linux/kernel/locking/rtmutex.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
   4 *
   5 * started by Ingo Molnar and Thomas Gleixner.
   6 *
   7 *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   8 *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
   9 *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
  10 *  Copyright (C) 2006 Esben Nielsen
  11 *
  12 *  See Documentation/locking/rt-mutex-design.rst for details.
  13 */
  14#include <linux/spinlock.h>
  15#include <linux/export.h>
  16#include <linux/sched/signal.h>
  17#include <linux/sched/rt.h>
  18#include <linux/sched/deadline.h>
  19#include <linux/sched/wake_q.h>
  20#include <linux/sched/debug.h>
  21#include <linux/timer.h>
  22
  23#include "rtmutex_common.h"
  24
  25/*
  26 * lock->owner state tracking:
  27 *
  28 * lock->owner holds the task_struct pointer of the owner. Bit 0
  29 * is used to keep track of the "lock has waiters" state.
  30 *
  31 * owner        bit0
  32 * NULL         0       lock is free (fast acquire possible)
  33 * NULL         1       lock is free and has waiters and the top waiter
  34 *                              is going to take the lock*
  35 * taskpointer  0       lock is held (fast release possible)
  36 * taskpointer  1       lock is held and has waiters**
  37 *
  38 * The fast atomic compare exchange based acquire and release is only
  39 * possible when bit 0 of lock->owner is 0.
  40 *
  41 * (*) It also can be a transitional state when grabbing the lock
  42 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
  43 * we need to set the bit0 before looking at the lock, and the owner may be
  44 * NULL in this small time, hence this can be a transitional state.
  45 *
  46 * (**) There is a small time when bit 0 is set but there are no
  47 * waiters. This can happen when grabbing the lock in the slow path.
  48 * To prevent a cmpxchg of the owner releasing the lock, we need to
  49 * set this bit before looking at the lock.
  50 */
  51
  52static void
  53rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
  54{
  55        unsigned long val = (unsigned long)owner;
  56
  57        if (rt_mutex_has_waiters(lock))
  58                val |= RT_MUTEX_HAS_WAITERS;
  59
  60        lock->owner = (struct task_struct *)val;
  61}
  62
  63static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
  64{
  65        lock->owner = (struct task_struct *)
  66                        ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
  67}
  68
  69static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
  70{
  71        unsigned long owner, *p = (unsigned long *) &lock->owner;
  72
  73        if (rt_mutex_has_waiters(lock))
  74                return;
  75
  76        /*
  77         * The rbtree has no waiters enqueued, now make sure that the
  78         * lock->owner still has the waiters bit set, otherwise the
  79         * following can happen:
  80         *
  81         * CPU 0        CPU 1           CPU2
  82         * l->owner=T1
  83         *              rt_mutex_lock(l)
  84         *              lock(l->lock)
  85         *              l->owner = T1 | HAS_WAITERS;
  86         *              enqueue(T2)
  87         *              boost()
  88         *                unlock(l->lock)
  89         *              block()
  90         *
  91         *                              rt_mutex_lock(l)
  92         *                              lock(l->lock)
  93         *                              l->owner = T1 | HAS_WAITERS;
  94         *                              enqueue(T3)
  95         *                              boost()
  96         *                                unlock(l->lock)
  97         *                              block()
  98         *              signal(->T2)    signal(->T3)
  99         *              lock(l->lock)
 100         *              dequeue(T2)
 101         *              deboost()
 102         *                unlock(l->lock)
 103         *                              lock(l->lock)
 104         *                              dequeue(T3)
 105         *                               ==> wait list is empty
 106         *                              deboost()
 107         *                               unlock(l->lock)
 108         *              lock(l->lock)
 109         *              fixup_rt_mutex_waiters()
 110         *                if (wait_list_empty(l) {
 111         *                  l->owner = owner
 112         *                  owner = l->owner & ~HAS_WAITERS;
 113         *                    ==> l->owner = T1
 114         *                }
 115         *                              lock(l->lock)
 116         * rt_mutex_unlock(l)           fixup_rt_mutex_waiters()
 117         *                                if (wait_list_empty(l) {
 118         *                                  owner = l->owner & ~HAS_WAITERS;
 119         * cmpxchg(l->owner, T1, NULL)
 120         *  ===> Success (l->owner = NULL)
 121         *
 122         *                                  l->owner = owner
 123         *                                    ==> l->owner = T1
 124         *                                }
 125         *
 126         * With the check for the waiter bit in place T3 on CPU2 will not
 127         * overwrite. All tasks fiddling with the waiters bit are
 128         * serialized by l->lock, so nothing else can modify the waiters
 129         * bit. If the bit is set then nothing can change l->owner either
 130         * so the simple RMW is safe. The cmpxchg() will simply fail if it
 131         * happens in the middle of the RMW because the waiters bit is
 132         * still set.
 133         */
 134        owner = READ_ONCE(*p);
 135        if (owner & RT_MUTEX_HAS_WAITERS)
 136                WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
 137}
 138
 139/*
 140 * We can speed up the acquire/release, if there's no debugging state to be
 141 * set up.
 142 */
 143#ifndef CONFIG_DEBUG_RT_MUTEXES
 144# define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
 145# define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
 146# define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
 147
 148/*
 149 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
 150 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
 151 * relaxed semantics suffice.
 152 */
 153static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
 154{
 155        unsigned long owner, *p = (unsigned long *) &lock->owner;
 156
 157        do {
 158                owner = *p;
 159        } while (cmpxchg_relaxed(p, owner,
 160                                 owner | RT_MUTEX_HAS_WAITERS) != owner);
 161}
 162
 163/*
 164 * Safe fastpath aware unlock:
 165 * 1) Clear the waiters bit
 166 * 2) Drop lock->wait_lock
 167 * 3) Try to unlock the lock with cmpxchg
 168 */
 169static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
 170                                        unsigned long flags)
 171        __releases(lock->wait_lock)
 172{
 173        struct task_struct *owner = rt_mutex_owner(lock);
 174
 175        clear_rt_mutex_waiters(lock);
 176        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
 177        /*
 178         * If a new waiter comes in between the unlock and the cmpxchg
 179         * we have two situations:
 180         *
 181         * unlock(wait_lock);
 182         *                                      lock(wait_lock);
 183         * cmpxchg(p, owner, 0) == owner
 184         *                                      mark_rt_mutex_waiters(lock);
 185         *                                      acquire(lock);
 186         * or:
 187         *
 188         * unlock(wait_lock);
 189         *                                      lock(wait_lock);
 190         *                                      mark_rt_mutex_waiters(lock);
 191         *
 192         * cmpxchg(p, owner, 0) != owner
 193         *                                      enqueue_waiter();
 194         *                                      unlock(wait_lock);
 195         * lock(wait_lock);
 196         * wake waiter();
 197         * unlock(wait_lock);
 198         *                                      lock(wait_lock);
 199         *                                      acquire(lock);
 200         */
 201        return rt_mutex_cmpxchg_release(lock, owner, NULL);
 202}
 203
 204#else
 205# define rt_mutex_cmpxchg_relaxed(l,c,n)        (0)
 206# define rt_mutex_cmpxchg_acquire(l,c,n)        (0)
 207# define rt_mutex_cmpxchg_release(l,c,n)        (0)
 208
 209static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
 210{
 211        lock->owner = (struct task_struct *)
 212                        ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
 213}
 214
 215/*
 216 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
 217 */
 218static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
 219                                        unsigned long flags)
 220        __releases(lock->wait_lock)
 221{
 222        lock->owner = NULL;
 223        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
 224        return true;
 225}
 226#endif
 227
 228/*
 229 * Only use with rt_mutex_waiter_{less,equal}()
 230 */
 231#define task_to_waiter(p)       \
 232        &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
 233
 234static inline int
 235rt_mutex_waiter_less(struct rt_mutex_waiter *left,
 236                     struct rt_mutex_waiter *right)
 237{
 238        if (left->prio < right->prio)
 239                return 1;
 240
 241        /*
 242         * If both waiters have dl_prio(), we check the deadlines of the
 243         * associated tasks.
