linux/kernel/locking/rwsem.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* kernel/rwsem.c: R/W semaphores, public implementation
   3 *
   4 * Written by David Howells (dhowells@redhat.com).
   5 * Derived from asm-i386/semaphore.h
   6 *
   7 * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
   8 * and Michel Lespinasse <walken@google.com>
   9 *
  10 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
  11 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
  12 *
  13 * Rwsem count bit fields re-definition and rwsem rearchitecture by
  14 * Waiman Long <longman@redhat.com> and
  15 * Peter Zijlstra <peterz@infradead.org>.
  16 */
  17
  18#include <linux/types.h>
  19#include <linux/kernel.h>
  20#include <linux/sched.h>
  21#include <linux/sched/rt.h>
  22#include <linux/sched/task.h>
  23#include <linux/sched/debug.h>
  24#include <linux/sched/wake_q.h>
  25#include <linux/sched/signal.h>
  26#include <linux/sched/clock.h>
  27#include <linux/export.h>
  28#include <linux/rwsem.h>
  29#include <linux/atomic.h>
  30
  31#include "rwsem.h"
  32#include "lock_events.h"
  33
  34/*
  35 * The least significant 3 bits of the owner value has the following
  36 * meanings when set.
  37 *  - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
  38 *  - Bit 1: RWSEM_RD_NONSPINNABLE - Readers cannot spin on this lock.
  39 *  - Bit 2: RWSEM_WR_NONSPINNABLE - Writers cannot spin on this lock.
  40 *
  41 * When the rwsem is either owned by an anonymous writer, or it is
  42 * reader-owned, but a spinning writer has timed out, both nonspinnable
  43 * bits will be set to disable optimistic spinning by readers and writers.
  44 * In the later case, the last unlocking reader should then check the
  45 * writer nonspinnable bit and clear it only to give writers preference
  46 * to acquire the lock via optimistic spinning, but not readers. Similar
  47 * action is also done in the reader slowpath.
  48
  49 * When a writer acquires a rwsem, it puts its task_struct pointer
  50 * into the owner field. It is cleared after an unlock.
  51 *
  52 * When a reader acquires a rwsem, it will also puts its task_struct
  53 * pointer into the owner field with the RWSEM_READER_OWNED bit set.
  54 * On unlock, the owner field will largely be left untouched. So
  55 * for a free or reader-owned rwsem, the owner value may contain
  56 * information about the last reader that acquires the rwsem.
  57 *
  58 * That information may be helpful in debugging cases where the system
  59 * seems to hang on a reader owned rwsem especially if only one reader
  60 * is involved. Ideally we would like to track all the readers that own
  61 * a rwsem, but the overhead is simply too big.
  62 *
  63 * Reader optimistic spinning is helpful when the reader critical section
  64 * is short and there aren't that many readers around. It makes readers
  65 * relatively more preferred than writers. When a writer times out spinning
  66 * on a reader-owned lock and set the nospinnable bits, there are two main
  67 * reasons for that.
  68 *
  69 *  1) The reader critical section is long, perhaps the task sleeps after
  70 *     acquiring the read lock.
  71 *  2) There are just too many readers contending the lock causing it to
  72 *     take a while to service all of them.
  73 *
  74 * In the former case, long reader critical section will impede the progress
  75 * of writers which is usually more important for system performance. In
  76 * the later case, reader optimistic spinning tends to make the reader
  77 * groups that contain readers that acquire the lock together smaller
  78 * leading to more of them. That may hurt performance in some cases. In
  79 * other words, the setting of nonspinnable bits indicates that reader
  80 * optimistic spinning may not be helpful for those workloads that cause
  81 * it.
  82 *
  83 * Therefore, any writers that had observed the setting of the writer
  84 * nonspinnable bit for a given rwsem after they fail to acquire the lock
  85 * via optimistic spinning will set the reader nonspinnable bit once they
  86 * acquire the write lock. Similarly, readers that observe the setting
  87 * of reader nonspinnable bit at slowpath entry will set the reader
  88 * nonspinnable bits when they acquire the read lock via the wakeup path.
  89 *
  90 * Once the reader nonspinnable bit is on, it will only be reset when
  91 * a writer is able to acquire the rwsem in the fast path or somehow a
  92 * reader or writer in the slowpath doesn't observe the nonspinable bit.
  93 *
  94 * This is to discourage reader optmistic spinning on that particular
  95 * rwsem and make writers more preferred. This adaptive disabling of reader
  96 * optimistic spinning will alleviate the negative side effect of this
  97 * feature.
