linux/kernel/dma/mapping.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * arch-independent dma-mapping routines
   4 *
   5 * Copyright (c) 2006  SUSE Linux Products GmbH
   6 * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
   7 */
   8#include <linux/memblock.h> /* for max_pfn */
   9#include <linux/acpi.h>
  10#include <linux/dma-direct.h>
  11#include <linux/dma-noncoherent.h>
  12#include <linux/export.h>
  13#include <linux/gfp.h>
  14#include <linux/of_device.h>
  15#include <linux/slab.h>
  16#include <linux/vmalloc.h>
  17
  18/*
  19 * Managed DMA API
  20 */
  21struct dma_devres {
  22        size_t          size;
  23        void            *vaddr;
  24        dma_addr_t      dma_handle;
  25        unsigned long   attrs;
  26};
  27
  28static void dmam_release(struct device *dev, void *res)
  29{
  30        struct dma_devres *this = res;
  31
  32        dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
  33                        this->attrs);
  34}
  35
  36static int dmam_match(struct device *dev, void *res, void *match_data)
  37{
  38        struct dma_devres *this = res, *match = match_data;
  39
  40        if (this->vaddr == match->vaddr) {
  41                WARN_ON(this->size != match->size ||
  42                        this->dma_handle != match->dma_handle);
  43                return 1;
  44        }
  45        return 0;
  46}
  47
  48/**
  49 * dmam_free_coherent - Managed dma_free_coherent()
  50 * @dev: Device to free coherent memory for
  51 * @size: Size of allocation
  52 * @vaddr: Virtual address of the memory to free
  53 * @dma_handle: DMA handle of the memory to free
  54 *
  55 * Managed dma_free_coherent().
  56 */
  57void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
  58                        dma_addr_t dma_handle)
  59{
  60        struct dma_devres match_data = { size, vaddr, dma_handle };
  61
  62        dma_free_coherent(dev, size, vaddr, dma_handle);
  63        WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
  64}
  65EXPORT_SYMBOL(dmam_free_coherent);
  66
  67/**
  68 * dmam_alloc_attrs - Managed dma_alloc_attrs()
  69 * @dev: Device to allocate non_coherent memory for
  70 * @size: Size of allocation
  71 * @dma_handle: Out argument for allocated DMA handle
  72 * @gfp: Allocation flags
  73 * @attrs: Flags in the DMA_ATTR_* namespace.
  74 *
  75 * Managed dma_alloc_attrs().  Memory allocated using this function will be
  76 * automatically released on driver detach.
  77 *
  78 * RETURNS:
  79 * Pointer to allocated memory on success, NULL on failure.
  80 */
  81void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
  82                gfp_t gfp, unsigned long attrs)
  83{
  84        struct dma_devres *dr;
  85        void *vaddr;
  86
  87        dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
  88        if (!dr)
  89                return NULL;
  90
  91        vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
  92        if (!vaddr) {
  93                devres_free(dr);
  94                return NULL;
  95        }
  96
  97        dr->vaddr = vaddr;
  98        dr->dma_handle = *dma_handle;
  99        dr->size = size;
 100        dr->attrs = attrs;
 101
 102        devres_add(dev, dr);
 103
 104        return vaddr;
 105}
 106EXPORT_SYMBOL(dmam_alloc_attrs);
 107
 108/*
 109 * Create scatter-list for the already allocated DMA buffer.
 110 */
 111int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
 112                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 113                 unsigned long attrs)
 114{
 115        struct page *page;
 116        int ret;
 117
 118        if (!dev_is_dma_coherent(dev)) {
 119                unsigned long pfn;
 120
 121                if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
 122                        return -ENXIO;
 123
 124                /* If the PFN is not valid, we do not have a struct page */
 125                pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
 126                if (!pfn_valid(pfn))
 127                        return -ENXIO;
 128                page = pfn_to_page(pfn);
 129        } else {
 130                page = virt_to_page(cpu_addr);
 131        }
 132
 133        ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 134        if (!ret)
 135                sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 136        return ret;
 137}
 138
 139int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
 140                void *cpu_addr, dma_addr_t dma_addr, size_t size,
 141                unsigned long attrs)
 142{
 143        const struct dma_map_ops *ops = get_dma_ops(dev);
 144
 145        if (!dma_is_direct(ops) && ops->get_sgtable)
 146                return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size,
 147                                        attrs);
 148        return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr, size,
 149                        attrs);
 150}
 151EXPORT_SYMBOL(dma_get_sgtable_attrs);
 152
 153#ifdef CONFIG_MMU
 154/*
 155 * Return the page attributes used for mapping dma_alloc_* memory, either in
 156 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
 157 */
 158pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
 159{
 160        if (dev_is_dma_coherent(dev) ||
 161            (IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) &&
 162             (attrs & DMA_ATTR_NON_CONSISTENT)))
 163                return prot;
 164        if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_MMAP_PGPROT))
 165                return arch_dma_mmap_pgprot(dev, prot, attrs);
 166        return pgprot_noncached(prot);
 167}
 168#endif /* CONFIG_MMU */
 169
 170/*
 171 * Create userspace mapping for the DMA-coherent memory.