 244         * If left waiter has a dl_prio(), and we didn't return 1 above,
 245         * then right waiter has a dl_prio() too.
 246         */
 247        if (dl_prio(left->prio))
 248                return dl_time_before(left->deadline, right->deadline);
 249
 250        return 0;
 251}
 252
 253static inline int
 254rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
 255                      struct rt_mutex_waiter *right)
 256{
 257        if (left->prio != right->prio)
 258                return 0;
 259
 260        /*
 261         * If both waiters have dl_prio(), we check the deadlines of the
 262         * associated tasks.
 263         * If left waiter has a dl_prio(), and we didn't return 0 above,
 264         * then right waiter has a dl_prio() too.
 265         */
 266        if (dl_prio(left->prio))
 267                return left->deadline == right->deadline;
 268
 269        return 1;
 270}
 271
 272static void
 273rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
 274{
 275        struct rb_node **link = &lock->waiters.rb_root.rb_node;
 276        struct rb_node *parent = NULL;
 277        struct rt_mutex_waiter *entry;
 278        bool leftmost = true;
 279
 280        while (*link) {
 281                parent = *link;
 282                entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
 283                if (rt_mutex_waiter_less(waiter, entry)) {
 284                        link = &parent->rb_left;
 285                } else {
 286                        link = &parent->rb_right;
 287                        leftmost = false;
 288                }
 289        }
 290
 291        rb_link_node(&waiter->tree_entry, parent, link);
 292        rb_insert_color_cached(&waiter->tree_entry, &lock->waiters, leftmost);
 293}
 294
 295static void
 296rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
 297{
 298        if (RB_EMPTY_NODE(&waiter->tree_entry))
 299                return;
 300
 301        rb_erase_cached(&waiter->tree_entry, &lock->waiters);
 302        RB_CLEAR_NODE(&waiter->tree_entry);
 303}
 304
 305static void
 306rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
 307{
 308        struct rb_node **link = &task->pi_waiters.rb_root.rb_node;
 309        struct rb_node *parent = NULL;
 310        struct rt_mutex_waiter *entry;
 311        bool leftmost = true;
 312
 313        while (*link) {
 314                parent = *link;
 315                entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
 316                if (rt_mutex_waiter_less(waiter, entry)) {
 317                        link = &parent->rb_left;
 318                } else {
 319                        link = &parent->rb_right;
 320                        leftmost = false;
 321                }
 322        }
 323
 324        rb_link_node(&waiter->pi_tree_entry, parent, link);
 325        rb_insert_color_cached(&waiter->pi_tree_entry, &task->pi_waiters, leftmost);
 326}
 327
 328static void
 329rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
 330{
 331        if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
 332                return;
 333
 334        rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
 335        RB_CLEAR_NODE(&waiter->pi_tree_entry);
 336}
 337
 338static void rt_mutex_adjust_prio(struct task_struct *p)
 339{
 340        struct task_struct *pi_task = NULL;
 341
 342        lockdep_assert_held(&p->pi_lock);
 343
 344        if (task_has_pi_waiters(p))
 345                pi_task = task_top_pi_waiter(p)->task;
 346
 347        rt_mutex_setprio(p, pi_task);
 348}
 349
 350/*
 351 * Deadlock detection is conditional:
 352 *
 353 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
 354 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
 355 *
 356 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
 357 * conducted independent of the detect argument.
 358 *
 359 * If the waiter argument is NULL this indicates the deboost path and
 360 * deadlock detection is disabled independent of the detect argument
 361 * and the config settings.
 362 */
 363static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
 364                                          enum rtmutex_chainwalk chwalk)
 365{
 366        /*
 367         * This is just a wrapper function for the following call,
 368         * because debug_rt_mutex_detect_deadlock() smells like a magic
 369         * debug feature and I wanted to keep the cond function in the
 370         * main source file along with the comments instead of having
 371         * two of the same in the headers.
 372         */
 373        return debug_rt_mutex_detect_deadlock(waiter, chwalk);
 374}
 375
 376/*
 377 * Max number of times we'll walk the boosting chain:
 378 */
 379int max_lock_depth = 1024;
 380
 381static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
 382{
 383        return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
 384}
 385
 386/*
 387 * Adjust the priority chain. Also used for deadlock detection.
 388 * Decreases task's usage by one - may thus free the task.
 389 *
 390 * @task:       the task owning the mutex (owner) for which a chain walk is
 391 *              probably needed
 392 * @chwalk:     do we have to carry out deadlock detection?
 393 * @orig_lock:  the mutex (can be NULL if we are walking the chain to recheck
 394 *              things for a task that has just got its priority adjusted, and
 395 *              is waiting on a mutex)
 396 * @next_lock:  the mutex on which the owner of @orig_lock was blocked before
 397 *              we dropped its pi_lock. Is never dereferenced, only used for
 398 *              comparison to detect lock chain changes.
 399 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
 400 *              its priority to the mutex owner (can be NULL in the case
 401 *              depicted above or if the top waiter is gone away and we are
 402 *              actually deboosting the owner)
 403 * @top_task:   the current top waiter
 404 *
 405 * Returns 0 or -EDEADLK.
 406 *
 407 * Chain walk basics and protection scope
 408 *
 409 * [R] refcount on task
 410 * [P] task->pi_lock held
 411 * [L] rtmutex->wait_lock held
 412 *
 413 * Step Description                             Protected by
 414 *      function arguments:
 415 *      @task                                   [R]
 416 *      @orig_lock if != NULL                   @top_task is blocked on it
 417 *      @next_lock                              Unprotected. Cannot be
 418 *                                              dereferenced. Only used for
 419 *                                              comparison.
 420 *      @orig_waiter if != NULL                 @top_task is blocked on it
 421 *      @top_task                               current, or in case of proxy
 422 *                                              locking protected by calling
 423 *                                              code
 424 *      again:
 425 *        loop_sanity_check();
 426 *      retry:
 427 * [1]    lock(task->pi_lock);                  [R] acquire [P]
 428 * [2]    waiter = task->pi_blocked_on;         [P]
 429 * [3]    check_exit_conditions_1();            [P]
 430 * [4]    lock = waiter->lock;                  [P]
 431 * [5]    if (!try_lock(lock->wait_lock)) {     [P] try to acquire [L]
 432 *          unlock(task->pi_lock);              release [P]
 433 *          goto retry;
 434 *        }
 435 * [6]    check_exit_conditions_2();            [P] + [L]
 436 * [7]    requeue_lock_waiter(lock, waiter);    [P] + [L]
 437 * [8]    unlock(task->pi_lock);                release [P]
 438 *        put_task_struct(task);                release [R]
 439 * [9]    check_exit_conditions_3();            [L]
 440 * [10]   task = owner(lock);                   [L]
 441 *        get_task_struct(task);                [L] acquire [R]
 442 *        lock(task->pi_lock);                  [L] acquire [P]
 443 * [11]   requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
 444 * [12]   check_exit_conditions_4();            [P] + [L]
 445 * [13]   unlock(task->pi_lock);                release [P]
 446 *        unlock(lock->wait_lock);              release [L]
 447 *        goto again;
 448 */
 449static int rt_mutex_adjust_prio_chain(struct task_struct *task,
 450                                      enum rtmutex_chainwalk chwalk,
 451                                      struct rt_mutex *orig_lock,
 452                                      struct rt_mutex *next_lock,
 453                                      struct rt_mutex_waiter *orig_waiter,
 454                                      struct task_struct *top_task)
 455{
 456        struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
 457        struct rt_mutex_waiter *prerequeue_top_waiter;
 458        int ret = 0, depth = 0;
 459        struct rt_mutex *lock;
 460        bool detect_deadlock;
 461        bool requeue = true;
 462
 463        detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
 464
 465        /*
 466         * The (de)boosting is a step by step approach with a lot of
 467         * pitfalls. We want this to be preemptible and we want hold a
 468         * maximum of two locks per step. So we have to check
 469         * carefully whether things change under us.
