup_control(cgrp) & (1 << ss->id))
3083                return true;
3084        if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3085                return false;
3086        return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3087}
3088
3089/**
3090 * cgroup_apply_control_enable - enable or show csses according to control
3091 * @cgrp: root of the target subtree
3092 *
3093 * Walk @cgrp's subtree and create new csses or make the existing ones
3094 * visible.  A css is created invisible if it's being implicitly enabled
3095 * through dependency.  An invisible css is made visible when the userland
3096 * explicitly enables it.
3097 *
3098 * Returns 0 on success, -errno on failure.  On failure, csses which have
3099 * been processed already aren't cleaned up.  The caller is responsible for
3100 * cleaning up with cgroup_apply_control_disable().
3101 */
3102static int cgroup_apply_control_enable(struct cgroup *cgrp)
3103{
3104        struct cgroup *dsct;
3105        struct cgroup_subsys_state *d_css;
3106        struct cgroup_subsys *ss;
3107        int ssid, ret;
3108
3109        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3110                for_each_subsys(ss, ssid) {
3111                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3112
3113                        WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3114
3115                        if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3116                                continue;
3117
3118                        if (!css) {
3119                                css = css_create(dsct, ss);
3120                                if (IS_ERR(css))
3121                                        return PTR_ERR(css);
3122                        }
3123
3124                        if (css_visible(css)) {
3125                                ret = css_populate_dir(css);
3126                                if (ret)
3127                                        return ret;
3128                        }
3129                }
3130        }
3131
3132        return 0;
3133}
3134
3135/**
3136 * cgroup_apply_control_disable - kill or hide csses according to control
3137 * @cgrp: root of the target subtree
3138 *
3139 * Walk @cgrp's subtree and kill and hide csses so that they match
3140 * cgroup_ss_mask() and cgroup_visible_mask().
3141 *
3142 * A css is hidden when the userland requests it to be disabled while other
3143 * subsystems are still depending on it.  The css must not actively control
3144 * resources and be in the vanilla state if it's made visible again later.
3145 * Controllers which may be depended upon should provide ->css_reset() for
3146 * this purpose.
3147 */
3148static void cgroup_apply_control_disable(struct cgroup *cgrp)
3149{
3150        struct cgroup *dsct;
3151        struct cgroup_subsys_state *d_css;
3152        struct cgroup_subsys *ss;
3153        int ssid;
3154
3155        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3156                for_each_subsys(ss, ssid) {
3157                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3158
3159                        WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3160
3161                        if (!css)
3162                                continue;
3163
3164                        if (css->parent &&
3165                            !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3166                                kill_css(css);
3167                        } else if (!css_visible(css)) {
3168                                css_clear_dir(css);
3169                                if (ss->css_reset)
3170                                        ss->css_reset(css);
3171                        }
3172                }
3173        }
3174}
3175
3176/**
3177 * cgroup_apply_control - apply control mask updates to the subtree
3178 * @cgrp: root of the target subtree
3179 *
3180 * subsystems can be enabled and disabled in a subtree using the following
3181 * steps.
3182 *
3183 * 1. Call cgroup_save_control() to stash the current state.
3184 * 2. Update ->subtree_control masks in the subtree as desired.
3185 * 3. Call cgroup_apply_control() to apply the changes.
3186 * 4. Optionally perform other related operations.
3187 * 5. Call cgroup_finalize_control() to finish up.
3188 *
3189 * This function implements step 3 and propagates the mask changes
3190 * throughout @cgrp's subtree, updates csses accordingly and perform
3191 * process migrations.
3192 */
3193static int cgroup_apply_control(struct cgroup *cgrp)
3194{
3195        int ret;
3196
3197        cgroup_propagate_control(cgrp);
3198
3199        ret = cgroup_apply_control_enable(cgrp);
3200        if (ret)
3201                return ret;
3202
3203        /*
3204         * At this point, cgroup_e_css_by_mask() results reflect the new csses
3205         * making the following cgroup_update_dfl_csses() properly update
3206         * css associations of all tasks in the subtree.
3207         */
3208        ret = cgroup_update_dfl_csses(cgrp);
3209        if (ret)
3210                return ret;
3211
3212        return 0;
3213}
3214
3215/**
3216 * cgroup_finalize_control - finalize control mask update
3217 * @cgrp: root of the target subtree
3218 * @ret: the result of the update
3219 *
3220 * Finalize control mask update.  See cgroup_apply_control() for more info.
3221 */
3222static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3223{
3224        if (ret) {
3225                cgroup_restore_control(cgrp);
3226                cgroup_propagate_control(cgrp);
3227        }
3228
3229        cgroup_apply_control_disable(cgrp);
3230}
3231
3232static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3233{
3234        u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3235
3236        /* if nothing is getting enabled, nothing to worry about */
3237        if (!enable)
3238                return 0;
3239
3240        /* can @cgrp host any resources? */
3241        if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3242                return -EOPNOTSUPP;
3243
3244        /* mixables don't care */
3245        if (cgroup_is_mixable(cgrp))
3246                return 0;
3247
3248        if (domain_enable) {
3249                /* can't enable domain controllers inside a thread subtree */
3250                if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3251                        return -EOPNOTSUPP;
3252        } else {
3253                /*
3254                 * Threaded controllers can handle internal competitions
3255                 * and are always allowed inside a (prospective) thread
3256                 * subtree.
3257                 */
3258                if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3259                        return 0;
3260        }
3261
3262        /*
3263         * Controllers can't be enabled for a cgroup with tasks to avoid
3264         * child cgroups competing against tasks.
3265         */
3266        if (cgroup_has_tasks(cgrp))
3267                return -EBUSY;
3268
3269        return 0;
3270}
3271
3272/* change the enabled child controllers for a cgroup in the default hierarchy */
3273static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3274                                            char *buf, size_t nbytes,
3275                                            loff_t off)
3276{
3277        u16 enable = 0, disable = 0;
3278        struct cgroup *cgrp, *child;
3279        struct cgroup_subsys *ss;
3280        char *tok;
3281        int ssid, ret;
3282
3283        /*
3284         * Parse input - space separated list of subsystem names prefixed
3285         * with either + or -.
3286         */
3287        buf = strstrip(buf);
3288        while ((tok = strsep(&buf, " "))) {
3289                if (tok[0] == '\0')
3290                        continue;
3291                do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3292                        if (!cgroup_ssid_enabled(ssid) ||
3293                            strcmp(tok + 1, ss->name))
3294                                continue;
3295
3296                        if (*tok == '+') {
3297                                enable |= 1 << ssid;
3298                                disable &= ~(1 << ssid);
3299                        } else if (*tok == '-') {
3300                                disable |= 1 << ssid;
3301                                enable &= ~(1 << ssid);
3302                        } else {
3303                                return -EINVAL;
3304                        }
3305                        break;
3306                } while_each_subsys_mask();
3307                if (ssid == CGROUP_SUBSYS_COUNT)
3308                        return -EINVAL;
3309        }
3310
3311        cgrp = cgroup_kn_lock_live(of->kn, true);
3312        if (!cgrp)
3313                return -ENODEV;
3314
3315        for_each_subsys(ss, ssid) {
3316                if (enable & (1 << ssid)) {
3317                        if (cgrp->subtree_control & (1 << ssid)) {
3318                                enable &= ~(1 << ssid);
3319                                continue;
3320                        }
3321
3322                        if (!(cgroup_control(cgrp) & (1 << ssid))) {
3323                                ret = -ENOENT;
3324                                goto out_unlock;
3325                        }
3326                } else if (disable & (1 << ssid)) {
3327                        if (!(cgrp->subtree_control & (1 << ssid))) {
3328                                disable &= ~(1 << ssid);
3329                                continue;
3330                        }
3331
3332                        /* a child has it enabled? */
3333                        cgroup_for_each_live_child(child, cgrp) {
3334                                if (child->subtree_control & (1 << ssid)) {
3335                                        ret = -EBUSY;
3336                                        goto out_unlock;
3337                                }
3338                        }
3339                }
3340        }
3341
3342        if (!enable && !disable) {
3343                ret = 0;
3344                goto out_unlock;
3345        }
3346
3347        ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3348        if (ret)
3349                goto out_unlock;
3350
3351        /* save and update control masks and prepare csses */
3352        cgroup_save_control(cgrp);
3353
3354        cgrp->subtree_control |= enable;
3355        cgrp->subtree_control &= ~disable;
3356
3357        ret = cgroup_apply_control(cgrp);
3358        cgroup_finalize_control(cgrp, ret);
3359        if (ret)
3360                goto out_unlock;
3361
3362        kernfs_activate(cgrp->kn);
3363out_unlock:
3364        cgroup_kn_unlock(of->kn);
3365        return ret ?: nbytes;
3366}
3367
3368/**
3369 * cgroup_enable_threaded - make @cgrp threaded
3370 * @cgrp: the target cgroup
3371 *
3372 * Called when "threaded" is written to the cgroup.type interface file and
3373 * tries to make @cgrp threaded and join the parent's resource domain.
3374 * This function is never called on the root cgroup as cgroup.type doesn't
3375 * exist on it.
3376 */
3377static int cgroup_enable_threaded(struct cgroup *cgrp)
3378{
3379        struct cgroup *parent = cgroup_parent(cgrp);
3380        struct cgroup *dom_cgrp = parent->dom_cgrp;
3381        struct cgroup *dsct;
3382        struct cgroup_subsys_state *d_css;
3383        int ret;
3384
3385        lockdep_assert_held(&cgroup_mutex);
3386
3387        /* noop if already threaded */
3388        if (cgroup_is_threaded(cgrp))
3389                return 0;
3390
3391        /*
3392         * If @cgroup is populated or has domain controllers enabled, it
3393         * can't be switched.  While the below cgroup_can_be_thread_root()
3394         * test can catch the same conditions, that's only when @parent is
3395         * not mixable, so let's check it explicitly.
3396         */
3397        if (cgroup_is_populated(cgrp) ||
3398            cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3399                return -EOPNOTSUPP;
3400
3401        /* we're joining the parent's domain, ensure its validity */
3402        if (!cgroup_is_valid_domain(dom_cgrp) ||
3403            !cgroup_can_be_thread_root(dom_cgrp))
3404                return -EOPNOTSUPP;
3405
3406        /*
3407         * The following shouldn't cause actual migrations and should
3408         * always succeed.