  98 */
  99#define RWSEM_READER_OWNED      (1UL << 0)
 100#define RWSEM_RD_NONSPINNABLE   (1UL << 1)
 101#define RWSEM_WR_NONSPINNABLE   (1UL << 2)
 102#define RWSEM_NONSPINNABLE      (RWSEM_RD_NONSPINNABLE | RWSEM_WR_NONSPINNABLE)
 103#define RWSEM_OWNER_FLAGS_MASK  (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
 104
 105#ifdef CONFIG_DEBUG_RWSEMS
 106# define DEBUG_RWSEMS_WARN_ON(c, sem)   do {                    \
 107        if (!debug_locks_silent &&                              \
 108            WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
 109                #c, atomic_long_read(&(sem)->count),            \
 110                atomic_long_read(&(sem)->owner), (long)current, \
 111                list_empty(&(sem)->wait_list) ? "" : "not "))   \
 112                        debug_locks_off();                      \
 113        } while (0)
 114#else
 115# define DEBUG_RWSEMS_WARN_ON(c, sem)
 116#endif
 117
 118/*
 119 * On 64-bit architectures, the bit definitions of the count are:
 120 *
 121 * Bit  0    - writer locked bit
 122 * Bit  1    - waiters present bit
 123 * Bit  2    - lock handoff bit
 124 * Bits 3-7  - reserved
 125 * Bits 8-62 - 55-bit reader count
 126 * Bit  63   - read fail bit
 127 *
 128 * On 32-bit architectures, the bit definitions of the count are:
 129 *
 130 * Bit  0    - writer locked bit
 131 * Bit  1    - waiters present bit
 132 * Bit  2    - lock handoff bit
 133 * Bits 3-7  - reserved
 134 * Bits 8-30 - 23-bit reader count
 135 * Bit  31   - read fail bit
 136 *
 137 * It is not likely that the most significant bit (read fail bit) will ever
 138 * be set. This guard bit is still checked anyway in the down_read() fastpath
 139 * just in case we need to use up more of the reader bits for other purpose
 140 * in the future.
 141 *
 142 * atomic_long_fetch_add() is used to obtain reader lock, whereas
 143 * atomic_long_cmpxchg() will be used to obtain writer lock.
 144 *
 145 * There are three places where the lock handoff bit may be set or cleared.
 146 * 1) rwsem_mark_wake() for readers.
 147 * 2) rwsem_try_write_lock() for writers.
 148 * 3) Error path of rwsem_down_write_slowpath().
 149 *
 150 * For all the above cases, wait_lock will be held. A writer must also
 151 * be the first one in the wait_list to be eligible for setting the handoff
 152 * bit. So concurrent setting/clearing of handoff bit is not possible.
 153 */
 154#define RWSEM_WRITER_LOCKED     (1UL << 0)
 155#define RWSEM_FLAG_WAITERS      (1UL << 1)
 156#define RWSEM_FLAG_HANDOFF      (1UL << 2)
 157#define RWSEM_FLAG_READFAIL     (1UL << (BITS_PER_LONG - 1))
 158
 159#define RWSEM_READER_SHIFT      8
 160#define RWSEM_READER_BIAS       (1UL << RWSEM_READER_SHIFT)
 161#define RWSEM_READER_MASK       (~(RWSEM_READER_BIAS - 1))
 162#define RWSEM_WRITER_MASK       RWSEM_WRITER_LOCKED
 163#define RWSEM_LOCK_MASK         (RWSEM_WRITER_MASK|RWSEM_READER_MASK)
 164#define RWSEM_READ_FAILED_MASK  (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
 165                                 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
 166
 167/*
 168 * All writes to owner are protected by WRITE_ONCE() to make sure that
 169 * store tearing can't happen as optimistic spinners may read and use
 170 * the owner value concurrently without lock. Read from owner, however,
 171 * may not need READ_ONCE() as long as the pointer value is only used
 172 * for comparison and isn't being dereferenced.
 173 */
 174static inline void rwsem_set_owner(struct rw_semaphore *sem)
 175{
 176        atomic_long_set(&sem->owner, (long)current);
 177}
 178
 179static inline void rwsem_clear_owner(struct rw_semaphore *sem)
 180{
 181        atomic_long_set(&sem->owner, 0);
 182}
 183
 184/*
 185 * Test the flags in the owner field.