 470         */
 471 again:
 472        /*
 473         * We limit the lock chain length for each invocation.
 474         */
 475        if (++depth > max_lock_depth) {
 476                static int prev_max;
 477
 478                /*
 479                 * Print this only once. If the admin changes the limit,
 480                 * print a new message when reaching the limit again.
 481                 */
 482                if (prev_max != max_lock_depth) {
 483                        prev_max = max_lock_depth;
 484                        printk(KERN_WARNING "Maximum lock depth %d reached "
 485                               "task: %s (%d)\n", max_lock_depth,
 486                               top_task->comm, task_pid_nr(top_task));
 487                }
 488                put_task_struct(task);
 489
 490                return -EDEADLK;
 491        }
 492
 493        /*
 494         * We are fully preemptible here and only hold the refcount on
 495         * @task. So everything can have changed under us since the
 496         * caller or our own code below (goto retry/again) dropped all
 497         * locks.
 498         */
 499 retry:
 500        /*
 501         * [1] Task cannot go away as we did a get_task() before !
 502         */
 503        raw_spin_lock_irq(&task->pi_lock);
 504
 505        /*
 506         * [2] Get the waiter on which @task is blocked on.
 507         */
 508        waiter = task->pi_blocked_on;
 509
 510        /*
 511         * [3] check_exit_conditions_1() protected by task->pi_lock.
 512         */
 513
 514        /*
 515         * Check whether the end of the boosting chain has been
 516         * reached or the state of the chain has changed while we
 517         * dropped the locks.
 518         */
 519        if (!waiter)
 520                goto out_unlock_pi;
 521
 522        /*
 523         * Check the orig_waiter state. After we dropped the locks,
 524         * the previous owner of the lock might have released the lock.
 525         */
 526        if (orig_waiter && !rt_mutex_owner(orig_lock))
 527                goto out_unlock_pi;
 528
 529        /*
 530         * We dropped all locks after taking a refcount on @task, so
 531         * the task might have moved on in the lock chain or even left
 532         * the chain completely and blocks now on an unrelated lock or
 533         * on @orig_lock.
 534         *
 535         * We stored the lock on which @task was blocked in @next_lock,
 536         * so we can detect the chain change.
 537         */
 538        if (next_lock != waiter->lock)
 539                goto out_unlock_pi;
 540
 541        /*
 542         * Drop out, when the task has no waiters. Note,
 543         * top_waiter can be NULL, when we are in the deboosting
 544         * mode!
 545         */
 546        if (top_waiter) {
 547                if (!task_has_pi_waiters(task))
 548                        goto out_unlock_pi;
 549                /*
 550                 * If deadlock detection is off, we stop here if we
 551                 * are not the top pi waiter of the task. If deadlock
 552                 * detection is enabled we continue, but stop the
 553                 * requeueing in the chain walk.
 554                 */
 555                if (top_waiter != task_top_pi_waiter(task)) {
 556                        if (!detect_deadlock)
 557                                goto out_unlock_pi;
 558                        else
 559                                requeue = false;
 560                }
 561        }
 562
 563        /*
 564         * If the waiter priority is the same as the task priority
 565         * then there is no further priority adjustment necessary.  If
 566         * deadlock detection is off, we stop the chain walk. If its
 567         * enabled we continue, but stop the requeueing in the chain
 568         * walk.
 569         */
 570        if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
 571                if (!detect_deadlock)
 572                        goto out_unlock_pi;
 573                else
 574                        requeue = false;
 575        }
 576
 577        /*
 578         * [4] Get the next lock
 579         */
 580        lock = waiter->lock;
 581        /*
 582         * [5] We need to trylock here as we are holding task->pi_lock,
 583         * which is the reverse lock order versus the other rtmutex
 584         * operations.
 585         */
 586        if (!raw_spin_trylock(&lock->wait_lock)) {
 587                raw_spin_unlock_irq(&task->pi_lock);
 588                cpu_relax();
 589                goto retry;
 590        }
 591
 592        /*
 593         * [6] check_exit_conditions_2() protected by task->pi_lock and
 594         * lock->wait_lock.
 595         *
 596         * Deadlock detection. If the lock is the same as the original
 597         * lock which caused us to walk the lock chain or if the
 598         * current lock is owned by the task which initiated the chain
 599         * walk, we detected a deadlock.
 600         */
 601        if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
 602                debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
 603                raw_spin_unlock(&lock->wait_lock);
 604                ret = -EDEADLK;
 605                goto out_unlock_pi;
 606        }
 607
 608        /*
 609         * If we just follow the lock chain for deadlock detection, no
 610         * need to do all the requeue operations. To avoid a truckload
 611         * of conditionals around the various places below, just do the
 612         * minimum chain walk checks.
 613         */
 614        if (!requeue) {
 615                /*
 616                 * No requeue[7] here. Just release @task [8]
 617                 */
 618                raw_spin_unlock(&task->pi_lock);
 619                put_task_struct(task);
 620
 621                /*
 622                 * [9] check_exit_conditions_3 protected by lock->wait_lock.
 623                 * If there is no owner of the lock, end of chain.
 624                 */
 625                if (!rt_mutex_owner(lock)) {
 626                        raw_spin_unlock_irq(&lock->wait_lock);
 627                        return 0;
 628                }
 629
 630                /* [10] Grab the next task, i.e. owner of @lock */
 631                task = rt_mutex_owner(lock);
 632                get_task_struct(task);
 633                raw_spin_lock(&task->pi_lock);
 634
 635                /*
 636                 * No requeue [11] here. We just do deadlock detection.
 637                 *
 638                 * [12] Store whether owner is blocked
 639                 * itself. Decision is made after dropping the locks
 640                 */
 641                next_lock = task_blocked_on_lock(task);
 642                /*
 643                 * Get the top waiter for the next iteration
 644                 */
 645                top_waiter = rt_mutex_top_waiter(lock);
 646
 647                /* [13] Drop locks */
 648                raw_spin_unlock(&task->pi_lock);
 649                raw_spin_unlock_irq(&lock->wait_lock);
 650
 651                /* If owner is not blocked, end of chain. */
 652                if (!next_lock)
 653                        goto out_put_task;
 654                goto again;
 655        }
 656
 657        /*
 658         * Store the current top waiter before doing the requeue
 659         * operation on @lock. We need it for the boost/deboost
 660         * decision below.
 661         */
 662        prerequeue_top_waiter = rt_mutex_top_waiter(lock);
 663
 664        /* [7] Requeue the waiter in the lock waiter tree. */
 665        rt_mutex_dequeue(lock, waiter);
 666
 667        /*
 668         * Update the waiter prio fields now that we're dequeued.
 669         *
 670         * These values can have changed through either:
 671         *
 672         *   sys_sched_set_scheduler() / sys_sched_setattr()
 673         *
 674         * or
 675         *
 676         *   DL CBS enforcement advancing the effective deadline.
 677         *
 678         * Even though pi_waiters also uses these fields, and that tree is only
 679         * updated in [11], we can do this here, since we hold [L], which
 680         * serializes all pi_waiters access and rb_erase() does not care about
 681         * the values of the node being removed.
 682         */
 683        waiter->prio = task->prio;
 684        waiter->deadline = task->dl.deadline;
 685
 686        rt_mutex_enqueue(lock, waiter);
 687
 688        /* [8] Release the task */
 689        raw_spin_unlock(&task->pi_lock);
 690        put_task_struct(task);
 691
 692        /*
 693         * [9] check_exit_conditions_3 protected by lock->wait_lock.