3409         */
3410        cgroup_save_control(cgrp);
3411
3412        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3413                if (dsct == cgrp || cgroup_is_threaded(dsct))
3414                        dsct->dom_cgrp = dom_cgrp;
3415
3416        ret = cgroup_apply_control(cgrp);
3417        if (!ret)
3418                parent->nr_threaded_children++;
3419
3420        cgroup_finalize_control(cgrp, ret);
3421        return ret;
3422}
3423
3424static int cgroup_type_show(struct seq_file *seq, void *v)
3425{
3426        struct cgroup *cgrp = seq_css(seq)->cgroup;
3427
3428        if (cgroup_is_threaded(cgrp))
3429                seq_puts(seq, "threaded\n");
3430        else if (!cgroup_is_valid_domain(cgrp))
3431                seq_puts(seq, "domain invalid\n");
3432        else if (cgroup_is_thread_root(cgrp))
3433                seq_puts(seq, "domain threaded\n");
3434        else
3435                seq_puts(seq, "domain\n");
3436
3437        return 0;
3438}
3439
3440static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3441                                 size_t nbytes, loff_t off)
3442{
3443        struct cgroup *cgrp;
3444        int ret;
3445
3446        /* only switching to threaded mode is supported */
3447        if (strcmp(strstrip(buf), "threaded"))
3448                return -EINVAL;
3449
3450        cgrp = cgroup_kn_lock_live(of->kn, false);
3451        if (!cgrp)
3452                return -ENOENT;
3453
3454        /* threaded can only be enabled */
3455        ret = cgroup_enable_threaded(cgrp);
3456
3457        cgroup_kn_unlock(of->kn);
3458        return ret ?: nbytes;
3459}
3460
3461static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3462{
3463        struct cgroup *cgrp = seq_css(seq)->cgroup;
3464        int descendants = READ_ONCE(cgrp->max_descendants);
3465
3466        if (descendants == INT_MAX)
3467                seq_puts(seq, "max\n");
3468        else
3469                seq_printf(seq, "%d\n", descendants);
3470
3471        return 0;
3472}
3473
3474static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3475                                           char *buf, size_t nbytes, loff_t off)
3476{
3477        struct cgroup *cgrp;
3478        int descendants;
3479        ssize_t ret;
3480
3481        buf = strstrip(buf);
3482        if (!strcmp(buf, "max")) {
3483                descendants = INT_MAX;
3484        } else {
3485                ret = kstrtoint(buf, 0, &descendants);
3486                if (ret)
3487                        return ret;
3488        }
3489
3490        if (descendants < 0)
3491                return -ERANGE;
3492
3493        cgrp = cgroup_kn_lock_live(of->kn, false);
3494        if (!cgrp)
3495                return -ENOENT;
3496
3497        cgrp->max_descendants = descendants;
3498
3499        cgroup_kn_unlock(of->kn);
3500
3501        return nbytes;
3502}
3503
3504static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3505{
3506        struct cgroup *cgrp = seq_css(seq)->cgroup;
3507        int depth = READ_ONCE(cgrp->max_depth);
3508
3509        if (depth == INT_MAX)
3510                seq_puts(seq, "max\n");
3511        else
3512                seq_printf(seq, "%d\n", depth);
3513
3514        return 0;
3515}
3516
3517static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3518                                      char *buf, size_t nbytes, loff_t off)
3519{
3520        struct cgroup *cgrp;
3521        ssize_t ret;
3522        int depth;
3523
3524        buf = strstrip(buf);
3525        if (!strcmp(buf, "max")) {
3526                depth = INT_MAX;
3527        } else {
3528                ret = kstrtoint(buf, 0, &depth);
3529                if (ret)
3530                        return ret;
3531        }
3532
3533        if (depth < 0)
3534                return -ERANGE;
3535
3536        cgrp = cgroup_kn_lock_live(of->kn, false);
3537        if (!cgrp)
3538                return -ENOENT;
3539
3540        cgrp->max_depth = depth;
3541
3542        cgroup_kn_unlock(of->kn);
3543
3544        return nbytes;
3545}
3546
3547static int cgroup_events_show(struct seq_file *seq, void *v)
3548{
3549        struct cgroup *cgrp = seq_css(seq)->cgroup;
3550
3551        seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3552        seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3553
3554        return 0;
3555}
3556
3557static int cgroup_stat_show(struct seq_file *seq, void *v)
3558{
3559        struct cgroup *cgroup = seq_css(seq)->cgroup;
3560
3561        seq_printf(seq, "nr_descendants %d\n",
3562                   cgroup->nr_descendants);
3563        seq_printf(seq, "nr_dying_descendants %d\n",
3564                   cgroup->nr_dying_descendants);
3565
3566        return 0;
3567}
3568
3569static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3570                                                 struct cgroup *cgrp, int ssid)
3571{
3572        struct cgroup_subsys *ss = cgroup_subsys[ssid];
3573        struct cgroup_subsys_state *css;
3574        int ret;
3575
3576        if (!ss->css_extra_stat_show)
3577                return 0;
3578
3579        css = cgroup_tryget_css(cgrp, ss);
3580        if (!css)
3581                return 0;
3582
3583        ret = ss->css_extra_stat_show(seq, css);
3584        css_put(css);
3585        return ret;
3586}
3587
3588static int cpu_stat_show(struct seq_file *seq, void *v)
3589{
3590        struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3591        int ret = 0;
3592
3593        cgroup_base_stat_cputime_show(seq);
3594#ifdef CONFIG_CGROUP_SCHED
3595        ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3596#endif
3597        return ret;
3598}
3599
3600#ifdef CONFIG_PSI
3601static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3602{
3603        struct cgroup *cgroup = seq_css(seq)->cgroup;
3604        struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3605
3606        return psi_show(seq, psi, PSI_IO);
3607}
3608static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3609{
3610        struct cgroup *cgroup = seq_css(seq)->cgroup;
3611        struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3612
3613        return psi_show(seq, psi, PSI_MEM);
3614}
3615static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3616{
3617        struct cgroup *cgroup = seq_css(seq)->cgroup;
3618        struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3619
3620        return psi_show(seq, psi, PSI_CPU);
3621}
3622
3623static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3624                                          size_t nbytes, enum psi_res res)
3625{
3626        struct psi_trigger *new;
3627        struct cgroup *cgrp;
3628
3629        cgrp = cgroup_kn_lock_live(of->kn, false);
3630        if (!cgrp)
3631                return -ENODEV;
3632
3633        cgroup_get(cgrp);
3634        cgroup_kn_unlock(of->kn);
3635
3636        new = psi_trigger_create(&cgrp->psi, buf, nbytes, res);
3637        if (IS_ERR(new)) {
3638                cgroup_put(cgrp);
3639                return PTR_ERR(new);
3640        }
3641
3642        psi_trigger_replace(&of->priv, new);
3643
3644        cgroup_put(cgrp);
3645
3646        return nbytes;
3647}
3648
3649static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3650                                          char *buf, size_t nbytes,
3651                                          loff_t off)
3652{
3653        return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3654}
3655
3656static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3657                                          char *buf, size_t nbytes,
3658                                          loff_t off)
3659{
3660        return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3661}
3662
3663static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3664                                          char *buf, size_t nbytes,
3665                                          loff_t off)
3666{
3667        return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3668}
3669
3670static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3671                                          poll_table *pt)
3672{
3673        return psi_trigger_poll(&of->priv, of->file, pt);
3674}
3675
3676static void cgroup_pressure_release(struct kernfs_open_file *of)
3677{
3678        psi_trigger_replace(&of->priv, NULL);
3679}
3680#endif /* CONFIG_PSI */
3681
3682static int cgroup_freeze_show(struct seq_file *seq, void *v)
3683{
3684        struct cgroup *cgrp = seq_css(seq)->cgroup;
3685
3686        seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3687
3688        return 0;
3689}
3690
3691static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3692                                   char *buf, size_t nbytes, loff_t off)
3693{
3694        struct cgroup *cgrp;
3695        ssize_t ret;
3696        int freeze;
3697
3698        ret = kstrtoint(strstrip(buf), 0, &freeze);
3699        if (ret)
3700                return ret;
3701
3702        if (freeze < 0 || freeze > 1)
3703                return -ERANGE;
3704
3705        cgrp = cgroup_kn_lock_live(of->kn, false);
3706        if (!cgrp)
3707                return -ENOENT;
3708
3709        cgroup_freeze(cgrp, freeze);
3710
3711        cgroup_kn_unlock(of->kn);
3712
3713        return nbytes;
3714}
3715
3716static int cgroup_file_open(struct kernfs_open_file *of)
3717{
3718        struct cftype *cft = of->kn->priv;
3719
3720        if (cft->open)
3721                return cft->open(of);
3722        return 0;
3723}
3724
3725static void cgroup_file_release(struct kernfs_open_file *of)
3726{
3727        struct cftype *cft = of->kn->priv;
3728
3729        if (cft->release)
3730                cft->release(of);
3731}
3732
3733static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3734                                 size_t nbytes, loff_t off)
3735{
3736        struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3737        struct cgroup *cgrp = of->kn->parent->priv;
3738        struct cftype *cft = of->kn->priv;
3739        struct cgroup_subsys_state *css;
3740        int ret;
3741
3742        /*
3743         * If namespaces are delegation boundaries, disallow writes to
3744         * files in an non-init namespace root from inside the namespace
3745         * except for the files explicitly marked delegatable -
3746         * cgroup.procs and cgroup.subtree_control.
3747         */
3748        if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3749            !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3750            ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3751                return -EPERM;
3752
3753        if (cft->write)
3754                return cft->write(of, buf, nbytes, off);
3755
3756        /*
3757         * kernfs guarantees that a file isn't deleted with operations in
3758         * flight, which means that the matching css is and stays alive and
3759         * doesn't need to be pinned.  The RCU locking is not necessary
3760         * either.  It's just for the convenience of using cgroup_css().
3761         */
3762        rcu_read_lock();
3763        css = cgroup_css(cgrp, cft->ss);
3764        rcu_read_unlock();
3765
3766        if (cft->write_u64) {
3767                unsigned long long v;
3768                ret = kstrtoull(buf, 0, &v);
3769                if (!ret)
3770                        ret = cft->write_u64(css, cft, v);
3771        } else if (cft->write_s64) {
3772                long long v;
3773                ret = kstrtoll(buf, 0, &v);
3774                if (!ret)
3775                        ret = cft->write_s64(css, cft, v);
3776        } else {
3777                ret = -EINVAL;
3778        }
3779
3780        return ret ?: nbytes;
3781}
3782
3783static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3784{
3785        struct cftype *cft = of->kn->priv;
3786
3787        if (cft->poll)
3788                return cft->poll(of, pt);
3789
3790        return kernfs_generic_poll(of, pt);
3791}
3792
3793static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3794{
3795        return seq_cft(seq)->seq_start(seq, ppos);
3796}
3797
3798static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3799{
3800        return seq_cft(seq)->seq_next(seq, v, ppos);
3801}
3802
3803static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3804{
3805        if (seq_cft(seq)->seq_stop)
3806                seq_cft(seq)->seq_stop(seq, v);
3807}
3808
3809static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3810{
3811        struct cftype *cft = seq_cft(m);
3812        struct cgroup_subsys_state *css = seq_css(m);
3813
3814        if (cft->seq_show)
3815                return cft->seq_show(m, arg);
3816
3817        if (cft->read_u64)
3818                seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3819        else if (cft->read_s64)
3820                seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3821        else
3822                return -EINVAL;
3823        return 0;
3824}
3825
3826static struct kernfs_ops cgroup_kf_single_ops = {
3827        .atomic_write_len       = PAGE_SIZE,
3828        .open                   = cgroup_file_open,
3829        .release                = cgroup_file_release,
3830        .write                  = cgroup_file_write,
3831        .poll                   = cgroup_file_poll,
3832        .seq_show               = cgroup_seqfile_show,
3833};
3834
3835static struct kernfs_ops cgroup_kf_ops = {
3836        .atomic_write_len       = PAGE_SIZE,
3837        .open                   = cgroup_file_open,
3838        .release                = cgroup_file_release,
3839        .write                  = cgroup_file_write,
3840        .poll                   = cgroup_file_poll,
3841        .seq_start              = cgroup_seqfile_start,
3842        .seq_next               = cgroup_seqfile_next,
3843        .seq_stop               = cgroup_seqfile_stop,
3844        .seq_show               = cgroup_seqfile_show,
3845};
3846
3847/* set uid and gid of cgroup dirs and files to that of the creator */
3848static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3849{
3850        struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3851                               .ia_uid = current_fsuid(),
3852                               .ia_gid = current_fsgid(), };
3853
3854        if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3855            gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3856                return 0;
3857
3858        return kernfs_setattr(kn, &iattr);
3859}
3860
3861static void cgroup_file_notify_timer(struct timer_list *timer)
3862{
3863        cgroup_file_notify(container_of(timer, struct cgroup_file,
3864                                        notify_timer));
3865}
3866
3867static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3868                           struct cftype *cft)
3869{
3870        char name[CGROUP_FILE_NAME_MAX];
3871        struct kernfs_node *kn;
3872        struct lock_class_key *key = NULL;
3873        int ret;
3874
3875#ifdef CONFIG_DEBUG_LOCK_ALLOC
3876        key = &cft->lockdep_key;
3877#endif
3878        kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3879                                  cgroup_file_mode(cft),
3880                                  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3881                                  0, cft->kf_ops, cft,
3882                                  NULL, key);
3883        if (IS_ERR(kn))
3884                return PTR_ERR(kn);
3885
3886        ret = cgroup_kn_set_ugid(kn);
3887        if (ret) {
3888                kernfs_remove(kn);
3889                return ret;
3890        }
3891
3892        if (cft->file_offset) {
3893                struct cgroup_file *cfile = (void *)css + cft->file_offset;
3894
3895                timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3896
3897                spin_lock_irq(&cgroup_file_kn_lock);
3898                cfile->kn = kn;
3899                spin_unlock_irq(&cgroup_file_kn_lock);
3900        }
3901
3902        return 0;
3903}
3904
3905/**
3906 * cgroup_addrm_files - add or remove files to a cgroup directory
3907 * @css: the target css
3908 * @cgrp: the target cgroup (usually css->cgroup)
3909 * @cfts: array of cftypes to be added
3910 * @is_add: whether to add or remove
3911 *
3912 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3913 * For removals, this function never fails.
3914 */
3915static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3916                              struct cgroup *cgrp, struct cftype cfts[],
3917                              bool is_add)
3918{
3919        struct cftype *cft, *cft_end = NULL;
3920        int ret = 0;
3921
3922        lockdep_assert_held(&cgroup_mutex);
3923
3924restart:
3925        for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3926                /* does cft->flags tell us to skip this file on @cgrp? */
3927                if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3928                        continue;
3929                if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3930                        continue;
3931                if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3932                        continue;
3933                if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3934                        continue;
3935                if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3936                        continue;
3937                if (is_add) {
3938                        ret = cgroup_add_file(css, cgrp, cft);
3939                        if (ret) {
3940                                pr_warn("%s: failed to add %s, err=%d\n",
3941                                        __func__, cft->name, ret);
3942                                cft_end = cft;
3943                                is_add = false;
3944                                goto restart;
3945                        }
3946                } else {
3947                        cgroup_rm_file(cgrp, cft);
3948                }
3949        }
3950        return ret;
3951}
3952
3953static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3954{
3955        struct cgroup_subsys *ss = cfts[0].ss;
3956        struct cgroup *root = &ss->root->cgrp;
3957        struct cgroup_subsys_state *css;
3958        int ret = 0;
3959
3960        lockdep_assert_held(&cgroup_mutex);
3961
3962        /* add/rm files for all cgroups created before */
3963        css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3964                struct cgroup *cgrp = css->cgroup;
3965
3966                if (!(css->flags & CSS_VISIBLE))
3967                        continue;
3968
3969                ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3970                if (ret)
3971                        break;
3972        }
3973
3974        if (is_add && !ret)
3975                kernfs_activate(root->kn);
3976        return ret;
3977}
3978
3979static void cgroup_exit_cftypes(struct cftype *cfts)
3980{
3981        struct cftype *cft;
3982
3983        for (cft = cfts; cft->name[0] != '\0'; cft++) {
3984                /* free copy for custom atomic_write_len, see init_cftypes() */
3985                if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3986                        kfree(cft->kf_ops);
3987                cft->kf_ops = NULL;
3988                cft->ss = NULL;
3989
3990                /* revert flags set by cgroup core while adding @cfts */
3991                cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3992        }
3993}
3994
3995static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3996{
3997        struct cftype *cft;
3998
3999        for (cft = cfts; cft->name[0] != '\0'; cft++) {
4000                struct kernfs_ops *kf_ops;
4001
4002                WARN_ON(cft->ss || cft->kf_ops);
4003
4004                if (cft->seq_start)
4005                        kf_ops = &cgroup_kf_ops;
4006                else
4007                        kf_ops = &cgroup_kf_single_ops;
4008
4009                /*
4010                 * Ugh... if @cft wants a custom max_write_len, we need to
4011                 * make a copy of kf_ops to set its atomic_write_len.
