linux/kernel/kexec_file.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec: kexec_file_load system call
   4 *
   5 * Copyright (C) 2014 Red Hat Inc.
   6 * Authors:
   7 *      Vivek Goyal <vgoyal@redhat.com>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/capability.h>
  13#include <linux/mm.h>
  14#include <linux/file.h>
  15#include <linux/slab.h>
  16#include <linux/kexec.h>
  17#include <linux/memblock.h>
  18#include <linux/mutex.h>
  19#include <linux/list.h>
  20#include <linux/fs.h>
  21#include <linux/ima.h>
  22#include <crypto/hash.h>
  23#include <crypto/sha.h>
  24#include <linux/elf.h>
  25#include <linux/elfcore.h>
  26#include <linux/kernel.h>
  27#include <linux/syscalls.h>
  28#include <linux/vmalloc.h>
  29#include "kexec_internal.h"
  30
  31static int kexec_calculate_store_digests(struct kimage *image);
  32
  33/*
  34 * Currently this is the only default function that is exported as some
  35 * architectures need it to do additional handlings.
  36 * In the future, other default functions may be exported too if required.
  37 */
  38int kexec_image_probe_default(struct kimage *image, void *buf,
  39                              unsigned long buf_len)
  40{
  41        const struct kexec_file_ops * const *fops;
  42        int ret = -ENOEXEC;
  43
  44        for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
  45                ret = (*fops)->probe(buf, buf_len);
  46                if (!ret) {
  47                        image->fops = *fops;
  48                        return ret;
  49                }
  50        }
  51
  52        return ret;
  53}
  54
  55/* Architectures can provide this probe function */
  56int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
  57                                         unsigned long buf_len)
  58{
  59        return kexec_image_probe_default(image, buf, buf_len);
  60}
  61
  62static void *kexec_image_load_default(struct kimage *image)
  63{
  64        if (!image->fops || !image->fops->load)
  65                return ERR_PTR(-ENOEXEC);
  66
  67        return image->fops->load(image, image->kernel_buf,
  68                                 image->kernel_buf_len, image->initrd_buf,
  69                                 image->initrd_buf_len, image->cmdline_buf,
  70                                 image->cmdline_buf_len);
  71}
  72
  73void * __weak arch_kexec_kernel_image_load(struct kimage *image)
  74{
  75        return kexec_image_load_default(image);
  76}
  77
  78int kexec_image_post_load_cleanup_default(struct kimage *image)
  79{
  80        if (!image->fops || !image->fops->cleanup)
  81                return 0;
  82
  83        return image->fops->cleanup(image->image_loader_data);
  84}
  85
  86int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
  87{
  88        return kexec_image_post_load_cleanup_default(image);
  89}
  90
  91#ifdef CONFIG_KEXEC_VERIFY_SIG
  92static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
  93                                          unsigned long buf_len)
  94{
  95        if (!image->fops || !image->fops->verify_sig) {
  96                pr_debug("kernel loader does not support signature verification.\n");
  97                return -EKEYREJECTED;
  98        }
  99
 100        return image->fops->verify_sig(buf, buf_len);
 101}
 102
 103int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
 104                                        unsigned long buf_len)
 105{
 106        return kexec_image_verify_sig_default(image, buf, buf_len);
 107}
 108#endif
 109
 110/*
 111 * arch_kexec_apply_relocations_add - apply relocations of type RELA
 112 * @pi:         Purgatory to be relocated.
 113 * @section:    Section relocations applying to.
 114 * @relsec:     Section containing RELAs.
 115 * @symtab:     Corresponding symtab.
 116 *
 117 * Return: 0 on success, negative errno on error.
 118 */
 119int __weak
 120arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
 121                                 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 122{
 123        pr_err("RELA relocation unsupported.\n");
 124        return -ENOEXEC;
 125}
 126
 127/*
 128 * arch_kexec_apply_relocations - apply relocations of type REL
 129 * @pi:         Purgatory to be relocated.
 130 * @section:    Section relocations applying to.
 131 * @relsec:     Section containing RELs.
 132 * @symtab:     Corresponding symtab.
 133 *
 134 * Return: 0 on success, negative errno on error.
 135 */
 136int __weak
 137arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
 138                             const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 139{
 140        pr_err("REL relocation unsupported.\n");
 141        return -ENOEXEC;
 142}
 143
 144/*
 145 * Free up memory used by kernel, initrd, and command line. This is temporary
 146 * memory allocation which is not needed any more after these buffers have
 147 * been loaded into separate segments and have been copied elsewhere.
 148 */
 149void kimage_file_post_load_cleanup(struct kimage *image)
 150{
 151        struct purgatory_info *pi = &image->purgatory_info;
 152
 153        vfree(image->kernel_buf);
 154        image->kernel_buf = NULL;
 155
 156        vfree(image->initrd_buf);
 157        image->initrd_buf = NULL;
 158
 159        kfree(image->cmdline_buf);
 160        image->cmdline_buf = NULL;
 161
 162        vfree(pi->purgatory_buf);
 163        pi->purgatory_buf = NULL;
 164
 165        vfree(pi->sechdrs);
 166        pi->sechdrs = NULL;
 167
 168        /* See if architecture has anything to cleanup post load */
 169        arch_kimage_file_post_load_cleanup(image);
 170
 171        /*
 172         * Above call should have called into bootloader to free up
 173         * any data stored in kimage->image_loader_data. It should
 174         * be ok now to free it up.
