linux/kernel/fork.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/fork.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 *  'fork.c' contains the help-routines for the 'fork' system call
  10 * (see also entry.S and others).
  11 * Fork is rather simple, once you get the hang of it, but the memory
  12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  13 */
  14
  15#include <linux/anon_inodes.h>
  16#include <linux/slab.h>
  17#include <linux/sched/autogroup.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/coredump.h>
  20#include <linux/sched/user.h>
  21#include <linux/sched/numa_balancing.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/task.h>
  24#include <linux/sched/task_stack.h>
  25#include <linux/sched/cputime.h>
  26#include <linux/seq_file.h>
  27#include <linux/rtmutex.h>
  28#include <linux/init.h>
  29#include <linux/unistd.h>
  30#include <linux/module.h>
  31#include <linux/vmalloc.h>
  32#include <linux/completion.h>
  33#include <linux/personality.h>
  34#include <linux/mempolicy.h>
  35#include <linux/sem.h>
  36#include <linux/file.h>
  37#include <linux/fdtable.h>
  38#include <linux/iocontext.h>
  39#include <linux/key.h>
  40#include <linux/binfmts.h>
  41#include <linux/mman.h>
  42#include <linux/mmu_notifier.h>
  43#include <linux/hmm.h>
  44#include <linux/fs.h>
  45#include <linux/mm.h>
  46#include <linux/vmacache.h>
  47#include <linux/nsproxy.h>
  48#include <linux/capability.h>
  49#include <linux/cpu.h>
  50#include <linux/cgroup.h>
  51#include <linux/security.h>
  52#include <linux/hugetlb.h>
  53#include <linux/seccomp.h>
  54#include <linux/swap.h>
  55#include <linux/syscalls.h>
  56#include <linux/jiffies.h>
  57#include <linux/futex.h>
  58#include <linux/compat.h>
  59#include <linux/kthread.h>
  60#include <linux/task_io_accounting_ops.h>
  61#include <linux/rcupdate.h>
  62#include <linux/ptrace.h>
  63#include <linux/mount.h>
  64#include <linux/audit.h>
  65#include <linux/memcontrol.h>
  66#include <linux/ftrace.h>
  67#include <linux/proc_fs.h>
  68#include <linux/profile.h>
  69#include <linux/rmap.h>
  70#include <linux/ksm.h>
  71#include <linux/acct.h>
  72#include <linux/userfaultfd_k.h>
  73#include <linux/tsacct_kern.h>
  74#include <linux/cn_proc.h>
  75#include <linux/freezer.h>
  76#include <linux/delayacct.h>
  77#include <linux/taskstats_kern.h>
  78#include <linux/random.h>
  79#include <linux/tty.h>
  80#include <linux/blkdev.h>
  81#include <linux/fs_struct.h>
  82#include <linux/magic.h>
  83#include <linux/perf_event.h>
  84#include <linux/posix-timers.h>
  85#include <linux/user-return-notifier.h>
  86#include <linux/oom.h>
  87#include <linux/khugepaged.h>
  88#include <linux/signalfd.h>
  89#include <linux/uprobes.h>
  90#include <linux/aio.h>
  91#include <linux/compiler.h>
  92#include <linux/sysctl.h>
  93#include <linux/kcov.h>
  94#include <linux/livepatch.h>
  95#include <linux/thread_info.h>
  96#include <linux/stackleak.h>
  97
  98#include <asm/pgtable.h>
  99#include <asm/pgalloc.h>
 100#include <linux/uaccess.h>
 101#include <asm/mmu_context.h>
 102#include <asm/cacheflush.h>
 103#include <asm/tlbflush.h>
 104
 105#include <trace/events/sched.h>
 106
 107#define CREATE_TRACE_POINTS
 108#include <trace/events/task.h>
 109
 110/*
 111 * Minimum number of threads to boot the kernel
 112 */
 113#define MIN_THREADS 20
 114
 115/*
 116 * Maximum number of threads
 117 */
 118#define MAX_THREADS FUTEX_TID_MASK
 119
 120/*
 121 * Protected counters by write_lock_irq(&tasklist_lock)
 122 */
 123unsigned long total_forks;      /* Handle normal Linux uptimes. */
 124int nr_threads;                 /* The idle threads do not count.. */
 125
 126static int max_threads;         /* tunable limit on nr_threads */
 127
 128DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 129
 130__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 131
 132#ifdef CONFIG_PROVE_RCU
 133int lockdep_tasklist_lock_is_held(void)
 134{
 135        return lockdep_is_held(&tasklist_lock);
 136}
 137EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 138#endif /* #ifdef CONFIG_PROVE_RCU */
 139
 140int nr_processes(void)
 141{
 142        int cpu;
 143        int total = 0;
 144
 145        for_each_possible_cpu(cpu)
 146                total += per_cpu(process_counts, cpu);
 147
 148        return total;
 149}
 150
 151void __weak arch_release_task_struct(struct task_struct *tsk)
 152{
 153}
 154
 155#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 156static struct kmem_cache *task_struct_cachep;
 157
 158static inline struct task_struct *alloc_task_struct_node(int node)
 159{
 160        return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 161}
 162
 163static inline void free_task_struct(struct task_struct *tsk)
 164{
 165        kmem_cache_free(task_struct_cachep, tsk);
 166}
 167#endif
 168
 169#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 170
 171/*
 172 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 173 * kmemcache based allocator.
 174 */
 175# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 176
 177#ifdef CONFIG_VMAP_STACK
 178/*
 179 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 180 * flush.  Try to minimize the number of calls by caching stacks.
 181 */
 182#define NR_CACHED_STACKS 2
 183static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 184
 185static int free_vm_stack_cache(unsigned int cpu)
 186{
 187        struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 188        int i;
 189
 190        for (i = 0; i < NR_CACHED_STACKS; i++) {
 191                struct vm_struct *vm_stack = cached_vm_stacks[i];
 192
 193                if (!vm_stack)
 194                        continue;
 195
 196                vfree(vm_stack->addr);
 197                cached_vm_stacks[i] = NULL;
 198        }
 199
 200        return 0;
 201}
 202#endif
 203
 204static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
 205{
 206#ifdef CONFIG_VMAP_STACK
 207        void *stack;
 208        int i;
 209
 210        for (i = 0; i < NR_CACHED_STACKS; i++) {
 211                struct vm_struct *s;
 212
 213                s = this_cpu_xchg(cached_stacks[i], NULL);
 214
 215                if (!s)
 216                        continue;
 217
 218                /* Clear stale pointers from reused stack. */
 219                memset(s->addr, 0, THREAD_SIZE);
 220
 221                tsk->stack_vm_area = s;
 222                tsk->stack = s->addr;
 223                return s->addr;
 224        }
 225
 226        /*
 227         * Allocated stacks are cached and later reused by new threads,
 228         * so memcg accounting is performed manually on assigning/releasing
 229         * stacks to tasks. Drop __GFP_ACCOUNT.
 230         */
 231        stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
 232                                     VMALLOC_START, VMALLOC_END,
 233                                     THREADINFO_GFP & ~__GFP_ACCOUNT,
 234                                     PAGE_KERNEL,
 235                                     0, node, __builtin_return_address(0));
 236
 237        /*
 238         * We can't call find_vm_area() in interrupt context, and
 239         * free_thread_stack() can be called in interrupt context,
 240         * so cache the vm_struct.
 241         */
 242        if (stack) {
 243                tsk->stack_vm_area = find_vm_area(stack);
 244                tsk->stack = stack;
 245        }
 246        return stack;
 247#else
 248        struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 249                                             THREAD_SIZE_ORDER);
 250
 251        if (likely(page)) {
 252                tsk->stack = page_address(page);
 253                return tsk->stack;
 254        }
 255        return NULL;
 256#endif
 257}
 258
 259static inline void free_thread_stack(struct task_struct *tsk)
 260{
 261#ifdef CONFIG_VMAP_STACK
 262        struct vm_struct *vm = task_stack_vm_area(tsk);
 263
 264        if (vm) {
 265                int i;
 266
 267                for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 268                        mod_memcg_page_state(vm->pages[i],
 269                                             MEMCG_KERNEL_STACK_KB,
 270                                             -(int)(PAGE_SIZE / 1024));
 271
 272                        memcg_kmem_uncharge(vm->pages[i], 0);
 273                }
 274
 275                for (i = 0; i < NR_CACHED_STACKS; i++) {
 276                        if (this_cpu_cmpxchg(cached_stacks[i],
 277                                        NULL, tsk->stack_vm_area) != NULL)
 278                                continue;
 279
 280                        return;
 281                }
 282
 283                vfree_atomic(tsk->stack);
 284                return;
 285        }
 286#endif
 287
 288        __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
 289}
 290# else
 291static struct kmem_cache *thread_stack_cache;
 292
 293static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
 294                                                  int node)
 295{
 296        unsigned long *stack;
 297        stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 298        tsk->stack = stack;
 299        return stack;
 300}
 301
 302static void free_thread_stack(struct task_struct *tsk)
 303{
 304        kmem_cache_free(thread_stack_cache, tsk->stack);
 305}
 306
 307void thread_stack_cache_init(void)
 308{
 309        thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
 310                                        THREAD_SIZE, THREAD_SIZE, 0, 0,
 311                                        THREAD_SIZE, NULL);
 312        BUG_ON(thread_stack_cache == NULL);
 313}
 314# endif
 315#endif
 316
 317/* SLAB cache for signal_struct structures (tsk->signal) */
 318static struct kmem_cache *signal_cachep;
 319
 320/* SLAB cache for sighand_struct structures (tsk->sighand) */
 321struct kmem_cache *sighand_cachep;
 322
 323/* SLAB cache for files_struct structures (tsk->files) */
 324struct kmem_cache *files_cachep;
 325
 326/* SLAB cache for fs_struct structures (tsk->fs) */
 327struct kmem_cache *fs_cachep;
 328
 329/* SLAB cache for vm_area_struct structures */
 330static struct kmem_cache *vm_area_cachep;
 331
 332/* SLAB cache for mm_struct structures (tsk->mm) */
 333static struct kmem_cache *mm_cachep;
 334
 335struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
 336{
 337        struct vm_area_struct *vma;
 338
 339        vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 340        if (vma)
 341                vma_init(vma, mm);
 342        return vma;
 343}
 344
 345struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
 346{
 347        struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 348
 349        if (new) {
 350                *new = *orig;
 351                INIT_LIST_HEAD(&new->anon_vma_chain);
 352        }
 353        return new;
 354}
 355
 356void vm_area_free(struct vm_area_struct *vma)
 357{
 358        kmem_cache_free(vm_area_cachep, vma);
 359}
 360
 361static void account_kernel_stack(struct task_struct *tsk, int account)
 362{
 363        void *stack = task_stack_page(tsk);
 364        struct vm_struct *vm = task_stack_vm_area(tsk);
 365
 366        BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
 367
 368        if (vm) {
 369                int i;
 370
 371                BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 372
 373                for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 374                        mod_zone_page_state(page_zone(vm->pages[i]),
 375                                            NR_KERNEL_STACK_KB,
 376                                            PAGE_SIZE / 1024 * account);
 377                }
 378        } else {
 379                /*
 380                 * All stack pages are in the same zone and belong to the
 381                 * same memcg.
 382                 */
 383                struct page *first_page = virt_to_page(stack);
 384
 385                mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
 386                                    THREAD_SIZE / 1024 * account);
 387
 388                mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
 389                                     account * (THREAD_SIZE / 1024));
 390        }
 391}
 392
 393static int memcg_charge_kernel_stack(struct task_struct *tsk)
 394{
 395#ifdef CONFIG_VMAP_STACK
 396        struct vm_struct *vm = task_stack_vm_area(tsk);
 397        int ret;
 398
 399        if (vm) {
 400                int i;
 401
 402                for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 403                        /*
 404                         * If memcg_kmem_charge() fails, page->mem_cgroup
 405                         * pointer is NULL, and both memcg_kmem_uncharge()
 406                         * and mod_memcg_page_state() in free_thread_stack()
 407                         * will ignore this page. So it's safe.