4012                 */
4013                if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4014                        kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4015                        if (!kf_ops) {
4016                                cgroup_exit_cftypes(cfts);
4017                                return -ENOMEM;
4018                        }
4019                        kf_ops->atomic_write_len = cft->max_write_len;
4020                }
4021
4022                cft->kf_ops = kf_ops;
4023                cft->ss = ss;
4024        }
4025
4026        return 0;
4027}
4028
4029static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4030{
4031        lockdep_assert_held(&cgroup_mutex);
4032
4033        if (!cfts || !cfts[0].ss)
4034                return -ENOENT;
4035
4036        list_del(&cfts->node);
4037        cgroup_apply_cftypes(cfts, false);
4038        cgroup_exit_cftypes(cfts);
4039        return 0;
4040}
4041
4042/**
4043 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4044 * @cfts: zero-length name terminated array of cftypes
4045 *
4046 * Unregister @cfts.  Files described by @cfts are removed from all
4047 * existing cgroups and all future cgroups won't have them either.  This
4048 * function can be called anytime whether @cfts' subsys is attached or not.
4049 *
4050 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4051 * registered.
4052 */
4053int cgroup_rm_cftypes(struct cftype *cfts)
4054{
4055        int ret;
4056
4057        mutex_lock(&cgroup_mutex);
4058        ret = cgroup_rm_cftypes_locked(cfts);
4059        mutex_unlock(&cgroup_mutex);
4060        return ret;
4061}
4062
4063/**
4064 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4065 * @ss: target cgroup subsystem
4066 * @cfts: zero-length name terminated array of cftypes
4067 *
4068 * Register @cfts to @ss.  Files described by @cfts are created for all
4069 * existing cgroups to which @ss is attached and all future cgroups will
4070 * have them too.  This function can be called anytime whether @ss is
4071 * attached or not.
4072 *
4073 * Returns 0 on successful registration, -errno on failure.  Note that this
4074 * function currently returns 0 as long as @cfts registration is successful
4075 * even if some file creation attempts on existing cgroups fail.
4076 */
4077static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4078{
4079        int ret;
4080
4081        if (!cgroup_ssid_enabled(ss->id))
4082                return 0;
4083
4084        if (!cfts || cfts[0].name[0] == '\0')
4085                return 0;
4086
4087        ret = cgroup_init_cftypes(ss, cfts);
4088        if (ret)
4089                return ret;
4090
4091        mutex_lock(&cgroup_mutex);
4092
4093        list_add_tail(&cfts->node, &ss->cfts);
4094        ret = cgroup_apply_cftypes(cfts, true);
4095        if (ret)
4096                cgroup_rm_cftypes_locked(cfts);
4097
4098        mutex_unlock(&cgroup_mutex);
4099        return ret;
4100}
4101
4102/**
4103 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4104 * @ss: target cgroup subsystem
4105 * @cfts: zero-length name terminated array of cftypes
4106 *
4107 * Similar to cgroup_add_cftypes() but the added files are only used for
4108 * the default hierarchy.
4109 */
4110int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4111{
4112        struct cftype *cft;
4113
4114        for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4115                cft->flags |= __CFTYPE_ONLY_ON_DFL;
4116        return cgroup_add_cftypes(ss, cfts);
4117}
4118
4119/**
4120 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4121 * @ss: target cgroup subsystem
4122 * @cfts: zero-length name terminated array of cftypes
4123 *
4124 * Similar to cgroup_add_cftypes() but the added files are only used for
4125 * the legacy hierarchies.
4126 */
4127int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4128{
4129        struct cftype *cft;
4130
4131        for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4132                cft->flags |= __CFTYPE_NOT_ON_DFL;
4133        return cgroup_add_cftypes(ss, cfts);
4134}
4135
4136/**
4137 * cgroup_file_notify - generate a file modified event for a cgroup_file
4138 * @cfile: target cgroup_file
4139 *
4140 * @cfile must have been obtained by setting cftype->file_offset.
4141 */
4142void cgroup_file_notify(struct cgroup_file *cfile)
4143{
4144        unsigned long flags;
4145
4146        spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4147        if (cfile->kn) {
4148                unsigned long last = cfile->notified_at;
4149                unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4150
4151                if (time_in_range(jiffies, last, next)) {
4152                        timer_reduce(&cfile->notify_timer, next);
4153                } else {
4154                        kernfs_notify(cfile->kn);
4155                        cfile->notified_at = jiffies;
4156                }
4157        }
4158        spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4159}
4160
4161/**
4162 * css_next_child - find the next child of a given css
4163 * @pos: the current position (%NULL to initiate traversal)
4164 * @parent: css whose children to walk
4165 *
4166 * This function returns the next child of @parent and should be called
4167 * under either cgroup_mutex or RCU read lock.  The only requirement is
4168 * that @parent and @pos are accessible.  The next sibling is guaranteed to
4169 * be returned regardless of their states.
4170 *
4171 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4172 * css which finished ->css_online() is guaranteed to be visible in the
4173 * future iterations and will stay visible until the last reference is put.
4174 * A css which hasn't finished ->css_online() or already finished
4175 * ->css_offline() may show up during traversal.  It's each subsystem's
4176 * responsibility to synchronize against on/offlining.
4177 */
4178struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4179                                           struct cgroup_subsys_state *parent)
4180{
4181        struct cgroup_subsys_state *next;
4182
4183        cgroup_assert_mutex_or_rcu_locked();
4184
4185        /*
4186         * @pos could already have been unlinked from the sibling list.
4187         * Once a cgroup is removed, its ->sibling.next is no longer
4188         * updated when its next sibling changes.  CSS_RELEASED is set when
4189         * @pos is taken off list, at which time its next pointer is valid,
4190         * and, as releases are serialized, the one pointed to by the next
4191         * pointer is guaranteed to not have started release yet.  This
4192         * implies that if we observe !CSS_RELEASED on @pos in this RCU
4193         * critical section, the one pointed to by its next pointer is
4194         * guaranteed to not have finished its RCU grace period even if we
4195         * have dropped rcu_read_lock() inbetween iterations.
4196         *
4197         * If @pos has CSS_RELEASED set, its next pointer can't be
4198         * dereferenced; however, as each css is given a monotonically
4199         * increasing unique serial number and always appended to the
4200         * sibling list, the next one can be found by walking the parent's
4201         * children until the first css with higher serial number than
4202         * @pos's.  While this path can be slower, it happens iff iteration
4203         * races against release and the race window is very small.
4204         */
4205        if (!pos) {
4206                next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4207        } else if (likely(!(pos->flags & CSS_RELEASED))) {
4208                next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4209        } else {
4210                list_for_each_entry_rcu(next, &parent->children, sibling)
4211                        if (next->serial_nr > pos->serial_nr)
4212                                break;
4213        }
4214
4215        /*
4216         * @next, if not pointing to the head, can be dereferenced and is
4217         * the next sibling.
4218         */
4219        if (&next->sibling != &parent->children)
4220                return next;
4221        return NULL;
4222}
4223
4224/**
4225 * css_next_descendant_pre - find the next descendant for pre-order walk
4226 * @pos: the current position (%NULL to initiate traversal)
4227 * @root: css whose descendants to walk
4228 *
4229 * To be used by css_for_each_descendant_pre().  Find the next descendant
4230 * to visit for pre-order traversal of @root's descendants.  @root is
4231 * included in the iteration and the first node to be visited.
4232 *
4233 * While this function requires cgroup_mutex or RCU read locking, it
4234 * doesn't require the whole traversal to be contained in a single critical
4235 * section.  This function will return the correct next descendant as long
4236 * as both @pos and @root are accessible and @pos is a descendant of @root.
4237 *
4238 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4239 * css which finished ->css_online() is guaranteed to be visible in the
4240 * future iterations and will stay visible until the last reference is put.
4241 * A css which hasn't finished ->css_online() or already finished
4242 * ->css_offline() may show up during traversal.  It's each subsystem's
4243 * responsibility to synchronize against on/offlining.
4244 */
4245struct cgroup_subsys_state *
4246css_next_descendant_pre(struct cgroup_subsys_state *pos,
4247                        struct cgroup_subsys_state *root)
4248{
4249        struct cgroup_subsys_state *next;
4250
4251        cgroup_assert_mutex_or_rcu_locked();
4252
4253        /* if first iteration, visit @root */
4254        if (!pos)
4255                return root;
4256
4257        /* visit the first child if exists */
4258        next = css_next_child(NULL, pos);
4259        if (next)
4260                return next;
4261
4262        /* no child, visit my or the closest ancestor's next sibling */
4263        while (pos != root) {
4264                next = css_next_child(pos, pos->parent);
4265                if (next)
4266                        return next;
4267                pos = pos->parent;
4268        }
4269
4270        return NULL;
4271}
4272EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4273
4274/**
4275 * css_rightmost_descendant - return the rightmost descendant of a css
4276 * @pos: css of interest
4277 *
4278 * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4279 * is returned.  This can be used during pre-order traversal to skip
4280 * subtree of @pos.
4281 *
4282 * While this function requires cgroup_mutex or RCU read locking, it
4283 * doesn't require the whole traversal to be contained in a single critical
4284 * section.  This function will return the correct rightmost descendant as
4285 * long as @pos is accessible.
4286 */
4287struct cgroup_subsys_state *
4288css_rightmost_descendant(struct cgroup_subsys_state *pos)
4289{
4290        struct cgroup_subsys_state *last, *tmp;
4291
4292        cgroup_assert_mutex_or_rcu_locked();
4293
4294        do {
4295                last = pos;
4296                /* ->prev isn't RCU safe, walk ->next till the end */
4297                pos = NULL;
4298                css_for_each_child(tmp, last)
4299                        pos = tmp;
4300        } while (pos);
4301
4302        return last;
4303}
4304
4305static struct cgroup_subsys_state *
4306css_leftmost_descendant(struct cgroup_subsys_state *pos)
4307{
4308        struct cgroup_subsys_state *last;
4309
4310        do {
4311                last = pos;
4312                pos = css_next_child(NULL, pos);
4313        } while (pos);
4314
4315        return last;
4316}
4317
4318/**
4319 * css_next_descendant_post - find the next descendant for post-order walk
4320 * @pos: the current position (%NULL to initiate traversal)
4321 * @root: css whose descendants to walk
4322 *
4323 * To be used by css_for_each_descendant_post().  Find the next descendant
4324 * to visit for post-order traversal of @root's descendants.  @root is
4325 * included in the iteration and the last node to be visited.
4326 *
4327 * While this function requires cgroup_mutex or RCU read locking, it
4328 * doesn't require the whole traversal to be contained in a single critical
4329 * section.  This function will return the correct next descendant as long
4330 * as both @pos and @cgroup are accessible and @pos is a descendant of
4331 * @cgroup.
4332 *
4333 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4334 * css which finished ->css_online() is guaranteed to be visible in the
4335 * future iterations and will stay visible until the last reference is put.
4336 * A css which hasn't finished ->css_online() or already finished
4337 * ->css_offline() may show up during traversal.  It's each subsystem's
4338 * responsibility to synchronize against on/offlining.
4339 */
4340struct cgroup_subsys_state *
4341css_next_descendant_post(struct cgroup_subsys_state *pos,
4342                         struct cgroup_subsys_state *root)
4343{
4344        struct cgroup_subsys_state *next;
4345
4346        cgroup_assert_mutex_or_rcu_locked();
4347
4348        /* if first iteration, visit leftmost descendant which may be @root */
4349        if (!pos)
4350                return css_leftmost_descendant(root);
4351
4352        /* if we visited @root, we're done */
4353        if (pos == root)
4354                return NULL;
4355
4356        /* if there's an unvisited sibling, visit its leftmost descendant */
4357        next = css_next_child(pos, pos->parent);
4358        if (next)
4359                return css_leftmost_descendant(next);
4360
4361        /* no sibling left, visit parent */
4362        return pos->parent;
4363}
4364
4365/**
4366 * css_has_online_children - does a css have online children
4367 * @css: the target css
4368 *
4369 * Returns %true if @css has any online children; otherwise, %false.  This
4370 * function can be called from any context but the caller is responsible
4371 * for synchronizing against on/offlining as necessary.