 175         */
 176        kfree(image->image_loader_data);
 177        image->image_loader_data = NULL;
 178}
 179
 180/*
 181 * In file mode list of segments is prepared by kernel. Copy relevant
 182 * data from user space, do error checking, prepare segment list
 183 */
 184static int
 185kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 186                             const char __user *cmdline_ptr,
 187                             unsigned long cmdline_len, unsigned flags)
 188{
 189        int ret = 0;
 190        void *ldata;
 191        loff_t size;
 192
 193        ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
 194                                       &size, INT_MAX, READING_KEXEC_IMAGE);
 195        if (ret)
 196                return ret;
 197        image->kernel_buf_len = size;
 198
 199        /* Call arch image probe handlers */
 200        ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 201                                            image->kernel_buf_len);
 202        if (ret)
 203                goto out;
 204
 205#ifdef CONFIG_KEXEC_VERIFY_SIG
 206        ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
 207                                           image->kernel_buf_len);
 208        if (ret) {
 209                pr_debug("kernel signature verification failed.\n");
 210                goto out;
 211        }
 212        pr_debug("kernel signature verification successful.\n");
 213#endif
 214        /* It is possible that there no initramfs is being loaded */
 215        if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 216                ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
 217                                               &size, INT_MAX,
 218                                               READING_KEXEC_INITRAMFS);
 219                if (ret)
 220                        goto out;
 221                image->initrd_buf_len = size;
 222        }
 223
 224        if (cmdline_len) {
 225                image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
 226                if (IS_ERR(image->cmdline_buf)) {
 227                        ret = PTR_ERR(image->cmdline_buf);
 228                        image->cmdline_buf = NULL;
 229                        goto out;
 230                }
 231
 232                image->cmdline_buf_len = cmdline_len;
 233
 234                /* command line should be a string with last byte null */
 235                if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 236                        ret = -EINVAL;
 237                        goto out;
 238                }
 239
 240                ima_kexec_cmdline(image->cmdline_buf,
 241                                  image->cmdline_buf_len - 1);
 242        }
 243
 244        /* IMA needs to pass the measurement list to the next kernel. */
 245        ima_add_kexec_buffer(image);
 246
 247        /* Call arch image load handlers */
 248        ldata = arch_kexec_kernel_image_load(image);
 249
 250        if (IS_ERR(ldata)) {
 251                ret = PTR_ERR(ldata);
 252                goto out;
 253        }
 254
 255        image->image_loader_data = ldata;
 256out:
 257        /* In case of error, free up all allocated memory in this function */
 258        if (ret)
 259                kimage_file_post_load_cleanup(image);
 260        return ret;
 261}
 262
 263static int
 264kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 265                       int initrd_fd, const char __user *cmdline_ptr,
 266                       unsigned long cmdline_len, unsigned long flags)
 267{
 268        int ret;
 269        struct kimage *image;
 270        bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 271
 272        image = do_kimage_alloc_init();
 273        if (!image)
 274                return -ENOMEM;
 275
 276        image->file_mode = 1;
 277
 278        if (kexec_on_panic) {
 279                /* Enable special crash kernel control page alloc policy. */
 280                image->control_page = crashk_res.start;
 281                image->type = KEXEC_TYPE_CRASH;
 282        }
 283
 284        ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 285                                           cmdline_ptr, cmdline_len, flags);
 286        if (ret)
 287                goto out_free_image;
 288
 289        ret = sanity_check_segment_list(image);
 290        if (ret)
 291                goto out_free_post_load_bufs;
 292
 293        ret = -ENOMEM;
 294        image->control_code_page = kimage_alloc_control_pages(image,
 295                                           get_order(KEXEC_CONTROL_PAGE_SIZE));
 296        if (!image->control_code_page) {
 297                pr_err("Could not allocate control_code_buffer\n");
 298                goto out_free_post_load_bufs;
 299        }
 300
 301        if (!kexec_on_panic) {
 302                image->swap_page = kimage_alloc_control_pages(image, 0);
 303                if (!image->swap_page) {
 304                        pr_err("Could not allocate swap buffer\n");
 305                        goto out_free_control_pages;
 306                }
 307        }
 308
 309        *rimage = image;
 310        return 0;
 311out_free_control_pages:
 312        kimage_free_page_list(&image->control_pages);
 313out_free_post_load_bufs:
 314        kimage_file_post_load_cleanup(image);
 315out_free_image:
 316        kfree(image);
 317        return ret;
 318}
 319
 320SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 321                unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 322                unsigned long, flags)
 323{
 324        int ret = 0, i;
 325        struct kimage **dest_image, *image;
 326
 327        /* We only trust the superuser with rebooting the system. */
 328        if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 329                return -EPERM;
 330
 331        /* Make sure we have a legal set of flags */
 332        if (flags != (flags & KEXEC_FILE_FLAGS))
 333                return -EINVAL;
 334
 335        image = NULL;
 336
 337        if (!mutex_trylock(&kexec_mutex))
 338                return -EBUSY;
 339
 340        dest_image = &kexec_image;
 341        if (flags & KEXEC_FILE_ON_CRASH) {
 342                dest_image = &kexec_crash_image;
 343                if (kexec_crash_image)
 344                        arch_kexec_unprotect_crashkres();
 345        }
 346
 347        if (flags & KEXEC_FILE_UNLOAD)
 348                goto exchange;
 349
 350        /*
 351         * In case of crash, new kernel gets loaded in reserved region. It is
 352         * same memory where old crash kernel might be loaded. Free any
 353         * current crash dump kernel before we corrupt it.