 172 */
 173int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
 174                void *cpu_addr, dma_addr_t dma_addr, size_t size,
 175                unsigned long attrs)
 176{
 177#ifndef CONFIG_ARCH_NO_COHERENT_DMA_MMAP
 178        unsigned long user_count = vma_pages(vma);
 179        unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 180        unsigned long off = vma->vm_pgoff;
 181        unsigned long pfn;
 182        int ret = -ENXIO;
 183
 184        vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
 185
 186        if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
 187                return ret;
 188
 189        if (off >= count || user_count > count - off)
 190                return -ENXIO;
 191
 192        if (!dev_is_dma_coherent(dev)) {
 193                if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
 194                        return -ENXIO;
 195
 196                /* If the PFN is not valid, we do not have a struct page */
 197                pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
 198                if (!pfn_valid(pfn))
 199                        return -ENXIO;
 200        } else {
 201                pfn = page_to_pfn(virt_to_page(cpu_addr));
 202        }
 203
 204        return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
 205                        user_count << PAGE_SHIFT, vma->vm_page_prot);
 206#else
 207        return -ENXIO;
 208#endif /* !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
 209}
 210
 211/**
 212 * dma_mmap_attrs - map a coherent DMA allocation into user space
 213 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 214 * @vma: vm_area_struct describing requested user mapping
 215 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
 216 * @dma_addr: device-view address returned from dma_alloc_attrs
 217 * @size: size of memory originally requested in dma_alloc_attrs
 218 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
 219 *
 220 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
 221 * space.  The coherent DMA buffer must not be freed by the driver until the
 222 * user space mapping has been released.
 223 */
 224int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
 225                void *cpu_addr, dma_addr_t dma_addr, size_t size,
 226                unsigned long attrs)
 227{
 228        const struct dma_map_ops *ops = get_dma_ops(dev);
 229
 230        if (!dma_is_direct(ops) && ops->mmap)
 231                return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 232        return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 233}
 234EXPORT_SYMBOL(dma_mmap_attrs);
 235
 236static u64 dma_default_get_required_mask(struct device *dev)
 237{
 238        u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
 239        u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
 240        u64 mask;
 241
 242        if (!high_totalram) {
 243                /* convert to mask just covering totalram */
 244                low_totalram = (1 << (fls(low_totalram) - 1));
 245                low_totalram += low_totalram - 1;
 246                mask = low_totalram;
 247        } else {
 248                high_totalram = (1 << (fls(high_totalram) - 1));
 249                high_totalram += high_totalram - 1;
 250                mask = (((u64)high_totalram) << 32) + 0xffffffff;
 251        }
 252        return mask;
 253}
 254
 255u64 dma_get_required_mask(struct device *dev)
 256{
 257        const struct dma_map_ops *ops = get_dma_ops(dev);
 258
 259        if (dma_is_direct(ops))
 260                return dma_direct_get_required_mask(dev);
 261        if (ops->get_required_mask)
 262                return ops->get_required_mask(dev);
 263        return dma_default_get_required_mask(dev);
 264}
 265EXPORT_SYMBOL_GPL(dma_get_required_mask);
 266
 267void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
 268                gfp_t flag, unsigned long attrs)
 269{
 270        const struct dma_map_ops *ops = get_dma_ops(dev);
 271        void *cpu_addr;
 272
 273        WARN_ON_ONCE(!dev->coherent_dma_mask);
 274
 275        if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
 276                return cpu_addr;
 277
 278        /* let the implementation decide on the zone to allocate from: */
 279        flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
 280
 281        if (dma_is_direct(ops))
 282                cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
 283        else if (ops->alloc)
 284                cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
 285        else
 286                return NULL;
 287
 288        debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
 289        return cpu_addr;
 290}
 291EXPORT_SYMBOL(dma_alloc_attrs);
 292
 293void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
 294                dma_addr_t dma_handle, unsigned long attrs)
 295{
 296        const struct dma_map_ops *ops = get_dma_ops(dev);
 297
 298        if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
 299                return;
 300        /*
 301         * On non-coherent platforms which implement DMA-coherent buffers via
 302         * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
 303         * this far in IRQ context is a) at risk of a BUG_ON() or trying to
 304         * sleep on some machines, and b) an indication that the driver is
 305         * probably misusing the coherent API anyway.
