linux/kernel/locking/mutex.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/locking/mutex.c
   4 *
   5 * Mutexes: blocking mutual exclusion locks
   6 *
   7 * Started by Ingo Molnar:
   8 *
   9 *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  10 *
  11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
  12 * David Howells for suggestions and improvements.
  13 *
  14 *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
  15 *    from the -rt tree, where it was originally implemented for rtmutexes
  16 *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
  17 *    and Sven Dietrich.
  18 *
  19 * Also see Documentation/locking/mutex-design.rst.
  20 */
  21#include <linux/mutex.h>
  22#include <linux/ww_mutex.h>
  23#include <linux/sched/signal.h>
  24#include <linux/sched/rt.h>
  25#include <linux/sched/wake_q.h>
  26#include <linux/sched/debug.h>
  27#include <linux/export.h>
  28#include <linux/spinlock.h>
  29#include <linux/interrupt.h>
  30#include <linux/debug_locks.h>
  31#include <linux/osq_lock.h>
  32
  33#ifdef CONFIG_DEBUG_MUTEXES
  34# include "mutex-debug.h"
  35#else
  36# include "mutex.h"
  37#endif
  38
  39void
  40__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
  41{
  42        atomic_long_set(&lock->owner, 0);
  43        spin_lock_init(&lock->wait_lock);
  44        INIT_LIST_HEAD(&lock->wait_list);
  45#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  46        osq_lock_init(&lock->osq);
  47#endif
  48
  49        debug_mutex_init(lock, name, key);
  50}
  51EXPORT_SYMBOL(__mutex_init);
  52
  53/*
  54 * @owner: contains: 'struct task_struct *' to the current lock owner,
  55 * NULL means not owned. Since task_struct pointers are aligned at
  56 * at least L1_CACHE_BYTES, we have low bits to store extra state.
  57 *
  58 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
  59 * Bit1 indicates unlock needs to hand the lock to the top-waiter
  60 * Bit2 indicates handoff has been done and we're waiting for pickup.
  61 */
  62#define MUTEX_FLAG_WAITERS      0x01
  63#define MUTEX_FLAG_HANDOFF      0x02
  64#define MUTEX_FLAG_PICKUP       0x04
  65
  66#define MUTEX_FLAGS             0x07
  67
  68static inline struct task_struct *__owner_task(unsigned long owner)
  69{
  70        return (struct task_struct *)(owner & ~MUTEX_FLAGS);
  71}
  72
  73static inline unsigned long __owner_flags(unsigned long owner)
  74{
  75        return owner & MUTEX_FLAGS;
  76}
  77
  78/*
  79 * Trylock variant that retuns the owning task on failure.
  80 */
  81static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
  82{
  83        unsigned long owner, curr = (unsigned long)current;
  84
  85        owner = atomic_long_read(&lock->owner);
  86        for (;;) { /* must loop, can race against a flag */
  87                unsigned long old, flags = __owner_flags(owner);
  88                unsigned long task = owner & ~MUTEX_FLAGS;
  89
  90                if (task) {
  91                        if (likely(task != curr))
  92                                break;
  93
  94                        if (likely(!(flags & MUTEX_FLAG_PICKUP)))
  95                                break;
  96
  97                        flags &= ~MUTEX_FLAG_PICKUP;
  98                } else {
  99#ifdef CONFIG_DEBUG_MUTEXES
 100                        DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
 101#endif
 102                }
 103
 104                /*
 105                 * We set the HANDOFF bit, we must make sure it doesn't live
 106                 * past the point where we acquire it. This would be possible
 107                 * if we (accidentally) set the bit on an unlocked mutex.
 108                 */
 109                flags &= ~MUTEX_FLAG_HANDOFF;
 110
 111                old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
 112                if (old == owner)
 113                        return NULL;
 114
 115                owner = old;
 116        }
 117
 118        return __owner_task(owner);
 119}
 120
 121/*
 122 * Actual trylock that will work on any unlocked state.
 123 */
 124static inline bool __mutex_trylock(struct mutex *lock)
 125{
 126        return !__mutex_trylock_or_owner(lock);
 127}
 128
 129#ifndef CONFIG_DEBUG_LOCK_ALLOC
 130/*
 131 * Lockdep annotations are contained to the slow paths for simplicity.
 132 * There is nothing that would stop spreading the lockdep annotations outwards
 133 * except more code.
 134 */
 135
 136/*
 137 * Optimistic trylock that only works in the uncontended case. Make sure to
 138 * follow with a __mutex_trylock() before failing.
 139 */
 140static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
 141{
 142        unsigned long curr = (unsigned long)current;
 143        unsigned long zero = 0UL;
 144
 145        if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
 146                return true;
 147
 148        return false;
 149}
 150
 151static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
 152{
 153        unsigned long curr = (unsigned long)current;
 154
 155        if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
 156                return true;
 157
 158        return false;
 159}
 160#endif
 161
 162static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
 163{
 164        atomic_long_or(flag, &lock->owner);
 165}
 166
 167static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
 168{
 169        atomic_long_andnot(flag, &lock->owner);
 170}
 171
 172static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
 173{
 174        return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
 175}
 176
 177/*
 178 * Add @waiter to a given location in the lock wait_list and set the
 179 * FLAG_WAITERS flag if it's the first waiter.