4372 */
4373bool css_has_online_children(struct cgroup_subsys_state *css)
4374{
4375        struct cgroup_subsys_state *child;
4376        bool ret = false;
4377
4378        rcu_read_lock();
4379        css_for_each_child(child, css) {
4380                if (child->flags & CSS_ONLINE) {
4381                        ret = true;
4382                        break;
4383                }
4384        }
4385        rcu_read_unlock();
4386        return ret;
4387}
4388
4389static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4390{
4391        struct list_head *l;
4392        struct cgrp_cset_link *link;
4393        struct css_set *cset;
4394
4395        lockdep_assert_held(&css_set_lock);
4396
4397        /* find the next threaded cset */
4398        if (it->tcset_pos) {
4399                l = it->tcset_pos->next;
4400
4401                if (l != it->tcset_head) {
4402                        it->tcset_pos = l;
4403                        return container_of(l, struct css_set,
4404                                            threaded_csets_node);
4405                }
4406
4407                it->tcset_pos = NULL;
4408        }
4409
4410        /* find the next cset */
4411        l = it->cset_pos;
4412        l = l->next;
4413        if (l == it->cset_head) {
4414                it->cset_pos = NULL;
4415                return NULL;
4416        }
4417
4418        if (it->ss) {
4419                cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4420        } else {
4421                link = list_entry(l, struct cgrp_cset_link, cset_link);
4422                cset = link->cset;
4423        }
4424
4425        it->cset_pos = l;
4426
4427        /* initialize threaded css_set walking */
4428        if (it->flags & CSS_TASK_ITER_THREADED) {
4429                if (it->cur_dcset)
4430                        put_css_set_locked(it->cur_dcset);
4431                it->cur_dcset = cset;
4432                get_css_set(cset);
4433
4434                it->tcset_head = &cset->threaded_csets;
4435                it->tcset_pos = &cset->threaded_csets;
4436        }
4437
4438        return cset;
4439}
4440
4441/**
4442 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4443 * @it: the iterator to advance
4444 *
4445 * Advance @it to the next css_set to walk.
4446 */
4447static void css_task_iter_advance_css_set(struct css_task_iter *it)
4448{
4449        struct css_set *cset;
4450
4451        lockdep_assert_held(&css_set_lock);
4452
4453        /* Advance to the next non-empty css_set */
4454        do {
4455                cset = css_task_iter_next_css_set(it);
4456                if (!cset) {
4457                        it->task_pos = NULL;
4458                        return;
4459                }
4460        } while (!css_set_populated(cset) && list_empty(&cset->dying_tasks));
4461
4462        if (!list_empty(&cset->tasks))
4463                it->task_pos = cset->tasks.next;
4464        else if (!list_empty(&cset->mg_tasks))
4465                it->task_pos = cset->mg_tasks.next;
4466        else
4467                it->task_pos = cset->dying_tasks.next;
4468
4469        it->tasks_head = &cset->tasks;
4470        it->mg_tasks_head = &cset->mg_tasks;
4471        it->dying_tasks_head = &cset->dying_tasks;
4472
4473        /*
4474         * We don't keep css_sets locked across iteration steps and thus
4475         * need to take steps to ensure that iteration can be resumed after
4476         * the lock is re-acquired.  Iteration is performed at two levels -
4477         * css_sets and tasks in them.
4478         *
4479         * Once created, a css_set never leaves its cgroup lists, so a
4480         * pinned css_set is guaranteed to stay put and we can resume
4481         * iteration afterwards.
4482         *
4483         * Tasks may leave @cset across iteration steps.  This is resolved
4484         * by registering each iterator with the css_set currently being
4485         * walked and making css_set_move_task() advance iterators whose
4486         * next task is leaving.
4487         */
4488        if (it->cur_cset) {
4489                list_del(&it->iters_node);
4490                put_css_set_locked(it->cur_cset);
4491        }
4492        get_css_set(cset);
4493        it->cur_cset = cset;
4494        list_add(&it->iters_node, &cset->task_iters);
4495}
4496
4497static void css_task_iter_skip(struct css_task_iter *it,
4498                               struct task_struct *task)
4499{
4500        lockdep_assert_held(&css_set_lock);
4501
4502        if (it->task_pos == &task->cg_list) {
4503                it->task_pos = it->task_pos->next;
4504                it->flags |= CSS_TASK_ITER_SKIPPED;
4505        }
4506}
4507
4508static void css_task_iter_advance(struct css_task_iter *it)
4509{
4510        struct task_struct *task;
4511
4512        lockdep_assert_held(&css_set_lock);
4513repeat:
4514        if (it->task_pos) {
4515                /*
4516                 * Advance iterator to find next entry.  cset->tasks is
4517                 * consumed first and then ->mg_tasks.  After ->mg_tasks,
4518                 * we move onto the next cset.
4519                 */
4520                if (it->flags & CSS_TASK_ITER_SKIPPED)
4521                        it->flags &= ~CSS_TASK_ITER_SKIPPED;
4522                else
4523                        it->task_pos = it->task_pos->next;
4524
4525                if (it->task_pos == it->tasks_head)
4526                        it->task_pos = it->mg_tasks_head->next;
4527                if (it->task_pos == it->mg_tasks_head)
4528                        it->task_pos = it->dying_tasks_head->next;
4529                if (it->task_pos == it->dying_tasks_head)
4530                        css_task_iter_advance_css_set(it);
4531        } else {
4532                /* called from start, proceed to the first cset */
4533                css_task_iter_advance_css_set(it);
4534        }
4535
4536        if (!it->task_pos)
4537                return;
4538
4539        task = list_entry(it->task_pos, struct task_struct, cg_list);
4540
4541        if (it->flags & CSS_TASK_ITER_PROCS) {
4542                /* if PROCS, skip over tasks which aren't group leaders */
4543                if (!thread_group_leader(task))
4544                        goto repeat;
4545
4546                /* and dying leaders w/o live member threads */
4547                if (!atomic_read(&task->signal->live))
4548                        goto repeat;
4549        } else {
4550                /* skip all dying ones */
4551                if (task->flags & PF_EXITING)
4552                        goto repeat;
4553        }
4554}
4555
4556/**
4557 * css_task_iter_start - initiate task iteration
4558 * @css: the css to walk tasks of
4559 * @flags: CSS_TASK_ITER_* flags
4560 * @it: the task iterator to use
4561 *
4562 * Initiate iteration through the tasks of @css.  The caller can call
4563 * css_task_iter_next() to walk through the tasks until the function
4564 * returns NULL.  On completion of iteration, css_task_iter_end() must be
4565 * called.
4566 */
4567void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4568                         struct css_task_iter *it)
4569{
4570        /* no one should try to iterate before mounting cgroups */
4571        WARN_ON_ONCE(!use_task_css_set_links);
4572
4573        memset(it, 0, sizeof(*it));
4574
4575        spin_lock_irq(&css_set_lock);
4576
4577        it->ss = css->ss;
4578        it->flags = flags;
4579
4580        if (it->ss)
4581                it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4582        else
4583                it->cset_pos = &css->cgroup->cset_links;
4584
4585        it->cset_head = it->cset_pos;
4586
4587        css_task_iter_advance(it);
4588
4589        spin_unlock_irq(&css_set_lock);
4590}
4591
4592/**
4593 * css_task_iter_next - return the next task for the iterator
4594 * @it: the task iterator being iterated
4595 *
4596 * The "next" function for task iteration.  @it should have been
4597 * initialized via css_task_iter_start().  Returns NULL when the iteration
4598 * reaches the end.
4599 */
4600struct task_struct *css_task_iter_next(struct css_task_iter *it)
4601{
4602        if (it->cur_task) {
4603                put_task_struct(it->cur_task);
4604                it->cur_task = NULL;
4605        }
4606
4607        spin_lock_irq(&css_set_lock);
4608
4609        /* @it may be half-advanced by skips, finish advancing */
4610        if (it->flags & CSS_TASK_ITER_SKIPPED)
4611                css_task_iter_advance(it);
4612
4613        if (it->task_pos) {
4614                it->cur_task = list_entry(it->task_pos, struct task_struct,
4615                                          cg_list);
4616                get_task_struct(it->cur_task);
4617                css_task_iter_advance(it);
4618        }
4619
4620        spin_unlock_irq(&css_set_lock);
4621
4622        return it->cur_task;
4623}
4624
4625/**
4626 * css_task_iter_end - finish task iteration
4627 * @it: the task iterator to finish
4628 *
4629 * Finish task iteration started by css_task_iter_start().
4630 */
4631void css_task_iter_end(struct css_task_iter *it)
4632{
4633        if (it->cur_cset) {
4634                spin_lock_irq(&css_set_lock);
4635                list_del(&it->iters_node);
4636                put_css_set_locked(it->cur_cset);
4637                spin_unlock_irq(&css_set_lock);
4638        }
4639
4640        if (it->cur_dcset)
4641                put_css_set(it->cur_dcset);
4642
4643        if (it->cur_task)
4644                put_task_struct(it->cur_task);
4645}
4646
4647static void cgroup_procs_release(struct kernfs_open_file *of)
4648{
4649        if (of->priv) {
4650                css_task_iter_end(of->priv);
4651                kfree(of->priv);
4652        }
4653}
4654
4655static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4656{
4657        struct kernfs_open_file *of = s->private;
4658        struct css_task_iter *it = of->priv;
4659
4660        return css_task_iter_next(it);
4661}
4662
4663static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4664                                  unsigned int iter_flags)
4665{
4666        struct kernfs_open_file *of = s->private;
4667        struct cgroup *cgrp = seq_css(s)->cgroup;
4668        struct css_task_iter *it = of->priv;
4669
4670        /*
4671         * When a seq_file is seeked, it's always traversed sequentially
4672         * from position 0, so we can simply keep iterating on !0 *pos.
4673         */
4674        if (!it) {
4675                if (WARN_ON_ONCE((*pos)++))
4676                        return ERR_PTR(-EINVAL);
4677
4678                it = kzalloc(sizeof(*it), GFP_KERNEL);
4679                if (!it)
4680                        return ERR_PTR(-ENOMEM);
4681                of->priv = it;
4682                css_task_iter_start(&cgrp->self, iter_flags, it);
4683        } else if (!(*pos)++) {
4684                css_task_iter_end(it);
4685                css_task_iter_start(&cgrp->self, iter_flags, it);
4686        }
4687
4688        return cgroup_procs_next(s, NULL, NULL);
4689}
4690
4691static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4692{
4693        struct cgroup *cgrp = seq_css(s)->cgroup;
4694
4695        /*
4696         * All processes of a threaded subtree belong to the domain cgroup
4697         * of the subtree.  Only threads can be distributed across the
4698         * subtree.  Reject reads on cgroup.procs in the subtree proper.
4699         * They're always empty anyway.
4700         */
4701        if (cgroup_is_threaded(cgrp))
4702                return ERR_PTR(-EOPNOTSUPP);
4703
4704        return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4705                                            CSS_TASK_ITER_THREADED);
4706}
4707
4708static int cgroup_procs_show(struct seq_file *s, void *v)
4709{
4710        seq_printf(s, "%d\n", task_pid_vnr(v));
4711        return 0;
4712}
4713
4714static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4715                                         struct cgroup *dst_cgrp,
4716                                         struct super_block *sb)
4717{
4718        struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4719        struct cgroup *com_cgrp = src_cgrp;
4720        struct inode *inode;
4721        int ret;
4722
4723        lockdep_assert_held(&cgroup_mutex);
4724
4725        /* find the common ancestor */
4726        while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4727                com_cgrp = cgroup_parent(com_cgrp);
4728
4729        /* %current should be authorized to migrate to the common ancestor */
4730        inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4731        if (!inode)
4732                return -ENOMEM;
4733
4734        ret = inode_permission(inode, MAY_WRITE);
4735        iput(inode);
4736        if (ret)
4737                return ret;
4738
4739        /*
4740         * If namespaces are delegation boundaries, %current must be able
4741         * to see both source and destination cgroups from its namespace.