 186 */
 187static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
 188{
 189        return atomic_long_read(&sem->owner) & flags;
 190}
 191
 192/*
 193 * The task_struct pointer of the last owning reader will be left in
 194 * the owner field.
 195 *
 196 * Note that the owner value just indicates the task has owned the rwsem
 197 * previously, it may not be the real owner or one of the real owners
 198 * anymore when that field is examined, so take it with a grain of salt.
 199 *
 200 * The reader non-spinnable bit is preserved.
 201 */
 202static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
 203                                            struct task_struct *owner)
 204{
 205        unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
 206                (atomic_long_read(&sem->owner) & RWSEM_RD_NONSPINNABLE);
 207
 208        atomic_long_set(&sem->owner, val);
 209}
 210
 211static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
 212{
 213        __rwsem_set_reader_owned(sem, current);
 214}
 215
 216/*
 217 * Return true if the rwsem is owned by a reader.
 218 */
 219static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
 220{
 221#ifdef CONFIG_DEBUG_RWSEMS
 222        /*
 223         * Check the count to see if it is write-locked.
 224         */
 225        long count = atomic_long_read(&sem->count);
 226
 227        if (count & RWSEM_WRITER_MASK)
 228                return false;
 229#endif
 230        return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
 231}
 232
 233#ifdef CONFIG_DEBUG_RWSEMS
 234/*
 235 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
 236 * is a task pointer in owner of a reader-owned rwsem, it will be the
 237 * real owner or one of the real owners. The only exception is when the
 238 * unlock is done by up_read_non_owner().
 239 */
 240static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
 241{
 242        unsigned long val = atomic_long_read(&sem->owner);
 243
 244        while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
 245                if (atomic_long_try_cmpxchg(&sem->owner, &val,
 246                                            val & RWSEM_OWNER_FLAGS_MASK))
 247                        return;
 248        }
 249}
 250#else
 251static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
 252{
 253}
 254#endif
 255
 256/*
 257 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
 258 * remains set. Otherwise, the operation will be aborted.
 259 */
 260static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
 261{
 262        unsigned long owner = atomic_long_read(&sem->owner);
 263
 264        do {
 265                if (!(owner & RWSEM_READER_OWNED))
 266                        break;
 267                if (owner & RWSEM_NONSPINNABLE)
 268                        break;
 269        } while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
 270                                          owner | RWSEM_NONSPINNABLE));
 271}
 272
 273static inline bool rwsem_read_trylock(struct rw_semaphore *sem)
 274{
 275        long cnt = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
 276        if (WARN_ON_ONCE(cnt < 0))
 277                rwsem_set_nonspinnable(sem);
 278        return !(cnt & RWSEM_READ_FAILED_MASK);
 279}
 280
 281/*
 282 * Return just the real task structure pointer of the owner
 283 */
 284static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
 285{
 286        return (struct task_struct *)
 287                (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
 288}
 289
 290/*
 291 * Return the real task structure pointer of the owner and the embedded
 292 * flags in the owner. pflags must be non-NULL.
 293 */
 294static inline struct task_struct *
 295rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
 296{
 297        unsigned long owner = atomic_long_read(&sem->owner);
 298
 299        *pflags = owner & RWSEM_OWNER_FLAGS_MASK;
 300        return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
 301}
 302
 303/*
 304 * Guide to the rw_semaphore's count field.
 305 *
 306 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
 307 * by a writer.
 308 *
 309 * The lock is owned by readers when
 310 * (1) the RWSEM_WRITER_LOCKED isn't set in count,
 311 * (2) some of the reader bits are set in count, and
 312 * (3) the owner field has RWSEM_READ_OWNED bit set.
 313 *
 314 * Having some reader bits set is not enough to guarantee a readers owned
 315 * lock as the readers may be in the process of backing out from the count
 316 * and a writer has just released the lock. So another writer may steal
 317 * the lock immediately after that.