 694         *
 695         * We must abort the chain walk if there is no lock owner even
 696         * in the dead lock detection case, as we have nothing to
 697         * follow here. This is the end of the chain we are walking.
 698         */
 699        if (!rt_mutex_owner(lock)) {
 700                /*
 701                 * If the requeue [7] above changed the top waiter,
 702                 * then we need to wake the new top waiter up to try
 703                 * to get the lock.
 704                 */
 705                if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
 706                        wake_up_process(rt_mutex_top_waiter(lock)->task);
 707                raw_spin_unlock_irq(&lock->wait_lock);
 708                return 0;
 709        }
 710
 711        /* [10] Grab the next task, i.e. the owner of @lock */
 712        task = rt_mutex_owner(lock);
 713        get_task_struct(task);
 714        raw_spin_lock(&task->pi_lock);
 715
 716        /* [11] requeue the pi waiters if necessary */
 717        if (waiter == rt_mutex_top_waiter(lock)) {
 718                /*
 719                 * The waiter became the new top (highest priority)
 720                 * waiter on the lock. Replace the previous top waiter
 721                 * in the owner tasks pi waiters tree with this waiter
 722                 * and adjust the priority of the owner.
 723                 */
 724                rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
 725                rt_mutex_enqueue_pi(task, waiter);
 726                rt_mutex_adjust_prio(task);
 727
 728        } else if (prerequeue_top_waiter == waiter) {
 729                /*
 730                 * The waiter was the top waiter on the lock, but is
 731                 * no longer the top prority waiter. Replace waiter in
 732                 * the owner tasks pi waiters tree with the new top
 733                 * (highest priority) waiter and adjust the priority
 734                 * of the owner.
 735                 * The new top waiter is stored in @waiter so that
 736                 * @waiter == @top_waiter evaluates to true below and
 737                 * we continue to deboost the rest of the chain.
 738                 */
 739                rt_mutex_dequeue_pi(task, waiter);
 740                waiter = rt_mutex_top_waiter(lock);
 741                rt_mutex_enqueue_pi(task, waiter);
 742                rt_mutex_adjust_prio(task);
 743        } else {
 744                /*
 745                 * Nothing changed. No need to do any priority
 746                 * adjustment.
 747                 */
 748        }
 749
 750        /*
 751         * [12] check_exit_conditions_4() protected by task->pi_lock
 752         * and lock->wait_lock. The actual decisions are made after we
 753         * dropped the locks.
 754         *
 755         * Check whether the task which owns the current lock is pi
 756         * blocked itself. If yes we store a pointer to the lock for
 757         * the lock chain change detection above. After we dropped
 758         * task->pi_lock next_lock cannot be dereferenced anymore.
 759         */
 760        next_lock = task_blocked_on_lock(task);
 761        /*
 762         * Store the top waiter of @lock for the end of chain walk
 763         * decision below.
 764         */
 765        top_waiter = rt_mutex_top_waiter(lock);
 766
 767        /* [13] Drop the locks */
 768        raw_spin_unlock(&task->pi_lock);
 769        raw_spin_unlock_irq(&lock->wait_lock);
 770
 771        /*
 772         * Make the actual exit decisions [12], based on the stored
 773         * values.
 774         *
 775         * We reached the end of the lock chain. Stop right here. No
 776         * point to go back just to figure that out.
 777         */
 778        if (!next_lock)
 779                goto out_put_task;
 780
 781        /*
 782         * If the current waiter is not the top waiter on the lock,
 783         * then we can stop the chain walk here if we are not in full
 784         * deadlock detection mode.
 785         */
 786        if (!detect_deadlock && waiter != top_waiter)
 787                goto out_put_task;
 788
 789        goto again;
 790
 791 out_unlock_pi:
 792        raw_spin_unlock_irq(&task->pi_lock);
 793 out_put_task:
 794        put_task_struct(task);
 795
 796        return ret;
 797}
 798
 799/*
 800 * Try to take an rt-mutex
 801 *
 802 * Must be called with lock->wait_lock held and interrupts disabled
 803 *
 804 * @lock:   The lock to be acquired.
 805 * @task:   The task which wants to acquire the lock
 806 * @waiter: The waiter that is queued to the lock's wait tree if the
 807 *          callsite called task_blocked_on_lock(), otherwise NULL
 808 */
 809static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
 810                                struct rt_mutex_waiter *waiter)
 811{
 812        lockdep_assert_held(&lock->wait_lock);
 813
 814        /*
 815         * Before testing whether we can acquire @lock, we set the
 816         * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
 817         * other tasks which try to modify @lock into the slow path
 818         * and they serialize on @lock->wait_lock.
 819         *
 820         * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
 821         * as explained at the top of this file if and only if:
 822         *
 823         * - There is a lock owner. The caller must fixup the
 824         *   transient state if it does a trylock or leaves the lock
 825         *   function due to a signal or timeout.
 826         *
 827         * - @task acquires the lock and there are no other
 828         *   waiters. This is undone in rt_mutex_set_owner(@task) at
 829         *   the end of this function.
 830         */
 831        mark_rt_mutex_waiters(lock);
 832
 833        /*
 834         * If @lock has an owner, give up.
 835         */
 836        if (rt_mutex_owner(lock))
 837                return 0;
 838
 839        /*
 840         * If @waiter != NULL, @task has already enqueued the waiter
 841         * into @lock waiter tree. If @waiter == NULL then this is a
 842         * trylock attempt.
 843         */
 844        if (waiter) {
 845                /*
 846                 * If waiter is not the highest priority waiter of
 847                 * @lock, give up.
 848                 */
 849                if (waiter != rt_mutex_top_waiter(lock))
 850                        return 0;
 851
 852                /*
 853                 * We can acquire the lock. Remove the waiter from the
 854                 * lock waiters tree.
 855                 */
 856                rt_mutex_dequeue(lock, waiter);
 857
 858        } else {
 859                /*
 860                 * If the lock has waiters already we check whether @task is
 861                 * eligible to take over the lock.
 862                 *
 863                 * If there are no other waiters, @task can acquire
 864                 * the lock.  @task->pi_blocked_on is NULL, so it does
 865                 * not need to be dequeued.
 866                 */
 867                if (rt_mutex_has_waiters(lock)) {
 868                        /*
 869                         * If @task->prio is greater than or equal to
 870                         * the top waiter priority (kernel view),
 871                         * @task lost.
 872                         */
 873                        if (!rt_mutex_waiter_less(task_to_waiter(task),
 874                                                  rt_mutex_top_waiter(lock)))
 875                                return 0;
 876
 877                        /*
 878                         * The current top waiter stays enqueued. We
 879                         * don't have to change anything in the lock
 880                         * waiters order.
 881                         */
 882                } else {
 883                        /*
 884                         * No waiters. Take the lock without the
 885                         * pi_lock dance.@task->pi_blocked_on is NULL
 886                         * and we have no waiters to enqueue in @task
 887                         * pi waiters tree.
 888                         */
 889                        goto takeit;
 890                }
 891        }
 892
 893        /*
 894         * Clear @task->pi_blocked_on. Requires protection by
 895         * @task->pi_lock. Redundant operation for the @waiter == NULL
 896         * case, but conditionals are more expensive than a redundant
 897         * store.
 898         */
 899        raw_spin_lock(&task->pi_lock);
 900        task->pi_blocked_on = NULL;
 901        /*
 902         * Finish the lock acquisition. @task is the new owner. If
 903         * other waiters exist we have to insert the highest priority
 904         * waiter into @task->pi_waiters tree.
 905         */
 906        if (rt_mutex_has_waiters(lock))
 907                rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
 908        raw_spin_unlock(&task->pi_lock);
 909
 910takeit:
 911        /* We got the lock. */
 912        debug_rt_mutex_lock(lock);
 913
 914        /*
 915         * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
 916         * are still waiters or clears it.