 354         */
 355        if (flags & KEXEC_FILE_ON_CRASH)
 356                kimage_free(xchg(&kexec_crash_image, NULL));
 357
 358        ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 359                                     cmdline_len, flags);
 360        if (ret)
 361                goto out;
 362
 363        ret = machine_kexec_prepare(image);
 364        if (ret)
 365                goto out;
 366
 367        /*
 368         * Some architecture(like S390) may touch the crash memory before
 369         * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
 370         */
 371        ret = kimage_crash_copy_vmcoreinfo(image);
 372        if (ret)
 373                goto out;
 374
 375        ret = kexec_calculate_store_digests(image);
 376        if (ret)
 377                goto out;
 378
 379        for (i = 0; i < image->nr_segments; i++) {
 380                struct kexec_segment *ksegment;
 381
 382                ksegment = &image->segment[i];
 383                pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 384                         i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 385                         ksegment->memsz);
 386
 387                ret = kimage_load_segment(image, &image->segment[i]);
 388                if (ret)
 389                        goto out;
 390        }
 391
 392        kimage_terminate(image);
 393
 394        /*
 395         * Free up any temporary buffers allocated which are not needed
 396         * after image has been loaded
 397         */
 398        kimage_file_post_load_cleanup(image);
 399exchange:
 400        image = xchg(dest_image, image);
 401out:
 402        if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 403                arch_kexec_protect_crashkres();
 404
 405        mutex_unlock(&kexec_mutex);
 406        kimage_free(image);
 407        return ret;
 408}
 409
 410static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 411                                    struct kexec_buf *kbuf)
 412{
 413        struct kimage *image = kbuf->image;
 414        unsigned long temp_start, temp_end;
 415
 416        temp_end = min(end, kbuf->buf_max);
 417        temp_start = temp_end - kbuf->memsz;
 418
 419        do {
 420                /* align down start */
 421                temp_start = temp_start & (~(kbuf->buf_align - 1));
 422
 423                if (temp_start < start || temp_start < kbuf->buf_min)
 424                        return 0;
 425
 426                temp_end = temp_start + kbuf->memsz - 1;
 427
 428                /*
 429                 * Make sure this does not conflict with any of existing
 430                 * segments
 431                 */
 432                if (kimage_is_destination_range(image, temp_start, temp_end)) {
 433                        temp_start = temp_start - PAGE_SIZE;
 434                        continue;
 435                }
 436
 437                /* We found a suitable memory range */
 438                break;
 439        } while (1);
 440
 441        /* If we are here, we found a suitable memory range */
 442        kbuf->mem = temp_start;
 443
 444        /* Success, stop navigating through remaining System RAM ranges */
 445        return 1;
 446}
 447
 448static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 449                                     struct kexec_buf *kbuf)
 450{
 451        struct kimage *image = kbuf->image;
 452        unsigned long temp_start, temp_end;
 453
 454        temp_start = max(start, kbuf->buf_min);
 455
 456        do {
 457                temp_start = ALIGN(temp_start, kbuf->buf_align);
 458                temp_end = temp_start + kbuf->memsz - 1;
 459
 460                if (temp_end > end || temp_end > kbuf->buf_max)
 461                        return 0;
 462                /*
 463                 * Make sure this does not conflict with any of existing
 464                 * segments
 465                 */
 466                if (kimage_is_destination_range(image, temp_start, temp_end)) {
 467                        temp_start = temp_start + PAGE_SIZE;
 468                        continue;
 469                }
 470
 471                /* We found a suitable memory range */
 472                break;
 473        } while (1);
 474
 475        /* If we are here, we found a suitable memory range */
 476        kbuf->mem = temp_start;
 477
 478        /* Success, stop navigating through remaining System RAM ranges */
 479        return 1;
 480}
 481
 482static int locate_mem_hole_callback(struct resource *res, void *arg)
 483{
 484        struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 485        u64 start = res->start, end = res->end;
 486        unsigned long sz = end - start + 1;
 487
 488        /* Returning 0 will take to next memory range */
 489        if (sz < kbuf->memsz)
 490                return 0;
 491
 492        if (end < kbuf->buf_min || start > kbuf->buf_max)
 493                return 0;
 494
 495        /*
 496         * Allocate memory top down with-in ram range. Otherwise bottom up
 497         * allocation.