 408                         */
 409                        ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
 410                        if (ret)
 411                                return ret;
 412
 413                        mod_memcg_page_state(vm->pages[i],
 414                                             MEMCG_KERNEL_STACK_KB,
 415                                             PAGE_SIZE / 1024);
 416                }
 417        }
 418#endif
 419        return 0;
 420}
 421
 422static void release_task_stack(struct task_struct *tsk)
 423{
 424        if (WARN_ON(tsk->state != TASK_DEAD))
 425                return;  /* Better to leak the stack than to free prematurely */
 426
 427        account_kernel_stack(tsk, -1);
 428        free_thread_stack(tsk);
 429        tsk->stack = NULL;
 430#ifdef CONFIG_VMAP_STACK
 431        tsk->stack_vm_area = NULL;
 432#endif
 433}
 434
 435#ifdef CONFIG_THREAD_INFO_IN_TASK
 436void put_task_stack(struct task_struct *tsk)
 437{
 438        if (refcount_dec_and_test(&tsk->stack_refcount))
 439                release_task_stack(tsk);
 440}
 441#endif
 442
 443void free_task(struct task_struct *tsk)
 444{
 445#ifndef CONFIG_THREAD_INFO_IN_TASK
 446        /*
 447         * The task is finally done with both the stack and thread_info,
 448         * so free both.
 449         */
 450        release_task_stack(tsk);
 451#else
 452        /*
 453         * If the task had a separate stack allocation, it should be gone
 454         * by now.
 455         */
 456        WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
 457#endif
 458        rt_mutex_debug_task_free(tsk);
 459        ftrace_graph_exit_task(tsk);
 460        put_seccomp_filter(tsk);
 461        arch_release_task_struct(tsk);
 462        if (tsk->flags & PF_KTHREAD)
 463                free_kthread_struct(tsk);
 464        free_task_struct(tsk);
 465}
 466EXPORT_SYMBOL(free_task);
 467
 468#ifdef CONFIG_MMU
 469static __latent_entropy int dup_mmap(struct mm_struct *mm,
 470                                        struct mm_struct *oldmm)
 471{
 472        struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 473        struct rb_node **rb_link, *rb_parent;
 474        int retval;
 475        unsigned long charge;
 476        LIST_HEAD(uf);
 477
 478        uprobe_start_dup_mmap();
 479        if (down_write_killable(&oldmm->mmap_sem)) {
 480                retval = -EINTR;
 481                goto fail_uprobe_end;
 482        }
 483        flush_cache_dup_mm(oldmm);
 484        uprobe_dup_mmap(oldmm, mm);
 485        /*
 486         * Not linked in yet - no deadlock potential:
 487         */
 488        down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
 489
 490        /* No ordering required: file already has been exposed. */
 491        RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 492
 493        mm->total_vm = oldmm->total_vm;
 494        mm->data_vm = oldmm->data_vm;
 495        mm->exec_vm = oldmm->exec_vm;
 496        mm->stack_vm = oldmm->stack_vm;
 497
 498        rb_link = &mm->mm_rb.rb_node;
 499        rb_parent = NULL;
 500        pprev = &mm->mmap;
 501        retval = ksm_fork(mm, oldmm);
 502        if (retval)
 503                goto out;
 504        retval = khugepaged_fork(mm, oldmm);
 505        if (retval)
 506                goto out;
 507
 508        prev = NULL;
 509        for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 510                struct file *file;
 511
 512                if (mpnt->vm_flags & VM_DONTCOPY) {
 513                        vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 514                        continue;
 515                }
 516                charge = 0;
 517                /*
 518                 * Don't duplicate many vmas if we've been oom-killed (for
 519                 * example)
 520                 */
 521                if (fatal_signal_pending(current)) {
 522                        retval = -EINTR;
 523                        goto out;
 524                }
 525                if (mpnt->vm_flags & VM_ACCOUNT) {
 526                        unsigned long len = vma_pages(mpnt);
 527
 528                        if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 529                                goto fail_nomem;
 530                        charge = len;
 531                }
 532                tmp = vm_area_dup(mpnt);
 533                if (!tmp)
 534                        goto fail_nomem;
 535                retval = vma_dup_policy(mpnt, tmp);
 536                if (retval)
 537                        goto fail_nomem_policy;
 538                tmp->vm_mm = mm;
 539                retval = dup_userfaultfd(tmp, &uf);
 540                if (retval)
 541                        goto fail_nomem_anon_vma_fork;
 542                if (tmp->vm_flags & VM_WIPEONFORK) {
 543                        /* VM_WIPEONFORK gets a clean slate in the child. */
 544                        tmp->anon_vma = NULL;
 545                        if (anon_vma_prepare(tmp))
 546                                goto fail_nomem_anon_vma_fork;
 547                } else if (anon_vma_fork(tmp, mpnt))
 548                        goto fail_nomem_anon_vma_fork;
 549                tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
 550                tmp->vm_next = tmp->vm_prev = NULL;
 551                file = tmp->vm_file;
 552                if (file) {
 553                        struct inode *inode = file_inode(file);
 554                        struct address_space *mapping = file->f_mapping;
 555
 556                        get_file(file);
 557                        if (tmp->vm_flags & VM_DENYWRITE)
 558                                atomic_dec(&inode->i_writecount);
 559                        i_mmap_lock_write(mapping);
 560                        if (tmp->vm_flags & VM_SHARED)
 561                                atomic_inc(&mapping->i_mmap_writable);
 562                        flush_dcache_mmap_lock(mapping);
 563                        /* insert tmp into the share list, just after mpnt */
 564                        vma_interval_tree_insert_after(tmp, mpnt,
 565                                        &mapping->i_mmap);
 566                        flush_dcache_mmap_unlock(mapping);
 567                        i_mmap_unlock_write(mapping);
 568                }
 569
 570                /*
 571                 * Clear hugetlb-related page reserves for children. This only
 572                 * affects MAP_PRIVATE mappings. Faults generated by the child
 573                 * are not guaranteed to succeed, even if read-only
 574                 */
 575                if (is_vm_hugetlb_page(tmp))
 576                        reset_vma_resv_huge_pages(tmp);
 577
 578                /*
 579                 * Link in the new vma and copy the page table entries.
 580                 */
 581                *pprev = tmp;
 582                pprev = &tmp->vm_next;
 583                tmp->vm_prev = prev;
 584                prev = tmp;
 585
 586                __vma_link_rb(mm, tmp, rb_link, rb_parent);
 587                rb_link = &tmp->vm_rb.rb_right;
 588                rb_parent = &tmp->vm_rb;
 589
 590                mm->map_count++;
 591                if (!(tmp->vm_flags & VM_WIPEONFORK))
 592                        retval = copy_page_range(mm, oldmm, mpnt);
 593
 594                if (tmp->vm_ops && tmp->vm_ops->open)
 595                        tmp->vm_ops->open(tmp);
 596
 597                if (retval)
 598                        goto out;
 599        }
 600        /* a new mm has just been created */
 601        retval = arch_dup_mmap(oldmm, mm);
 602out:
 603        up_write(&mm->mmap_sem);
 604        flush_tlb_mm(oldmm);
 605        up_write(&oldmm->mmap_sem);
 606        dup_userfaultfd_complete(&uf);
 607fail_uprobe_end:
 608        uprobe_end_dup_mmap();
 609        return retval;
 610fail_nomem_anon_vma_fork:
 611        mpol_put(vma_policy(tmp));
 612fail_nomem_policy:
 613        vm_area_free(tmp);
 614fail_nomem:
 615        retval = -ENOMEM;
 616        vm_unacct_memory(charge);
 617        goto out;
 618}
 619
 620static inline int mm_alloc_pgd(struct mm_struct *mm)
 621{
 622        mm->pgd = pgd_alloc(mm);
 623        if (unlikely(!mm->pgd))
 624                return -ENOMEM;
 625        return 0;
 626}
 627
 628static inline void mm_free_pgd(struct mm_struct *mm)
 629{
 630        pgd_free(mm, mm->pgd);
 631}
 632#else
 633static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 634{
 635        down_write(&oldmm->mmap_sem);
 636        RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 637        up_write(&oldmm->mmap_sem);
 638        return 0;
 639}
 640#define mm_alloc_pgd(mm)        (0)
 641#define mm_free_pgd(mm)
 642#endif /* CONFIG_MMU */
 643
 644static void check_mm(struct mm_struct *mm)
 645{
 646        int i;
 647
 648        for (i = 0; i < NR_MM_COUNTERS; i++) {
 649                long x = atomic_long_read(&mm->rss_stat.count[i]);
 650
 651                if (unlikely(x))
 652                        printk(KERN_ALERT "BUG: Bad rss-counter state "
 653                                          "mm:%p idx:%d val:%ld\n", mm, i, x);
 654        }
 655
 656        if (mm_pgtables_bytes(mm))
 657                pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
 658                                mm_pgtables_bytes(mm));
 659
 660#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 661        VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 662#endif
 663}
 664
 665#define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 666#define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
 667
 668/*
 669 * Called when the last reference to the mm
 670 * is dropped: either by a lazy thread or by
 671 * mmput. Free the page directory and the mm.
 672 */
 673void __mmdrop(struct mm_struct *mm)
 674{
 675        BUG_ON(mm == &init_mm);
 676        WARN_ON_ONCE(mm == current->mm);
 677        WARN_ON_ONCE(mm == current->active_mm);
 678        mm_free_pgd(mm);
 679        destroy_context(mm);
 680        mmu_notifier_mm_destroy(mm);
 681        check_mm(mm);
 682        put_user_ns(mm->user_ns);
 683        free_mm(mm);
 684}
 685EXPORT_SYMBOL_GPL(__mmdrop);
 686
 687static void mmdrop_async_fn(struct work_struct *work)
 688{
 689        struct mm_struct *mm;
 690
 691        mm = container_of(work, struct mm_struct, async_put_work);
 692        __mmdrop(mm);
 693}
 694
 695static void mmdrop_async(struct mm_struct *mm)
 696{
 697        if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
 698                INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
 699                schedule_work(&mm->async_put_work);
 700        }
 701}
 702
 703static inline void free_signal_struct(struct signal_struct *sig)
 704{
 705        taskstats_tgid_free(sig);
 706        sched_autogroup_exit(sig);
 707        /*
 708         * __mmdrop is not safe to call from softirq context on x86 due to
 709         * pgd_dtor so postpone it to the async context
 710         */
 711        if (sig->oom_mm)
 712                mmdrop_async(sig->oom_mm);
 713        kmem_cache_free(signal_cachep, sig);
 714}
 715
 716static inline void put_signal_struct(struct signal_struct *sig)
 717{
 718        if (refcount_dec_and_test(&sig->sigcnt))
 719                free_signal_struct(sig);
 720}
 721
 722void __put_task_struct(struct task_struct *tsk)
 723{
 724        WARN_ON(!tsk->exit_state);
 725        WARN_ON(refcount_read(&tsk->usage));
 726        WARN_ON(tsk == current);
 727
 728        cgroup_free(tsk);
 729        task_numa_free(tsk, true);
 730        security_task_free(tsk);
 731        exit_creds(tsk);
 732        delayacct_tsk_free(tsk);
 733        put_signal_struct(tsk->signal);
 734
 735        if (!profile_handoff_task(tsk))
 736                free_task(tsk);
 737}
 738EXPORT_SYMBOL_GPL(__put_task_struct);
 739
 740void __init __weak arch_task_cache_init(void) { }
 741
 742/*
 743 * set_max_threads
 744 */
 745static void set_max_threads(unsigned int max_threads_suggested)
 746{
 747        u64 threads;
 748        unsigned long nr_pages = totalram_pages();
 749
 750        /*
 751         * The number of threads shall be limited such that the thread
 752         * structures may only consume a small part of the available memory.