 180 */
 181static void __sched
 182__mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
 183                   struct list_head *list)
 184{
 185        debug_mutex_add_waiter(lock, waiter, current);
 186
 187        list_add_tail(&waiter->list, list);
 188        if (__mutex_waiter_is_first(lock, waiter))
 189                __mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
 190}
 191
 192/*
 193 * Give up ownership to a specific task, when @task = NULL, this is equivalent
 194 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves
 195 * WAITERS. Provides RELEASE semantics like a regular unlock, the
 196 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
 197 */
 198static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
 199{
 200        unsigned long owner = atomic_long_read(&lock->owner);
 201
 202        for (;;) {
 203                unsigned long old, new;
 204
 205#ifdef CONFIG_DEBUG_MUTEXES
 206                DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
 207                DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
 208#endif
 209
 210                new = (owner & MUTEX_FLAG_WAITERS);
 211                new |= (unsigned long)task;
 212                if (task)
 213                        new |= MUTEX_FLAG_PICKUP;
 214
 215                old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
 216                if (old == owner)
 217                        break;
 218
 219                owner = old;
 220        }
 221}
 222
 223#ifndef CONFIG_DEBUG_LOCK_ALLOC
 224/*
 225 * We split the mutex lock/unlock logic into separate fastpath and
 226 * slowpath functions, to reduce the register pressure on the fastpath.
 227 * We also put the fastpath first in the kernel image, to make sure the
 228 * branch is predicted by the CPU as default-untaken.
 229 */
 230static void __sched __mutex_lock_slowpath(struct mutex *lock);
 231
 232/**
 233 * mutex_lock - acquire the mutex
 234 * @lock: the mutex to be acquired
 235 *
 236 * Lock the mutex exclusively for this task. If the mutex is not
 237 * available right now, it will sleep until it can get it.
 238 *
 239 * The mutex must later on be released by the same task that
 240 * acquired it. Recursive locking is not allowed. The task
 241 * may not exit without first unlocking the mutex. Also, kernel
 242 * memory where the mutex resides must not be freed with
 243 * the mutex still locked. The mutex must first be initialized
 244 * (or statically defined) before it can be locked. memset()-ing
 245 * the mutex to 0 is not allowed.
 246 *
 247 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
 248 * checks that will enforce the restrictions and will also do
 249 * deadlock debugging)
 250 *
 251 * This function is similar to (but not equivalent to) down().
 252 */
 253void __sched mutex_lock(struct mutex *lock)
 254{
 255        might_sleep();
 256
 257        if (!__mutex_trylock_fast(lock))
 258                __mutex_lock_slowpath(lock);
 259}
 260EXPORT_SYMBOL(mutex_lock);
 261#endif
 262
 263/*
 264 * Wait-Die:
 265 *   The newer transactions are killed when:
 266 *     It (the new transaction) makes a request for a lock being held
 267 *     by an older transaction.
 268 *
 269 * Wound-Wait:
 270 *   The newer transactions are wounded when:
 271 *     An older transaction makes a request for a lock being held by
 272 *     the newer transaction.
 273 */
 274
 275/*
 276 * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired
 277 * it.
 278 */
 279static __always_inline void
 280ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
 281{
 282#ifdef CONFIG_DEBUG_MUTEXES
 283        /*
 284         * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
 285         * but released with a normal mutex_unlock in this call.
 286         *
 287         * This should never happen, always use ww_mutex_unlock.
 288         */
 289        DEBUG_LOCKS_WARN_ON(ww->ctx);
 290
 291        /*
 292         * Not quite done after calling ww_acquire_done() ?
 293         */
 294        DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
 295
 296        if (ww_ctx->contending_lock) {
 297                /*
 298                 * After -EDEADLK you tried to
 299                 * acquire a different ww_mutex? Bad!
 300                 */
 301                DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
 302
 303                /*
 304                 * You called ww_mutex_lock after receiving -EDEADLK,
 305                 * but 'forgot' to unlock everything else first?
 306                 */
 307                DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
 308                ww_ctx->contending_lock = NULL;
 309        }
 310
 311        /*
 312         * Naughty, using a different class will lead to undefined behavior!
 313         */
 314        DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
 315#endif
 316        ww_ctx->acquired++;
 317        ww->ctx = ww_ctx;
 318}
 319
 320/*
 321 * Determine if context @a is 'after' context @b. IOW, @a is a younger
 322 * transaction than @b and depending on algorithm either needs to wait for
 323 * @b or die.
 324 */
 325static inline bool __sched
 326__ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
 327{
 328
 329        return (signed long)(a->stamp - b->stamp) > 0;
 330}
 331
 332/*
 333 * Wait-Die; wake a younger waiter context (when locks held) such that it can
 334 * die.
 335 *
 336 * Among waiters with context, only the first one can have other locks acquired
 337 * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and
 338 * __ww_mutex_check_kill() wake any but the earliest context.
 339 */
 340static bool __sched
 341__ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter,
 342               struct ww_acquire_ctx *ww_ctx)
 343{
 344        if (!ww_ctx->is_wait_die)
 345                return false;
 346
 347        if (waiter->ww_ctx->acquired > 0 &&
 348                        __ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) {
 349                debug_mutex_wake_waiter(lock, waiter);
 350                wake_up_process(waiter->task);
 351        }
 352
 353        return true;
 354}
 355
 356/*
 357 * Wound-Wait; wound a younger @hold_ctx if it holds the lock.
 358 *
 359 * Wound the lock holder if there are waiters with older transactions than
 360 * the lock holders. Even if multiple waiters may wound the lock holder,
 361 * it's sufficient that only one does.