4742         */
4743        if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4744            (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4745             !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4746                return -ENOENT;
4747
4748        return 0;
4749}
4750
4751static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4752                                  char *buf, size_t nbytes, loff_t off)
4753{
4754        struct cgroup *src_cgrp, *dst_cgrp;
4755        struct task_struct *task;
4756        ssize_t ret;
4757
4758        dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4759        if (!dst_cgrp)
4760                return -ENODEV;
4761
4762        task = cgroup_procs_write_start(buf, true);
4763        ret = PTR_ERR_OR_ZERO(task);
4764        if (ret)
4765                goto out_unlock;
4766
4767        /* find the source cgroup */
4768        spin_lock_irq(&css_set_lock);
4769        src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4770        spin_unlock_irq(&css_set_lock);
4771
4772        ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4773                                            of->file->f_path.dentry->d_sb);
4774        if (ret)
4775                goto out_finish;
4776
4777        ret = cgroup_attach_task(dst_cgrp, task, true);
4778
4779out_finish:
4780        cgroup_procs_write_finish(task);
4781out_unlock:
4782        cgroup_kn_unlock(of->kn);
4783
4784        return ret ?: nbytes;
4785}
4786
4787static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4788{
4789        return __cgroup_procs_start(s, pos, 0);
4790}
4791
4792static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4793                                    char *buf, size_t nbytes, loff_t off)
4794{
4795        struct cgroup *src_cgrp, *dst_cgrp;
4796        struct task_struct *task;
4797        ssize_t ret;
4798
4799        buf = strstrip(buf);
4800
4801        dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4802        if (!dst_cgrp)
4803                return -ENODEV;
4804
4805        task = cgroup_procs_write_start(buf, false);
4806        ret = PTR_ERR_OR_ZERO(task);
4807        if (ret)
4808                goto out_unlock;
4809
4810        /* find the source cgroup */
4811        spin_lock_irq(&css_set_lock);
4812        src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4813        spin_unlock_irq(&css_set_lock);
4814
4815        /* thread migrations follow the cgroup.procs delegation rule */
4816        ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4817                                            of->file->f_path.dentry->d_sb);
4818        if (ret)
4819                goto out_finish;
4820
4821        /* and must be contained in the same domain */
4822        ret = -EOPNOTSUPP;
4823        if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4824                goto out_finish;
4825
4826        ret = cgroup_attach_task(dst_cgrp, task, false);
4827
4828out_finish:
4829        cgroup_procs_write_finish(task);
4830out_unlock:
4831        cgroup_kn_unlock(of->kn);
4832
4833        return ret ?: nbytes;
4834}
4835
4836/* cgroup core interface files for the default hierarchy */
4837static struct cftype cgroup_base_files[] = {
4838        {
4839                .name = "cgroup.type",
4840                .flags = CFTYPE_NOT_ON_ROOT,
4841                .seq_show = cgroup_type_show,
4842                .write = cgroup_type_write,
4843        },
4844        {
4845                .name = "cgroup.procs",
4846                .flags = CFTYPE_NS_DELEGATABLE,
4847                .file_offset = offsetof(struct cgroup, procs_file),
4848                .release = cgroup_procs_release,
4849                .seq_start = cgroup_procs_start,
4850                .seq_next = cgroup_procs_next,
4851                .seq_show = cgroup_procs_show,
4852                .write = cgroup_procs_write,
4853        },
4854        {
4855                .name = "cgroup.threads",
4856                .flags = CFTYPE_NS_DELEGATABLE,
4857                .release = cgroup_procs_release,
4858                .seq_start = cgroup_threads_start,
4859                .seq_next = cgroup_procs_next,
4860                .seq_show = cgroup_procs_show,
4861                .write = cgroup_threads_write,
4862        },
4863        {
4864                .name = "cgroup.controllers",
4865                .seq_show = cgroup_controllers_show,
4866        },
4867        {
4868                .name = "cgroup.subtree_control",
4869                .flags = CFTYPE_NS_DELEGATABLE,
4870                .seq_show = cgroup_subtree_control_show,
4871                .write = cgroup_subtree_control_write,
4872        },
4873        {
4874                .name = "cgroup.events",
4875                .flags = CFTYPE_NOT_ON_ROOT,
4876                .file_offset = offsetof(struct cgroup, events_file),
4877                .seq_show = cgroup_events_show,
4878        },
4879        {
4880                .name = "cgroup.max.descendants",
4881                .seq_show = cgroup_max_descendants_show,
4882                .write = cgroup_max_descendants_write,
4883        },
4884        {
4885                .name = "cgroup.max.depth",
4886                .seq_show = cgroup_max_depth_show,
4887                .write = cgroup_max_depth_write,
4888        },
4889        {
4890                .name = "cgroup.stat",
4891                .seq_show = cgroup_stat_show,
4892        },
4893        {
4894                .name = "cgroup.freeze",
4895                .flags = CFTYPE_NOT_ON_ROOT,
4896                .seq_show = cgroup_freeze_show,
4897                .write = cgroup_freeze_write,
4898        },
4899        {
4900                .name = "cpu.stat",
4901                .flags = CFTYPE_NOT_ON_ROOT,
4902                .seq_show = cpu_stat_show,
4903        },
4904#ifdef CONFIG_PSI
4905        {
4906                .name = "io.pressure",
4907                .seq_show = cgroup_io_pressure_show,
4908                .write = cgroup_io_pressure_write,
4909                .poll = cgroup_pressure_poll,
4910                .release = cgroup_pressure_release,
4911        },
4912        {
4913                .name = "memory.pressure",
4914                .seq_show = cgroup_memory_pressure_show,
4915                .write = cgroup_memory_pressure_write,
4916                .poll = cgroup_pressure_poll,
4917                .release = cgroup_pressure_release,
4918        },
4919        {
4920                .name = "cpu.pressure",
4921                .seq_show = cgroup_cpu_pressure_show,
4922                .write = cgroup_cpu_pressure_write,
4923                .poll = cgroup_pressure_poll,
4924                .release = cgroup_pressure_release,
4925        },
4926#endif /* CONFIG_PSI */
4927        { }     /* terminate */
4928};
4929
4930/*
4931 * css destruction is four-stage process.
4932 *
4933 * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4934 *    Implemented in kill_css().
4935 *
4936 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4937 *    and thus css_tryget_online() is guaranteed to fail, the css can be
4938 *    offlined by invoking offline_css().  After offlining, the base ref is
4939 *    put.  Implemented in css_killed_work_fn().
4940 *
4941 * 3. When the percpu_ref reaches zero, the only possible remaining
4942 *    accessors are inside RCU read sections.  css_release() schedules the
4943 *    RCU callback.
4944 *
4945 * 4. After the grace period, the css can be freed.  Implemented in
4946 *    css_free_work_fn().
4947 *
4948 * It is actually hairier because both step 2 and 4 require process context
4949 * and thus involve punting to css->destroy_work adding two additional
4950 * steps to the already complex sequence.
4951 */
4952static void css_free_rwork_fn(struct work_struct *work)
4953{
4954        struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4955                                struct cgroup_subsys_state, destroy_rwork);
4956        struct cgroup_subsys *ss = css->ss;
4957        struct cgroup *cgrp = css->cgroup;
4958
4959        percpu_ref_exit(&css->refcnt);
4960
4961        if (ss) {
4962                /* css free path */
4963                struct cgroup_subsys_state *parent = css->parent;
4964                int id = css->id;
4965
4966                ss->css_free(css);
4967                cgroup_idr_remove(&ss->css_idr, id);
4968                cgroup_put(cgrp);
4969
4970                if (parent)
4971                        css_put(parent);
4972        } else {
4973                /* cgroup free path */
4974                atomic_dec(&cgrp->root->nr_cgrps);
4975                cgroup1_pidlist_destroy_all(cgrp);
4976                cancel_work_sync(&cgrp->release_agent_work);
4977
4978                if (cgroup_parent(cgrp)) {
4979                        /*
4980                         * We get a ref to the parent, and put the ref when
4981                         * this cgroup is being freed, so it's guaranteed
4982                         * that the parent won't be destroyed before its
4983                         * children.
4984                         */
4985                        cgroup_put(cgroup_parent(cgrp));
4986                        kernfs_put(cgrp->kn);
4987                        psi_cgroup_free(cgrp);
4988                        if (cgroup_on_dfl(cgrp))
4989                                cgroup_rstat_exit(cgrp);
4990                        kfree(cgrp);
4991                } else {
4992                        /*
4993                         * This is root cgroup's refcnt reaching zero,
4994                         * which indicates that the root should be
4995                         * released.
4996                         */
4997                        cgroup_destroy_root(cgrp->root);
4998                }
4999        }
5000}
5001
5002static void css_release_work_fn(struct work_struct *work)
5003{
5004        struct cgroup_subsys_state *css =
5005                container_of(work, struct cgroup_subsys_state, destroy_work);
5006        struct cgroup_subsys *ss = css->ss;
5007        struct cgroup *cgrp = css->cgroup;
5008
5009        mutex_lock(&cgroup_mutex);
5010
5011        css->flags |= CSS_RELEASED;
5012        list_del_rcu(&css->sibling);
5013
5014        if (ss) {
5015                /* css release path */
5016                if (!list_empty(&css->rstat_css_node)) {
5017                        cgroup_rstat_flush(cgrp);
5018                        list_del_rcu(&css->rstat_css_node);
5019                }
5020
5021                cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5022                if (ss->css_released)
5023                        ss->css_released(css);
5024        } else {
5025                struct cgroup *tcgrp;
5026
5027                /* cgroup release path */
5028                TRACE_CGROUP_PATH(release, cgrp);
5029
5030                if (cgroup_on_dfl(cgrp))
5031                        cgroup_rstat_flush(cgrp);
5032
5033                spin_lock_irq(&css_set_lock);
5034                for (tcgrp = cgroup_parent(cgrp); tcgrp;
5035                     tcgrp = cgroup_parent(tcgrp))
5036                        tcgrp->nr_dying_descendants--;
5037                spin_unlock_irq(&css_set_lock);
5038
5039                cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
5040                cgrp->id = -1;
5041
5042                /*
5043                 * There are two control paths which try to determine
5044                 * cgroup from dentry without going through kernfs -
5045                 * cgroupstats_build() and css_tryget_online_from_dir().
5046                 * Those are supported by RCU protecting clearing of
5047                 * cgrp->kn->priv backpointer.
5048                 */
5049                if (cgrp->kn)
5050                        RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5051                                         NULL);
5052        }
5053
5054        mutex_unlock(&cgroup_mutex);
5055
5056        INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5057        queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5058}
5059
5060static void css_release(struct percpu_ref *ref)
5061{
5062        struct cgroup_subsys_state *css =
5063                container_of(ref, struct cgroup_subsys_state, refcnt);
5064
5065        INIT_WORK(&css->destroy_work, css_release_work_fn);
5066        queue_work(cgroup_destroy_wq, &css->destroy_work);
5067}
5068
5069static void init_and_link_css(struct cgroup_subsys_state *css,
5070                              struct cgroup_subsys *ss, struct cgroup *cgrp)
5071{
5072        lockdep_assert_held(&cgroup_mutex);
5073
5074        cgroup_get_live(cgrp);
5075
5076        memset(css, 0, sizeof(*css));
5077        css->cgroup = cgrp;
5078        css->ss = ss;
5079        css->id = -1;
5080        INIT_LIST_HEAD(&css->sibling);
5081        INIT_LIST_HEAD(&css->children);
5082        INIT_LIST_HEAD(&css->rstat_css_node);
5083        css->serial_nr = css_serial_nr_next++;
5084        atomic_set(&css->online_cnt, 0);
5085
5086        if (cgroup_parent(cgrp)) {
5087                css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5088                css_get(css->parent);
5089        }
5090
5091        if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5092                list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5093
5094        BUG_ON(cgroup_css(cgrp, ss));
5095}
5096
5097/* invoke ->css_online() on a new CSS and mark it online if successful */
5098static int online_css(struct cgroup_subsys_state *css)
5099{
5100        struct cgroup_subsys *ss = css->ss;
5101        int ret = 0;
5102
5103        lockdep_assert_held(&cgroup_mutex);
5104
5105        if (ss->css_online)
5106                ret = ss->css_online(css);
5107        if (!ret) {
5108                css->flags |= CSS_ONLINE;
5109                rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5110
5111                atomic_inc(&css->online_cnt);
5112                if (css->parent)
5113                        atomic_inc(&css->parent->online_cnt);
5114        }
5115        return ret;
5116}
5117
5118/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5119static void offline_css(struct cgroup_subsys_state *css)
5120{
5121        struct cgroup_subsys *ss = css->ss;
5122
5123        lockdep_assert_held(&cgroup_mutex);
5124
5125        if (!(css->flags & CSS_ONLINE))
5126                return;
5127
5128        if (ss->css_offline)
5129                ss->css_offline(css);
5130
5131        css->flags &= ~CSS_ONLINE;
5132        RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5133
5134        wake_up_all(&css->cgroup->offline_waitq);
5135}
5136
5137/**
5138 * css_create - create a cgroup_subsys_state
5139 * @cgrp: the cgroup new css will be associated with
5140 * @ss: the subsys of new css
5141 *
5142 * Create a new css associated with @cgrp - @ss pair.  On success, the new
5143 * css is online and installed in @cgrp.  This function doesn't create the
5144 * interface files.  Returns 0 on success, -errno on failure.
5145 */
5146static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5147                                              struct cgroup_subsys *ss)
5148{
5149        struct cgroup *parent = cgroup_parent(cgrp);
5150        struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5151        struct cgroup_subsys_state *css;
5152        int err;
5153
5154        lockdep_assert_held(&cgroup_mutex);
5155
5156        css = ss->css_alloc(parent_css);
5157        if (!css)
5158                css = ERR_PTR(-ENOMEM);
5159        if (IS_ERR(css))
5160                return css;
5161
5162        init_and_link_css(css, ss, cgrp);
5163
5164        err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5165        if (err)
5166                goto err_free_css;
5167
5168        err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5169        if (err < 0)
5170                goto err_free_css;
5171        css->id = err;
5172
5173        /* @css is ready to be brought online now, make it visible */
5174        list_add_tail_rcu(&css->sibling, &parent_css->children);
5175        cgroup_idr_replace(&ss->css_idr, css, css->id);
5176
5177        err = online_css(css);
5178        if (err)
5179                goto err_list_del;
5180
5181        if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5182            cgroup_parent(parent)) {
5183                pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5184                        current->comm, current->pid, ss->name);
5185                if (!strcmp(ss->name, "memory"))
5186                        pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5187                ss->warned_broken_hierarchy = true;
5188        }
5189
5190        return css;
5191
5192err_list_del:
5193        list_del_rcu(&css->sibling);
5194err_free_css:
5195        list_del_rcu(&css->rstat_css_node);
5196        INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5197        queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5198        return ERR_PTR(err);
5199}
5200
5201/*
5202 * The returned cgroup is fully initialized including its control mask, but
5203 * it isn't associated with its kernfs_node and doesn't have the control
5204 * mask applied.
5205 */
5206static struct cgroup *cgroup_create(struct cgroup *parent)
5207{
5208        struct cgroup_root *root = parent->root;
5209        struct cgroup *cgrp, *tcgrp;
5210        int level = parent->level + 1;
5211        int ret;
5212
5213        /* allocate the cgroup and its ID, 0 is reserved for the root */
5214        cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5215                       GFP_KERNEL);
5216        if (!cgrp)
5217                return ERR_PTR(-ENOMEM);
5218
5219        ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5220        if (ret)
5221                goto out_free_cgrp;
5222
5223        if (cgroup_on_dfl(parent)) {
5224                ret = cgroup_rstat_init(cgrp);
5225                if (ret)
5226                        goto out_cancel_ref;
5227        }
5228
5229        /*
5230         * Temporarily set the pointer to NULL, so idr_find() won't return
5231         * a half-baked cgroup.