 753         */
 754        if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
 755                threads = MAX_THREADS;
 756        else
 757                threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
 758                                    (u64) THREAD_SIZE * 8UL);
 759
 760        if (threads > max_threads_suggested)
 761                threads = max_threads_suggested;
 762
 763        max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 764}
 765
 766#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 767/* Initialized by the architecture: */
 768int arch_task_struct_size __read_mostly;
 769#endif
 770
 771static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
 772{
 773        /* Fetch thread_struct whitelist for the architecture. */
 774        arch_thread_struct_whitelist(offset, size);
 775
 776        /*
 777         * Handle zero-sized whitelist or empty thread_struct, otherwise
 778         * adjust offset to position of thread_struct in task_struct.
 779         */
 780        if (unlikely(*size == 0))
 781                *offset = 0;
 782        else
 783                *offset += offsetof(struct task_struct, thread);
 784}
 785
 786void __init fork_init(void)
 787{
 788        int i;
 789#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 790#ifndef ARCH_MIN_TASKALIGN
 791#define ARCH_MIN_TASKALIGN      0
 792#endif
 793        int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
 794        unsigned long useroffset, usersize;
 795
 796        /* create a slab on which task_structs can be allocated */
 797        task_struct_whitelist(&useroffset, &usersize);
 798        task_struct_cachep = kmem_cache_create_usercopy("task_struct",
 799                        arch_task_struct_size, align,
 800                        SLAB_PANIC|SLAB_ACCOUNT,
 801                        useroffset, usersize, NULL);
 802#endif
 803
 804        /* do the arch specific task caches init */
 805        arch_task_cache_init();
 806
 807        set_max_threads(MAX_THREADS);
 808
 809        init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 810        init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 811        init_task.signal->rlim[RLIMIT_SIGPENDING] =
 812                init_task.signal->rlim[RLIMIT_NPROC];
 813
 814        for (i = 0; i < UCOUNT_COUNTS; i++) {
 815                init_user_ns.ucount_max[i] = max_threads/2;
 816        }
 817
 818#ifdef CONFIG_VMAP_STACK
 819        cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
 820                          NULL, free_vm_stack_cache);
 821#endif
 822
 823        lockdep_init_task(&init_task);
 824        uprobes_init();
 825}
 826
 827int __weak arch_dup_task_struct(struct task_struct *dst,
 828                                               struct task_struct *src)
 829{
 830        *dst = *src;
 831        return 0;
 832}
 833
 834void set_task_stack_end_magic(struct task_struct *tsk)
 835{
 836        unsigned long *stackend;
 837
 838        stackend = end_of_stack(tsk);
 839        *stackend = STACK_END_MAGIC;    /* for overflow detection */
 840}
 841
 842static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 843{
 844        struct task_struct *tsk;
 845        unsigned long *stack;
 846        struct vm_struct *stack_vm_area __maybe_unused;
 847        int err;
 848
 849        if (node == NUMA_NO_NODE)
 850                node = tsk_fork_get_node(orig);
 851        tsk = alloc_task_struct_node(node);
 852        if (!tsk)
 853                return NULL;
 854
 855        stack = alloc_thread_stack_node(tsk, node);
 856        if (!stack)
 857                goto free_tsk;
 858
 859        if (memcg_charge_kernel_stack(tsk))
 860                goto free_stack;
 861
 862        stack_vm_area = task_stack_vm_area(tsk);
 863
 864        err = arch_dup_task_struct(tsk, orig);
 865
 866        /*
 867         * arch_dup_task_struct() clobbers the stack-related fields.  Make
 868         * sure they're properly initialized before using any stack-related
 869         * functions again.
 870         */
 871        tsk->stack = stack;
 872#ifdef CONFIG_VMAP_STACK
 873        tsk->stack_vm_area = stack_vm_area;
 874#endif
 875#ifdef CONFIG_THREAD_INFO_IN_TASK
 876        refcount_set(&tsk->stack_refcount, 1);
 877#endif
 878
 879        if (err)
 880                goto free_stack;
 881
 882#ifdef CONFIG_SECCOMP
 883        /*
 884         * We must handle setting up seccomp filters once we're under
 885         * the sighand lock in case orig has changed between now and
 886         * then. Until then, filter must be NULL to avoid messing up
 887         * the usage counts on the error path calling free_task.
 888         */
 889        tsk->seccomp.filter = NULL;
 890#endif
 891
 892        setup_thread_stack(tsk, orig);
 893        clear_user_return_notifier(tsk);
 894        clear_tsk_need_resched(tsk);
 895        set_task_stack_end_magic(tsk);
 896
 897#ifdef CONFIG_STACKPROTECTOR
 898        tsk->stack_canary = get_random_canary();
 899#endif
 900        if (orig->cpus_ptr == &orig->cpus_mask)
 901                tsk->cpus_ptr = &tsk->cpus_mask;
 902
 903        /*
 904         * One for us, one for whoever does the "release_task()" (usually
 905         * parent)
 906         */
 907        refcount_set(&tsk->usage, 2);
 908#ifdef CONFIG_BLK_DEV_IO_TRACE
 909        tsk->btrace_seq = 0;
 910#endif
 911        tsk->splice_pipe = NULL;
 912        tsk->task_frag.page = NULL;
 913        tsk->wake_q.next = NULL;
 914
 915        account_kernel_stack(tsk, 1);
 916
 917        kcov_task_init(tsk);
 918
 919#ifdef CONFIG_FAULT_INJECTION
 920        tsk->fail_nth = 0;
 921#endif
 922
 923#ifdef CONFIG_BLK_CGROUP
 924        tsk->throttle_queue = NULL;
 925        tsk->use_memdelay = 0;
 926#endif
 927
 928#ifdef CONFIG_MEMCG
 929        tsk->active_memcg = NULL;
 930#endif
 931        return tsk;
 932
 933free_stack:
 934        free_thread_stack(tsk);
 935free_tsk:
 936        free_task_struct(tsk);
 937        return NULL;
 938}
 939
 940__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 941
 942static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 943
 944static int __init coredump_filter_setup(char *s)
 945{
 946        default_dump_filter =
 947                (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 948                MMF_DUMP_FILTER_MASK;
 949        return 1;
 950}
 951
 952__setup("coredump_filter=", coredump_filter_setup);
 953
 954#include <linux/init_task.h>
 955
 956static void mm_init_aio(struct mm_struct *mm)
 957{
 958#ifdef CONFIG_AIO
 959        spin_lock_init(&mm->ioctx_lock);
 960        mm->ioctx_table = NULL;
 961#endif
 962}
 963
 964static __always_inline void mm_clear_owner(struct mm_struct *mm,
 965                                           struct task_struct *p)
 966{
 967#ifdef CONFIG_MEMCG
 968        if (mm->owner == p)
 969                WRITE_ONCE(mm->owner, NULL);
 970#endif
 971}
 972
 973static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 974{
 975#ifdef CONFIG_MEMCG
 976        mm->owner = p;
 977#endif
 978}
 979
 980static void mm_init_uprobes_state(struct mm_struct *mm)
 981{
 982#ifdef CONFIG_UPROBES
 983        mm->uprobes_state.xol_area = NULL;
 984#endif
 985}
 986
 987static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
 988        struct user_namespace *user_ns)
 989{
 990        mm->mmap = NULL;
 991        mm->mm_rb = RB_ROOT;
 992        mm->vmacache_seqnum = 0;
 993        atomic_set(&mm->mm_users, 1);
 994        atomic_set(&mm->mm_count, 1);
 995        init_rwsem(&mm->mmap_sem);
 996        INIT_LIST_HEAD(&mm->mmlist);
 997        mm->core_state = NULL;
 998        mm_pgtables_bytes_init(mm);
 999        mm->map_count = 0;
1000        mm->locked_vm = 0;
1001        atomic64_set(&mm->pinned_vm, 0);
1002        memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1003        spin_lock_init(&mm->page_table_lock);
1004        spin_lock_init(&mm->arg_lock);
1005        mm_init_cpumask(mm);
1006        mm_init_aio(mm);
1007        mm_init_owner(mm, p);
1008        RCU_INIT_POINTER(mm->exe_file, NULL);
1009        mmu_notifier_mm_init(mm);
1010        hmm_mm_init(mm);
1011        init_tlb_flush_pending(mm);
1012#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1013        mm->pmd_huge_pte = NULL;
1014#endif
1015        mm_init_uprobes_state(mm);
1016
1017        if (current->mm) {
1018                mm->flags = current->mm->flags & MMF_INIT_MASK;
1019                mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1020        } else {
1021                mm->flags = default_dump_filter;
1022                mm->def_flags = 0;
1023        }
1024
1025        if (mm_alloc_pgd(mm))
1026                goto fail_nopgd;
1027
1028        if (init_new_context(p, mm))
1029                goto fail_nocontext;
1030
1031        mm->user_ns = get_user_ns(user_ns);
1032        return mm;
1033
1034fail_nocontext:
1035        mm_free_pgd(mm);
1036fail_nopgd:
1037        free_mm(mm);
1038        return NULL;
1039}
1040
1041/*
1042 * Allocate and initialize an mm_struct.
1043 */
1044struct mm_struct *mm_alloc(void)
1045{
1046        struct mm_struct *mm;
1047
1048        mm = allocate_mm();
1049        if (!mm)
1050                return NULL;
1051
1052        memset(mm, 0, sizeof(*mm));
1053        return mm_init(mm, current, current_user_ns());
1054}
1055
1056static inline void __mmput(struct mm_struct *mm)
1057{
1058        VM_BUG_ON(atomic_read(&mm->mm_users));
1059
1060        uprobe_clear_state(mm);
1061        exit_aio(mm);
1062        ksm_exit(mm);
1063        khugepaged_exit(mm); /* must run before exit_mmap */
1064        exit_mmap(mm);
1065        mm_put_huge_zero_page(mm);
1066        set_mm_exe_file(mm, NULL);
1067        if (!list_empty(&mm->mmlist)) {
1068                spin_lock(&mmlist_lock);
1069                list_del(&mm->mmlist);
1070                spin_unlock(&mmlist_lock);
1071        }
1072        if (mm->binfmt)
1073                module_put(mm->binfmt->module);
1074        mmdrop(mm);
1075}
1076
1077/*
1078 * Decrement the use count and release all resources for an mm.
1079 */
1080void mmput(struct mm_struct *mm)
1081{
1082        might_sleep();
1083
1084        if (atomic_dec_and_test(&mm->mm_users))
1085                __mmput(mm);
1086}
1087EXPORT_SYMBOL_GPL(mmput);
1088
1089#ifdef CONFIG_MMU
1090static void mmput_async_fn(struct work_struct *work)
1091{
1092        struct mm_struct *mm = container_of(work, struct mm_struct,
1093                                            async_put_work);
1094
1095        __mmput(mm);
1096}
1097
1098void mmput_async(struct mm_struct *mm)
1099{
1100        if (atomic_dec_and_test(&mm->mm_users)) {
1101                INIT_WORK(&mm->async_put_work, mmput_async_fn);
1102                schedule_work(&mm->async_put_work);
1103        }
1104}
1105#endif
1106
1107/**
1108 * set_mm_exe_file - change a reference to the mm's executable file
1109 *
1110 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1111 *
1112 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1113 * invocations: in mmput() nobody alive left, in execve task is single
1114 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1115 * mm->exe_file, but does so without using set_mm_exe_file() in order
1116 * to do avoid the need for any locks.