 362 */
 363static bool __ww_mutex_wound(struct mutex *lock,
 364                             struct ww_acquire_ctx *ww_ctx,
 365                             struct ww_acquire_ctx *hold_ctx)
 366{
 367        struct task_struct *owner = __mutex_owner(lock);
 368
 369        lockdep_assert_held(&lock->wait_lock);
 370
 371        /*
 372         * Possible through __ww_mutex_add_waiter() when we race with
 373         * ww_mutex_set_context_fastpath(). In that case we'll get here again
 374         * through __ww_mutex_check_waiters().
 375         */
 376        if (!hold_ctx)
 377                return false;
 378
 379        /*
 380         * Can have !owner because of __mutex_unlock_slowpath(), but if owner,
 381         * it cannot go away because we'll have FLAG_WAITERS set and hold
 382         * wait_lock.
 383         */
 384        if (!owner)
 385                return false;
 386
 387        if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) {
 388                hold_ctx->wounded = 1;
 389
 390                /*
 391                 * wake_up_process() paired with set_current_state()
 392                 * inserts sufficient barriers to make sure @owner either sees
 393                 * it's wounded in __ww_mutex_check_kill() or has a
 394                 * wakeup pending to re-read the wounded state.
 395                 */
 396                if (owner != current)
 397                        wake_up_process(owner);
 398
 399                return true;
 400        }
 401
 402        return false;
 403}
 404
 405/*
 406 * We just acquired @lock under @ww_ctx, if there are later contexts waiting
 407 * behind us on the wait-list, check if they need to die, or wound us.
 408 *
 409 * See __ww_mutex_add_waiter() for the list-order construction; basically the
 410 * list is ordered by stamp, smallest (oldest) first.
 411 *
 412 * This relies on never mixing wait-die/wound-wait on the same wait-list;
 413 * which is currently ensured by that being a ww_class property.
 414 *
 415 * The current task must not be on the wait list.
 416 */
 417static void __sched
 418__ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
 419{
 420        struct mutex_waiter *cur;
 421
 422        lockdep_assert_held(&lock->wait_lock);
 423
 424        list_for_each_entry(cur, &lock->wait_list, list) {
 425                if (!cur->ww_ctx)
 426                        continue;
 427
 428                if (__ww_mutex_die(lock, cur, ww_ctx) ||
 429                    __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx))
 430                        break;
 431        }
 432}
 433
 434/*
 435 * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx
 436 * and wake up any waiters so they can recheck.
 437 */
 438static __always_inline void
 439ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 440{
 441        ww_mutex_lock_acquired(lock, ctx);
 442
 443        /*
 444         * The lock->ctx update should be visible on all cores before
 445         * the WAITERS check is done, otherwise contended waiters might be
 446         * missed. The contended waiters will either see ww_ctx == NULL
 447         * and keep spinning, or it will acquire wait_lock, add itself
 448         * to waiter list and sleep.
 449         */
 450        smp_mb(); /* See comments above and below. */
 451
 452        /*
 453         * [W] ww->ctx = ctx        [W] MUTEX_FLAG_WAITERS
 454         *     MB                       MB
 455         * [R] MUTEX_FLAG_WAITERS   [R] ww->ctx
 456         *
 457         * The memory barrier above pairs with the memory barrier in
 458         * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx
 459         * and/or !empty list.
 460         */
 461        if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
 462                return;
 463
 464        /*
 465         * Uh oh, we raced in fastpath, check if any of the waiters need to
 466         * die or wound us.
 467         */
 468        spin_lock(&lock->base.wait_lock);
 469        __ww_mutex_check_waiters(&lock->base, ctx);
 470        spin_unlock(&lock->base.wait_lock);
 471}
 472
 473#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
 474
 475static inline
 476bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
 477                            struct mutex_waiter *waiter)
 478{
 479        struct ww_mutex *ww;
 480
 481        ww = container_of(lock, struct ww_mutex, base);
 482
 483        /*
 484         * If ww->ctx is set the contents are undefined, only
 485         * by acquiring wait_lock there is a guarantee that
 486         * they are not invalid when reading.
 487         *
 488         * As such, when deadlock detection needs to be
 489         * performed the optimistic spinning cannot be done.
 490         *
 491         * Check this in every inner iteration because we may
 492         * be racing against another thread's ww_mutex_lock.
 493         */
 494        if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
 495                return false;
 496
 497        /*
 498         * If we aren't on the wait list yet, cancel the spin
 499         * if there are waiters. We want  to avoid stealing the
 500         * lock from a waiter with an earlier stamp, since the
 501         * other thread may already own a lock that we also
 502         * need.
 503         */
 504        if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
 505                return false;
 506
 507        /*
 508         * Similarly, stop spinning if we are no longer the
 509         * first waiter.
 510         */
 511        if (waiter && !__mutex_waiter_is_first(lock, waiter))
 512                return false;
 513
 514        return true;
 515}
 516
 517/*
 518 * Look out! "owner" is an entirely speculative pointer access and not
 519 * reliable.
 520 *
 521 * "noinline" so that this function shows up on perf profiles.
 522 */
 523static noinline
 524bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
 525                         struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
 526{
 527        bool ret = true;
 528
 529        rcu_read_lock();
 530        while (__mutex_owner(lock) == owner) {
 531                /*
 532                 * Ensure we emit the owner->on_cpu, dereference _after_
 533                 * checking lock->owner still matches owner. If that fails,
 534                 * owner might point to freed memory. If it still matches,
 535                 * the rcu_read_lock() ensures the memory stays valid.
 536                 */
 537                barrier();
 538
 539                /*
 540                 * Use vcpu_is_preempted to detect lock holder preemption issue.