 498         */
 499        if (kbuf->top_down)
 500                return locate_mem_hole_top_down(start, end, kbuf);
 501        return locate_mem_hole_bottom_up(start, end, kbuf);
 502}
 503
 504#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
 505static int kexec_walk_memblock(struct kexec_buf *kbuf,
 506                               int (*func)(struct resource *, void *))
 507{
 508        int ret = 0;
 509        u64 i;
 510        phys_addr_t mstart, mend;
 511        struct resource res = { };
 512
 513        if (kbuf->image->type == KEXEC_TYPE_CRASH)
 514                return func(&crashk_res, kbuf);
 515
 516        if (kbuf->top_down) {
 517                for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 518                                                &mstart, &mend, NULL) {
 519                        /*
 520                         * In memblock, end points to the first byte after the
 521                         * range while in kexec, end points to the last byte
 522                         * in the range.
 523                         */
 524                        res.start = mstart;
 525                        res.end = mend - 1;
 526                        ret = func(&res, kbuf);
 527                        if (ret)
 528                                break;
 529                }
 530        } else {
 531                for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 532                                        &mstart, &mend, NULL) {
 533                        /*
 534                         * In memblock, end points to the first byte after the
 535                         * range while in kexec, end points to the last byte
 536                         * in the range.
 537                         */
 538                        res.start = mstart;
 539                        res.end = mend - 1;
 540                        ret = func(&res, kbuf);
 541                        if (ret)
 542                                break;
 543                }
 544        }
 545
 546        return ret;
 547}
 548#else
 549static int kexec_walk_memblock(struct kexec_buf *kbuf,
 550                               int (*func)(struct resource *, void *))
 551{
 552        return 0;
 553}
 554#endif
 555
 556/**
 557 * kexec_walk_resources - call func(data) on free memory regions
 558 * @kbuf:       Context info for the search. Also passed to @func.
 559 * @func:       Function to call for each memory region.
 560 *
 561 * Return: The memory walk will stop when func returns a non-zero value
 562 * and that value will be returned. If all free regions are visited without
 563 * func returning non-zero, then zero will be returned.
 564 */
 565static int kexec_walk_resources(struct kexec_buf *kbuf,
 566                                int (*func)(struct resource *, void *))
 567{
 568        if (kbuf->image->type == KEXEC_TYPE_CRASH)
 569                return walk_iomem_res_desc(crashk_res.desc,
 570                                           IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 571                                           crashk_res.start, crashk_res.end,
 572                                           kbuf, func);
 573        else
 574                return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 575}
 576
 577/**
 578 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 579 * @kbuf:       Parameters for the memory search.
 580 *
 581 * On success, kbuf->mem will have the start address of the memory region found.
 582 *
 583 * Return: 0 on success, negative errno on error.
 584 */
 585int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 586{
 587        int ret;
 588
 589        /* Arch knows where to place */
 590        if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
 591                return 0;
 592
 593        if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
 594                ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
 595        else
 596                ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
 597
 598        return ret == 1 ? 0 : -EADDRNOTAVAIL;
 599}
 600
 601/**
 602 * kexec_add_buffer - place a buffer in a kexec segment
 603 * @kbuf:       Buffer contents and memory parameters.
 604 *
 605 * This function assumes that kexec_mutex is held.
 606 * On successful return, @kbuf->mem will have the physical address of
 607 * the buffer in memory.
 608 *
 609 * Return: 0 on success, negative errno on error.
 610 */
 611int kexec_add_buffer(struct kexec_buf *kbuf)
 612{
 613
 614        struct kexec_segment *ksegment;
 615        int ret;
 616
 617        /* Currently adding segment this way is allowed only in file mode */
 618        if (!kbuf->image->file_mode)
 619                return -EINVAL;
 620
 621        if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 622                return -EINVAL;
 623
 624        /*
 625         * Make sure we are not trying to add buffer after allocating
 626         * control pages. All segments need to be placed first before
 627         * any control pages are allocated. As control page allocation
 628         * logic goes through list of segments to make sure there are
 629         * no destination overlaps.