5232         */
5233        cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
5234        if (cgrp->id < 0) {
5235                ret = -ENOMEM;
5236                goto out_stat_exit;
5237        }
5238
5239        init_cgroup_housekeeping(cgrp);
5240
5241        cgrp->self.parent = &parent->self;
5242        cgrp->root = root;
5243        cgrp->level = level;
5244
5245        ret = psi_cgroup_alloc(cgrp);
5246        if (ret)
5247                goto out_idr_free;
5248
5249        ret = cgroup_bpf_inherit(cgrp);
5250        if (ret)
5251                goto out_psi_free;
5252
5253        /*
5254         * New cgroup inherits effective freeze counter, and
5255         * if the parent has to be frozen, the child has too.
5256         */
5257        cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5258        if (cgrp->freezer.e_freeze) {
5259                /*
5260                 * Set the CGRP_FREEZE flag, so when a process will be
5261                 * attached to the child cgroup, it will become frozen.
5262                 * At this point the new cgroup is unpopulated, so we can
5263                 * consider it frozen immediately.
5264                 */
5265                set_bit(CGRP_FREEZE, &cgrp->flags);
5266                set_bit(CGRP_FROZEN, &cgrp->flags);
5267        }
5268
5269        spin_lock_irq(&css_set_lock);
5270        for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5271                cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
5272
5273                if (tcgrp != cgrp) {
5274                        tcgrp->nr_descendants++;
5275
5276                        /*
5277                         * If the new cgroup is frozen, all ancestor cgroups
5278                         * get a new frozen descendant, but their state can't
5279                         * change because of this.
5280                         */
5281                        if (cgrp->freezer.e_freeze)
5282                                tcgrp->freezer.nr_frozen_descendants++;
5283                }
5284        }
5285        spin_unlock_irq(&css_set_lock);
5286
5287        if (notify_on_release(parent))
5288                set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5289
5290        if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5291                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5292
5293        cgrp->self.serial_nr = css_serial_nr_next++;
5294
5295        /* allocation complete, commit to creation */
5296        list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5297        atomic_inc(&root->nr_cgrps);
5298        cgroup_get_live(parent);
5299
5300        /*
5301         * @cgrp is now fully operational.  If something fails after this
5302         * point, it'll be released via the normal destruction path.
5303         */
5304        cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5305
5306        /*
5307         * On the default hierarchy, a child doesn't automatically inherit
5308         * subtree_control from the parent.  Each is configured manually.
5309         */
5310        if (!cgroup_on_dfl(cgrp))
5311                cgrp->subtree_control = cgroup_control(cgrp);
5312
5313        cgroup_propagate_control(cgrp);
5314
5315        return cgrp;
5316
5317out_psi_free:
5318        psi_cgroup_free(cgrp);
5319out_idr_free:
5320        cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
5321out_stat_exit:
5322        if (cgroup_on_dfl(parent))
5323                cgroup_rstat_exit(cgrp);
5324out_cancel_ref:
5325        percpu_ref_exit(&cgrp->self.refcnt);
5326out_free_cgrp:
5327        kfree(cgrp);
5328        return ERR_PTR(ret);
5329}
5330
5331static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5332{
5333        struct cgroup *cgroup;
5334        int ret = false;
5335        int level = 1;
5336
5337        lockdep_assert_held(&cgroup_mutex);
5338
5339        for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5340                if (cgroup->nr_descendants >= cgroup->max_descendants)
5341                        goto fail;
5342
5343                if (level > cgroup->max_depth)
5344                        goto fail;
5345
5346                level++;
5347        }
5348
5349        ret = true;
5350fail:
5351        return ret;
5352}
5353
5354int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5355{
5356        struct cgroup *parent, *cgrp;
5357        struct kernfs_node *kn;
5358        int ret;
5359
5360        /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5361        if (strchr(name, '\n'))
5362                return -EINVAL;
5363
5364        parent = cgroup_kn_lock_live(parent_kn, false);
5365        if (!parent)
5366                return -ENODEV;
5367
5368        if (!cgroup_check_hierarchy_limits(parent)) {
5369                ret = -EAGAIN;
5370                goto out_unlock;
5371        }
5372
5373        cgrp = cgroup_create(parent);
5374        if (IS_ERR(cgrp)) {
5375                ret = PTR_ERR(cgrp);
5376                goto out_unlock;
5377        }
5378
5379        /* create the directory */
5380        kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5381        if (IS_ERR(kn)) {
5382                ret = PTR_ERR(kn);
5383                goto out_destroy;
5384        }
5385        cgrp->kn = kn;
5386
5387        /*
5388         * This extra ref will be put in cgroup_free_fn() and guarantees
5389         * that @cgrp->kn is always accessible.
5390         */
5391        kernfs_get(kn);
5392
5393        ret = cgroup_kn_set_ugid(kn);
5394        if (ret)
5395                goto out_destroy;
5396
5397        ret = css_populate_dir(&cgrp->self);
5398        if (ret)
5399                goto out_destroy;
5400
5401        ret = cgroup_apply_control_enable(cgrp);
5402        if (ret)
5403                goto out_destroy;
5404
5405        TRACE_CGROUP_PATH(mkdir, cgrp);
5406
5407        /* let's create and online css's */
5408        kernfs_activate(kn);
5409
5410        ret = 0;
5411        goto out_unlock;
5412
5413out_destroy:
5414        cgroup_destroy_locked(cgrp);
5415out_unlock:
5416        cgroup_kn_unlock(parent_kn);
5417        return ret;
5418}
5419
5420/*
5421 * This is called when the refcnt of a css is confirmed to be killed.
5422 * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5423 * initate destruction and put the css ref from kill_css().
5424 */
5425static void css_killed_work_fn(struct work_struct *work)
5426{
5427        struct cgroup_subsys_state *css =
5428                container_of(work, struct cgroup_subsys_state, destroy_work);
5429
5430        mutex_lock(&cgroup_mutex);
5431
5432        do {
5433                offline_css(css);
5434                css_put(css);
5435                /* @css can't go away while we're holding cgroup_mutex */
5436                css = css->parent;
5437        } while (css && atomic_dec_and_test(&css->online_cnt));
5438
5439        mutex_unlock(&cgroup_mutex);
5440}
5441
5442/* css kill confirmation processing requires process context, bounce */
5443static void css_killed_ref_fn(struct percpu_ref *ref)
5444{
5445        struct cgroup_subsys_state *css =
5446                container_of(ref, struct cgroup_subsys_state, refcnt);
5447
5448        if (atomic_dec_and_test(&css->online_cnt)) {
5449                INIT_WORK(&css->destroy_work, css_killed_work_fn);
5450                queue_work(cgroup_destroy_wq, &css->destroy_work);
5451        }
5452}
5453
5454/**
5455 * kill_css - destroy a css
5456 * @css: css to destroy
5457 *
5458 * This function initiates destruction of @css by removing cgroup interface
5459 * files and putting its base reference.  ->css_offline() will be invoked
5460 * asynchronously once css_tryget_online() is guaranteed to fail and when
5461 * the reference count reaches zero, @css will be released.
5462 */
5463static void kill_css(struct cgroup_subsys_state *css)
5464{
5465        lockdep_assert_held(&cgroup_mutex);
5466
5467        if (css->flags & CSS_DYING)
5468                return;
5469
5470        css->flags |= CSS_DYING;
5471
5472        /*
5473         * This must happen before css is disassociated with its cgroup.
5474         * See seq_css() for details.
5475         */
5476        css_clear_dir(css);
5477
5478        /*
5479         * Killing would put the base ref, but we need to keep it alive
5480         * until after ->css_offline().
5481         */
5482        css_get(css);
5483
5484        /*
5485         * cgroup core guarantees that, by the time ->css_offline() is
5486         * invoked, no new css reference will be given out via
5487         * css_tryget_online().  We can't simply call percpu_ref_kill() and
5488         * proceed to offlining css's because percpu_ref_kill() doesn't
5489         * guarantee that the ref is seen as killed on all CPUs on return.
5490         *
5491         * Use percpu_ref_kill_and_confirm() to get notifications as each
5492         * css is confirmed to be seen as killed on all CPUs.
5493         */
5494        percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5495}
5496
5497/**
5498 * cgroup_destroy_locked - the first stage of cgroup destruction
5499 * @cgrp: cgroup to be destroyed
5500 *
5501 * css's make use of percpu refcnts whose killing latency shouldn't be
5502 * exposed to userland and are RCU protected.  Also, cgroup core needs to
5503 * guarantee that css_tryget_online() won't succeed by the time
5504 * ->css_offline() is invoked.  To satisfy all the requirements,
5505 * destruction is implemented in the following two steps.
5506 *
5507 * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5508 *     userland visible parts and start killing the percpu refcnts of
5509 *     css's.  Set up so that the next stage will be kicked off once all
5510 *     the percpu refcnts are confirmed to be killed.
5511 *
5512 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5513 *     rest of destruction.  Once all cgroup references are gone, the
5514 *     cgroup is RCU-freed.
5515 *
5516 * This function implements s1.  After this step, @cgrp is gone as far as
5517 * the userland is concerned and a new cgroup with the same name may be
5518 * created.  As cgroup doesn't care about the names internally, this
5519 * doesn't cause any problem.
5520 */
5521static int cgroup_destroy_locked(struct cgroup *cgrp)
5522        __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5523{
5524        struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5525        struct cgroup_subsys_state *css;
5526        struct cgrp_cset_link *link;
5527        int ssid;
5528
5529        lockdep_assert_held(&cgroup_mutex);
5530
5531        /*
5532         * Only migration can raise populated from zero and we're already
5533         * holding cgroup_mutex.
5534         */
5535        if (cgroup_is_populated(cgrp))
5536                return -EBUSY;
5537
5538        /*
5539         * Make sure there's no live children.  We can't test emptiness of
5540         * ->self.children as dead children linger on it while being
5541         * drained; otherwise, "rmdir parent/child parent" may fail.
5542         */
5543        if (css_has_online_children(&cgrp->self))
5544                return -EBUSY;
5545
5546        /*
5547         * Mark @cgrp and the associated csets dead.  The former prevents
5548         * further task migration and child creation by disabling
5549         * cgroup_lock_live_group().  The latter makes the csets ignored by
5550         * the migration path.
5551         */
5552        cgrp->self.flags &= ~CSS_ONLINE;
5553
5554        spin_lock_irq(&css_set_lock);
5555        list_for_each_entry(link, &cgrp->cset_links, cset_link)
5556                link->cset->dead = true;
5557        spin_unlock_irq(&css_set_lock);
5558
5559        /* initiate massacre of all css's */
5560        for_each_css(css, ssid, cgrp)
5561                kill_css(css);
5562
5563        /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5564        css_clear_dir(&cgrp->self);
5565        kernfs_remove(cgrp->kn);
5566
5567        if (parent && cgroup_is_threaded(cgrp))
5568                parent->nr_threaded_children--;
5569
5570        spin_lock_irq(&css_set_lock);
5571        for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5572                tcgrp->nr_descendants--;
5573                tcgrp->nr_dying_descendants++;
5574                /*
5575                 * If the dying cgroup is frozen, decrease frozen descendants
5576                 * counters of ancestor cgroups.
5577                 */
5578                if (test_bit(CGRP_FROZEN, &cgrp->flags))
5579                        tcgrp->freezer.nr_frozen_descendants--;
5580        }
5581        spin_unlock_irq(&css_set_lock);
5582
5583        cgroup1_check_for_release(parent);
5584
5585        cgroup_bpf_offline(cgrp);
5586
5587        /* put the base reference */
5588        percpu_ref_kill(&cgrp->self.refcnt);
5589
5590        return 0;
5591};
5592
5593int cgroup_rmdir(struct kernfs_node *kn)
5594{
5595        struct cgroup *cgrp;
5596        int ret = 0;
5597
5598        cgrp = cgroup_kn_lock_live(kn, false);
5599        if (!cgrp)
5600                return 0;
5601
5602        ret = cgroup_destroy_locked(cgrp);
5603        if (!ret)
5604                TRACE_CGROUP_PATH(rmdir, cgrp);
5605
5606        cgroup_kn_unlock(kn);
5607        return ret;
5608}
5609
5610static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5611        .show_options           = cgroup_show_options,
5612        .mkdir                  = cgroup_mkdir,
5613        .rmdir                  = cgroup_rmdir,
5614        .show_path              = cgroup_show_path,
5615};
5616
5617static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5618{
5619        struct cgroup_subsys_state *css;
5620
5621        pr_debug("Initializing cgroup subsys %s\n", ss->name);
5622
5623        mutex_lock(&cgroup_mutex);
5624
5625        idr_init(&ss->css_idr);
5626        INIT_LIST_HEAD(&ss->cfts);
5627
5628        /* Create the root cgroup state for this subsystem */
5629        ss->root = &cgrp_dfl_root;
5630        css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5631        /* We don't handle early failures gracefully */
5632        BUG_ON(IS_ERR(css));
5633        init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5634
5635        /*
5636         * Root csses are never destroyed and we can't initialize
5637         * percpu_ref during early init.  Disable refcnting.