 541                 */
 542                if (!owner->on_cpu || need_resched() ||
 543                                vcpu_is_preempted(task_cpu(owner))) {
 544                        ret = false;
 545                        break;
 546                }
 547
 548                if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
 549                        ret = false;
 550                        break;
 551                }
 552
 553                cpu_relax();
 554        }
 555        rcu_read_unlock();
 556
 557        return ret;
 558}
 559
 560/*
 561 * Initial check for entering the mutex spinning loop
 562 */
 563static inline int mutex_can_spin_on_owner(struct mutex *lock)
 564{
 565        struct task_struct *owner;
 566        int retval = 1;
 567
 568        if (need_resched())
 569                return 0;
 570
 571        rcu_read_lock();
 572        owner = __mutex_owner(lock);
 573
 574        /*
 575         * As lock holder preemption issue, we both skip spinning if task is not
 576         * on cpu or its cpu is preempted
 577         */
 578        if (owner)
 579                retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
 580        rcu_read_unlock();
 581
 582        /*
 583         * If lock->owner is not set, the mutex has been released. Return true
 584         * such that we'll trylock in the spin path, which is a faster option
 585         * than the blocking slow path.
 586         */
 587        return retval;
 588}
 589
 590/*
 591 * Optimistic spinning.
 592 *
 593 * We try to spin for acquisition when we find that the lock owner
 594 * is currently running on a (different) CPU and while we don't
 595 * need to reschedule. The rationale is that if the lock owner is
 596 * running, it is likely to release the lock soon.
 597 *
 598 * The mutex spinners are queued up using MCS lock so that only one
 599 * spinner can compete for the mutex. However, if mutex spinning isn't
 600 * going to happen, there is no point in going through the lock/unlock
 601 * overhead.
 602 *
 603 * Returns true when the lock was taken, otherwise false, indicating
 604 * that we need to jump to the slowpath and sleep.
 605 *
 606 * The waiter flag is set to true if the spinner is a waiter in the wait
 607 * queue. The waiter-spinner will spin on the lock directly and concurrently
 608 * with the spinner at the head of the OSQ, if present, until the owner is
 609 * changed to itself.
 610 */
 611static __always_inline bool
 612mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
 613                      const bool use_ww_ctx, struct mutex_waiter *waiter)
 614{
 615        if (!waiter) {
 616                /*
 617                 * The purpose of the mutex_can_spin_on_owner() function is
 618                 * to eliminate the overhead of osq_lock() and osq_unlock()
 619                 * in case spinning isn't possible. As a waiter-spinner
 620                 * is not going to take OSQ lock anyway, there is no need
 621                 * to call mutex_can_spin_on_owner().
 622                 */
 623                if (!mutex_can_spin_on_owner(lock))
 624                        goto fail;
 625
 626                /*
 627                 * In order to avoid a stampede of mutex spinners trying to
 628                 * acquire the mutex all at once, the spinners need to take a
 629                 * MCS (queued) lock first before spinning on the owner field.
 630                 */
 631                if (!osq_lock(&lock->osq))
 632                        goto fail;
 633        }
 634
 635        for (;;) {
 636                struct task_struct *owner;
 637
 638                /* Try to acquire the mutex... */
 639                owner = __mutex_trylock_or_owner(lock);
 640                if (!owner)
 641                        break;
 642
 643                /*
 644                 * There's an owner, wait for it to either
 645                 * release the lock or go to sleep.
 646                 */
 647                if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
 648                        goto fail_unlock;
 649
 650                /*
 651                 * The cpu_relax() call is a compiler barrier which forces
 652                 * everything in this loop to be re-loaded. We don't need
 653                 * memory barriers as we'll eventually observe the right
 654                 * values at the cost of a few extra spins.
 655                 */
 656                cpu_relax();
 657        }
 658
 659        if (!waiter)
 660                osq_unlock(&lock->osq);
 661
 662        return true;
 663
 664
 665fail_unlock:
 666        if (!waiter)
 667                osq_unlock(&lock->osq);
 668
 669fail:
 670        /*
 671         * If we fell out of the spin path because of need_resched(),
 672         * reschedule now, before we try-lock the mutex. This avoids getting
 673         * scheduled out right after we obtained the mutex.
 674         */
 675        if (need_resched()) {
 676                /*
 677                 * We _should_ have TASK_RUNNING here, but just in case
 678                 * we do not, make it so, otherwise we might get stuck.
 679                 */
 680                __set_current_state(TASK_RUNNING);
 681                schedule_preempt_disabled();
 682        }
 683
 684        return false;
 685}
 686#else
 687static __always_inline bool
 688mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
 689                      const bool use_ww_ctx, struct mutex_waiter *waiter)
 690{
 691        return false;
 692}
 693#endif
 694
 695static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
 696
 697/**
 698 * mutex_unlock - release the mutex
 699 * @lock: the mutex to be released
 700 *
 701 * Unlock a mutex that has been locked by this task previously.
 702 *
 703 * This function must not be used in interrupt context. Unlocking
 704 * of a not locked mutex is not allowed.
 705 *
 706 * This function is similar to (but not equivalent to) up().
 707 */
 708void __sched mutex_unlock(struct mutex *lock)
 709{
 710#ifndef CONFIG_DEBUG_LOCK_ALLOC
 711        if (__mutex_unlock_fast(lock))
 712                return;
 713#endif
 714        __mutex_unlock_slowpath(lock, _RET_IP_);
 715}
 716EXPORT_SYMBOL(mutex_unlock);
 717
 718/**
 719 * ww_mutex_unlock - release the w/w mutex
 720 * @lock: the mutex to be released
 721 *
 722 * Unlock a mutex that has been locked by this task previously with any of the
 723 * ww_mutex_lock* functions (with or without an acquire context). It is
 724 * forbidden to release the locks after releasing the acquire context.