 630         */
 631        if (!list_empty(&kbuf->image->control_pages)) {
 632                WARN_ON(1);
 633                return -EINVAL;
 634        }
 635
 636        /* Ensure minimum alignment needed for segments. */
 637        kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 638        kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 639
 640        /* Walk the RAM ranges and allocate a suitable range for the buffer */
 641        ret = kexec_locate_mem_hole(kbuf);
 642        if (ret)
 643                return ret;
 644
 645        /* Found a suitable memory range */
 646        ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 647        ksegment->kbuf = kbuf->buffer;
 648        ksegment->bufsz = kbuf->bufsz;
 649        ksegment->mem = kbuf->mem;
 650        ksegment->memsz = kbuf->memsz;
 651        kbuf->image->nr_segments++;
 652        return 0;
 653}
 654
 655/* Calculate and store the digest of segments */
 656static int kexec_calculate_store_digests(struct kimage *image)
 657{
 658        struct crypto_shash *tfm;
 659        struct shash_desc *desc;
 660        int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 661        size_t desc_size, nullsz;
 662        char *digest;
 663        void *zero_buf;
 664        struct kexec_sha_region *sha_regions;
 665        struct purgatory_info *pi = &image->purgatory_info;
 666
 667        if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
 668                return 0;
 669
 670        zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 671        zero_buf_sz = PAGE_SIZE;
 672
 673        tfm = crypto_alloc_shash("sha256", 0, 0);
 674        if (IS_ERR(tfm)) {
 675                ret = PTR_ERR(tfm);
 676                goto out;
 677        }
 678
 679        desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 680        desc = kzalloc(desc_size, GFP_KERNEL);
 681        if (!desc) {
 682                ret = -ENOMEM;
 683                goto out_free_tfm;
 684        }
 685
 686        sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 687        sha_regions = vzalloc(sha_region_sz);
 688        if (!sha_regions)
 689                goto out_free_desc;
 690
 691        desc->tfm   = tfm;
 692
 693        ret = crypto_shash_init(desc);
 694        if (ret < 0)
 695                goto out_free_sha_regions;
 696
 697        digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 698        if (!digest) {
 699                ret = -ENOMEM;
 700                goto out_free_sha_regions;
 701        }
 702
 703        for (j = i = 0; i < image->nr_segments; i++) {
 704                struct kexec_segment *ksegment;
 705
 706                ksegment = &image->segment[i];
 707                /*
 708                 * Skip purgatory as it will be modified once we put digest
 709                 * info in purgatory.
 710                 */
 711                if (ksegment->kbuf == pi->purgatory_buf)
 712                        continue;
 713
 714                ret = crypto_shash_update(desc, ksegment->kbuf,
 715                                          ksegment->bufsz);
 716                if (ret)
 717                        break;
 718
 719                /*
 720                 * Assume rest of the buffer is filled with zero and
 721                 * update digest accordingly.
 722                 */
 723                nullsz = ksegment->memsz - ksegment->bufsz;
 724                while (nullsz) {
 725                        unsigned long bytes = nullsz;
 726
 727                        if (bytes > zero_buf_sz)
 728                                bytes = zero_buf_sz;
 729                        ret = crypto_shash_update(desc, zero_buf, bytes);
 730                        if (ret)
 731                                break;
 732                        nullsz -= bytes;
 733                }
 734
 735                if (ret)
 736                        break;
 737
 738                sha_regions[j].start = ksegment->mem;
 739                sha_regions[j].len = ksegment->memsz;
 740                j++;
 741        }
 742
 743        if (!ret) {
 744                ret = crypto_shash_final(desc, digest);
 745                if (ret)
 746                        goto out_free_digest;
 747                ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
 748                                                     sha_regions, sha_region_sz, 0);
 749                if (ret)
 750                        goto out_free_digest;
 751
 752                ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
 753                                                     digest, SHA256_DIGEST_SIZE, 0);
 754                if (ret)
 755                        goto out_free_digest;
 756        }
 757
 758out_free_digest:
 759        kfree(digest);
 760out_free_sha_regions:
 761        vfree(sha_regions);
 762out_free_desc:
 763        kfree(desc);
 764out_free_tfm:
 765        kfree(tfm);
 766out:
 767        return ret;
 768}
 769
 770#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
 771/*
 772 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 773 * @pi:         Purgatory to be loaded.
 774 * @kbuf:       Buffer to setup.
 775 *
 776 * Allocates the memory needed for the buffer. Caller is responsible to free
 777 * the memory after use.
 778 *
 779 * Return: 0 on success, negative errno on error.
 780 */
 781static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
 782                                      struct kexec_buf *kbuf)
 783{
 784        const Elf_Shdr *sechdrs;
 785        unsigned long bss_align;
 786        unsigned long bss_sz;
 787        unsigned long align;
 788        int i, ret;
 789
 790        sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 791        kbuf->buf_align = bss_align = 1;
 792        kbuf->bufsz = bss_sz = 0;
 793
 794        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 795                if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 796                        continue;
 797
 798                align = sechdrs[i].sh_addralign;
 799                if (sechdrs[i].sh_type != SHT_NOBITS) {
 800                        if (kbuf->buf_align < align)
 801                                kbuf->buf_align = align;
 802                        kbuf->bufsz = ALIGN(kbuf->bufsz, align);
 803                        kbuf->bufsz += sechdrs[i].sh_size;
 804                } else {
 805                        if (bss_align < align)
 806                                bss_align = align;
 807                        bss_sz = ALIGN(bss_sz, align);
 808                        bss_sz += sechdrs[i].sh_size;
 809                }
 810        }
 811        kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
 812        kbuf->memsz = kbuf->bufsz + bss_sz;
 813        if (kbuf->buf_align < bss_align)
 814                kbuf->buf_align = bss_align;
 815
 816        kbuf->buffer = vzalloc(kbuf->bufsz);
 817        if (!kbuf->buffer)
 818                return -ENOMEM;
 819        pi->purgatory_buf = kbuf->buffer;
 820
 821        ret = kexec_add_buffer(kbuf);
 822        if (ret)
 823                goto out;
 824
 825        return 0;
 826out:
 827        vfree(pi->purgatory_buf);
 828        pi->purgatory_buf = NULL;
 829        return ret;
 830}
 831
 832/*
 833 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 834 * @pi:         Purgatory to be loaded.