 306         */
 307        WARN_ON(irqs_disabled());
 308
 309        if (!cpu_addr)
 310                return;
 311
 312        debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
 313        if (dma_is_direct(ops))
 314                dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
 315        else if (ops->free)
 316                ops->free(dev, size, cpu_addr, dma_handle, attrs);
 317}
 318EXPORT_SYMBOL(dma_free_attrs);
 319
 320static inline void dma_check_mask(struct device *dev, u64 mask)
 321{
 322        if (sme_active() && (mask < (((u64)sme_get_me_mask() << 1) - 1)))
 323                dev_warn(dev, "SME is active, device will require DMA bounce buffers\n");
 324}
 325
 326int dma_supported(struct device *dev, u64 mask)
 327{
 328        const struct dma_map_ops *ops = get_dma_ops(dev);
 329
 330        if (dma_is_direct(ops))
 331                return dma_direct_supported(dev, mask);
 332        if (!ops->dma_supported)
 333                return 1;
 334        return ops->dma_supported(dev, mask);
 335}
 336EXPORT_SYMBOL(dma_supported);
 337
 338#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
 339void arch_dma_set_mask(struct device *dev, u64 mask);
 340#else
 341#define arch_dma_set_mask(dev, mask)    do { } while (0)
 342#endif
 343
 344int dma_set_mask(struct device *dev, u64 mask)
 345{
 346        /*
 347         * Truncate the mask to the actually supported dma_addr_t width to
 348         * avoid generating unsupportable addresses.
 349         */
 350        mask = (dma_addr_t)mask;
 351
 352        if (!dev->dma_mask || !dma_supported(dev, mask))
 353                return -EIO;
 354
 355        arch_dma_set_mask(dev, mask);
 356        dma_check_mask(dev, mask);
 357        *dev->dma_mask = mask;
 358        return 0;
 359}
 360EXPORT_SYMBOL(dma_set_mask);
 361
 362#ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
 363int dma_set_coherent_mask(struct device *dev, u64 mask)
 364{
 365        /*
 366         * Truncate the mask to the actually supported dma_addr_t width to
 367         * avoid generating unsupportable addresses.
 368         */
 369        mask = (dma_addr_t)mask;
 370
 371        if (!dma_supported(dev, mask))
 372                return -EIO;
 373
 374        dma_check_mask(dev, mask);
 375        dev->coherent_dma_mask = mask;
 376        return 0;
 377}
 378EXPORT_SYMBOL(dma_set_coherent_mask);
 379#endif
 380
 381void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
 382                enum dma_data_direction dir)
 383{
 384        const struct dma_map_ops *ops = get_dma_ops(dev);
 385
 386        BUG_ON(!valid_dma_direction(dir));
 387
 388        if (dma_is_direct(ops))
 389                arch_dma_cache_sync(dev, vaddr, size, dir);
 390        else if (ops->cache_sync)
 391                ops->cache_sync(dev, vaddr, size, dir);
 392}
 393EXPORT_SYMBOL(dma_cache_sync);
 394
 395size_t dma_max_mapping_size(struct device *dev)
 396{
 397        const struct dma_map_ops *ops = get_dma_ops(dev);
 398        size_t size = SIZE_MAX;
 399
 400        if (dma_is_direct(ops))
 401                size = dma_direct_max_mapping_size(dev);
 402        else if (ops && ops->max_mapping_size)
 403                size = ops->max_mapping_size(dev);
 404
 405        return size;
 406}
 407EXPORT_SYMBOL_GPL(dma_max_mapping_size);
 408