 725 *
 726 * This function must not be used in interrupt context. Unlocking
 727 * of a unlocked mutex is not allowed.
 728 */
 729void __sched ww_mutex_unlock(struct ww_mutex *lock)
 730{
 731        /*
 732         * The unlocking fastpath is the 0->1 transition from 'locked'
 733         * into 'unlocked' state:
 734         */
 735        if (lock->ctx) {
 736#ifdef CONFIG_DEBUG_MUTEXES
 737                DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
 738#endif
 739                if (lock->ctx->acquired > 0)
 740                        lock->ctx->acquired--;
 741                lock->ctx = NULL;
 742        }
 743
 744        mutex_unlock(&lock->base);
 745}
 746EXPORT_SYMBOL(ww_mutex_unlock);
 747
 748
 749static __always_inline int __sched
 750__ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
 751{
 752        if (ww_ctx->acquired > 0) {
 753#ifdef CONFIG_DEBUG_MUTEXES
 754                struct ww_mutex *ww;
 755
 756                ww = container_of(lock, struct ww_mutex, base);
 757                DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
 758                ww_ctx->contending_lock = ww;
 759#endif
 760                return -EDEADLK;
 761        }
 762
 763        return 0;
 764}
 765
 766
 767/*
 768 * Check the wound condition for the current lock acquire.
 769 *
 770 * Wound-Wait: If we're wounded, kill ourself.
 771 *
 772 * Wait-Die: If we're trying to acquire a lock already held by an older
 773 *           context, kill ourselves.
 774 *
 775 * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to
 776 * look at waiters before us in the wait-list.
 777 */
 778static inline int __sched
 779__ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter,
 780                      struct ww_acquire_ctx *ctx)
 781{
 782        struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
 783        struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
 784        struct mutex_waiter *cur;
 785
 786        if (ctx->acquired == 0)
 787                return 0;
 788
 789        if (!ctx->is_wait_die) {
 790                if (ctx->wounded)
 791                        return __ww_mutex_kill(lock, ctx);
 792
 793                return 0;
 794        }
 795
 796        if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx))
 797                return __ww_mutex_kill(lock, ctx);
 798
 799        /*
 800         * If there is a waiter in front of us that has a context, then its
 801         * stamp is earlier than ours and we must kill ourself.
 802         */
 803        cur = waiter;
 804        list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) {
 805                if (!cur->ww_ctx)
 806                        continue;
 807
 808                return __ww_mutex_kill(lock, ctx);
 809        }
 810
 811        return 0;
 812}
 813
 814/*
 815 * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest
 816 * first. Such that older contexts are preferred to acquire the lock over
 817 * younger contexts.
 818 *
 819 * Waiters without context are interspersed in FIFO order.
 820 *
 821 * Furthermore, for Wait-Die kill ourself immediately when possible (there are
 822 * older contexts already waiting) to avoid unnecessary waiting and for
 823 * Wound-Wait ensure we wound the owning context when it is younger.
 824 */
 825static inline int __sched
 826__ww_mutex_add_waiter(struct mutex_waiter *waiter,
 827                      struct mutex *lock,
 828                      struct ww_acquire_ctx *ww_ctx)
 829{
 830        struct mutex_waiter *cur;
 831        struct list_head *pos;
 832        bool is_wait_die;
 833
 834        if (!ww_ctx) {
 835                __mutex_add_waiter(lock, waiter, &lock->wait_list);
 836                return 0;
 837        }
 838
 839        is_wait_die = ww_ctx->is_wait_die;
 840
 841        /*
 842         * Add the waiter before the first waiter with a higher stamp.
 843         * Waiters without a context are skipped to avoid starving
 844         * them. Wait-Die waiters may die here. Wound-Wait waiters
 845         * never die here, but they are sorted in stamp order and
 846         * may wound the lock holder.
 847         */
 848        pos = &lock->wait_list;
 849        list_for_each_entry_reverse(cur, &lock->wait_list, list) {
 850                if (!cur->ww_ctx)
 851                        continue;
 852
 853                if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) {
 854                        /*
 855                         * Wait-Die: if we find an older context waiting, there
 856                         * is no point in queueing behind it, as we'd have to
 857                         * die the moment it would acquire the lock.
 858                         */
 859                        if (is_wait_die) {
 860                                int ret = __ww_mutex_kill(lock, ww_ctx);
 861
 862                                if (ret)
 863                                        return ret;
 864                        }
 865
 866                        break;
 867                }
 868
 869                pos = &cur->list;
 870
 871                /* Wait-Die: ensure younger waiters die. */
 872                __ww_mutex_die(lock, cur, ww_ctx);
 873        }
 874
 875        __mutex_add_waiter(lock, waiter, pos);
 876
 877        /*
 878         * Wound-Wait: if we're blocking on a mutex owned by a younger context,
 879         * wound that such that we might proceed.
 880         */
 881        if (!is_wait_die) {
 882                struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
 883
 884                /*
 885                 * See ww_mutex_set_context_fastpath(). Orders setting
 886                 * MUTEX_FLAG_WAITERS vs the ww->ctx load,
 887                 * such that either we or the fastpath will wound @ww->ctx.