 917         */
 918        rt_mutex_set_owner(lock, task);
 919
 920        return 1;
 921}
 922
 923/*
 924 * Task blocks on lock.
 925 *
 926 * Prepare waiter and propagate pi chain
 927 *
 928 * This must be called with lock->wait_lock held and interrupts disabled
 929 */
 930static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
 931                                   struct rt_mutex_waiter *waiter,
 932                                   struct task_struct *task,
 933                                   enum rtmutex_chainwalk chwalk)
 934{
 935        struct task_struct *owner = rt_mutex_owner(lock);
 936        struct rt_mutex_waiter *top_waiter = waiter;
 937        struct rt_mutex *next_lock;
 938        int chain_walk = 0, res;
 939
 940        lockdep_assert_held(&lock->wait_lock);
 941
 942        /*
 943         * Early deadlock detection. We really don't want the task to
 944         * enqueue on itself just to untangle the mess later. It's not
 945         * only an optimization. We drop the locks, so another waiter
 946         * can come in before the chain walk detects the deadlock. So
 947         * the other will detect the deadlock and return -EDEADLOCK,
 948         * which is wrong, as the other waiter is not in a deadlock
 949         * situation.
 950         */
 951        if (owner == task)
 952                return -EDEADLK;
 953
 954        raw_spin_lock(&task->pi_lock);
 955        waiter->task = task;
 956        waiter->lock = lock;
 957        waiter->prio = task->prio;
 958        waiter->deadline = task->dl.deadline;
 959
 960        /* Get the top priority waiter on the lock */
 961        if (rt_mutex_has_waiters(lock))
 962                top_waiter = rt_mutex_top_waiter(lock);
 963        rt_mutex_enqueue(lock, waiter);
 964
 965        task->pi_blocked_on = waiter;
 966
 967        raw_spin_unlock(&task->pi_lock);
 968
 969        if (!owner)
 970                return 0;
 971
 972        raw_spin_lock(&owner->pi_lock);
 973        if (waiter == rt_mutex_top_waiter(lock)) {
 974                rt_mutex_dequeue_pi(owner, top_waiter);
 975                rt_mutex_enqueue_pi(owner, waiter);
 976
 977                rt_mutex_adjust_prio(owner);
 978                if (owner->pi_blocked_on)
 979                        chain_walk = 1;
 980        } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
 981                chain_walk = 1;
 982        }
 983
 984        /* Store the lock on which owner is blocked or NULL */
 985        next_lock = task_blocked_on_lock(owner);
 986
 987        raw_spin_unlock(&owner->pi_lock);
 988        /*
 989         * Even if full deadlock detection is on, if the owner is not
 990         * blocked itself, we can avoid finding this out in the chain
 991         * walk.
 992         */
 993        if (!chain_walk || !next_lock)
 994                return 0;
 995
 996        /*
 997         * The owner can't disappear while holding a lock,
 998         * so the owner struct is protected by wait_lock.
 999         * Gets dropped in rt_mutex_adjust_prio_chain()!
1000         */
1001        get_task_struct(owner);
1002
1003        raw_spin_unlock_irq(&lock->wait_lock);
1004
1005        res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1006                                         next_lock, waiter, task);
1007
1008        raw_spin_lock_irq(&lock->wait_lock);
1009
1010        return res;
1011}
1012
1013/*
1014 * Remove the top waiter from the current tasks pi waiter tree and
1015 * queue it up.
1016 *
1017 * Called with lock->wait_lock held and interrupts disabled.
1018 */
1019static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1020                                    struct rt_mutex *lock)
1021{
1022        struct rt_mutex_waiter *waiter;
1023
1024        raw_spin_lock(&current->pi_lock);
1025
1026        waiter = rt_mutex_top_waiter(lock);
1027
1028        /*
1029         * Remove it from current->pi_waiters and deboost.
1030         *
1031         * We must in fact deboost here in order to ensure we call
1032         * rt_mutex_setprio() to update p->pi_top_task before the
1033         * task unblocks.
1034         */
1035        rt_mutex_dequeue_pi(current, waiter);
1036        rt_mutex_adjust_prio(current);
1037
1038        /*
1039         * As we are waking up the top waiter, and the waiter stays
1040         * queued on the lock until it gets the lock, this lock
1041         * obviously has waiters. Just set the bit here and this has
1042         * the added benefit of forcing all new tasks into the
1043         * slow path making sure no task of lower priority than
1044         * the top waiter can steal this lock.
1045         */
1046        lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1047
1048        /*
1049         * We deboosted before waking the top waiter task such that we don't
1050         * run two tasks with the 'same' priority (and ensure the
1051         * p->pi_top_task pointer points to a blocked task). This however can
1052         * lead to priority inversion if we would get preempted after the
1053         * deboost but before waking our donor task, hence the preempt_disable()
1054         * before unlock.
1055         *
1056         * Pairs with preempt_enable() in rt_mutex_postunlock();
1057         */
1058        preempt_disable();
1059        wake_q_add(wake_q, waiter->task);
1060        raw_spin_unlock(&current->pi_lock);
1061}
1062
1063/*
1064 * Remove a waiter from a lock and give up
1065 *
1066 * Must be called with lock->wait_lock held and interrupts disabled. I must
1067 * have just failed to try_to_take_rt_mutex().
1068 */
1069static void remove_waiter(struct rt_mutex *lock,
1070                          struct rt_mutex_waiter *waiter)
1071{
1072        bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1073        struct task_struct *owner = rt_mutex_owner(lock);
1074        struct rt_mutex *next_lock;
1075
1076        lockdep_assert_held(&lock->wait_lock);
1077
1078        raw_spin_lock(&current->pi_lock);
1079        rt_mutex_dequeue(lock, waiter);
1080        current->pi_blocked_on = NULL;
1081        raw_spin_unlock(&current->pi_lock);
1082
1083        /*
1084         * Only update priority if the waiter was the highest priority
1085         * waiter of the lock and there is an owner to update.
1086         */
1087        if (!owner || !is_top_waiter)
1088                return;
1089
1090        raw_spin_lock(&owner->pi_lock);
1091
1092        rt_mutex_dequeue_pi(owner, waiter);
1093
1094        if (rt_mutex_has_waiters(lock))
1095                rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1096
1097        rt_mutex_adjust_prio(owner);
1098
1099        /* Store the lock on which owner is blocked or NULL */
1100        next_lock = task_blocked_on_lock(owner);
1101
1102        raw_spin_unlock(&owner->pi_lock);
1103
1104        /*
1105         * Don't walk the chain, if the owner task is not blocked
1106         * itself.
1107         */
1108        if (!next_lock)
1109                return;
1110
1111        /* gets dropped in rt_mutex_adjust_prio_chain()! */
1112        get_task_struct(owner);
1113
1114        raw_spin_unlock_irq(&lock->wait_lock);
1115
1116        rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1117                                   next_lock, NULL, current);
1118
1119        raw_spin_lock_irq(&lock->wait_lock);
1120}
1121
1122/*
1123 * Recheck the pi chain, in case we got a priority setting
1124 *
1125 * Called from sched_setscheduler
1126 */
1127void rt_mutex_adjust_pi(struct task_struct *task)
1128{
1129        struct rt_mutex_waiter *waiter;
1130        struct rt_mutex *next_lock;
1131        unsigned long flags;
1132
1133        raw_spin_lock_irqsave(&task->pi_lock, flags);
1134
1135        waiter = task->pi_blocked_on;
1136        if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
1137                raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1138                return;
1139        }
1140        next_lock = waiter->lock;
1141        raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1142
1143        /* gets dropped in rt_mutex_adjust_prio_chain()! */
1144        get_task_struct(task);
1145
1146        rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1147                                   next_lock, NULL, task);
1148}
1149
1150void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1151{
1152        debug_rt_mutex_init_waiter(waiter);
1153        RB_CLEAR_NODE(&waiter->pi_tree_entry);
1154        RB_CLEAR_NODE(&waiter->tree_entry);
1155        waiter->task = NULL;
1156}
1157
1158/**
1159 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1160 * @lock:                the rt_mutex to take
1161 * @state:               the state the task should block in (TASK_INTERRUPTIBLE
1162 *                       or TASK_UNINTERRUPTIBLE)
1163 * @timeout:             the pre-initialized and started timer, or NULL for none
1164 * @waiter:              the pre-initialized rt_mutex_waiter
1165 *
1166 * Must be called with lock->wait_lock held and interrupts disabled
1167 */
1168static int __sched
1169__rt_mutex_slowlock(struct rt_mutex *lock, int state,
1170                    struct hrtimer_sleeper *timeout,
1171                    struct rt_mutex_waiter *waiter)
1172{
1173        int ret = 0;
1174
1175        for (;;) {
1176                /* Try to acquire the lock: */
1177                if (try_to_take_rt_mutex(lock, current, waiter))
1178                        break;
1179
1180                /*
1181                 * TASK_INTERRUPTIBLE checks for signals and
1182                 * timeout. Ignored otherwise.