 318 */
 319
 320/*
 321 * Initialize an rwsem:
 322 */
 323void __init_rwsem(struct rw_semaphore *sem, const char *name,
 324                  struct lock_class_key *key)
 325{
 326#ifdef CONFIG_DEBUG_LOCK_ALLOC
 327        /*
 328         * Make sure we are not reinitializing a held semaphore:
 329         */
 330        debug_check_no_locks_freed((void *)sem, sizeof(*sem));
 331        lockdep_init_map(&sem->dep_map, name, key, 0);
 332#endif
 333        atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
 334        raw_spin_lock_init(&sem->wait_lock);
 335        INIT_LIST_HEAD(&sem->wait_list);
 336        atomic_long_set(&sem->owner, 0L);
 337#ifdef CONFIG_RWSEM_SPIN_ON_OWNER
 338        osq_lock_init(&sem->osq);
 339#endif
 340}
 341EXPORT_SYMBOL(__init_rwsem);
 342
 343enum rwsem_waiter_type {
 344        RWSEM_WAITING_FOR_WRITE,
 345        RWSEM_WAITING_FOR_READ
 346};
 347
 348struct rwsem_waiter {
 349        struct list_head list;
 350        struct task_struct *task;
 351        enum rwsem_waiter_type type;
 352        unsigned long timeout;
 353        unsigned long last_rowner;
 354};
 355#define rwsem_first_waiter(sem) \
 356        list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
 357
 358enum rwsem_wake_type {
 359        RWSEM_WAKE_ANY,         /* Wake whatever's at head of wait list */
 360        RWSEM_WAKE_READERS,     /* Wake readers only */
 361        RWSEM_WAKE_READ_OWNED   /* Waker thread holds the read lock */
 362};
 363
 364enum writer_wait_state {
 365        WRITER_NOT_FIRST,       /* Writer is not first in wait list */
 366        WRITER_FIRST,           /* Writer is first in wait list     */
 367        WRITER_HANDOFF          /* Writer is first & handoff needed */
 368};
 369
 370/*
 371 * The typical HZ value is either 250 or 1000. So set the minimum waiting
 372 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
 373 * queue before initiating the handoff protocol.
 374 */
 375#define RWSEM_WAIT_TIMEOUT      DIV_ROUND_UP(HZ, 250)
 376
 377/*
 378 * Magic number to batch-wakeup waiting readers, even when writers are
 379 * also present in the queue. This both limits the amount of work the
 380 * waking thread must do and also prevents any potential counter overflow,
 381 * however unlikely.
 382 */
 383#define MAX_READERS_WAKEUP      0x100
 384
 385/*
 386 * handle the lock release when processes blocked on it that can now run
 387 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
 388 *   have been set.
 389 * - there must be someone on the queue
 390 * - the wait_lock must be held by the caller
 391 * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
 392 *   to actually wakeup the blocked task(s) and drop the reference count,
 393 *   preferably when the wait_lock is released
 394 * - woken process blocks are discarded from the list after having task zeroed
 395 * - writers are only marked woken if downgrading is false
 396 */
 397static void rwsem_mark_wake(struct rw_semaphore *sem,
 398                            enum rwsem_wake_type wake_type,
 399                            struct wake_q_head *wake_q)
 400{
 401        struct rwsem_waiter *waiter, *tmp;
 402        long oldcount, woken = 0, adjustment = 0;
 403        struct list_head wlist;
 404
 405        lockdep_assert_held(&sem->wait_lock);
 406
 407        /*
 408         * Take a peek at the queue head waiter such that we can determine
 409         * the wakeup(s) to perform.
 410         */
 411        waiter = rwsem_first_waiter(sem);
 412
 413        if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
 414                if (wake_type == RWSEM_WAKE_ANY) {
 415                        /*
 416                         * Mark writer at the front of the queue for wakeup.
 417                         * Until the task is actually later awoken later by
 418                         * the caller, other writers are able to steal it.
 419                         * Readers, on the other hand, will block as they
 420                         * will notice the queued writer.
 421                         */
 422                        wake_q_add(wake_q, waiter->task);
 423                        lockevent_inc(rwsem_wake_writer);
 424                }
 425
 426                return;
 427        }
 428
 429        /*
 430         * No reader wakeup if there are too many of them already.
 431         */
 432        if (unlikely(atomic_long_read(&sem->count) < 0))
 433                return;
 434
 435        /*
 436         * Writers might steal the lock before we grant it to the next reader.
 437         * We prefer to do the first reader grant before counting readers
 438         * so we can bail out early if a writer stole the lock.
 439         */
 440        if (wake_type != RWSEM_WAKE_READ_OWNED) {
 441                struct task_struct *owner;
 442
 443                adjustment = RWSEM_READER_BIAS;
 444                oldcount = atomic_long_fetch_add(adjustment, &sem->count);
 445                if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
 446                        /*
 447                         * When we've been waiting "too" long (for writers
 448                         * to give up the lock), request a HANDOFF to
 449                         * force the issue.