 888                 */
 889                smp_mb();
 890                __ww_mutex_wound(lock, ww_ctx, ww->ctx);
 891        }
 892
 893        return 0;
 894}
 895
 896/*
 897 * Lock a mutex (possibly interruptible), slowpath:
 898 */
 899static __always_inline int __sched
 900__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
 901                    struct lockdep_map *nest_lock, unsigned long ip,
 902                    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
 903{
 904        struct mutex_waiter waiter;
 905        bool first = false;
 906        struct ww_mutex *ww;
 907        int ret;
 908
 909        might_sleep();
 910
 911#ifdef CONFIG_DEBUG_MUTEXES
 912        DEBUG_LOCKS_WARN_ON(lock->magic != lock);
 913#endif
 914
 915        ww = container_of(lock, struct ww_mutex, base);
 916        if (use_ww_ctx && ww_ctx) {
 917                if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
 918                        return -EALREADY;
 919
 920                /*
 921                 * Reset the wounded flag after a kill. No other process can
 922                 * race and wound us here since they can't have a valid owner
 923                 * pointer if we don't have any locks held.
 924                 */
 925                if (ww_ctx->acquired == 0)
 926                        ww_ctx->wounded = 0;
 927        }
 928
 929        preempt_disable();
 930        mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
 931
 932        if (__mutex_trylock(lock) ||
 933            mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, NULL)) {
 934                /* got the lock, yay! */
 935                lock_acquired(&lock->dep_map, ip);
 936                if (use_ww_ctx && ww_ctx)
 937                        ww_mutex_set_context_fastpath(ww, ww_ctx);
 938                preempt_enable();
 939                return 0;
 940        }
 941
 942        spin_lock(&lock->wait_lock);
 943        /*
 944         * After waiting to acquire the wait_lock, try again.
 945         */
 946        if (__mutex_trylock(lock)) {
 947                if (use_ww_ctx && ww_ctx)
 948                        __ww_mutex_check_waiters(lock, ww_ctx);
 949
 950                goto skip_wait;
 951        }
 952
 953        debug_mutex_lock_common(lock, &waiter);
 954
 955        lock_contended(&lock->dep_map, ip);
 956
 957        if (!use_ww_ctx) {
 958                /* add waiting tasks to the end of the waitqueue (FIFO): */
 959                __mutex_add_waiter(lock, &waiter, &lock->wait_list);
 960
 961
 962#ifdef CONFIG_DEBUG_MUTEXES
 963                waiter.ww_ctx = MUTEX_POISON_WW_CTX;
 964#endif
 965        } else {
 966                /*
 967                 * Add in stamp order, waking up waiters that must kill
 968                 * themselves.
 969                 */
 970                ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
 971                if (ret)
 972                        goto err_early_kill;
 973
 974                waiter.ww_ctx = ww_ctx;
 975        }
 976
 977        waiter.task = current;
 978
 979        set_current_state(state);
 980        for (;;) {
 981                /*
 982                 * Once we hold wait_lock, we're serialized against
 983                 * mutex_unlock() handing the lock off to us, do a trylock
 984                 * before testing the error conditions to make sure we pick up
 985                 * the handoff.
 986                 */
 987                if (__mutex_trylock(lock))
 988                        goto acquired;
 989
 990                /*
 991                 * Check for signals and kill conditions while holding
 992                 * wait_lock. This ensures the lock cancellation is ordered
 993                 * against mutex_unlock() and wake-ups do not go missing.
 994                 */
 995                if (signal_pending_state(state, current)) {
 996                        ret = -EINTR;
 997                        goto err;
 998                }
 999
1000                if (use_ww_ctx && ww_ctx) {
1001                        ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
1002                        if (ret)
1003                                goto err;
1004                }
1005
1006                spin_unlock(&lock->wait_lock);
1007                schedule_preempt_disabled();
1008
1009                /*
1010                 * ww_mutex needs to always recheck its position since its waiter
1011                 * list is not FIFO ordered.
1012                 */
1013                if ((use_ww_ctx && ww_ctx) || !first) {
1014                        first = __mutex_waiter_is_first(lock, &waiter);
1015                        if (first)
1016                                __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
1017                }
1018
1019                set_current_state(state);
1020                /*
1021                 * Here we order against unlock; we must either see it change
1022                 * state back to RUNNING and fall through the next schedule(),
1023                 * or we must see its unlock and acquire.
1024                 */
1025                if (__mutex_trylock(lock) ||
1026                    (first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, &waiter)))
1027                        break;
1028
1029                spin_lock(&lock->wait_lock);
1030        }
1031        spin_lock(&lock->wait_lock);
1032acquired:
1033        __set_current_state(TASK_RUNNING);
1034
1035        if (use_ww_ctx && ww_ctx) {
1036                /*
1037                 * Wound-Wait; we stole the lock (!first_waiter), check the
1038                 * waiters as anyone might want to wound us.