1183                 */
1184                if (likely(state == TASK_INTERRUPTIBLE)) {
1185                        /* Signal pending? */
1186                        if (signal_pending(current))
1187                                ret = -EINTR;
1188                        if (timeout && !timeout->task)
1189                                ret = -ETIMEDOUT;
1190                        if (ret)
1191                                break;
1192                }
1193
1194                raw_spin_unlock_irq(&lock->wait_lock);
1195
1196                debug_rt_mutex_print_deadlock(waiter);
1197
1198                schedule();
1199
1200                raw_spin_lock_irq(&lock->wait_lock);
1201                set_current_state(state);
1202        }
1203
1204        __set_current_state(TASK_RUNNING);
1205        return ret;
1206}
1207
1208static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1209                                     struct rt_mutex_waiter *w)
1210{
1211        /*
1212         * If the result is not -EDEADLOCK or the caller requested
1213         * deadlock detection, nothing to do here.
1214         */
1215        if (res != -EDEADLOCK || detect_deadlock)
1216                return;
1217
1218        /*
1219         * Yell lowdly and stop the task right here.
1220         */
1221        rt_mutex_print_deadlock(w);
1222        while (1) {
1223                set_current_state(TASK_INTERRUPTIBLE);
1224                schedule();
1225        }
1226}
1227
1228/*
1229 * Slow path lock function:
1230 */
1231static int __sched
1232rt_mutex_slowlock(struct rt_mutex *lock, int state,
1233                  struct hrtimer_sleeper *timeout,
1234                  enum rtmutex_chainwalk chwalk)
1235{
1236        struct rt_mutex_waiter waiter;
1237        unsigned long flags;
1238        int ret = 0;
1239
1240        rt_mutex_init_waiter(&waiter);
1241
1242        /*
1243         * Technically we could use raw_spin_[un]lock_irq() here, but this can
1244         * be called in early boot if the cmpxchg() fast path is disabled
1245         * (debug, no architecture support). In this case we will acquire the
1246         * rtmutex with lock->wait_lock held. But we cannot unconditionally
1247         * enable interrupts in that early boot case. So we need to use the
1248         * irqsave/restore variants.
1249         */
1250        raw_spin_lock_irqsave(&lock->wait_lock, flags);
1251
1252        /* Try to acquire the lock again: */
1253        if (try_to_take_rt_mutex(lock, current, NULL)) {
1254                raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1255                return 0;
1256        }
1257
1258        set_current_state(state);
1259
1260        /* Setup the timer, when timeout != NULL */
1261        if (unlikely(timeout))
1262                hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1263
1264        ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1265
1266        if (likely(!ret))
1267                /* sleep on the mutex */
1268                ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1269
1270        if (unlikely(ret)) {
1271                __set_current_state(TASK_RUNNING);
1272                remove_waiter(lock, &waiter);
1273                rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1274        }
1275
1276        /*
1277         * try_to_take_rt_mutex() sets the waiter bit
1278         * unconditionally. We might have to fix that up.
1279         */
1280        fixup_rt_mutex_waiters(lock);
1281
1282        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1283
1284        /* Remove pending timer: */
1285        if (unlikely(timeout))
1286                hrtimer_cancel(&timeout->timer);
1287
1288        debug_rt_mutex_free_waiter(&waiter);
1289
1290        return ret;
1291}
1292
1293static inline int __rt_mutex_slowtrylock(struct rt_mutex *lock)
1294{
1295        int ret = try_to_take_rt_mutex(lock, current, NULL);
1296
1297        /*
1298         * try_to_take_rt_mutex() sets the lock waiters bit
1299         * unconditionally. Clean this up.
1300         */
1301        fixup_rt_mutex_waiters(lock);
1302
1303        return ret;
1304}
1305
1306/*
1307 * Slow path try-lock function:
1308 */
1309static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1310{
1311        unsigned long flags;
1312        int ret;
1313
1314        /*
1315         * If the lock already has an owner we fail to get the lock.
1316         * This can be done without taking the @lock->wait_lock as
1317         * it is only being read, and this is a trylock anyway.
1318         */
1319        if (rt_mutex_owner(lock))
1320                return 0;
1321
1322        /*
1323         * The mutex has currently no owner. Lock the wait lock and try to
1324         * acquire the lock. We use irqsave here to support early boot calls.
1325         */
1326        raw_spin_lock_irqsave(&lock->wait_lock, flags);
1327
1328        ret = __rt_mutex_slowtrylock(lock);
1329
1330        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1331
1332        return ret;
1333}
1334
1335/*
1336 * Slow path to release a rt-mutex.
1337 *
1338 * Return whether the current task needs to call rt_mutex_postunlock().
1339 */
1340static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1341                                        struct wake_q_head *wake_q)
1342{
1343        unsigned long flags;
1344
1345        /* irqsave required to support early boot calls */
1346        raw_spin_lock_irqsave(&lock->wait_lock, flags);
1347
1348        debug_rt_mutex_unlock(lock);
1349
1350        /*
1351         * We must be careful here if the fast path is enabled. If we
1352         * have no waiters queued we cannot set owner to NULL here
1353         * because of:
1354         *
1355         * foo->lock->owner = NULL;
1356         *                      rtmutex_lock(foo->lock);   <- fast path
1357         *                      free = atomic_dec_and_test(foo->refcnt);
1358         *                      rtmutex_unlock(foo->lock); <- fast path
1359         *                      if (free)
1360         *                              kfree(foo);
1361         * raw_spin_unlock(foo->lock->wait_lock);
1362         *
1363         * So for the fastpath enabled kernel:
1364         *
1365         * Nothing can set the waiters bit as long as we hold
1366         * lock->wait_lock. So we do the following sequence:
1367         *
1368         *      owner = rt_mutex_owner(lock);
1369         *      clear_rt_mutex_waiters(lock);
1370         *      raw_spin_unlock(&lock->wait_lock);
1371         *      if (cmpxchg(&lock->owner, owner, 0) == owner)
1372         *              return;
1373         *      goto retry;
1374         *
1375         * The fastpath disabled variant is simple as all access to
1376         * lock->owner is serialized by lock->wait_lock:
1377         *
1378         *      lock->owner = NULL;
1379         *      raw_spin_unlock(&lock->wait_lock);
1380         */
1381        while (!rt_mutex_has_waiters(lock)) {
1382                /* Drops lock->wait_lock ! */
1383                if (unlock_rt_mutex_safe(lock, flags) == true)
1384                        return false;
1385                /* Relock the rtmutex and try again */
1386                raw_spin_lock_irqsave(&lock->wait_lock, flags);
1387        }
1388
1389        /*
1390         * The wakeup next waiter path does not suffer from the above
1391         * race. See the comments there.
1392         *
1393         * Queue the next waiter for wakeup once we release the wait_lock.