 450                         */
 451                        if (!(oldcount & RWSEM_FLAG_HANDOFF) &&
 452                            time_after(jiffies, waiter->timeout)) {
 453                                adjustment -= RWSEM_FLAG_HANDOFF;
 454                                lockevent_inc(rwsem_rlock_handoff);
 455                        }
 456
 457                        atomic_long_add(-adjustment, &sem->count);
 458                        return;
 459                }
 460                /*
 461                 * Set it to reader-owned to give spinners an early
 462                 * indication that readers now have the lock.
 463                 * The reader nonspinnable bit seen at slowpath entry of
 464                 * the reader is copied over.
 465                 */
 466                owner = waiter->task;
 467                if (waiter->last_rowner & RWSEM_RD_NONSPINNABLE) {
 468                        owner = (void *)((unsigned long)owner | RWSEM_RD_NONSPINNABLE);
 469                        lockevent_inc(rwsem_opt_norspin);
 470                }
 471                __rwsem_set_reader_owned(sem, owner);
 472        }
 473
 474        /*
 475         * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
 476         * queue. We know that the woken will be at least 1 as we accounted
 477         * for above. Note we increment the 'active part' of the count by the
 478         * number of readers before waking any processes up.
 479         *
 480         * This is an adaptation of the phase-fair R/W locks where at the
 481         * reader phase (first waiter is a reader), all readers are eligible
 482         * to acquire the lock at the same time irrespective of their order
 483         * in the queue. The writers acquire the lock according to their
 484         * order in the queue.
 485         *
 486         * We have to do wakeup in 2 passes to prevent the possibility that
 487         * the reader count may be decremented before it is incremented. It
 488         * is because the to-be-woken waiter may not have slept yet. So it
 489         * may see waiter->task got cleared, finish its critical section and
 490         * do an unlock before the reader count increment.
 491         *
 492         * 1) Collect the read-waiters in a separate list, count them and
 493         *    fully increment the reader count in rwsem.
 494         * 2) For each waiters in the new list, clear waiter->task and
 495         *    put them into wake_q to be woken up later.
 496         */
 497        INIT_LIST_HEAD(&wlist);
 498        list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
 499                if (waiter->type == RWSEM_WAITING_FOR_WRITE)
 500                        continue;
 501
 502                woken++;
 503                list_move_tail(&waiter->list, &wlist);
 504
 505                /*
 506                 * Limit # of readers that can be woken up per wakeup call.
 507                 */
 508                if (woken >= MAX_READERS_WAKEUP)
 509                        break;
 510        }
 511
 512        adjustment = woken * RWSEM_READER_BIAS - adjustment;
 513        lockevent_cond_inc(rwsem_wake_reader, woken);
 514        if (list_empty(&sem->wait_list)) {
 515                /* hit end of list above */
 516                adjustment -= RWSEM_FLAG_WAITERS;
 517        }
 518
 519        /*
 520         * When we've woken a reader, we no longer need to force writers
 521         * to give up the lock and we can clear HANDOFF.
 522         */
 523        if (woken && (atomic_long_read(&sem->count) & RWSEM_FLAG_HANDOFF))
 524                adjustment -= RWSEM_FLAG_HANDOFF;
 525
 526        if (adjustment)
 527                atomic_long_add(adjustment, &sem->count);
 528
 529        /* 2nd pass */
 530        list_for_each_entry_safe(waiter, tmp, &wlist, list) {
 531                struct task_struct *tsk;
 532
 533                tsk = waiter->task;
 534                get_task_struct(tsk);
 535
 536                /*
 537                 * Ensure calling get_task_struct() before setting the reader
 538                 * waiter to nil such that rwsem_down_read_slowpath() cannot
 539                 * race with do_exit() by always holding a reference count
 540                 * to the task to wakeup.
 541                 */
 542                smp_store_release(&waiter->task, NULL);
 543                /*
 544                 * Ensure issuing the wakeup (either by us or someone else)
 545                 * after setting the reader waiter to nil.
 546                 */
 547                wake_q_add_safe(wake_q, tsk);
 548        }
 549}
 550
 551/*
 552 * This function must be called with the sem->wait_lock held to prevent
 553 * race conditions between checking the rwsem wait list and setting the
 554 * sem->count accordingly.
 555 *
 556 * If wstate is WRITER_HANDOFF, it will make sure that either the handoff
 557 * bit is set or the lock is acquired with handoff bit cleared.