5638         */
5639        css->flags |= CSS_NO_REF;
5640
5641        if (early) {
5642                /* allocation can't be done safely during early init */
5643                css->id = 1;
5644        } else {
5645                css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5646                BUG_ON(css->id < 0);
5647        }
5648
5649        /* Update the init_css_set to contain a subsys
5650         * pointer to this state - since the subsystem is
5651         * newly registered, all tasks and hence the
5652         * init_css_set is in the subsystem's root cgroup. */
5653        init_css_set.subsys[ss->id] = css;
5654
5655        have_fork_callback |= (bool)ss->fork << ss->id;
5656        have_exit_callback |= (bool)ss->exit << ss->id;
5657        have_release_callback |= (bool)ss->release << ss->id;
5658        have_canfork_callback |= (bool)ss->can_fork << ss->id;
5659
5660        /* At system boot, before all subsystems have been
5661         * registered, no tasks have been forked, so we don't
5662         * need to invoke fork callbacks here. */
5663        BUG_ON(!list_empty(&init_task.tasks));
5664
5665        BUG_ON(online_css(css));
5666
5667        mutex_unlock(&cgroup_mutex);
5668}
5669
5670/**
5671 * cgroup_init_early - cgroup initialization at system boot
5672 *
5673 * Initialize cgroups at system boot, and initialize any
5674 * subsystems that request early init.
5675 */
5676int __init cgroup_init_early(void)
5677{
5678        static struct cgroup_fs_context __initdata ctx;
5679        struct cgroup_subsys *ss;
5680        int i;
5681
5682        ctx.root = &cgrp_dfl_root;
5683        init_cgroup_root(&ctx);
5684        cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5685
5686        RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5687
5688        for_each_subsys(ss, i) {
5689                WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5690                     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5691                     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5692                     ss->id, ss->name);
5693                WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5694                     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5695
5696                ss->id = i;
5697                ss->name = cgroup_subsys_name[i];
5698                if (!ss->legacy_name)
5699                        ss->legacy_name = cgroup_subsys_name[i];
5700
5701                if (ss->early_init)
5702                        cgroup_init_subsys(ss, true);
5703        }
5704        return 0;
5705}
5706
5707static u16 cgroup_disable_mask __initdata;
5708
5709/**
5710 * cgroup_init - cgroup initialization
5711 *
5712 * Register cgroup filesystem and /proc file, and initialize
5713 * any subsystems that didn't request early init.
5714 */
5715int __init cgroup_init(void)
5716{
5717        struct cgroup_subsys *ss;
5718        int ssid;
5719
5720        BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5721        BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5722        BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5723
5724        cgroup_rstat_boot();
5725
5726        /*
5727         * The latency of the synchronize_rcu() is too high for cgroups,
5728         * avoid it at the cost of forcing all readers into the slow path.
5729         */
5730        rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5731
5732        get_user_ns(init_cgroup_ns.user_ns);
5733
5734        mutex_lock(&cgroup_mutex);
5735
5736        /*
5737         * Add init_css_set to the hash table so that dfl_root can link to
5738         * it during init.
5739         */
5740        hash_add(css_set_table, &init_css_set.hlist,
5741                 css_set_hash(init_css_set.subsys));
5742
5743        BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5744
5745        mutex_unlock(&cgroup_mutex);
5746
5747        for_each_subsys(ss, ssid) {
5748                if (ss->early_init) {
5749                        struct cgroup_subsys_state *css =
5750                                init_css_set.subsys[ss->id];
5751
5752                        css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5753                                                   GFP_KERNEL);
5754                        BUG_ON(css->id < 0);
5755                } else {
5756                        cgroup_init_subsys(ss, false);
5757                }
5758
5759                list_add_tail(&init_css_set.e_cset_node[ssid],
5760                              &cgrp_dfl_root.cgrp.e_csets[ssid]);
5761
5762                /*
5763                 * Setting dfl_root subsys_mask needs to consider the
5764                 * disabled flag and cftype registration needs kmalloc,
5765                 * both of which aren't available during early_init.
5766                 */
5767                if (cgroup_disable_mask & (1 << ssid)) {
5768                        static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5769                        printk(KERN_INFO "Disabling %s control group subsystem\n",
5770                               ss->name);
5771                        continue;
5772                }
5773
5774                if (cgroup1_ssid_disabled(ssid))
5775                        printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5776                               ss->name);
5777
5778                cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5779
5780                /* implicit controllers must be threaded too */
5781                WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5782
5783                if (ss->implicit_on_dfl)
5784                        cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5785                else if (!ss->dfl_cftypes)
5786                        cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5787
5788                if (ss->threaded)
5789                        cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5790
5791                if (ss->dfl_cftypes == ss->legacy_cftypes) {
5792                        WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5793                } else {
5794                        WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5795                        WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5796                }
5797
5798                if (ss->bind)
5799                        ss->bind(init_css_set.subsys[ssid]);
5800
5801                mutex_lock(&cgroup_mutex);
5802                css_populate_dir(init_css_set.subsys[ssid]);
5803                mutex_unlock(&cgroup_mutex);
5804        }
5805
5806        /* init_css_set.subsys[] has been updated, re-hash */
5807        hash_del(&init_css_set.hlist);
5808        hash_add(css_set_table, &init_css_set.hlist,
5809                 css_set_hash(init_css_set.subsys));
5810
5811        WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5812        WARN_ON(register_filesystem(&cgroup_fs_type));
5813        WARN_ON(register_filesystem(&cgroup2_fs_type));
5814        WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5815#ifdef CONFIG_CPUSETS
5816        WARN_ON(register_filesystem(&cpuset_fs_type));
5817#endif
5818
5819        return 0;
5820}
5821
5822static int __init cgroup_wq_init(void)
5823{
5824        /*
5825         * There isn't much point in executing destruction path in
5826         * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5827         * Use 1 for @max_active.
5828         *
5829         * We would prefer to do this in cgroup_init() above, but that
5830         * is called before init_workqueues(): so leave this until after.
5831         */
5832        cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5833        BUG_ON(!cgroup_destroy_wq);
5834        return 0;
5835}
5836core_initcall(cgroup_wq_init);
5837
5838void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5839                                        char *buf, size_t buflen)
5840{
5841        struct kernfs_node *kn;
5842
5843        kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5844        if (!kn)
5845                return;
5846        kernfs_path(kn, buf, buflen);
5847        kernfs_put(kn);
5848}
5849
5850/*
5851 * proc_cgroup_show()
5852 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5853 *  - Used for /proc/<pid>/cgroup.
5854 */
5855int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5856                     struct pid *pid, struct task_struct *tsk)
5857{
5858        char *buf;
5859        int retval;
5860        struct cgroup_root *root;
5861
5862        retval = -ENOMEM;
5863        buf = kmalloc(PATH_MAX, GFP_KERNEL);
5864        if (!buf)
5865                goto out;
5866
5867        mutex_lock(&cgroup_mutex);
5868        spin_lock_irq(&css_set_lock);
5869
5870        for_each_root(root) {
5871                struct cgroup_subsys *ss;
5872                struct cgroup *cgrp;
5873                int ssid, count = 0;
5874
5875                if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5876                        continue;
5877
5878                seq_printf(m, "%d:", root->hierarchy_id);
5879                if (root != &cgrp_dfl_root)
5880                        for_each_subsys(ss, ssid)
5881                                if (root->subsys_mask & (1 << ssid))
5882                                        seq_printf(m, "%s%s", count++ ? "," : "",
5883                                                   ss->legacy_name);
5884                if (strlen(root->name))
5885                        seq_printf(m, "%sname=%s", count ? "," : "",
5886                                   root->name);
5887                seq_putc(m, ':');
5888
5889                cgrp = task_cgroup_from_root(tsk, root);
5890
5891                /*
5892                 * On traditional hierarchies, all zombie tasks show up as
5893                 * belonging to the root cgroup.  On the default hierarchy,
5894                 * while a zombie doesn't show up in "cgroup.procs" and
5895                 * thus can't be migrated, its /proc/PID/cgroup keeps
5896                 * reporting the cgroup it belonged to before exiting.  If
5897                 * the cgroup is removed before the zombie is reaped,
5898                 * " (deleted)" is appended to the cgroup path.
5899                 */
5900                if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5901                        retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5902                                                current->nsproxy->cgroup_ns);
5903                        if (retval >= PATH_MAX)
5904                                retval = -ENAMETOOLONG;
5905                        if (retval < 0)
5906                                goto out_unlock;
5907
5908                        seq_puts(m, buf);
5909                } else {
5910                        seq_puts(m, "/");
5911                }
5912
5913                if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5914                        seq_puts(m, " (deleted)\n");
5915                else
5916                        seq_putc(m, '\n');
5917        }
5918
5919        retval = 0;
5920out_unlock:
5921        spin_unlock_irq(&css_set_lock);
5922        mutex_unlock(&cgroup_mutex);
5923        kfree(buf);
5924out:
5925        return retval;
5926}
5927
5928/**
5929 * cgroup_fork - initialize cgroup related fields during copy_process()
5930 * @child: pointer to task_struct of forking parent process.
5931 *
5932 * A task is associated with the init_css_set until cgroup_post_fork()
5933 * attaches it to the parent's css_set.  Empty cg_list indicates that
5934 * @child isn't holding reference to its css_set.
5935 */
5936void cgroup_fork(struct task_struct *child)
5937{
5938        RCU_INIT_POINTER(child->cgroups, &init_css_set);
5939        INIT_LIST_HEAD(&child->cg_list);
5940}
5941
5942/**
5943 * cgroup_can_fork - called on a new task before the process is exposed
5944 * @child: the task in question.
5945 *
5946 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5947 * returns an error, the fork aborts with that error code. This allows for
5948 * a cgroup subsystem to conditionally allow or deny new forks.
5949 */
5950int cgroup_can_fork(struct task_struct *child)
5951{
5952        struct cgroup_subsys *ss;
5953        int i, j, ret;
5954
5955        do_each_subsys_mask(ss, i, have_canfork_callback) {
5956                ret = ss->can_fork(child);
5957                if (ret)
5958                        goto out_revert;
5959        } while_each_subsys_mask();
5960
5961        return 0;
5962
5963out_revert:
5964        for_each_subsys(ss, j) {
5965                if (j >= i)
5966                        break;
5967                if (ss->cancel_fork)
5968                        ss->cancel_fork(child);
5969        }
5970
5971        return ret;
5972}
5973
5974/**
5975 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5976 * @child: the task in question
5977 *
5978 * This calls the cancel_fork() callbacks if a fork failed *after*
5979 * cgroup_can_fork() succeded.
5980 */
5981void cgroup_cancel_fork(struct task_struct *child)
5982{
5983        struct cgroup_subsys *ss;
5984        int i;
5985
5986        for_each_subsys(ss, i)
5987                if (ss->cancel_fork)
5988                        ss->cancel_fork(child);
5989}
5990
5991/**
5992 * cgroup_post_fork - called on a new task after adding it to the task list
5993 * @child: the task in question
5994 *
5995 * Adds the task to the list running through its css_set if necessary and
5996 * call the subsystem fork() callbacks.  Has to be after the task is
5997 * visible on the task list in case we race with the first call to
5998 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5999 * list.
6000 */
6001void cgroup_post_fork(struct task_struct *child)
6002{
6003        struct cgroup_subsys *ss;
6004        int i;
6005
6006        /*
6007         * This may race against cgroup_enable_task_cg_lists().  As that
6008         * function sets use_task_css_set_links before grabbing
6009         * tasklist_lock and we just went through tasklist_lock to add
6010         * @child, it's guaranteed that either we see the set
6011         * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
6012         * @child during its iteration.
6013         *
6014         * If we won the race, @child is associated with %current's
6015         * css_set.  Grabbing css_set_lock guarantees both that the
6016         * association is stable, and, on completion of the parent's
6017         * migration, @child is visible in the source of migration or
6018         * already in the destination cgroup.  This guarantee is necessary
6019         * when implementing operations which need to migrate all tasks of
6020         * a cgroup to another.
6021         *
6022         * Note that if we lose to cgroup_enable_task_cg_lists(), @child
6023         * will remain in init_css_set.  This is safe because all tasks are
6024         * in the init_css_set before cg_links is enabled and there's no
6025         * operation which transfers all tasks out of init_css_set.
6026         */
6027        if (use_task_css_set_links) {
6028                struct css_set *cset;
6029
6030                spin_lock_irq(&css_set_lock);
6031                cset = task_css_set(current);
6032                if (list_empty(&child->cg_list)) {
6033                        get_css_set(cset);
6034                        cset->nr_tasks++;
6035                        css_set_move_task(child, NULL, cset, false);
6036                }
6037
6038                /*
6039                 * If the cgroup has to be frozen, the new task has too.
6040                 * Let's set the JOBCTL_TRAP_FREEZE jobctl bit to get
6041                 * the task into the frozen state.
6042                 */
6043                if (unlikely(cgroup_task_freeze(child))) {
6044                        spin_lock(&child->sighand->siglock);
6045                        WARN_ON_ONCE(child->frozen);
6046                        child->jobctl |= JOBCTL_TRAP_FREEZE;
6047                        spin_unlock(&child->sighand->siglock);
6048
6049                        /*
6050                         * Calling cgroup_update_frozen() isn't required here,
6051                         * because it will be called anyway a bit later
6052                         * from do_freezer_trap(). So we avoid cgroup's
6053                         * transient switch from the frozen state and back.