1394         */
1395        mark_wakeup_next_waiter(wake_q, lock);
1396        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1397
1398        return true; /* call rt_mutex_postunlock() */
1399}
1400
1401/*
1402 * debug aware fast / slowpath lock,trylock,unlock
1403 *
1404 * The atomic acquire/release ops are compiled away, when either the
1405 * architecture does not support cmpxchg or when debugging is enabled.
1406 */
1407static inline int
1408rt_mutex_fastlock(struct rt_mutex *lock, int state,
1409                  int (*slowfn)(struct rt_mutex *lock, int state,
1410                                struct hrtimer_sleeper *timeout,
1411                                enum rtmutex_chainwalk chwalk))
1412{
1413        if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1414                return 0;
1415
1416        return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1417}
1418
1419static inline int
1420rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1421                        struct hrtimer_sleeper *timeout,
1422                        enum rtmutex_chainwalk chwalk,
1423                        int (*slowfn)(struct rt_mutex *lock, int state,
1424                                      struct hrtimer_sleeper *timeout,
1425                                      enum rtmutex_chainwalk chwalk))
1426{
1427        if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1428            likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1429                return 0;
1430
1431        return slowfn(lock, state, timeout, chwalk);
1432}
1433
1434static inline int
1435rt_mutex_fasttrylock(struct rt_mutex *lock,
1436                     int (*slowfn)(struct rt_mutex *lock))
1437{
1438        if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1439                return 1;
1440
1441        return slowfn(lock);
1442}
1443
1444/*
1445 * Performs the wakeup of the the top-waiter and re-enables preemption.
1446 */
1447void rt_mutex_postunlock(struct wake_q_head *wake_q)
1448{
1449        wake_up_q(wake_q);
1450
1451        /* Pairs with preempt_disable() in rt_mutex_slowunlock() */
1452        preempt_enable();
1453}
1454
1455static inline void
1456rt_mutex_fastunlock(struct rt_mutex *lock,
1457                    bool (*slowfn)(struct rt_mutex *lock,
1458                                   struct wake_q_head *wqh))
1459{
1460        DEFINE_WAKE_Q(wake_q);
1461
1462        if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1463                return;
1464
1465        if (slowfn(lock, &wake_q))
1466                rt_mutex_postunlock(&wake_q);
1467}
1468
1469static inline void __rt_mutex_lock(struct rt_mutex *lock, unsigned int subclass)
1470{
1471        might_sleep();
1472
1473        mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
1474        rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1475}
1476
1477#ifdef CONFIG_DEBUG_LOCK_ALLOC
1478/**
1479 * rt_mutex_lock_nested - lock a rt_mutex
1480 *
1481 * @lock: the rt_mutex to be locked
1482 * @subclass: the lockdep subclass
1483 */
1484void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
1485{
1486        __rt_mutex_lock(lock, subclass);
1487}
1488EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
1489
1490#else /* !CONFIG_DEBUG_LOCK_ALLOC */
1491
1492/**
1493 * rt_mutex_lock - lock a rt_mutex
1494 *
1495 * @lock: the rt_mutex to be locked
1496 */
1497void __sched rt_mutex_lock(struct rt_mutex *lock)
1498{
1499        __rt_mutex_lock(lock, 0);
1500}
1501EXPORT_SYMBOL_GPL(rt_mutex_lock);
1502#endif
1503
1504/**
1505 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1506 *
1507 * @lock:               the rt_mutex to be locked
1508 *
1509 * Returns:
1510 *  0           on success
1511 * -EINTR       when interrupted by a signal
1512 */
1513int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1514{
1515        int ret;
1516
1517        might_sleep();
1518
1519        mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1520        ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1521        if (ret)
1522                mutex_release(&lock->dep_map, 1, _RET_IP_);
1523
1524        return ret;
1525}
1526EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1527
1528/*
1529 * Futex variant, must not use fastpath.
1530 */
1531int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1532{
1533        return rt_mutex_slowtrylock(lock);
1534}
1535
1536int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
1537{
1538        return __rt_mutex_slowtrylock(lock);
1539}
1540
1541/**
1542 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1543 *                      the timeout structure is provided
1544 *                      by the caller
1545 *
1546 * @lock:               the rt_mutex to be locked
1547 * @timeout:            timeout structure or NULL (no timeout)
1548 *
1549 * Returns:
1550 *  0           on success
1551 * -EINTR       when interrupted by a signal
1552 * -ETIMEDOUT   when the timeout expired
1553 */
1554int
1555rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1556{
1557        int ret;
1558
1559        might_sleep();
1560
1561        mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1562        ret = rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1563                                       RT_MUTEX_MIN_CHAINWALK,
1564                                       rt_mutex_slowlock);
1565        if (ret)
1566                mutex_release(&lock->dep_map, 1, _RET_IP_);
1567
1568        return ret;
1569}
1570EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1571
1572/**
1573 * rt_mutex_trylock - try to lock a rt_mutex
1574 *
1575 * @lock:       the rt_mutex to be locked
1576 *
1577 * This function can only be called in thread context. It's safe to
1578 * call it from atomic regions, but not from hard interrupt or soft
1579 * interrupt context.
1580 *
1581 * Returns 1 on success and 0 on contention
1582 */
1583int __sched rt_mutex_trylock(struct rt_mutex *lock)
1584{
1585        int ret;
1586
1587        if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1588                return 0;
1589
1590        ret = rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1591        if (ret)
1592                mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1593
1594        return ret;
1595}
1596EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1597
1598/**
1599 * rt_mutex_unlock - unlock a rt_mutex
1600 *
1601 * @lock: the rt_mutex to be unlocked
1602 */
1603void __sched rt_mutex_unlock(struct rt_mutex *lock)
1604{
1605        mutex_release(&lock->dep_map, 1, _RET_IP_);
1606        rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1607}
1608EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1609
1610/**
1611 * Futex variant, that since futex variants do not use the fast-path, can be
1612 * simple and will not need to retry.
1613 */
1614bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1615                                    struct wake_q_head *wake_q)
1616{
1617        lockdep_assert_held(&lock->wait_lock);
1618
1619        debug_rt_mutex_unlock(lock);
1620
1621        if (!rt_mutex_has_waiters(lock)) {
1622                lock->owner = NULL;
1623                return false; /* done */
1624        }
1625
1626        /*
1627         * We've already deboosted, mark_wakeup_next_waiter() will
1628         * retain preempt_disabled when we drop the wait_lock, to
1629         * avoid inversion prior to the wakeup.  preempt_disable()
1630         * therein pairs with rt_mutex_postunlock().
1631         */
1632        mark_wakeup_next_waiter(wake_q, lock);
1633
1634        return true; /* call postunlock() */
1635}
1636
1637void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1638{
1639        DEFINE_WAKE_Q(wake_q);
1640        unsigned long flags;
1641        bool postunlock;
1642
1643        raw_spin_lock_irqsave(&lock->wait_lock, flags);
1644        postunlock = __rt_mutex_futex_unlock(lock, &wake_q);
1645        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1646
1647        if (postunlock)
1648                rt_mutex_postunlock(&wake_q);
1649}
1650
1651/**
1652 * rt_mutex_destroy - mark a mutex unusable
1653 * @lock: the mutex to be destroyed
1654 *
1655 * This function marks the mutex uninitialized, and any subsequent
1656 * use of the mutex is forbidden. The mutex must not be locked when
1657 * this function is called.
1658 */
1659void rt_mutex_destroy(struct rt_mutex *lock)
1660{
1661        WARN_ON(rt_mutex_is_locked(lock));
1662#ifdef CONFIG_DEBUG_RT_MUTEXES
1663        lock->magic = NULL;
1664#endif
1665}
1666EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1667
1668/**
1669 * __rt_mutex_init - initialize the rt lock
1670 *
1671 * @lock: the rt lock to be initialized
1672 *
1673 * Initialize the rt lock to unlocked state.