1039                 */
1040                if (!ww_ctx->is_wait_die &&
1041                    !__mutex_waiter_is_first(lock, &waiter))
1042                        __ww_mutex_check_waiters(lock, ww_ctx);
1043        }
1044
1045        mutex_remove_waiter(lock, &waiter, current);
1046        if (likely(list_empty(&lock->wait_list)))
1047                __mutex_clear_flag(lock, MUTEX_FLAGS);
1048
1049        debug_mutex_free_waiter(&waiter);
1050
1051skip_wait:
1052        /* got the lock - cleanup and rejoice! */
1053        lock_acquired(&lock->dep_map, ip);
1054
1055        if (use_ww_ctx && ww_ctx)
1056                ww_mutex_lock_acquired(ww, ww_ctx);
1057
1058        spin_unlock(&lock->wait_lock);
1059        preempt_enable();
1060        return 0;
1061
1062err:
1063        __set_current_state(TASK_RUNNING);
1064        mutex_remove_waiter(lock, &waiter, current);
1065err_early_kill:
1066        spin_unlock(&lock->wait_lock);
1067        debug_mutex_free_waiter(&waiter);
1068        mutex_release(&lock->dep_map, 1, ip);
1069        preempt_enable();
1070        return ret;
1071}
1072
1073static int __sched
1074__mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1075             struct lockdep_map *nest_lock, unsigned long ip)
1076{
1077        return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
1078}
1079
1080static int __sched
1081__ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1082                struct lockdep_map *nest_lock, unsigned long ip,
1083                struct ww_acquire_ctx *ww_ctx)
1084{
1085        return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true);
1086}
1087
1088#ifdef CONFIG_DEBUG_LOCK_ALLOC
1089void __sched
1090mutex_lock_nested(struct mutex *lock, unsigned int subclass)
1091{
1092        __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
1093}
1094
1095EXPORT_SYMBOL_GPL(mutex_lock_nested);
1096
1097void __sched
1098_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
1099{
1100        __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
1101}
1102EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
1103
1104int __sched
1105mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
1106{
1107        return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
1108}
1109EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
1110
1111int __sched
1112mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
1113{
1114        return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
1115}
1116EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
1117
1118void __sched
1119mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
1120{
1121        int token;
1122
1123        might_sleep();
1124
1125        token = io_schedule_prepare();
1126        __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
1127                            subclass, NULL, _RET_IP_, NULL, 0);
1128        io_schedule_finish(token);
1129}
1130EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
1131
1132static inline int
1133ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1134{
1135#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
1136        unsigned tmp;
1137
1138        if (ctx->deadlock_inject_countdown-- == 0) {
1139                tmp = ctx->deadlock_inject_interval;
1140                if (tmp > UINT_MAX/4)
1141                        tmp = UINT_MAX;
1142                else
1143                        tmp = tmp*2 + tmp + tmp/2;
1144
1145                ctx->deadlock_inject_interval = tmp;
1146                ctx->deadlock_inject_countdown = tmp;
1147                ctx->contending_lock = lock;
1148
1149                ww_mutex_unlock(lock);
1150
1151                return -EDEADLK;
1152        }
1153#endif
1154
1155        return 0;
1156}
1157
1158int __sched
1159ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1160{
1161        int ret;
1162
1163        might_sleep();
1164        ret =  __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
1165                               0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1166                               ctx);
1167        if (!ret && ctx && ctx->acquired > 1)
1168                return ww_mutex_deadlock_injection(lock, ctx);
1169
1170        return ret;
1171}
1172EXPORT_SYMBOL_GPL(ww_mutex_lock);
1173
1174int __sched
1175ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1176{
1177        int ret;
1178
1179        might_sleep();
1180        ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
1181                              0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1182                              ctx);
1183
1184        if (!ret && ctx && ctx->acquired > 1)
1185                return ww_mutex_deadlock_injection(lock, ctx);
1186
1187        return ret;
1188}
1189EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
1190
1191#endif
1192
1193/*
1194 * Release the lock, slowpath:
1195 */
1196static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
1197{
1198        struct task_struct *next = NULL;
1199        DEFINE_WAKE_Q(wake_q);
1200        unsigned long owner;
1201
1202        mutex_release(&lock->dep_map, 1, ip);
1203
1204        /*
1205         * Release the lock before (potentially) taking the spinlock such that
1206         * other contenders can get on with things ASAP.
1207         *
1208         * Except when HANDOFF, in that case we must not clear the owner field,
1209         * but instead set it to the top waiter.
1210         */
1211        owner = atomic_long_read(&lock->owner);
1212        for (;;) {
1213                unsigned long old;
1214
1215#ifdef CONFIG_DEBUG_MUTEXES
1216                DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
1217                DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
1218#endif
1219
1220                if (owner & MUTEX_FLAG_HANDOFF)
1221                        break;
1222
1223                old = atomic_long_cmpxchg_release(&lock->owner, owner,
1224                                                  __owner_flags(owner));
1225                if (old == owner) {
1226                        if (owner & MUTEX_FLAG_WAITERS)
1227                                break;
1228
1229                        return;
1230                }
1231
1232                owner = old;
1233        }
1234
1235        spin_lock(&lock->wait_lock);
1236        debug_mutex_unlock(lock);
1237        if (!list_empty(&lock->wait_list)) {
1238                /* get the first entry from the wait-list: */
1239                struct mutex_waiter *waiter =
1240                        list_first_entry(&lock->wait_list,
1241                                         struct mutex_waiter, list);
1242
1243                next = waiter->task;
1244
1245                debug_mutex_wake_waiter(lock, waiter);
1246                wake_q_add(&wake_q, next);
1247        }
1248
1249        if (owner & MUTEX_FLAG_HANDOFF)
1250                __mutex_handoff(lock, next);
1251
1252        spin_unlock(&lock->wait_lock);
1253
1254        wake_up_q(&wake_q);
1255}
1256
1257#ifndef CONFIG_DEBUG_LOCK_ALLOC
1258/*
1259 * Here come the less common (and hence less performance-critical) APIs:
1260 * mutex_lock_interruptible() and mutex_trylock().