6054                         */
6055                }
6056
6057                spin_unlock_irq(&css_set_lock);
6058        }
6059
6060        /*
6061         * Call ss->fork().  This must happen after @child is linked on
6062         * css_set; otherwise, @child might change state between ->fork()
6063         * and addition to css_set.
6064         */
6065        do_each_subsys_mask(ss, i, have_fork_callback) {
6066                ss->fork(child);
6067        } while_each_subsys_mask();
6068}
6069
6070/**
6071 * cgroup_exit - detach cgroup from exiting task
6072 * @tsk: pointer to task_struct of exiting process
6073 *
6074 * Description: Detach cgroup from @tsk and release it.
6075 *
6076 * Note that cgroups marked notify_on_release force every task in
6077 * them to take the global cgroup_mutex mutex when exiting.
6078 * This could impact scaling on very large systems.  Be reluctant to
6079 * use notify_on_release cgroups where very high task exit scaling
6080 * is required on large systems.
6081 *
6082 * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
6083 * call cgroup_exit() while the task is still competent to handle
6084 * notify_on_release(), then leave the task attached to the root cgroup in
6085 * each hierarchy for the remainder of its exit.  No need to bother with
6086 * init_css_set refcnting.  init_css_set never goes away and we can't race
6087 * with migration path - PF_EXITING is visible to migration path.
6088 */
6089void cgroup_exit(struct task_struct *tsk)
6090{
6091        struct cgroup_subsys *ss;
6092        struct css_set *cset;
6093        int i;
6094
6095        /*
6096         * Unlink from @tsk from its css_set.  As migration path can't race
6097         * with us, we can check css_set and cg_list without synchronization.
6098         */
6099        cset = task_css_set(tsk);
6100
6101        if (!list_empty(&tsk->cg_list)) {
6102                spin_lock_irq(&css_set_lock);
6103                css_set_move_task(tsk, cset, NULL, false);
6104                list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6105                cset->nr_tasks--;
6106
6107                WARN_ON_ONCE(cgroup_task_frozen(tsk));
6108                if (unlikely(cgroup_task_freeze(tsk)))
6109                        cgroup_update_frozen(task_dfl_cgroup(tsk));
6110
6111                spin_unlock_irq(&css_set_lock);
6112        } else {
6113                get_css_set(cset);
6114        }
6115
6116        /* see cgroup_post_fork() for details */
6117        do_each_subsys_mask(ss, i, have_exit_callback) {
6118                ss->exit(tsk);
6119        } while_each_subsys_mask();
6120}
6121
6122void cgroup_release(struct task_struct *task)
6123{
6124        struct cgroup_subsys *ss;
6125        int ssid;
6126
6127        do_each_subsys_mask(ss, ssid, have_release_callback) {
6128                ss->release(task);
6129        } while_each_subsys_mask();
6130
6131        if (use_task_css_set_links) {
6132                spin_lock_irq(&css_set_lock);
6133                css_set_skip_task_iters(task_css_set(task), task);
6134                list_del_init(&task->cg_list);
6135                spin_unlock_irq(&css_set_lock);
6136        }
6137}
6138
6139void cgroup_free(struct task_struct *task)
6140{
6141        struct css_set *cset = task_css_set(task);
6142        put_css_set(cset);
6143}
6144
6145static int __init cgroup_disable(char *str)
6146{
6147        struct cgroup_subsys *ss;
6148        char *token;
6149        int i;
6150
6151        while ((token = strsep(&str, ",")) != NULL) {
6152                if (!*token)
6153                        continue;
6154
6155                for_each_subsys(ss, i) {
6156                        if (strcmp(token, ss->name) &&
6157                            strcmp(token, ss->legacy_name))
6158                                continue;
6159                        cgroup_disable_mask |= 1 << i;
6160                }
6161        }
6162        return 1;
6163}
6164__setup("cgroup_disable=", cgroup_disable);
6165
6166void __init __weak enable_debug_cgroup(void) { }
6167
6168static int __init enable_cgroup_debug(char *str)
6169{
6170        cgroup_debug = true;
6171        enable_debug_cgroup();
6172        return 1;
6173}
6174__setup("cgroup_debug", enable_cgroup_debug);
6175
6176/**
6177 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6178 * @dentry: directory dentry of interest
6179 * @ss: subsystem of interest
6180 *
6181 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6182 * to get the corresponding css and return it.  If such css doesn't exist
6183 * or can't be pinned, an ERR_PTR value is returned.
6184 */
6185struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6186                                                       struct cgroup_subsys *ss)
6187{
6188        struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6189        struct file_system_type *s_type = dentry->d_sb->s_type;
6190        struct cgroup_subsys_state *css = NULL;
6191        struct cgroup *cgrp;
6192
6193        /* is @dentry a cgroup dir? */
6194        if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6195            !kn || kernfs_type(kn) != KERNFS_DIR)
6196                return ERR_PTR(-EBADF);
6197
6198        rcu_read_lock();
6199
6200        /*
6201         * This path doesn't originate from kernfs and @kn could already
6202         * have been or be removed at any point.  @kn->priv is RCU
6203         * protected for this access.  See css_release_work_fn() for details.
6204         */
6205        cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6206        if (cgrp)
6207                css = cgroup_css(cgrp, ss);
6208
6209        if (!css || !css_tryget_online(css))
6210                css = ERR_PTR(-ENOENT);
6211
6212        rcu_read_unlock();
6213        return css;
6214}
6215
6216/**
6217 * css_from_id - lookup css by id
6218 * @id: the cgroup id
6219 * @ss: cgroup subsys to be looked into
6220 *
6221 * Returns the css if there's valid one with @id, otherwise returns NULL.
6222 * Should be called under rcu_read_lock().
6223 */
6224struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6225{
6226        WARN_ON_ONCE(!rcu_read_lock_held());
6227        return idr_find(&ss->css_idr, id);
6228}
6229
6230/**
6231 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6232 * @path: path on the default hierarchy
6233 *
6234 * Find the cgroup at @path on the default hierarchy, increment its
6235 * reference count and return it.  Returns pointer to the found cgroup on
6236 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6237 * if @path points to a non-directory.
6238 */
6239struct cgroup *cgroup_get_from_path(const char *path)
6240{
6241        struct kernfs_node *kn;
6242        struct cgroup *cgrp;
6243
6244        mutex_lock(&cgroup_mutex);
6245
6246        kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6247        if (kn) {
6248                if (kernfs_type(kn) == KERNFS_DIR) {
6249                        cgrp = kn->priv;
6250                        cgroup_get_live(cgrp);
6251                } else {
6252                        cgrp = ERR_PTR(-ENOTDIR);
6253                }
6254                kernfs_put(kn);
6255        } else {
6256                cgrp = ERR_PTR(-ENOENT);
6257        }
6258
6259        mutex_unlock(&cgroup_mutex);
6260        return cgrp;
6261}
6262EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6263
6264/**
6265 * cgroup_get_from_fd - get a cgroup pointer from a fd
6266 * @fd: fd obtained by open(cgroup2_dir)
6267 *
6268 * Find the cgroup from a fd which should be obtained
6269 * by opening a cgroup directory.  Returns a pointer to the
6270 * cgroup on success. ERR_PTR is returned if the cgroup
6271 * cannot be found.
6272 */
6273struct cgroup *cgroup_get_from_fd(int fd)
6274{
6275        struct cgroup_subsys_state *css;
6276        struct cgroup *cgrp;
6277        struct file *f;
6278
6279        f = fget_raw(fd);
6280        if (!f)
6281                return ERR_PTR(-EBADF);
6282
6283        css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6284        fput(f);
6285        if (IS_ERR(css))
6286                return ERR_CAST(css);
6287
6288        cgrp = css->cgroup;
6289        if (!cgroup_on_dfl(cgrp)) {
6290                cgroup_put(cgrp);
6291                return ERR_PTR(-EBADF);
6292        }
6293
6294        return cgrp;
6295}
6296EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6297
6298static u64 power_of_ten(int power)
6299{
6300        u64 v = 1;
6301        while (power--)
6302                v *= 10;
6303        return v;
6304}
6305
6306/**
6307 * cgroup_parse_float - parse a floating number
6308 * @input: input string
6309 * @dec_shift: number of decimal digits to shift
6310 * @v: output
6311 *
6312 * Parse a decimal floating point number in @input and store the result in
6313 * @v with decimal point right shifted @dec_shift times.  For example, if
6314 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6315 * Returns 0 on success, -errno otherwise.
6316 *
6317 * There's nothing cgroup specific about this function except that it's
6318 * currently the only user.
6319 */
6320int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6321{
6322        s64 whole, frac = 0;
6323        int fstart = 0, fend = 0, flen;
6324
6325        if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6326                return -EINVAL;
6327        if (frac < 0)
6328                return -EINVAL;
6329
6330        flen = fend > fstart ? fend - fstart : 0;
6331        if (flen < dec_shift)
6332                frac *= power_of_ten(dec_shift - flen);
6333        else
6334                frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6335
6336        *v = whole * power_of_ten(dec_shift) + frac;
6337        return 0;
6338}
6339
6340/*
6341 * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6342 * definition in cgroup-defs.h.
6343 */
6344#ifdef CONFIG_SOCK_CGROUP_DATA
6345
6346#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6347
6348DEFINE_SPINLOCK(cgroup_sk_update_lock);
6349static bool cgroup_sk_alloc_disabled __read_mostly;
6350
6351void cgroup_sk_alloc_disable(void)
6352{
6353        if (cgroup_sk_alloc_disabled)
6354                return;
6355        pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6356        cgroup_sk_alloc_disabled = true;
6357}
6358
6359#else
6360
6361#define cgroup_sk_alloc_disabled        false
6362
6363#endif
6364
6365void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6366{
6367        if (cgroup_sk_alloc_disabled)
6368                return;
6369
6370        /* Socket clone path */
6371        if (skcd->val) {
6372                /*
6373                 * We might be cloning a socket which is left in an empty
6374                 * cgroup and the cgroup might have already been rmdir'd.
6375                 * Don't use cgroup_get_live().
6376                 */
6377                cgroup_get(sock_cgroup_ptr(skcd));
6378                cgroup_bpf_get(sock_cgroup_ptr(skcd));
6379                return;
6380        }
6381
6382        rcu_read_lock();
6383
6384        while (true) {
6385                struct css_set *cset;
6386
6387                cset = task_css_set(current);
6388                if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6389                        skcd->val = (unsigned long)cset->dfl_cgrp;
6390                        cgroup_bpf_get(cset->dfl_cgrp);
6391                        break;
6392                }
6393                cpu_relax();
6394        }
6395
6396        rcu_read_unlock();
6397}
6398
6399void cgroup_sk_free(struct sock_cgroup_data *skcd)
6400{
6401        struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6402
6403        cgroup_bpf_put(cgrp);
6404        cgroup_put(cgrp);
6405}
6406
6407#endif  /* CONFIG_SOCK_CGROUP_DATA */
6408
6409#ifdef CONFIG_CGROUP_BPF
6410int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
6411                      enum bpf_attach_type type, u32 flags)
6412{
6413        int ret;
6414
6415        mutex_lock(&cgroup_mutex);
6416        ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
6417        mutex_unlock(&cgroup_mutex);
6418        return ret;
6419}
6420int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6421                      enum bpf_attach_type type, u32 flags)
6422{
6423        int ret;
6424
6425        mutex_lock(&cgroup_mutex);
6426        ret = __cgroup_bpf_detach(cgrp, prog, type);
6427        mutex_unlock(&cgroup_mutex);
6428        return ret;
6429}
6430int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6431                     union bpf_attr __user *uattr)
6432{
6433        int ret;
6434
6435        mutex_lock(&cgroup_mutex);
6436        ret = __cgroup_bpf_query(cgrp, attr, uattr);
6437        mutex_unlock(&cgroup_mutex);
6438        return ret;
6439}
6440#endif /* CONFIG_CGROUP_BPF */
6441
6442#ifdef CONFIG_SYSFS
6443static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6444                                      ssize_t size, const char *prefix)
6445{
6446        struct cftype *cft;
6447        ssize_t ret = 0;
6448
6449        for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6450                if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6451                        continue;
6452
6453                if (prefix)
6454                        ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6455
6456                ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6457
6458                if (WARN_ON(ret >= size))
6459                        break;
6460        }
6461
6462        return ret;
6463}
6464
6465static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6466                              char *buf)
6467{
6468        struct cgroup_subsys *ss;
6469        int ssid;
6470        ssize_t ret = 0;
6471
6472        ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6473                                     NULL);
6474
6475        for_each_subsys(ss, ssid)
6476                ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6477                                              PAGE_SIZE - ret,
6478                                              cgroup_subsys_name[ssid]);
6479
6480        return ret;
6481}
6482static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6483
6484static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6485                             char *buf)
6486{
6487        return snprintf(buf, PAGE_SIZE, "nsdelegate\nmemory_localevents\n");
6488}
6489static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6490
6491static struct attribute *cgroup_sysfs_attrs[] = {
6492        &cgroup_delegate_attr.attr,
6493        &cgroup_features_attr.attr,
6494        NULL,
6495};
6496
6497static const struct attribute_group cgroup_sysfs_attr_group = {
6498        .attrs = cgroup_sysfs_attrs,
6499        .name = "cgroup",
6500};
6501
6502static int __init cgroup_sysfs_init(void)
6503{
6504        return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6505}
6506subsys_initcall(cgroup_sysfs_init);
6507
6508#endif /* CONFIG_SYSFS */
6509