 558 */
 559static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
 560                                        enum writer_wait_state wstate)
 561{
 562        long count, new;
 563
 564        lockdep_assert_held(&sem->wait_lock);
 565
 566        count = atomic_long_read(&sem->count);
 567        do {
 568                bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
 569
 570                if (has_handoff && wstate == WRITER_NOT_FIRST)
 571                        return false;
 572
 573                new = count;
 574
 575                if (count & RWSEM_LOCK_MASK) {
 576                        if (has_handoff || (wstate != WRITER_HANDOFF))
 577                                return false;
 578
 579                        new |= RWSEM_FLAG_HANDOFF;
 580                } else {
 581                        new |= RWSEM_WRITER_LOCKED;
 582                        new &= ~RWSEM_FLAG_HANDOFF;
 583
 584                        if (list_is_singular(&sem->wait_list))
 585                                new &= ~RWSEM_FLAG_WAITERS;
 586                }
 587        } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
 588
 589        /*
 590         * We have either acquired the lock with handoff bit cleared or
 591         * set the handoff bit.
 592         */
 593        if (new & RWSEM_FLAG_HANDOFF)
 594                return false;
 595
 596        rwsem_set_owner(sem);
 597        return true;
 598}
 599
 600#ifdef CONFIG_RWSEM_SPIN_ON_OWNER
 601/*
 602 * Try to acquire read lock before the reader is put on wait queue.
 603 * Lock acquisition isn't allowed if the rwsem is locked or a writer handoff
 604 * is ongoing.
 605 */
 606static inline bool rwsem_try_read_lock_unqueued(struct rw_semaphore *sem)
 607{
 608        long count = atomic_long_read(&sem->count);
 609
 610        if (count & (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))
 611                return false;
 612
 613        count = atomic_long_fetch_add_acquire(RWSEM_READER_BIAS, &sem->count);
 614        if (!(count & (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) {
 615                rwsem_set_reader_owned(sem);
 616                lockevent_inc(rwsem_opt_rlock);
 617                return true;
 618        }
 619
 620        /* Back out the change */
 621        atomic_long_add(-RWSEM_READER_BIAS, &sem->count);
 622        return false;
 623}
 624
 625/*
 626 * Try to acquire write lock before the writer has been put on wait queue.
 627 */
 628static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
 629{
 630        long count = atomic_long_read(&sem->count);
 631
 632        while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
 633                if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
 634                                        count | RWSEM_WRITER_LOCKED)) {
 635                        rwsem_set_owner(sem);
 636                        lockevent_inc(rwsem_opt_wlock);
 637                        return true;
 638                }
 639        }
 640        return false;
 641}
 642
 643static inline bool owner_on_cpu(struct task_struct *owner)
 644{
 645        /*
 646         * As lock holder preemption issue, we both skip spinning if
 647         * task is not on cpu or its cpu is preempted
 648         */
 649        return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
 650}
 651
 652static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem,
 653                                           unsigned long nonspinnable)
 654{
 655        struct task_struct *owner;
 656        unsigned long flags;
 657        bool ret = true;
 658
 659        BUILD_BUG_ON(!(RWSEM_OWNER_UNKNOWN & RWSEM_NONSPINNABLE));
 660
 661        if (need_resched()) {
 662                lockevent_inc(rwsem_opt_fail);
 663                return false;
 664        }
 665
 666        preempt_disable();
 667        rcu_read_lock();
 668        owner = rwsem_owner_flags(sem, &flags);
 669        /*
 670         * Don't check the read-owner as the entry may be stale.
 671         */
 672        if ((flags & nonspinnable) ||
 673            (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
 674                ret = false;
 675        rcu_read_unlock();
 676        preempt_enable();
 677
 678        lockevent_cond_inc(rwsem_opt_fail, !ret);
 679        return ret;
 680}
 681
 682/*
 683 * The rwsem_spin_on_owner() function returns the folowing 4 values
 684 * depending on the lock owner state.
 685 *   OWNER_NULL  : owner is currently NULL
 686 *   OWNER_WRITER: when owner changes and is a writer
 687 *   OWNER_READER: when owner changes and the new owner may be a reader.
 688 *   OWNER_NONSPINNABLE:
 689 *                 when optimistic spinning has to stop because either the
 690 *                 owner stops running, is unknown, or its timeslice has
 691 *                 been used up.