 835 * @kbuf:       Buffer prepared to store purgatory.
 836 *
 837 * Allocates the memory needed for the buffer. Caller is responsible to free
 838 * the memory after use.
 839 *
 840 * Return: 0 on success, negative errno on error.
 841 */
 842static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
 843                                         struct kexec_buf *kbuf)
 844{
 845        unsigned long bss_addr;
 846        unsigned long offset;
 847        Elf_Shdr *sechdrs;
 848        int i;
 849
 850        /*
 851         * The section headers in kexec_purgatory are read-only. In order to
 852         * have them modifiable make a temporary copy.
 853         */
 854        sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
 855        if (!sechdrs)
 856                return -ENOMEM;
 857        memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
 858               pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 859        pi->sechdrs = sechdrs;
 860
 861        offset = 0;
 862        bss_addr = kbuf->mem + kbuf->bufsz;
 863        kbuf->image->start = pi->ehdr->e_entry;
 864
 865        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 866                unsigned long align;
 867                void *src, *dst;
 868
 869                if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 870                        continue;
 871
 872                align = sechdrs[i].sh_addralign;
 873                if (sechdrs[i].sh_type == SHT_NOBITS) {
 874                        bss_addr = ALIGN(bss_addr, align);
 875                        sechdrs[i].sh_addr = bss_addr;
 876                        bss_addr += sechdrs[i].sh_size;
 877                        continue;
 878                }
 879
 880                offset = ALIGN(offset, align);
 881                if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
 882                    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
 883                    pi->ehdr->e_entry < (sechdrs[i].sh_addr
 884                                         + sechdrs[i].sh_size)) {
 885                        kbuf->image->start -= sechdrs[i].sh_addr;
 886                        kbuf->image->start += kbuf->mem + offset;
 887                }
 888
 889                src = (void *)pi->ehdr + sechdrs[i].sh_offset;
 890                dst = pi->purgatory_buf + offset;
 891                memcpy(dst, src, sechdrs[i].sh_size);
 892
 893                sechdrs[i].sh_addr = kbuf->mem + offset;
 894                sechdrs[i].sh_offset = offset;
 895                offset += sechdrs[i].sh_size;
 896        }
 897
 898        return 0;
 899}
 900
 901static int kexec_apply_relocations(struct kimage *image)
 902{
 903        int i, ret;
 904        struct purgatory_info *pi = &image->purgatory_info;
 905        const Elf_Shdr *sechdrs;
 906
 907        sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 908
 909        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 910                const Elf_Shdr *relsec;
 911                const Elf_Shdr *symtab;
 912                Elf_Shdr *section;
 913
 914                relsec = sechdrs + i;
 915
 916                if (relsec->sh_type != SHT_RELA &&
 917                    relsec->sh_type != SHT_REL)
 918                        continue;
 919
 920                /*
 921                 * For section of type SHT_RELA/SHT_REL,
 922                 * ->sh_link contains section header index of associated
 923                 * symbol table. And ->sh_info contains section header
 924                 * index of section to which relocations apply.
 925                 */
 926                if (relsec->sh_info >= pi->ehdr->e_shnum ||
 927                    relsec->sh_link >= pi->ehdr->e_shnum)
 928                        return -ENOEXEC;
 929
 930                section = pi->sechdrs + relsec->sh_info;
 931                symtab = sechdrs + relsec->sh_link;
 932
 933                if (!(section->sh_flags & SHF_ALLOC))
 934                        continue;
 935
 936                /*
 937                 * symtab->sh_link contain section header index of associated
 938                 * string table.
 939                 */
 940                if (symtab->sh_link >= pi->ehdr->e_shnum)
 941                        /* Invalid section number? */
 942                        continue;
 943
 944                /*
 945                 * Respective architecture needs to provide support for applying
 946                 * relocations of type SHT_RELA/SHT_REL.
 947                 */
 948                if (relsec->sh_type == SHT_RELA)
 949                        ret = arch_kexec_apply_relocations_add(pi, section,
 950                                                               relsec, symtab);
 951                else if (relsec->sh_type == SHT_REL)
 952                        ret = arch_kexec_apply_relocations(pi, section,
 953                                                           relsec, symtab);
 954                if (ret)
 955                        return ret;
 956        }
 957
 958        return 0;
 959}
 960
 961/*
 962 * kexec_load_purgatory - Load and relocate the purgatory object.
 963 * @image:      Image to add the purgatory to.
 964 * @kbuf:       Memory parameters to use.
 965 *
 966 * Allocates the memory needed for image->purgatory_info.sechdrs and
 967 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
 968 * to free the memory after use.
 969 *
 970 * Return: 0 on success, negative errno on error.