1674 *
1675 * Initializing of a locked rt lock is not allowed
1676 */
1677void __rt_mutex_init(struct rt_mutex *lock, const char *name,
1678                     struct lock_class_key *key)
1679{
1680        lock->owner = NULL;
1681        raw_spin_lock_init(&lock->wait_lock);
1682        lock->waiters = RB_ROOT_CACHED;
1683
1684        if (name && key)
1685                debug_rt_mutex_init(lock, name, key);
1686}
1687EXPORT_SYMBOL_GPL(__rt_mutex_init);
1688
1689/**
1690 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1691 *                              proxy owner
1692 *
1693 * @lock:       the rt_mutex to be locked
1694 * @proxy_owner:the task to set as owner
1695 *
1696 * No locking. Caller has to do serializing itself
1697 *
1698 * Special API call for PI-futex support. This initializes the rtmutex and
1699 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1700 * possible at this point because the pi_state which contains the rtmutex
1701 * is not yet visible to other tasks.
1702 */
1703void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1704                                struct task_struct *proxy_owner)
1705{
1706        __rt_mutex_init(lock, NULL, NULL);
1707        debug_rt_mutex_proxy_lock(lock, proxy_owner);
1708        rt_mutex_set_owner(lock, proxy_owner);
1709}
1710
1711/**
1712 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1713 *
1714 * @lock:       the rt_mutex to be locked
1715 *
1716 * No locking. Caller has to do serializing itself
1717 *
1718 * Special API call for PI-futex support. This merrily cleans up the rtmutex
1719 * (debugging) state. Concurrent operations on this rt_mutex are not
1720 * possible because it belongs to the pi_state which is about to be freed
1721 * and it is not longer visible to other tasks.
1722 */
1723void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1724                           struct task_struct *proxy_owner)
1725{
1726        debug_rt_mutex_proxy_unlock(lock);
1727        rt_mutex_set_owner(lock, NULL);
1728}
1729
1730/**
1731 * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1732 * @lock:               the rt_mutex to take
1733 * @waiter:             the pre-initialized rt_mutex_waiter
1734 * @task:               the task to prepare
1735 *
1736 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1737 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1738 *
1739 * NOTE: does _NOT_ remove the @waiter on failure; must either call
1740 * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
1741 *
1742 * Returns:
1743 *  0 - task blocked on lock
1744 *  1 - acquired the lock for task, caller should wake it up
1745 * <0 - error
1746 *
1747 * Special API call for PI-futex support.
1748 */
1749int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1750                              struct rt_mutex_waiter *waiter,
1751                              struct task_struct *task)
1752{
1753        int ret;
1754
1755        lockdep_assert_held(&lock->wait_lock);
1756
1757        if (try_to_take_rt_mutex(lock, task, NULL))
1758                return 1;
1759
1760        /* We enforce deadlock detection for futexes */
1761        ret = task_blocks_on_rt_mutex(lock, waiter, task,
1762                                      RT_MUTEX_FULL_CHAINWALK);
1763
1764        if (ret && !rt_mutex_owner(lock)) {
1765                /*
1766                 * Reset the return value. We might have
1767                 * returned with -EDEADLK and the owner
1768                 * released the lock while we were walking the
1769                 * pi chain.  Let the waiter sort it out.
1770                 */
1771                ret = 0;
1772        }
1773
1774        debug_rt_mutex_print_deadlock(waiter);
1775
1776        return ret;
1777}
1778
1779/**
1780 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1781 * @lock:               the rt_mutex to take
1782 * @waiter:             the pre-initialized rt_mutex_waiter
1783 * @task:               the task to prepare
1784 *
1785 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1786 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1787 *
1788 * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
1789 * on failure.
1790 *
1791 * Returns:
1792 *  0 - task blocked on lock
1793 *  1 - acquired the lock for task, caller should wake it up
1794 * <0 - error
1795 *
1796 * Special API call for PI-futex support.
1797 */
1798int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1799                              struct rt_mutex_waiter *waiter,
1800                              struct task_struct *task)
1801{
1802        int ret;
1803
1804        raw_spin_lock_irq(&lock->wait_lock);
1805        ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1806        if (unlikely(ret))
1807                remove_waiter(lock, waiter);
1808        raw_spin_unlock_irq(&lock->wait_lock);
1809
1810        return ret;
1811}
1812
1813/**
1814 * rt_mutex_next_owner - return the next owner of the lock
1815 *
1816 * @lock: the rt lock query
1817 *
1818 * Returns the next owner of the lock or NULL
1819 *
1820 * Caller has to serialize against other accessors to the lock
1821 * itself.
1822 *
1823 * Special API call for PI-futex support
1824 */
1825struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1826{
1827        if (!rt_mutex_has_waiters(lock))
1828                return NULL;
1829
1830        return rt_mutex_top_waiter(lock)->task;
1831}
1832
1833/**
1834 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1835 * @lock:               the rt_mutex we were woken on
1836 * @to:                 the timeout, null if none. hrtimer should already have
1837 *                      been started.
1838 * @waiter:             the pre-initialized rt_mutex_waiter
1839 *
1840 * Wait for the the lock acquisition started on our behalf by
1841 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1842 * rt_mutex_cleanup_proxy_lock().
1843 *
1844 * Returns:
1845 *  0 - success
1846 * <0 - error, one of -EINTR, -ETIMEDOUT
1847 *
1848 * Special API call for PI-futex support
1849 */
1850int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1851                               struct hrtimer_sleeper *to,
1852                               struct rt_mutex_waiter *waiter)
1853{
1854        int ret;
1855
1856        raw_spin_lock_irq(&lock->wait_lock);
1857        /* sleep on the mutex */
1858        set_current_state(TASK_INTERRUPTIBLE);
1859        ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1860        /*
1861         * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1862         * have to fix that up.
1863         */
1864        fixup_rt_mutex_waiters(lock);
1865        raw_spin_unlock_irq(&lock->wait_lock);
1866
1867        return ret;
1868}
1869
1870/**
1871 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1872 * @lock:               the rt_mutex we were woken on
1873 * @waiter:             the pre-initialized rt_mutex_waiter
1874 *
1875 * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
1876 * rt_mutex_wait_proxy_lock().
1877 *
1878 * Unless we acquired the lock; we're still enqueued on the wait-list and can
1879 * in fact still be granted ownership until we're removed. Therefore we can
1880 * find we are in fact the owner and must disregard the
1881 * rt_mutex_wait_proxy_lock() failure.
1882 *
1883 * Returns:
1884 *  true  - did the cleanup, we done.
1885 *  false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1886 *          caller should disregards its return value.
1887 *
1888 * Special API call for PI-futex support
1889 */
1890bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1891                                 struct rt_mutex_waiter *waiter)
1892{
1893        bool cleanup = false;
1894
1895        raw_spin_lock_irq(&lock->wait_lock);
1896        /*
1897         * Do an unconditional try-lock, this deals with the lock stealing
1898         * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1899         * sets a NULL owner.
1900         *
1901         * We're not interested in the return value, because the subsequent
1902         * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1903         * we will own the lock and it will have removed the waiter. If we
1904         * failed the trylock, we're still not owner and we need to remove
1905         * ourselves.
1906         */
1907        try_to_take_rt_mutex(lock, current, waiter);
1908        /*
1909         * Unless we're the owner; we're still enqueued on the wait_list.
1910         * So check if we became owner, if not, take us off the wait_list.
1911         */
1912        if (rt_mutex_owner(lock) != current) {
1913                remove_waiter(lock, waiter);
1914                cleanup = true;
1915        }
1916        /*
1917         * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1918         * have to fix that up.
1919         */
1920        fixup_rt_mutex_waiters(lock);
1921
1922        raw_spin_unlock_irq(&lock->wait_lock);
1923
1924        return cleanup;
1925}
1926