1117 */
1118void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1119{
1120        struct file *old_exe_file;
1121
1122        /*
1123         * It is safe to dereference the exe_file without RCU as
1124         * this function is only called if nobody else can access
1125         * this mm -- see comment above for justification.
1126         */
1127        old_exe_file = rcu_dereference_raw(mm->exe_file);
1128
1129        if (new_exe_file)
1130                get_file(new_exe_file);
1131        rcu_assign_pointer(mm->exe_file, new_exe_file);
1132        if (old_exe_file)
1133                fput(old_exe_file);
1134}
1135
1136/**
1137 * get_mm_exe_file - acquire a reference to the mm's executable file
1138 *
1139 * Returns %NULL if mm has no associated executable file.
1140 * User must release file via fput().
1141 */
1142struct file *get_mm_exe_file(struct mm_struct *mm)
1143{
1144        struct file *exe_file;
1145
1146        rcu_read_lock();
1147        exe_file = rcu_dereference(mm->exe_file);
1148        if (exe_file && !get_file_rcu(exe_file))
1149                exe_file = NULL;
1150        rcu_read_unlock();
1151        return exe_file;
1152}
1153EXPORT_SYMBOL(get_mm_exe_file);
1154
1155/**
1156 * get_task_exe_file - acquire a reference to the task's executable file
1157 *
1158 * Returns %NULL if task's mm (if any) has no associated executable file or
1159 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1160 * User must release file via fput().
1161 */
1162struct file *get_task_exe_file(struct task_struct *task)
1163{
1164        struct file *exe_file = NULL;
1165        struct mm_struct *mm;
1166
1167        task_lock(task);
1168        mm = task->mm;
1169        if (mm) {
1170                if (!(task->flags & PF_KTHREAD))
1171                        exe_file = get_mm_exe_file(mm);
1172        }
1173        task_unlock(task);
1174        return exe_file;
1175}
1176EXPORT_SYMBOL(get_task_exe_file);
1177
1178/**
1179 * get_task_mm - acquire a reference to the task's mm
1180 *
1181 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1182 * this kernel workthread has transiently adopted a user mm with use_mm,
1183 * to do its AIO) is not set and if so returns a reference to it, after
1184 * bumping up the use count.  User must release the mm via mmput()
1185 * after use.  Typically used by /proc and ptrace.
1186 */
1187struct mm_struct *get_task_mm(struct task_struct *task)
1188{
1189        struct mm_struct *mm;
1190
1191        task_lock(task);
1192        mm = task->mm;
1193        if (mm) {
1194                if (task->flags & PF_KTHREAD)
1195                        mm = NULL;
1196                else
1197                        mmget(mm);
1198        }
1199        task_unlock(task);
1200        return mm;
1201}
1202EXPORT_SYMBOL_GPL(get_task_mm);
1203
1204struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1205{
1206        struct mm_struct *mm;
1207        int err;
1208
1209        err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1210        if (err)
1211                return ERR_PTR(err);
1212
1213        mm = get_task_mm(task);
1214        if (mm && mm != current->mm &&
1215                        !ptrace_may_access(task, mode)) {
1216                mmput(mm);
1217                mm = ERR_PTR(-EACCES);
1218        }
1219        mutex_unlock(&task->signal->cred_guard_mutex);
1220
1221        return mm;
1222}
1223
1224static void complete_vfork_done(struct task_struct *tsk)
1225{
1226        struct completion *vfork;
1227
1228        task_lock(tsk);
1229        vfork = tsk->vfork_done;
1230        if (likely(vfork)) {
1231                tsk->vfork_done = NULL;
1232                complete(vfork);
1233        }
1234        task_unlock(tsk);
1235}
1236
1237static int wait_for_vfork_done(struct task_struct *child,
1238                                struct completion *vfork)
1239{
1240        int killed;
1241
1242        freezer_do_not_count();
1243        cgroup_enter_frozen();
1244        killed = wait_for_completion_killable(vfork);
1245        cgroup_leave_frozen(false);
1246        freezer_count();
1247
1248        if (killed) {
1249                task_lock(child);
1250                child->vfork_done = NULL;
1251                task_unlock(child);
1252        }
1253
1254        put_task_struct(child);
1255        return killed;
1256}
1257
1258/* Please note the differences between mmput and mm_release.
1259 * mmput is called whenever we stop holding onto a mm_struct,
1260 * error success whatever.
1261 *
1262 * mm_release is called after a mm_struct has been removed
1263 * from the current process.
1264 *
1265 * This difference is important for error handling, when we
1266 * only half set up a mm_struct for a new process and need to restore
1267 * the old one.  Because we mmput the new mm_struct before
1268 * restoring the old one. . .
1269 * Eric Biederman 10 January 1998
1270 */
1271void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1272{
1273        /* Get rid of any futexes when releasing the mm */
1274#ifdef CONFIG_FUTEX
1275        if (unlikely(tsk->robust_list)) {
1276                exit_robust_list(tsk);
1277                tsk->robust_list = NULL;
1278        }
1279#ifdef CONFIG_COMPAT
1280        if (unlikely(tsk->compat_robust_list)) {
1281                compat_exit_robust_list(tsk);
1282                tsk->compat_robust_list = NULL;
1283        }
1284#endif
1285        if (unlikely(!list_empty(&tsk->pi_state_list)))
1286                exit_pi_state_list(tsk);
1287#endif
1288
1289        uprobe_free_utask(tsk);
1290
1291        /* Get rid of any cached register state */
1292        deactivate_mm(tsk, mm);
1293
1294        /*
1295         * Signal userspace if we're not exiting with a core dump
1296         * because we want to leave the value intact for debugging
1297         * purposes.
1298         */
1299        if (tsk->clear_child_tid) {
1300                if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1301                    atomic_read(&mm->mm_users) > 1) {
1302                        /*
1303                         * We don't check the error code - if userspace has
1304                         * not set up a proper pointer then tough luck.
1305                         */
1306                        put_user(0, tsk->clear_child_tid);
1307                        do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1308                                        1, NULL, NULL, 0, 0);
1309                }
1310                tsk->clear_child_tid = NULL;
1311        }
1312
1313        /*
1314         * All done, finally we can wake up parent and return this mm to him.
1315         * Also kthread_stop() uses this completion for synchronization.
1316         */
1317        if (tsk->vfork_done)
1318                complete_vfork_done(tsk);
1319}
1320
1321/**
1322 * dup_mm() - duplicates an existing mm structure
1323 * @tsk: the task_struct with which the new mm will be associated.
1324 * @oldmm: the mm to duplicate.
1325 *
1326 * Allocates a new mm structure and duplicates the provided @oldmm structure
1327 * content into it.
1328 *
1329 * Return: the duplicated mm or NULL on failure.
1330 */
1331static struct mm_struct *dup_mm(struct task_struct *tsk,
1332                                struct mm_struct *oldmm)
1333{
1334        struct mm_struct *mm;
1335        int err;
1336
1337        mm = allocate_mm();
1338        if (!mm)
1339                goto fail_nomem;
1340
1341        memcpy(mm, oldmm, sizeof(*mm));
1342
1343        if (!mm_init(mm, tsk, mm->user_ns))
1344                goto fail_nomem;
1345
1346        err = dup_mmap(mm, oldmm);
1347        if (err)
1348                goto free_pt;
1349
1350        mm->hiwater_rss = get_mm_rss(mm);
1351        mm->hiwater_vm = mm->total_vm;
1352
1353        if (mm->binfmt && !try_module_get(mm->binfmt->module))
1354                goto free_pt;
1355
1356        return mm;
1357
1358free_pt:
1359        /* don't put binfmt in mmput, we haven't got module yet */
1360        mm->binfmt = NULL;
1361        mm_init_owner(mm, NULL);
1362        mmput(mm);
1363
1364fail_nomem:
1365        return NULL;
1366}
1367
1368static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1369{
1370        struct mm_struct *mm, *oldmm;
1371        int retval;
1372
1373        tsk->min_flt = tsk->maj_flt = 0;
1374        tsk->nvcsw = tsk->nivcsw = 0;
1375#ifdef CONFIG_DETECT_HUNG_TASK
1376        tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1377        tsk->last_switch_time = 0;
1378#endif
1379
1380        tsk->mm = NULL;
1381        tsk->active_mm = NULL;
1382
1383        /*
1384         * Are we cloning a kernel thread?
1385         *
1386         * We need to steal a active VM for that..
1387         */
1388        oldmm = current->mm;
1389        if (!oldmm)
1390                return 0;
1391
1392        /* initialize the new vmacache entries */
1393        vmacache_flush(tsk);
1394
1395        if (clone_flags & CLONE_VM) {
1396                mmget(oldmm);
1397                mm = oldmm;
1398                goto good_mm;
1399        }
1400
1401        retval = -ENOMEM;
1402        mm = dup_mm(tsk, current->mm);
1403        if (!mm)
1404                goto fail_nomem;
1405
1406good_mm:
1407        tsk->mm = mm;
1408        tsk->active_mm = mm;
1409        return 0;
1410
1411fail_nomem:
1412        return retval;
1413}
1414
1415static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1416{
1417        struct fs_struct *fs = current->fs;
1418        if (clone_flags & CLONE_FS) {
1419                /* tsk->fs is already what we want */
1420                spin_lock(&fs->lock);
1421                if (fs->in_exec) {
1422                        spin_unlock(&fs->lock);
1423                        return -EAGAIN;
1424                }
1425                fs->users++;
1426                spin_unlock(&fs->lock);
1427                return 0;
1428        }
1429        tsk->fs = copy_fs_struct(fs);
1430        if (!tsk->fs)
1431                return -ENOMEM;
1432        return 0;
1433}
1434
1435static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1436{
1437        struct files_struct *oldf, *newf;
1438        int error = 0;
1439
1440        /*
1441         * A background process may not have any files ...
1442         */
1443        oldf = current->files;
1444        if (!oldf)
1445                goto out;
1446
1447        if (clone_flags & CLONE_FILES) {
1448                atomic_inc(&oldf->count);
1449                goto out;
1450        }
1451
1452        newf = dup_fd(oldf, &error);
1453        if (!newf)
1454                goto out;
1455
1456        tsk->files = newf;
1457        error = 0;
1458out:
1459        return error;
1460}
1461
1462static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1463{
1464#ifdef CONFIG_BLOCK
1465        struct io_context *ioc = current->io_context;
1466        struct io_context *new_ioc;
1467
1468        if (!ioc)
1469                return 0;
1470        /*
1471         * Share io context with parent, if CLONE_IO is set
1472         */
1473        if (clone_flags & CLONE_IO) {
1474                ioc_task_link(ioc);
1475                tsk->io_context = ioc;
1476        } else if (ioprio_valid(ioc->ioprio)) {
1477                new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1478                if (unlikely(!new_ioc))
1479                        return -ENOMEM;
1480
1481                new_ioc->ioprio = ioc->ioprio;
1482                put_io_context(new_ioc);
1483        }
1484#endif
1485        return 0;
1486}
1487
1488static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1489{
1490        struct sighand_struct *sig;
1491
1492        if (clone_flags & CLONE_SIGHAND) {
1493                refcount_inc(&current->sighand->count);
1494                return 0;
1495        }
1496        sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1497        rcu_assign_pointer(tsk->sighand, sig);
1498        if (!sig)
1499                return -ENOMEM;
1500
1501        refcount_set(&sig->count, 1);
1502        spin_lock_irq(&current->sighand->siglock);
1503        memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1504        spin_unlock_irq(&current->sighand->siglock);
1505        return 0;
1506}
1507
1508void __cleanup_sighand(struct sighand_struct *sighand)
1509{
1510        if (refcount_dec_and_test(&sighand->count)) {
1511                signalfd_cleanup(sighand);
1512                /*
1513                 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1514                 * without an RCU grace period, see __lock_task_sighand().