 971 */
 972int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
 973{
 974        struct purgatory_info *pi = &image->purgatory_info;
 975        int ret;
 976
 977        if (kexec_purgatory_size <= 0)
 978                return -EINVAL;
 979
 980        pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
 981
 982        ret = kexec_purgatory_setup_kbuf(pi, kbuf);
 983        if (ret)
 984                return ret;
 985
 986        ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
 987        if (ret)
 988                goto out_free_kbuf;
 989
 990        ret = kexec_apply_relocations(image);
 991        if (ret)
 992                goto out;
 993
 994        return 0;
 995out:
 996        vfree(pi->sechdrs);
 997        pi->sechdrs = NULL;
 998out_free_kbuf:
 999        vfree(pi->purgatory_buf);
1000        pi->purgatory_buf = NULL;
1001        return ret;
1002}
1003
1004/*
1005 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1006 * @pi:         Purgatory to search in.
1007 * @name:       Name of the symbol.
1008 *
1009 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1010 */
1011static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1012                                                  const char *name)
1013{
1014        const Elf_Shdr *sechdrs;
1015        const Elf_Ehdr *ehdr;
1016        const Elf_Sym *syms;
1017        const char *strtab;
1018        int i, k;
1019
1020        if (!pi->ehdr)
1021                return NULL;
1022
1023        ehdr = pi->ehdr;
1024        sechdrs = (void *)ehdr + ehdr->e_shoff;
1025
1026        for (i = 0; i < ehdr->e_shnum; i++) {
1027                if (sechdrs[i].sh_type != SHT_SYMTAB)
1028                        continue;
1029
1030                if (sechdrs[i].sh_link >= ehdr->e_shnum)
1031                        /* Invalid strtab section number */
1032                        continue;
1033                strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1034                syms = (void *)ehdr + sechdrs[i].sh_offset;
1035
1036                /* Go through symbols for a match */
1037                for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1038                        if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1039                                continue;
1040
1041                        if (strcmp(strtab + syms[k].st_name, name) != 0)
1042                                continue;
1043
1044                        if (syms[k].st_shndx == SHN_UNDEF ||
1045                            syms[k].st_shndx >= ehdr->e_shnum) {
1046                                pr_debug("Symbol: %s has bad section index %d.\n",
1047                                                name, syms[k].st_shndx);
1048                                return NULL;
1049                        }
1050
1051                        /* Found the symbol we are looking for */
1052                        return &syms[k];
1053                }
1054        }
1055
1056        return NULL;
1057}
1058
1059void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1060{
1061        struct purgatory_info *pi = &image->purgatory_info;
1062        const Elf_Sym *sym;
1063        Elf_Shdr *sechdr;
1064
1065        sym = kexec_purgatory_find_symbol(pi, name);
1066        if (!sym)
1067                return ERR_PTR(-EINVAL);
1068
1069        sechdr = &pi->sechdrs[sym->st_shndx];
1070
1071        /*
1072         * Returns the address where symbol will finally be loaded after
1073         * kexec_load_segment()
1074         */
1075        return (void *)(sechdr->sh_addr + sym->st_value);
1076}
1077
1078/*
1079 * Get or set value of a symbol. If "get_value" is true, symbol value is
1080 * returned in buf otherwise symbol value is set based on value in buf.
1081 */
1082int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1083                                   void *buf, unsigned int size, bool get_value)
1084{
1085        struct purgatory_info *pi = &image->purgatory_info;
1086        const Elf_Sym *sym;
1087        Elf_Shdr *sec;
1088        char *sym_buf;
1089
1090        sym = kexec_purgatory_find_symbol(pi, name);
1091        if (!sym)
1092                return -EINVAL;
1093
1094        if (sym->st_size != size) {
1095                pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1096                       name, (unsigned long)sym->st_size, size);
1097                return -EINVAL;
1098        }
1099
1100        sec = pi->sechdrs + sym->st_shndx;
1101
1102        if (sec->sh_type == SHT_NOBITS) {
1103                pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1104                       get_value ? "get" : "set");
1105                return -EINVAL;
1106        }
1107
1108        sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1109
1110        if (get_value)
1111                memcpy((void *)buf, sym_buf, size);
1112        else
1113                memcpy((void *)sym_buf, buf, size);
1114
1115        return 0;
1116}
1117#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1118
1119int crash_exclude_mem_range(struct crash_mem *mem,
1120                            unsigned long long mstart, unsigned long long mend)
1121{
1122        int i, j;
1123        unsigned long long start, end;
1124        struct crash_mem_range temp_range = {0, 0};
1125
1126        for (i = 0; i < mem->nr_ranges; i++) {
1127                start = mem->ranges[i].start;
1128                end = mem->ranges[i].end;
1129
1130                if (mstart > end || mend < start)
1131                        continue;
1132
1133                /* Truncate any area outside of range */
1134                if (mstart < start)
1135                        mstart = start;
1136                if (mend > end)
1137                        mend = end;
1138
1139                /* Found completely overlapping range */
1140                if (mstart == start && mend == end) {
1141                        mem->ranges[i].start = 0;
1142                        mem->ranges[i].end = 0;
1143                        if (i < mem->nr_ranges - 1) {