1261 */
1262static noinline int __sched
1263__mutex_lock_killable_slowpath(struct mutex *lock);
1264
1265static noinline int __sched
1266__mutex_lock_interruptible_slowpath(struct mutex *lock);
1267
1268/**
1269 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
1270 * @lock: The mutex to be acquired.
1271 *
1272 * Lock the mutex like mutex_lock().  If a signal is delivered while the
1273 * process is sleeping, this function will return without acquiring the
1274 * mutex.
1275 *
1276 * Context: Process context.
1277 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1278 * signal arrived.
1279 */
1280int __sched mutex_lock_interruptible(struct mutex *lock)
1281{
1282        might_sleep();
1283
1284        if (__mutex_trylock_fast(lock))
1285                return 0;
1286
1287        return __mutex_lock_interruptible_slowpath(lock);
1288}
1289
1290EXPORT_SYMBOL(mutex_lock_interruptible);
1291
1292/**
1293 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1294 * @lock: The mutex to be acquired.
1295 *
1296 * Lock the mutex like mutex_lock().  If a signal which will be fatal to
1297 * the current process is delivered while the process is sleeping, this
1298 * function will return without acquiring the mutex.
1299 *
1300 * Context: Process context.
1301 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1302 * fatal signal arrived.
1303 */
1304int __sched mutex_lock_killable(struct mutex *lock)
1305{
1306        might_sleep();
1307
1308        if (__mutex_trylock_fast(lock))
1309                return 0;
1310
1311        return __mutex_lock_killable_slowpath(lock);
1312}
1313EXPORT_SYMBOL(mutex_lock_killable);
1314
1315/**
1316 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1317 * @lock: The mutex to be acquired.
1318 *
1319 * Lock the mutex like mutex_lock().  While the task is waiting for this
1320 * mutex, it will be accounted as being in the IO wait state by the
1321 * scheduler.
1322 *
1323 * Context: Process context.
1324 */
1325void __sched mutex_lock_io(struct mutex *lock)
1326{
1327        int token;
1328
1329        token = io_schedule_prepare();
1330        mutex_lock(lock);
1331        io_schedule_finish(token);
1332}
1333EXPORT_SYMBOL_GPL(mutex_lock_io);
1334
1335static noinline void __sched
1336__mutex_lock_slowpath(struct mutex *lock)
1337{
1338        __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1339}
1340
1341static noinline int __sched
1342__mutex_lock_killable_slowpath(struct mutex *lock)
1343{
1344        return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1345}
1346
1347static noinline int __sched
1348__mutex_lock_interruptible_slowpath(struct mutex *lock)
1349{
1350        return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1351}
1352
1353static noinline int __sched
1354__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1355{
1356        return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL,
1357                               _RET_IP_, ctx);
1358}
1359
1360static noinline int __sched
1361__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1362                                            struct ww_acquire_ctx *ctx)
1363{
1364        return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL,
1365                               _RET_IP_, ctx);
1366}
1367
1368#endif
1369
1370/**
1371 * mutex_trylock - try to acquire the mutex, without waiting
1372 * @lock: the mutex to be acquired
1373 *
1374 * Try to acquire the mutex atomically. Returns 1 if the mutex
1375 * has been acquired successfully, and 0 on contention.
1376 *
1377 * NOTE: this function follows the spin_trylock() convention, so
1378 * it is negated from the down_trylock() return values! Be careful
1379 * about this when converting semaphore users to mutexes.
1380 *
1381 * This function must not be used in interrupt context. The
1382 * mutex must be released by the same task that acquired it.
1383 */
1384int __sched mutex_trylock(struct mutex *lock)
1385{
1386        bool locked;
1387
1388#ifdef CONFIG_DEBUG_MUTEXES
1389        DEBUG_LOCKS_WARN_ON(lock->magic != lock);
1390#endif
1391
1392        locked = __mutex_trylock(lock);
1393        if (locked)
1394                mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1395
1396        return locked;
1397}
1398EXPORT_SYMBOL(mutex_trylock);
1399
1400#ifndef CONFIG_DEBUG_LOCK_ALLOC
1401int __sched
1402ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1403{
1404        might_sleep();
1405
1406        if (__mutex_trylock_fast(&lock->base)) {
1407                if (ctx)
1408                        ww_mutex_set_context_fastpath(lock, ctx);
1409                return 0;
1410        }
1411
1412        return __ww_mutex_lock_slowpath(lock, ctx);
1413}
1414EXPORT_SYMBOL(ww_mutex_lock);
1415
1416int __sched
1417ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1418{
1419        might_sleep();
1420
1421        if (__mutex_trylock_fast(&lock->base)) {
1422                if (ctx)
1423                        ww_mutex_set_context_fastpath(lock, ctx);
1424                return 0;
1425        }
1426
1427        return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1428}
1429EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1430
1431#endif
1432
1433/**
1434 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1435 * @cnt: the atomic which we are to dec
1436 * @lock: the mutex to return holding if we dec to 0
1437 *
1438 * return true and hold lock if we dec to 0, return false otherwise
1439 */
1440int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1441{
1442        /* dec if we can't possibly hit 0 */
1443        if (atomic_add_unless(cnt, -1, 1))
1444                return 0;
1445        /* we might hit 0, so take the lock */
1446        mutex_lock(lock);
1447        if (!atomic_dec_and_test(cnt)) {
1448                /* when we actually did the dec, we didn't hit 0 */
1449                mutex_unlock(lock);
1450                return 0;
1451        }
1452        /* we hit 0, and we hold the lock */
1453        return 1;
1454}
1455EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1456