 692 */
 693enum owner_state {
 694        OWNER_NULL              = 1 << 0,
 695        OWNER_WRITER            = 1 << 1,
 696        OWNER_READER            = 1 << 2,
 697        OWNER_NONSPINNABLE      = 1 << 3,
 698};
 699#define OWNER_SPINNABLE         (OWNER_NULL | OWNER_WRITER | OWNER_READER)
 700
 701static inline enum owner_state
 702rwsem_owner_state(struct task_struct *owner, unsigned long flags, unsigned long nonspinnable)
 703{
 704        if (flags & nonspinnable)
 705                return OWNER_NONSPINNABLE;
 706
 707        if (flags & RWSEM_READER_OWNED)
 708                return OWNER_READER;
 709
 710        return owner ? OWNER_WRITER : OWNER_NULL;
 711}
 712
 713static noinline enum owner_state
 714rwsem_spin_on_owner(struct rw_semaphore *sem, unsigned long nonspinnable)
 715{
 716        struct task_struct *new, *owner;
 717        unsigned long flags, new_flags;
 718        enum owner_state state;
 719
 720        owner = rwsem_owner_flags(sem, &flags);
 721        state = rwsem_owner_state(owner, flags, nonspinnable);
 722        if (state != OWNER_WRITER)
 723                return state;
 724
 725        rcu_read_lock();
 726        for (;;) {
 727                if (atomic_long_read(&sem->count) & RWSEM_FLAG_HANDOFF) {
 728                        state = OWNER_NONSPINNABLE;
 729                        break;
 730                }
 731
 732                new = rwsem_owner_flags(sem, &new_flags);
 733                if ((new != owner) || (new_flags != flags)) {
 734                        state = rwsem_owner_state(new, new_flags, nonspinnable);
 735                        break;
 736                }
 737
 738                /*
 739                 * Ensure we emit the owner->on_cpu, dereference _after_
 740                 * checking sem->owner still matches owner, if that fails,
 741                 * owner might point to free()d memory, if it still matches,
 742                 * the rcu_read_lock() ensures the memory stays valid.
 743                 */
 744                barrier();
 745
 746                if (need_resched() || !owner_on_cpu(owner)) {
 747                        state = OWNER_NONSPINNABLE;
 748                        break;
 749                }
 750
 751                cpu_relax();
 752        }
 753        rcu_read_unlock();
 754
 755        return state;
 756}
 757
 758/*
 759 * Calculate reader-owned rwsem spinning threshold for writer
 760 *
 761 * The more readers own the rwsem, the longer it will take for them to
 762 * wind down and free the rwsem. So the empirical formula used to
 763 * determine the actual spinning time limit here is:
 764 *
 765 *   Spinning threshold = (10 + nr_readers/2)us
 766 *
 767 * The limit is capped to a maximum of 25us (30 readers). This is just
 768 * a heuristic and is subjected to change in the future.
 769 */
 770static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
 771{
 772        long count = atomic_long_read(&sem->count);
 773        int readers = count >> RWSEM_READER_SHIFT;
 774        u64 delta;
 775
 776        if (readers > 30)
 777                readers = 30;
 778        delta = (20 + readers) * NSEC_PER_USEC / 2;
 779
 780        return sched_clock() + delta;
 781}
 782
 783static bool rwsem_optimistic_spin(struct rw_semaphore *sem, bool wlock)
 784{
 785        bool taken = false;
 786        int prev_owner_state = OWNER_NULL;
 787        int loop = 0;
 788        u64 rspin_threshold = 0;
 789        unsigned long nonspinnable = wlock ? RWSEM_WR_NONSPINNABLE
 790                                           : RWSEM_RD_NONSPINNABLE;
 791
 792        preempt_disable();
 793
 794        /* sem->wait_lock should not be held when doing optimistic spinning */
 795        if (!osq_lock(&sem->osq))
 796                goto done;
 797
 798        /*
 799         * Optimistically spin on the owner field and attempt to acquire the
 800         * lock whenever the owner changes. Spinning will be stopped when:
 801         *  1) the owning writer isn't running; or
 802         *  2) readers own the lock and spinning time has exceeded limit.
 803         */
 804        for (;;) {
 805                enum owner_state owner_state;
 806
 807                owner_state = rwsem_spin_on_owner(sem, nonspinnable);
 808                if (!(owner_state & OWNER_SPINNABLE))
 809                        break;
 810
 811                /*
 812                 * Try to acquire the lock
 813                 */
 814                taken = wlock ? rwsem_try_write_lock_unqueued(sem)
 815                              : rwsem_try_read_lock_unqueued(sem);
 816
 817                if (taken)
 818                        break;
 819
 820                /*
 821                 * Time-based reader-owned rwsem optimistic spinning
 822                 */
 823                if (wlock && (owner_state == OWNER_READER)) {
 824                        /*
 825                         * Re-initialize rspin_threshold every time when
 826                         * the owner state changes from non-reader to reader.