1515                 */
1516                kmem_cache_free(sighand_cachep, sighand);
1517        }
1518}
1519
1520#ifdef CONFIG_POSIX_TIMERS
1521/*
1522 * Initialize POSIX timer handling for a thread group.
1523 */
1524static void posix_cpu_timers_init_group(struct signal_struct *sig)
1525{
1526        unsigned long cpu_limit;
1527
1528        cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1529        if (cpu_limit != RLIM_INFINITY) {
1530                sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1531                sig->cputimer.running = true;
1532        }
1533
1534        /* The timer lists. */
1535        INIT_LIST_HEAD(&sig->cpu_timers[0]);
1536        INIT_LIST_HEAD(&sig->cpu_timers[1]);
1537        INIT_LIST_HEAD(&sig->cpu_timers[2]);
1538}
1539#else
1540static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1541#endif
1542
1543static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1544{
1545        struct signal_struct *sig;
1546
1547        if (clone_flags & CLONE_THREAD)
1548                return 0;
1549
1550        sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1551        tsk->signal = sig;
1552        if (!sig)
1553                return -ENOMEM;
1554
1555        sig->nr_threads = 1;
1556        atomic_set(&sig->live, 1);
1557        refcount_set(&sig->sigcnt, 1);
1558
1559        /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1560        sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1561        tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1562
1563        init_waitqueue_head(&sig->wait_chldexit);
1564        sig->curr_target = tsk;
1565        init_sigpending(&sig->shared_pending);
1566        INIT_HLIST_HEAD(&sig->multiprocess);
1567        seqlock_init(&sig->stats_lock);
1568        prev_cputime_init(&sig->prev_cputime);
1569
1570#ifdef CONFIG_POSIX_TIMERS
1571        INIT_LIST_HEAD(&sig->posix_timers);
1572        hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1573        sig->real_timer.function = it_real_fn;
1574#endif
1575
1576        task_lock(current->group_leader);
1577        memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1578        task_unlock(current->group_leader);
1579
1580        posix_cpu_timers_init_group(sig);
1581
1582        tty_audit_fork(sig);
1583        sched_autogroup_fork(sig);
1584
1585        sig->oom_score_adj = current->signal->oom_score_adj;
1586        sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1587
1588        mutex_init(&sig->cred_guard_mutex);
1589
1590        return 0;
1591}
1592
1593static void copy_seccomp(struct task_struct *p)
1594{
1595#ifdef CONFIG_SECCOMP
1596        /*
1597         * Must be called with sighand->lock held, which is common to
1598         * all threads in the group. Holding cred_guard_mutex is not
1599         * needed because this new task is not yet running and cannot
1600         * be racing exec.
1601         */
1602        assert_spin_locked(&current->sighand->siglock);
1603
1604        /* Ref-count the new filter user, and assign it. */
1605        get_seccomp_filter(current);
1606        p->seccomp = current->seccomp;
1607
1608        /*
1609         * Explicitly enable no_new_privs here in case it got set
1610         * between the task_struct being duplicated and holding the
1611         * sighand lock. The seccomp state and nnp must be in sync.
1612         */
1613        if (task_no_new_privs(current))
1614                task_set_no_new_privs(p);
1615
1616        /*
1617         * If the parent gained a seccomp mode after copying thread
1618         * flags and between before we held the sighand lock, we have
1619         * to manually enable the seccomp thread flag here.
1620         */
1621        if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1622                set_tsk_thread_flag(p, TIF_SECCOMP);
1623#endif
1624}
1625
1626SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1627{
1628        current->clear_child_tid = tidptr;
1629
1630        return task_pid_vnr(current);
1631}
1632
1633static void rt_mutex_init_task(struct task_struct *p)
1634{
1635        raw_spin_lock_init(&p->pi_lock);
1636#ifdef CONFIG_RT_MUTEXES
1637        p->pi_waiters = RB_ROOT_CACHED;
1638        p->pi_top_task = NULL;
1639        p->pi_blocked_on = NULL;
1640#endif
1641}
1642
1643#ifdef CONFIG_POSIX_TIMERS
1644/*
1645 * Initialize POSIX timer handling for a single task.
1646 */
1647static void posix_cpu_timers_init(struct task_struct *tsk)
1648{
1649        tsk->cputime_expires.prof_exp = 0;
1650        tsk->cputime_expires.virt_exp = 0;
1651        tsk->cputime_expires.sched_exp = 0;
1652        INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1653        INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1654        INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1655}
1656#else
1657static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1658#endif
1659
1660static inline void init_task_pid_links(struct task_struct *task)
1661{
1662        enum pid_type type;
1663
1664        for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1665                INIT_HLIST_NODE(&task->pid_links[type]);
1666        }
1667}
1668
1669static inline void
1670init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1671{
1672        if (type == PIDTYPE_PID)
1673                task->thread_pid = pid;
1674        else
1675                task->signal->pids[type] = pid;
1676}
1677
1678static inline void rcu_copy_process(struct task_struct *p)
1679{
1680#ifdef CONFIG_PREEMPT_RCU
1681        p->rcu_read_lock_nesting = 0;
1682        p->rcu_read_unlock_special.s = 0;
1683        p->rcu_blocked_node = NULL;
1684        INIT_LIST_HEAD(&p->rcu_node_entry);
1685#endif /* #ifdef CONFIG_PREEMPT_RCU */
1686#ifdef CONFIG_TASKS_RCU
1687        p->rcu_tasks_holdout = false;
1688        INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1689        p->rcu_tasks_idle_cpu = -1;
1690#endif /* #ifdef CONFIG_TASKS_RCU */
1691}
1692
1693static int pidfd_release(struct inode *inode, struct file *file)
1694{
1695        struct pid *pid = file->private_data;
1696
1697        file->private_data = NULL;
1698        put_pid(pid);
1699        return 0;
1700}
1701
1702#ifdef CONFIG_PROC_FS
1703static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1704{
1705        struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1706        struct pid *pid = f->private_data;
1707
1708        seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1709        seq_putc(m, '\n');
1710}
1711#endif
1712
1713/*
1714 * Poll support for process exit notification.
1715 */
1716static unsigned int pidfd_poll(struct file *file, struct poll_table_struct *pts)
1717{
1718        struct task_struct *task;
1719        struct pid *pid = file->private_data;
1720        int poll_flags = 0;
1721
1722        poll_wait(file, &pid->wait_pidfd, pts);
1723
1724        rcu_read_lock();
1725        task = pid_task(pid, PIDTYPE_PID);
1726        /*
1727         * Inform pollers only when the whole thread group exits.
1728         * If the thread group leader exits before all other threads in the
1729         * group, then poll(2) should block, similar to the wait(2) family.
1730         */
1731        if (!task || (task->exit_state && thread_group_empty(task)))
1732                poll_flags = POLLIN | POLLRDNORM;
1733        rcu_read_unlock();
1734
1735        return poll_flags;
1736}
1737
1738const struct file_operations pidfd_fops = {
1739        .release = pidfd_release,
1740        .poll = pidfd_poll,
1741#ifdef CONFIG_PROC_FS
1742        .show_fdinfo = pidfd_show_fdinfo,
1743#endif
1744};
1745
1746static void __delayed_free_task(struct rcu_head *rhp)
1747{
1748        struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1749
1750        free_task(tsk);
1751}
1752
1753static __always_inline void delayed_free_task(struct task_struct *tsk)
1754{
1755        if (IS_ENABLED(CONFIG_MEMCG))
1756                call_rcu(&tsk->rcu, __delayed_free_task);
1757        else
1758                free_task(tsk);
1759}
1760
1761/*
1762 * This creates a new process as a copy of the old one,
1763 * but does not actually start it yet.
1764 *
1765 * It copies the registers, and all the appropriate
1766 * parts of the process environment (as per the clone
1767 * flags). The actual kick-off is left to the caller.
1768 */
1769static __latent_entropy struct task_struct *copy_process(
1770                                        struct pid *pid,
1771                                        int trace,
1772                                        int node,
1773                                        struct kernel_clone_args *args)
1774{
1775        int pidfd = -1, retval;
1776        struct task_struct *p;
1777        struct multiprocess_signals delayed;
1778        struct file *pidfile = NULL;
1779        u64 clone_flags = args->flags;
1780
1781        /*
1782         * Don't allow sharing the root directory with processes in a different
1783         * namespace
1784         */
1785        if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1786                return ERR_PTR(-EINVAL);
1787
1788        if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1789                return ERR_PTR(-EINVAL);
1790
1791        /*
1792         * Thread groups must share signals as well, and detached threads
1793         * can only be started up within the thread group.
1794         */
1795        if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1796                return ERR_PTR(-EINVAL);
1797
1798        /*
1799         * Shared signal handlers imply shared VM. By way of the above,
1800         * thread groups also imply shared VM. Blocking this case allows
1801         * for various simplifications in other code.
1802         */
1803        if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1804                return ERR_PTR(-EINVAL);
1805
1806        /*
1807         * Siblings of global init remain as zombies on exit since they are
1808         * not reaped by their parent (swapper). To solve this and to avoid
1809         * multi-rooted process trees, prevent global and container-inits
1810         * from creating siblings.
1811         */
1812        if ((clone_flags & CLONE_PARENT) &&
1813                                current->signal->flags & SIGNAL_UNKILLABLE)
1814                return ERR_PTR(-EINVAL);
1815
1816        /*
1817         * If the new process will be in a different pid or user namespace
1818         * do not allow it to share a thread group with the forking task.
1819         */
1820        if (clone_flags & CLONE_THREAD) {
1821                if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1822                    (task_active_pid_ns(current) !=
1823                                current->nsproxy->pid_ns_for_children))
1824                        return ERR_PTR(-EINVAL);
1825        }
1826
1827        if (clone_flags & CLONE_PIDFD) {
1828                /*
1829                 * - CLONE_DETACHED is blocked so that we can potentially
1830                 *   reuse it later for CLONE_PIDFD.
1831                 * - CLONE_THREAD is blocked until someone really needs it.
1832                 */
1833                if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1834                        return ERR_PTR(-EINVAL);
1835        }
1836
1837        /*
1838         * Force any signals received before this point to be delivered
1839         * before the fork happens.  Collect up signals sent to multiple
1840         * processes that happen during the fork and delay them so that
1841         * they appear to happen after the fork.
1842         */
1843        sigemptyset(&delayed.signal);
1844        INIT_HLIST_NODE(&delayed.node);
1845
1846        spin_lock_irq(&current->sighand->siglock);
1847        if (!(clone_flags & CLONE_THREAD))
1848                hlist_add_head(&delayed.node, &current->signal->multiprocess);
1849        recalc_sigpending();
1850        spin_unlock_irq(&current->sighand->siglock);
1851        retval = -ERESTARTNOINTR;
1852        if (signal_pending(current))
1853                goto fork_out;
1854
1855        retval = -ENOMEM;
1856        p = dup_task_struct(current, node);
1857        if (!p)
1858                goto fork_out;
1859
1860        /*
1861         * This _must_ happen before we call free_task(), i.e. before we jump
1862         * to any of the bad_fork_* labels. This is to avoid freeing
1863         * p->set_child_tid which is (ab)used as a kthread's data pointer for
1864         * kernel threads (PF_KTHREAD).
1865         */
1866        p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1867        /*
1868         * Clear TID on mm_release()?