1144                                /* Shift rest of the ranges to left */
1145                                for (j = i; j < mem->nr_ranges - 1; j++) {
1146                                        mem->ranges[j].start =
1147                                                mem->ranges[j+1].start;
1148                                        mem->ranges[j].end =
1149                                                        mem->ranges[j+1].end;
1150                                }
1151                        }
1152                        mem->nr_ranges--;
1153                        return 0;
1154                }
1155
1156                if (mstart > start && mend < end) {
1157                        /* Split original range */
1158                        mem->ranges[i].end = mstart - 1;
1159                        temp_range.start = mend + 1;
1160                        temp_range.end = end;
1161                } else if (mstart != start)
1162                        mem->ranges[i].end = mstart - 1;
1163                else
1164                        mem->ranges[i].start = mend + 1;
1165                break;
1166        }
1167
1168        /* If a split happened, add the split to array */
1169        if (!temp_range.end)
1170                return 0;
1171
1172        /* Split happened */
1173        if (i == mem->max_nr_ranges - 1)
1174                return -ENOMEM;
1175
1176        /* Location where new range should go */
1177        j = i + 1;
1178        if (j < mem->nr_ranges) {
1179                /* Move over all ranges one slot towards the end */
1180                for (i = mem->nr_ranges - 1; i >= j; i--)
1181                        mem->ranges[i + 1] = mem->ranges[i];
1182        }
1183
1184        mem->ranges[j].start = temp_range.start;
1185        mem->ranges[j].end = temp_range.end;
1186        mem->nr_ranges++;
1187        return 0;
1188}
1189
1190int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1191                          void **addr, unsigned long *sz)
1192{
1193        Elf64_Ehdr *ehdr;
1194        Elf64_Phdr *phdr;
1195        unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1196        unsigned char *buf;
1197        unsigned int cpu, i;
1198        unsigned long long notes_addr;
1199        unsigned long mstart, mend;
1200
1201        /* extra phdr for vmcoreinfo elf note */
1202        nr_phdr = nr_cpus + 1;
1203        nr_phdr += mem->nr_ranges;
1204
1205        /*
1206         * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1207         * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1208         * I think this is required by tools like gdb. So same physical
1209         * memory will be mapped in two elf headers. One will contain kernel
1210         * text virtual addresses and other will have __va(physical) addresses.
1211         */
1212
1213        nr_phdr++;
1214        elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1215        elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1216
1217        buf = vzalloc(elf_sz);
1218        if (!buf)
1219                return -ENOMEM;
1220
1221        ehdr = (Elf64_Ehdr *)buf;
1222        phdr = (Elf64_Phdr *)(ehdr + 1);
1223        memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1224        ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1225        ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1226        ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1227        ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1228        memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1229        ehdr->e_type = ET_CORE;
1230        ehdr->e_machine = ELF_ARCH;
1231        ehdr->e_version = EV_CURRENT;
1232        ehdr->e_phoff = sizeof(Elf64_Ehdr);
1233        ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1234        ehdr->e_phentsize = sizeof(Elf64_Phdr);
1235
1236        /* Prepare one phdr of type PT_NOTE for each present cpu */
1237        for_each_present_cpu(cpu) {
1238                phdr->p_type = PT_NOTE;
1239                notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1240                phdr->p_offset = phdr->p_paddr = notes_addr;
1241                phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1242                (ehdr->e_phnum)++;
1243                phdr++;
1244        }
1245
1246        /* Prepare one PT_NOTE header for vmcoreinfo */
1247        phdr->p_type = PT_NOTE;
1248        phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1249        phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1250        (ehdr->e_phnum)++;
1251        phdr++;
1252
1253        /* Prepare PT_LOAD type program header for kernel text region */
1254        if (kernel_map) {
1255                phdr->p_type = PT_LOAD;
1256                phdr->p_flags = PF_R|PF_W|PF_X;
1257                phdr->p_vaddr = (Elf64_Addr)_text;
1258                phdr->p_filesz = phdr->p_memsz = _end - _text;
1259                phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1260                ehdr->e_phnum++;
1261                phdr++;
1262        }
1263
1264        /* Go through all the ranges in mem->ranges[] and prepare phdr */
1265        for (i = 0; i < mem->nr_ranges; i++) {
1266                mstart = mem->ranges[i].start;
1267                mend = mem->ranges[i].end;
1268
1269                phdr->p_type = PT_LOAD;
1270                phdr->p_flags = PF_R|PF_W|PF_X;
1271                phdr->p_offset  = mstart;
1272
1273                phdr->p_paddr = mstart;
1274                phdr->p_vaddr = (unsigned long long) __va(mstart);
1275                phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1276                phdr->p_align = 0;
1277                ehdr->e_phnum++;
1278                phdr++;
1279                pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1280                        phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1281                        ehdr->e_phnum, phdr->p_offset);
1282        }
1283
1284        *addr = buf;
1285        *sz = elf_sz;
1286        return 0;
1287}
1288