1869         */
1870        p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1871
1872        ftrace_graph_init_task(p);
1873
1874        rt_mutex_init_task(p);
1875
1876#ifdef CONFIG_PROVE_LOCKING
1877        DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1878        DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1879#endif
1880        retval = -EAGAIN;
1881        if (atomic_read(&p->real_cred->user->processes) >=
1882                        task_rlimit(p, RLIMIT_NPROC)) {
1883                if (p->real_cred->user != INIT_USER &&
1884                    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1885                        goto bad_fork_free;
1886        }
1887        current->flags &= ~PF_NPROC_EXCEEDED;
1888
1889        retval = copy_creds(p, clone_flags);
1890        if (retval < 0)
1891                goto bad_fork_free;
1892
1893        /*
1894         * If multiple threads are within copy_process(), then this check
1895         * triggers too late. This doesn't hurt, the check is only there
1896         * to stop root fork bombs.
1897         */
1898        retval = -EAGAIN;
1899        if (nr_threads >= max_threads)
1900                goto bad_fork_cleanup_count;
1901
1902        delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1903        p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1904        p->flags |= PF_FORKNOEXEC;
1905        INIT_LIST_HEAD(&p->children);
1906        INIT_LIST_HEAD(&p->sibling);
1907        rcu_copy_process(p);
1908        p->vfork_done = NULL;
1909        spin_lock_init(&p->alloc_lock);
1910
1911        init_sigpending(&p->pending);
1912
1913        p->utime = p->stime = p->gtime = 0;
1914#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1915        p->utimescaled = p->stimescaled = 0;
1916#endif
1917        prev_cputime_init(&p->prev_cputime);
1918
1919#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1920        seqcount_init(&p->vtime.seqcount);
1921        p->vtime.starttime = 0;
1922        p->vtime.state = VTIME_INACTIVE;
1923#endif
1924
1925#if defined(SPLIT_RSS_COUNTING)
1926        memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1927#endif
1928
1929        p->default_timer_slack_ns = current->timer_slack_ns;
1930
1931#ifdef CONFIG_PSI
1932        p->psi_flags = 0;
1933#endif
1934
1935        task_io_accounting_init(&p->ioac);
1936        acct_clear_integrals(p);
1937
1938        posix_cpu_timers_init(p);
1939
1940        p->io_context = NULL;
1941        audit_set_context(p, NULL);
1942        cgroup_fork(p);
1943#ifdef CONFIG_NUMA
1944        p->mempolicy = mpol_dup(p->mempolicy);
1945        if (IS_ERR(p->mempolicy)) {
1946                retval = PTR_ERR(p->mempolicy);
1947                p->mempolicy = NULL;
1948                goto bad_fork_cleanup_threadgroup_lock;
1949        }
1950#endif
1951#ifdef CONFIG_CPUSETS
1952        p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1953        p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1954        seqcount_init(&p->mems_allowed_seq);
1955#endif
1956#ifdef CONFIG_TRACE_IRQFLAGS
1957        p->irq_events = 0;
1958        p->hardirqs_enabled = 0;
1959        p->hardirq_enable_ip = 0;
1960        p->hardirq_enable_event = 0;
1961        p->hardirq_disable_ip = _THIS_IP_;
1962        p->hardirq_disable_event = 0;
1963        p->softirqs_enabled = 1;
1964        p->softirq_enable_ip = _THIS_IP_;
1965        p->softirq_enable_event = 0;
1966        p->softirq_disable_ip = 0;
1967        p->softirq_disable_event = 0;
1968        p->hardirq_context = 0;
1969        p->softirq_context = 0;
1970#endif
1971
1972        p->pagefault_disabled = 0;
1973
1974#ifdef CONFIG_LOCKDEP
1975        lockdep_init_task(p);
1976#endif
1977
1978#ifdef CONFIG_DEBUG_MUTEXES
1979        p->blocked_on = NULL; /* not blocked yet */
1980#endif
1981#ifdef CONFIG_BCACHE
1982        p->sequential_io        = 0;
1983        p->sequential_io_avg    = 0;
1984#endif
1985
1986        /* Perform scheduler related setup. Assign this task to a CPU. */
1987        retval = sched_fork(clone_flags, p);
1988        if (retval)
1989                goto bad_fork_cleanup_policy;
1990
1991        retval = perf_event_init_task(p);
1992        if (retval)
1993                goto bad_fork_cleanup_policy;
1994        retval = audit_alloc(p);
1995        if (retval)
1996                goto bad_fork_cleanup_perf;
1997        /* copy all the process information */
1998        shm_init_task(p);
1999        retval = security_task_alloc(p, clone_flags);
2000        if (retval)
2001                goto bad_fork_cleanup_audit;
2002        retval = copy_semundo(clone_flags, p);
2003        if (retval)
2004                goto bad_fork_cleanup_security;
2005        retval = copy_files(clone_flags, p);
2006        if (retval)
2007                goto bad_fork_cleanup_semundo;
2008        retval = copy_fs(clone_flags, p);
2009        if (retval)
2010                goto bad_fork_cleanup_files;
2011        retval = copy_sighand(clone_flags, p);
2012        if (retval)
2013                goto bad_fork_cleanup_fs;
2014        retval = copy_signal(clone_flags, p);
2015        if (retval)
2016                goto bad_fork_cleanup_sighand;
2017        retval = copy_mm(clone_flags, p);
2018        if (retval)
2019                goto bad_fork_cleanup_signal;
2020        retval = copy_namespaces(clone_flags, p);
2021        if (retval)
2022                goto bad_fork_cleanup_mm;
2023        retval = copy_io(clone_flags, p);
2024        if (retval)
2025                goto bad_fork_cleanup_namespaces;
2026        retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2027                                 args->tls);
2028        if (retval)
2029                goto bad_fork_cleanup_io;
2030
2031        stackleak_task_init(p);
2032
2033        if (pid != &init_struct_pid) {
2034                pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2035                if (IS_ERR(pid)) {
2036                        retval = PTR_ERR(pid);
2037                        goto bad_fork_cleanup_thread;
2038                }
2039        }
2040
2041        /*
2042         * This has to happen after we've potentially unshared the file
2043         * descriptor table (so that the pidfd doesn't leak into the child
2044         * if the fd table isn't shared).
2045         */
2046        if (clone_flags & CLONE_PIDFD) {
2047                retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2048                if (retval < 0)
2049                        goto bad_fork_free_pid;
2050
2051                pidfd = retval;
2052
2053                pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2054                                              O_RDWR | O_CLOEXEC);
2055                if (IS_ERR(pidfile)) {
2056                        put_unused_fd(pidfd);
2057                        retval = PTR_ERR(pidfile);
2058                        goto bad_fork_free_pid;
2059                }
2060                get_pid(pid);   /* held by pidfile now */
2061
2062                retval = put_user(pidfd, args->pidfd);
2063                if (retval)
2064                        goto bad_fork_put_pidfd;
2065        }
2066
2067#ifdef CONFIG_BLOCK
2068        p->plug = NULL;
2069#endif
2070#ifdef CONFIG_FUTEX
2071        p->robust_list = NULL;
2072#ifdef CONFIG_COMPAT
2073        p->compat_robust_list = NULL;
2074#endif
2075        INIT_LIST_HEAD(&p->pi_state_list);
2076        p->pi_state_cache = NULL;
2077#endif
2078        /*
2079         * sigaltstack should be cleared when sharing the same VM
2080         */
2081        if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2082                sas_ss_reset(p);
2083
2084        /*
2085         * Syscall tracing and stepping should be turned off in the
2086         * child regardless of CLONE_PTRACE.
2087         */
2088        user_disable_single_step(p);
2089        clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2090#ifdef TIF_SYSCALL_EMU
2091        clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2092#endif
2093        clear_tsk_latency_tracing(p);
2094
2095        /* ok, now we should be set up.. */
2096        p->pid = pid_nr(pid);
2097        if (clone_flags & CLONE_THREAD) {
2098                p->exit_signal = -1;
2099                p->group_leader = current->group_leader;
2100                p->tgid = current->tgid;
2101        } else {
2102                if (clone_flags & CLONE_PARENT)
2103                        p->exit_signal = current->group_leader->exit_signal;
2104                else
2105                        p->exit_signal = args->exit_signal;
2106                p->group_leader = p;
2107                p->tgid = p->pid;
2108        }
2109
2110        p->nr_dirtied = 0;
2111        p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2112        p->dirty_paused_when = 0;
2113
2114        p->pdeath_signal = 0;
2115        INIT_LIST_HEAD(&p->thread_group);
2116        p->task_works = NULL;
2117
2118        cgroup_threadgroup_change_begin(current);
2119        /*
2120         * Ensure that the cgroup subsystem policies allow the new process to be
2121         * forked. It should be noted the the new process's css_set can be changed
2122         * between here and cgroup_post_fork() if an organisation operation is in
2123         * progress.
2124         */
2125        retval = cgroup_can_fork(p);
2126        if (retval)
2127                goto bad_fork_cgroup_threadgroup_change_end;
2128
2129        /*
2130         * From this point on we must avoid any synchronous user-space
2131         * communication until we take the tasklist-lock. In particular, we do
2132         * not want user-space to be able to predict the process start-time by
2133         * stalling fork(2) after we recorded the start_time but before it is
2134         * visible to the system.
2135         */
2136
2137        p->start_time = ktime_get_ns();
2138        p->real_start_time = ktime_get_boottime_ns();
2139
2140        /*
2141         * Make it visible to the rest of the system, but dont wake it up yet.
2142         * Need tasklist lock for parent etc handling!
2143         */
2144        write_lock_irq(&tasklist_lock);
2145
2146        /* CLONE_PARENT re-uses the old parent */
2147        if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2148                p->real_parent = current->real_parent;
2149                p->parent_exec_id = current->parent_exec_id;
2150        } else {
2151                p->real_parent = current;
2152                p->parent_exec_id = current->self_exec_id;
2153        }
2154
2155        klp_copy_process(p);
2156
2157        spin_lock(&current->sighand->siglock);
2158
2159        /*
2160         * Copy seccomp details explicitly here, in case they were changed
2161         * before holding sighand lock.
2162         */
2163        copy_seccomp(p);
2164
2165        rseq_fork(p, clone_flags);
2166
2167        /* Don't start children in a dying pid namespace */
2168        if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2169                retval = -ENOMEM;
2170                goto bad_fork_cancel_cgroup;
2171        }
2172
2173        /* Let kill terminate clone/fork in the middle */
2174        if (fatal_signal_pending(current)) {
2175                retval = -EINTR;
2176                goto bad_fork_cancel_cgroup;
2177        }
2178
2179        /* past the last point of failure */
2180        if (pidfile)
2181                fd_install(pidfd, pidfile);
2182
2183        init_task_pid_links(p);
2184        if (likely(p->pid)) {
2185                ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2186
2187                init_task_pid(p, PIDTYPE_PID, pid);
2188                if (thread_group_leader(p)) {
2189                        init_task_pid(p, PIDTYPE_TGID, pid);
2190                        init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2191                        init_task_pid(p, PIDTYPE_SID, task_session(current));
2192
2193                        if (is_child_reaper(pid)) {
2194                                ns_of_pid(pid)->child_reaper = p;
2195                                p->signal->flags |= SIGNAL_UNKILLABLE;
2196                        }
2197                        p->signal->shared_pending.signal = delayed.signal;
2198                        p->signal->tty = tty_kref_get(current->signal->tty);
2199                        /*
2200                         * Inherit has_child_subreaper flag under the same
2201                         * tasklist_lock with adding child to the process tree
2202                         * for propagate_has_child_subreaper optimization.
2203                         */
2204                        p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2205                                                         p->real_parent->signal->is_child_subreaper;
2206                        list_add_tail(&p->sibling, &p->real_parent->children);
2207                        list_add_tail_rcu(&p->tasks, &init_task.tasks);
2208                        attach_pid(p, PIDTYPE_TGID);
2209                        attach_pid(p, PIDTYPE_PGID);
2210                        attach_pid(p, PIDTYPE_SID);
2211                        __this_cpu_inc(process_counts);
2212                } else {
2213                        current->signal->nr_threads++;
2214                        atomic_inc(&current->signal->live);
2215                        refcount_inc(&current->signal->sigcnt);
2216                        task_join_group_stop(p);
2217                        list_add_tail_rcu(&p->thread_group,
2218                                          &p->group_leader->thread_group);
2219                        list_add_tail_rcu(&p->thread_node,
2220                                          &p->signal->thread_head);
2221                }
2222                attach_pid(p, PIDTYPE_PID);
2223                nr_threads++;
2224        }
2225        total_forks++;
2226        hlist_del_init(&delayed.node);
2227        spin_unlock(&current->sighand->siglock);
2228        syscall_tracepoint_update(p);
2229        write_unlock_irq(&tasklist_lock);
2230
2231        proc_fork_connector(p);
2232        cgroup_post_fork(p);
2233        cgroup_threadgroup_change_end(current);
2234        perf_event_fork(p);
2235
2236        trace_task_newtask(p, clone_flags);
2237        uprobe_copy_process(p, clone_flags);
2238
2239        return p;
2240
2241bad_fork_cancel_cgroup:
2242        spin_unlock(&current->sighand->siglock);
2243        write_unlock_irq(&tasklist_lock);
2244        cgroup_cancel_fork(p);
2245bad_fork_cgroup_threadgroup_change_end:
2246        cgroup_threadgroup_change_end(current);
2247bad_fork_put_pidfd:
2248        if (clone_flags & CLONE_PIDFD) {
2249                fput(pidfile);
2250                put_unused_fd(pidfd);
2251        }
2252bad_fork_free_pid:
2253        if (pid != &init_struct_pid)
2254                free_pid(pid);
2255bad_fork_cleanup_thread:
2256        exit_thread(p);
2257bad_fork_cleanup_io:
2258        if (p->io_context)
2259                exit_io_context(p);
2260bad_fork_cleanup_namespaces:
2261        exit_task_namespaces(p);
2262bad_fork_cleanup_mm:
2263        if (p->mm) {
2264                mm_clear_owner(p->mm, p);
2265                mmput(p->mm);
2266        }
2267bad_fork_cleanup_signal:
2268        if (!(clone_flags & CLONE_THREAD))
2269                free_signal_struct(p->signal);
2270bad_fork_cleanup_sighand:
2271        __cleanup_sighand(p->sighand);
2272bad_fork_cleanup_fs:
2273        exit_fs(p); /* blocking */
2274bad_fork_cleanup_files:
2275        exit_files(p); /* blocking */
2276bad_fork_cleanup_semundo:
2277        exit_sem(p);
2278bad_fork_cleanup_security:
2279        security_task_free(p);
2280bad_fork_cleanup_audit:
2281        audit_free(p);
2282bad_fork_cleanup_perf:
2283        perf_event_free_task(p);
2284bad_fork_cleanup_policy:
2285        lockdep_free_task(p);
2286#ifdef CONFIG_NUMA
2287        mpol_put(p->mempolicy);
2288bad_fork_cleanup_threadgroup_lock:
2289#endif
2290        delayacct_tsk_free(p);
2291bad_fork_cleanup_count:
2292        atomic_dec(&p->cred->user->processes);
2293        exit_creds(p);
2294bad_fork_free:
2295        p->state = TASK_DEAD;
2296        put_task_stack(p);
2297        delayed_free_task(p);
2298fork_out:
2299        spin_lock_irq(&current->sighand->siglock);
2300        hlist_del_init(&delayed.node);
2301        spin_unlock_irq(&current->sighand->siglock);
2302        return ERR_PTR(retval);
2303}
2304
2305static inline void init_idle_pids(struct task_struct *idle)
2306{
2307        enum pid_type type;
2308
2309        for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2310                INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2311                init_task_pid(idle, type, &init_struct_pid);
2312        }
2313}
2314
2315struct task_struct *fork_idle(int cpu)
2316{
2317        struct task_struct *task;
2318        struct kernel_clone_args args = {
2319                .flags = CLONE_VM,
2320        };
2321
2322        task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2323        if (!IS_ERR(task)) {
2324                init_idle_pids(task);
2325                init_idle(task, cpu);
2326        }
2327
2328        return task;
2329}
2330
2331struct mm_struct *copy_init_mm(void)
2332{
2333        return dup_mm(NULL, &init_mm);
2334}
2335
2336/*
2337 *  Ok, this is the main fork-routine.
2338 *
2339 * It copies the process, and if successful kick-starts
2340 * it and waits for it to finish using the VM if required.
2341 *
2342 * args->exit_signal is expected to be checked for sanity by the caller.
2343 */
2344long _do_fork(struct kernel_clone_args *args)
2345{
2346        u64 clone_flags = args->flags;
2347        struct completion vfork;
2348        struct pid *pid;
2349        struct task_struct *p;
2350        int trace = 0;
2351        long nr;
2352
2353        /*
2354         * Determine whether and which event to report to ptracer.  When
2355         * called from kernel_thread or CLONE_UNTRACED is explicitly
2356         * requested, no event is reported; otherwise, report if the event
2357         * for the type of forking is enabled.
2358         */
2359        if (!(clone_flags & CLONE_UNTRACED)) {
2360                if (clone_flags & CLONE_VFORK)
2361                        trace = PTRACE_EVENT_VFORK;
2362                else if (args->exit_signal != SIGCHLD)
2363                        trace = PTRACE_EVENT_CLONE;
2364                else
2365                        trace = PTRACE_EVENT_FORK;
2366
2367                if (likely(!ptrace_event_enabled(current, trace)))
2368                        trace = 0;
2369        }
2370
2371        p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2372        add_latent_entropy();
2373
2374        if (IS_ERR(p))
2375                return PTR_ERR(p);
2376
2377        /*
2378         * Do this prior waking up the new thread - the thread pointer
2379         * might get invalid after that point, if the thread exits quickly.
2380         */
2381        trace_sched_process_fork(current, p);
2382
2383        pid = get_task_pid(p, PIDTYPE_PID);
2384        nr = pid_vnr(pid);
2385
2386        if (clone_flags & CLONE_PARENT_SETTID)
2387                put_user(nr, args->parent_tid);
2388
2389        if (clone_flags & CLONE_VFORK) {
2390                p->vfork_done = &vfork;
2391                init_completion(&vfork);
2392                get_task_struct(p);
2393        }
2394
2395        wake_up_new_task(p);
2396
2397        /* forking complete and child started to run, tell ptracer */
2398        if (unlikely(trace))
2399                ptrace_event_pid(trace, pid);
2400
2401        if (clone_flags & CLONE_VFORK) {
2402                if (!wait_for_vfork_done(p, &vfork))
2403                        ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2404        }
2405
2406        put_pid(pid);
2407        return nr;
2408}
2409
2410bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2411{
2412        /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2413        if ((kargs->flags & CLONE_PIDFD) &&
2414            (kargs->flags & CLONE_PARENT_SETTID))
2415                return false;
2416
2417        return true;
2418}
2419
2420#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2421/* For compatibility with architectures that call do_fork directly rather than
2422 * using the syscall entry points below. */
2423long do_fork(unsigned long clone_flags,
2424              unsigned long stack_start,
2425              unsigned long stack_size,
2426              int __user *parent_tidptr,
2427              int __user *child_tidptr)
2428{
2429        struct kernel_clone_args args = {
2430                .flags          = (clone_flags & ~CSIGNAL),
2431                .pidfd          = parent_tidptr,
2432                .child_tid      = child_tidptr,
2433                .parent_tid     = parent_tidptr,
2434                .exit_signal    = (clone_flags & CSIGNAL),
2435                .stack          = stack_start,
2436                .stack_size     = stack_size,
2437        };
2438
2439        if (!legacy_clone_args_valid(&args))
2440                return -EINVAL;
2441
2442        return _do_fork(&args);
2443}
2444#endif
2445
2446/*
2447 * Create a kernel thread.
2448 */
2449pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2450{
2451        struct kernel_clone_args args = {
2452                .flags          = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2453                .exit_signal    = (flags & CSIGNAL),
2454                .stack          = (unsigned long)fn,
2455                .stack_size     = (unsigned long)arg,
2456        };
2457
2458        return _do_fork(&args);
2459}
2460
2461#ifdef __ARCH_WANT_SYS_FORK
2462SYSCALL_DEFINE0(fork)
2463{
2464#ifdef CONFIG_MMU
2465        struct kernel_clone_args args = {
2466                .exit_signal = SIGCHLD,
2467        };
2468
2469        return _do_fork(&args);
2470#else
2471        /* can not support in nommu mode */
2472        return -EINVAL;
2473#endif
2474}
2475#endif
2476
2477#ifdef __ARCH_WANT_SYS_VFORK
2478SYSCALL_DEFINE0(vfork)
2479{
2480        struct kernel_clone_args args = {
2481                .flags          = CLONE_VFORK | CLONE_VM,
2482                .exit_signal    = SIGCHLD,
2483        };
2484
2485        return _do_fork(&args);
2486}
2487#endif
2488
2489#ifdef __ARCH_WANT_SYS_CLONE
2490#ifdef CONFIG_CLONE_BACKWARDS
2491SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2492                 int __user *, parent_tidptr,
2493                 unsigned long, tls,
2494                 int __user *, child_tidptr)
2495#elif defined(CONFIG_CLONE_BACKWARDS2)
2496SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2497                 int __user *, parent_tidptr,
2498                 int __user *, child_tidptr,
2499                 unsigned long, tls)
2500#elif defined(CONFIG_CLONE_BACKWARDS3)
2501SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2502                int, stack_size,
2503                int __user *, parent_tidptr,
2504                int __user *, child_tidptr,
2505                unsigned long, tls)
2506#else
2507SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2508                 int __user *, parent_tidptr,
2509                 int __user *, child_tidptr,
2510                 unsigned long, tls)
2511#endif
2512{
2513        struct kernel_clone_args args = {
2514                .flags          = (clone_flags & ~CSIGNAL),
2515                .pidfd          = parent_tidptr,
2516                .child_tid      = child_tidptr,
2517                .parent_tid     = parent_tidptr,
2518                .exit_signal    = (clone_flags & CSIGNAL),
2519                .stack          = newsp,
2520                .tls            = tls,
2521        };
2522
2523        if (!legacy_clone_args_valid(&args))
2524                return -EINVAL;
2525
2526        return _do_fork(&args);
2527}
2528#endif
2529
2530#ifdef __ARCH_WANT_SYS_CLONE3
2531noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2532                                              struct clone_args __user *uargs,
2533                                              size_t size)
2534{
2535        struct clone_args args;
2536
2537        if (unlikely(size > PAGE_SIZE))
2538                return -E2BIG;
2539
2540        if (unlikely(size < sizeof(struct clone_args)))
2541                return -EINVAL;
2542
2543        if (unlikely(!access_ok(uargs, size)))
2544                return -EFAULT;
2545
2546        if (size > sizeof(struct clone_args)) {
2547                unsigned char __user *addr;
2548                unsigned char __user *end;
2549                unsigned char val;
2550
2551                addr = (void __user *)uargs + sizeof(struct clone_args);
2552                end = (void __user *)uargs + size;
2553
2554                for (; addr < end; addr++) {
2555                        if (get_user(val, addr))
2556                                return -EFAULT;
2557                        if (val)
2558                                return -E2BIG;
2559                }
2560
2561                size = sizeof(struct clone_args);
2562        }
2563
2564        if (copy_from_user(&args, uargs, size))
2565                return -EFAULT;
2566
2567        /*
2568         * Verify that higher 32bits of exit_signal are unset and that
2569         * it is a valid signal
2570         */
2571        if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2572                     !valid_signal(args.exit_signal)))
2573                return -EINVAL;
2574
2575        *kargs = (struct kernel_clone_args){
2576                .flags          = args.flags,
2577                .pidfd          = u64_to_user_ptr(args.pidfd),
2578                .child_tid      = u64_to_user_ptr(args.child_tid),
2579                .parent_tid     = u64_to_user_ptr(args.parent_tid),
2580                .exit_signal    = args.exit_signal,
2581                .stack          = args.stack,
2582                .stack_size     = args.stack_size,
2583                .tls            = args.tls,
2584        };
2585
2586        return 0;
2587}
2588
2589static bool clone3_args_valid(const struct kernel_clone_args *kargs)
2590{
2591        /*
2592         * All lower bits of the flag word are taken.
2593         * Verify that no other unknown flags are passed along.
2594         */
2595        if (kargs->flags & ~CLONE_LEGACY_FLAGS)
2596                return false;
2597
2598        /*
2599         * - make the CLONE_DETACHED bit reuseable for clone3
2600         * - make the CSIGNAL bits reuseable for clone3
2601         */
2602        if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2603                return false;
2604
2605        if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2606            kargs->exit_signal)
2607                return false;
2608
2609        return true;
2610}
2611
2612SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2613{
2614        int err;
2615
2616        struct kernel_clone_args kargs;
2617
2618        err = copy_clone_args_from_user(&kargs, uargs, size);
2619        if (err)
2620                return err;
2621
2622        if (!clone3_args_valid(&kargs))
2623                return -EINVAL;
2624
2625        return _do_fork(&kargs);
2626}
2627#endif
2628
2629void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2630{
2631        struct task_struct *leader, *parent, *child;
2632        int res;
2633
2634        read_lock(&tasklist_lock);
2635        leader = top = top->group_leader;
2636down:
2637        for_each_thread(leader, parent) {
2638                list_for_each_entry(child, &parent->children, sibling) {
2639                        res = visitor(child, data);
2640                        if (res) {
2641                                if (res < 0)
2642                                        goto out;
2643                                leader = child;
2644                                goto down;
2645                        }
2646up:
2647                        ;
2648                }
2649        }
2650
2651        if (leader != top) {
2652                child = leader;
2653                parent = child->real_parent;
2654                leader = parent->group_leader;
2655                goto up;
2656        }
2657out:
2658        read_unlock(&tasklist_lock);
2659}
2660
2661#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2662#define ARCH_MIN_MMSTRUCT_ALIGN 0
2663#endif
2664
2665static void sighand_ctor(void *data)
2666{
2667        struct sighand_struct *sighand = data;
2668
2669        spin_lock_init(&sighand->siglock);
2670        init_waitqueue_head(&sighand->signalfd_wqh);
2671}
2672
2673void __init proc_caches_init(void)
2674{
2675        unsigned int mm_size;
2676
2677        sighand_cachep = kmem_cache_create("sighand_cache",
2678                        sizeof(struct sighand_struct), 0,
2679                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2680                        SLAB_ACCOUNT, sighand_ctor);
2681        signal_cachep = kmem_cache_create("signal_cache",
2682                        sizeof(struct signal_struct), 0,
2683                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2684                        NULL);
2685        files_cachep = kmem_cache_create("files_cache",
2686                        sizeof(struct files_struct), 0,
2687                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2688                        NULL);
2689        fs_cachep = kmem_cache_create("fs_cache",
2690                        sizeof(struct fs_struct), 0,
2691                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2692                        NULL);
2693
2694        /*
2695         * The mm_cpumask is located at the end of mm_struct, and is
2696         * dynamically sized based on the maximum CPU number this system
2697         * can have, taking hotplug into account (nr_cpu_ids).
2698         */
2699        mm_size = sizeof(struct mm_struct) + cpumask_size();
2700
2701        mm_cachep = kmem_cache_create_usercopy("mm_struct",
2702                        mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2703                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2704                        offsetof(struct mm_struct, saved_auxv),
2705                        sizeof_field(struct mm_struct, saved_auxv),
2706                        NULL);
2707        vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2708        mmap_init();
2709        nsproxy_cache_init();
2710}
2711
2712/*
2713 * Check constraints on flags passed to the unshare system call.
2714 */
2715static int check_unshare_flags(unsigned long unshare_flags)
2716{
2717        if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2718                                CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2719                                CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2720                                CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2721                return -EINVAL;
2722        /*
2723         * Not implemented, but pretend it works if there is nothing
2724         * to unshare.  Note that unsharing the address space or the
2725         * signal handlers also need to unshare the signal queues (aka
2726         * CLONE_THREAD).
2727         */
2728        if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2729                if (!thread_group_empty(current))
2730                        return -EINVAL;
2731        }
2732        if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2733                if (refcount_read(&current->sighand->count) > 1)
2734                        return -EINVAL;
2735        }
2736        if (unshare_flags & CLONE_VM) {
2737                if (!current_is_single_threaded())
2738                        return -EINVAL;
2739        }
2740
2741        return 0;
2742}
2743
2744/*
2745 * Unshare the filesystem structure if it is being shared
2746 */
2747static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2748{
2749        struct fs_struct *fs = current->fs;
2750
2751        if (!(unshare_flags & CLONE_FS) || !fs)
2752                return 0;
2753
2754        /* don't need lock here; in the worst case we'll do useless copy */
2755        if (fs->users == 1)
2756                return 0;
2757
2758        *new_fsp = copy_fs_struct(fs);
2759        if (!*new_fsp)
2760                return -ENOMEM;
2761
2762        return 0;
2763}
2764
2765/*
2766 * Unshare file descriptor table if it is being shared
2767 */
2768static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2769{
2770        struct files_struct *fd = current->files;
2771        int error = 0;
2772
2773        if ((unshare_flags & CLONE_FILES) &&
2774            (fd && atomic_read(&fd->count) > 1)) {
2775                *new_fdp = dup_fd(fd, &error);
2776                if (!*new_fdp)
2777                        return error;
2778        }
2779
2780        return 0;
2781}
2782
2783/*
2784 * unshare allows a process to 'unshare' part of the process
2785 * context which was originally shared using clone.  copy_*
2786 * functions used by do_fork() cannot be used here directly
2787 * because they modify an inactive task_struct that is being
2788 * constructed. Here we are modifying the current, active,
2789 * task_struct.
2790 */
2791int ksys_unshare(unsigned long unshare_flags)
2792{
2793        struct fs_struct *fs, *new_fs = NULL;
2794        struct files_struct *fd, *new_fd = NULL;
2795        struct cred *new_cred = NULL;
2796        struct nsproxy *new_nsproxy = NULL;
2797        int do_sysvsem = 0;
2798        int err;
2799
2800        /*
2801         * If unsharing a user namespace must also unshare the thread group
2802         * and unshare the filesystem root and working directories.
2803         */
2804        if (unshare_flags & CLONE_NEWUSER)
2805                unshare_flags |= CLONE_THREAD | CLONE_FS;
2806        /*
2807         * If unsharing vm, must also unshare signal handlers.
2808         */
2809        if (unshare_flags & CLONE_VM)
2810                unshare_flags |= CLONE_SIGHAND;
2811        /*
2812         * If unsharing a signal handlers, must also unshare the signal queues.
2813         */
2814        if (unshare_flags & CLONE_SIGHAND)
2815                unshare_flags |= CLONE_THREAD;
2816        /*
2817         * If unsharing namespace, must also unshare filesystem information.
2818         */
2819        if (unshare_flags & CLONE_NEWNS)
2820                unshare_flags |= CLONE_FS;
2821
2822        err = check_unshare_flags(unshare_flags);
2823        if (err)
2824                goto bad_unshare_out;
2825        /*
2826         * CLONE_NEWIPC must also detach from the undolist: after switching
2827         * to a new ipc namespace, the semaphore arrays from the old
2828         * namespace are unreachable.
2829         */
2830        if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2831                do_sysvsem = 1;
2832        err = unshare_fs(unshare_flags, &new_fs);
2833        if (err)
2834                goto bad_unshare_out;
2835        err = unshare_fd(unshare_flags, &new_fd);
2836        if (err)
2837                goto bad_unshare_cleanup_fs;
2838        err = unshare_userns(unshare_flags, &new_cred);
2839        if (err)
2840                goto bad_unshare_cleanup_fd;
2841        err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2842                                         new_cred, new_fs);
2843        if (err)
2844                goto bad_unshare_cleanup_cred;
2845
2846        if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2847                if (do_sysvsem) {
2848                        /*
2849                         * CLONE_SYSVSEM is equivalent to sys_exit().
2850                         */
2851                        exit_sem(current);
2852                }
2853                if (unshare_flags & CLONE_NEWIPC) {
2854                        /* Orphan segments in old ns (see sem above). */
2855                        exit_shm(current);
2856                        shm_init_task(current);
2857                }
2858
2859                if (new_nsproxy)
2860                        switch_task_namespaces(current, new_nsproxy);
2861
2862                task_lock(current);
2863
2864                if (new_fs) {
2865                        fs = current->fs;
2866                        spin_lock(&fs->lock);
2867                        current->fs = new_fs;
2868                        if (--fs->users)
2869                                new_fs = NULL;
2870                        else
2871                                new_fs = fs;
2872                        spin_unlock(&fs->lock);
2873                }
2874
2875                if (new_fd) {
2876                        fd = current->files;
2877                        current->files = new_fd;
2878                        new_fd = fd;
2879                }
2880
2881                task_unlock(current);
2882
2883                if (new_cred) {
2884                        /* Install the new user namespace */
2885                        commit_creds(new_cred);
2886                        new_cred = NULL;
2887                }
2888        }
2889
2890        perf_event_namespaces(current);
2891
2892bad_unshare_cleanup_cred:
2893        if (new_cred)
2894                put_cred(new_cred);
2895bad_unshare_cleanup_fd:
2896        if (new_fd)
2897                put_files_struct(new_fd);
2898
2899bad_unshare_cleanup_fs:
2900        if (new_fs)
2901                free_fs_struct(new_fs);
2902
2903bad_unshare_out:
2904        return err;
2905}
2906
2907SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2908{
2909        return ksys_unshare(unshare_flags);
2910}
2911
2912/*
2913 *      Helper to unshare the files of the current task.
2914 *      We don't want to expose copy_files internals to
2915 *      the exec layer of the kernel.
2916 */
2917
2918int unshare_files(struct files_struct **displaced)
2919{
2920        struct task_struct *task = current;
2921        struct files_struct *copy = NULL;
2922        int error;
2923
2924        error = unshare_fd(CLONE_FILES, &copy);
2925        if (error || !copy) {
2926                *displaced = NULL;
2927                return error;
2928        }
2929        *displaced = task->files;
2930        task_lock(task);
2931        task->files = copy;
2932        task_unlock(task);
2933        return 0;
2934}
2935
2936int sysctl_max_threads(struct ctl_table *table, int write,
2937                       void __user *buffer, size_t *lenp, loff_t *ppos)
2938{
2939        struct ctl_table t;
2940        int ret;
2941        int threads = max_threads;
2942        int min = MIN_THREADS;
2943        int max = MAX_THREADS;
2944
2945        t = *table;
2946        t.data = &threads;
2947        t.extra1 = &min;
2948        t.extra2 = &max;
2949
2950        ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2951        if (ret || !write)
2952                return ret;
2953
2954        set_max_threads(threads);
2955
2956        return 0;
2957}
2958