 827                         * This allows a writer to steal the lock in between
 828                         * 2 reader phases and have the threshold reset at
 829                         * the beginning of the 2nd reader phase.
 830                         */
 831                        if (prev_owner_state != OWNER_READER) {
 832                                if (rwsem_test_oflags(sem, nonspinnable))
 833                                        break;
 834                                rspin_threshold = rwsem_rspin_threshold(sem);
 835                                loop = 0;
 836                        }
 837
 838                        /*
 839                         * Check time threshold once every 16 iterations to
 840                         * avoid calling sched_clock() too frequently so
 841                         * as to reduce the average latency between the times
 842                         * when the lock becomes free and when the spinner
 843                         * is ready to do a trylock.
 844                         */
 845                        else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
 846                                rwsem_set_nonspinnable(sem);
 847                                lockevent_inc(rwsem_opt_nospin);
 848                                break;
 849                        }
 850                }
 851
 852                /*
 853                 * An RT task cannot do optimistic spinning if it cannot
 854                 * be sure the lock holder is running or live-lock may
 855                 * happen if the current task and the lock holder happen
 856                 * to run in the same CPU. However, aborting optimistic
 857                 * spinning while a NULL owner is detected may miss some
 858                 * opportunity where spinning can continue without causing
 859                 * problem.
 860                 *
 861                 * There are 2 possible cases where an RT task may be able
 862                 * to continue spinning.
 863                 *
 864                 * 1) The lock owner is in the process of releasing the
 865                 *    lock, sem->owner is cleared but the lock has not
 866                 *    been released yet.
 867                 * 2) The lock was free and owner cleared, but another
 868                 *    task just comes in and acquire the lock before
 869                 *    we try to get it. The new owner may be a spinnable
 870                 *    writer.
 871                 *
 872                 * To take advantage of two scenarios listed agove, the RT
 873                 * task is made to retry one more time to see if it can
 874                 * acquire the lock or continue spinning on the new owning
 875                 * writer. Of course, if the time lag is long enough or the
 876                 * new owner is not a writer or spinnable, the RT task will
 877                 * quit spinning.
 878                 *
 879                 * If the owner is a writer, the need_resched() check is
 880                 * done inside rwsem_spin_on_owner(). If the owner is not
 881                 * a writer, need_resched() check needs to be done here.
 882                 */
 883                if (owner_state != OWNER_WRITER) {
 884                        if (need_resched())
 885                                break;
 886                        if (rt_task(current) &&
 887                           (prev_owner_state != OWNER_WRITER))
 888                                break;
 889                }
 890                prev_owner_state = owner_state;
 891
 892                /*
 893                 * The cpu_relax() call is a compiler barrier which forces
 894                 * everything in this loop to be re-loaded. We don't need
 895                 * memory barriers as we'll eventually observe the right
 896                 * values at the cost of a few extra spins.
 897                 */
 898                cpu_relax();
 899        }
 900        osq_unlock(&sem->osq);
 901done:
 902        preempt_enable();
 903        lockevent_cond_inc(rwsem_opt_fail, !taken);
 904        return taken;
 905}
 906
 907/*
 908 * Clear the owner's RWSEM_WR_NONSPINNABLE bit if it is set. This should
 909 * only be called when the reader count reaches 0.
 910 *
 911 * This give writers better chance to acquire the rwsem first before
 912 * readers when the rwsem was being held by readers for a relatively long
 913 * period of time. Race can happen that an optimistic spinner may have
 914 * just stolen the rwsem and set the owner, but just clearing the
 915 * RWSEM_WR_NONSPINNABLE bit will do no harm anyway.
 916 */
 917static inline void clear_wr_nonspinnable(struct rw_semaphore *sem)
 918{
 919        if (rwsem_test_oflags(sem, RWSEM_WR_NONSPINNABLE))
 920                atomic_long_andnot(RWSEM_WR_NONSPINNABLE, &sem->owner);
 921}
 922
 923/*
 924 * This function is called when the reader fails to acquire the lock via
 925 * optimistic spinning. In this case we will still attempt to do a trylock
 926 * when comparing the rwsem state right now with the state when entering
 927 * the slowpath indicates that the reader is still in a valid reader phase.
 928 * This happens when the following conditions are true:
 929 *
 930 * 1) The lock is currently reader owned, and
 931 * 2) The lock is previously not reader-owned or the last read owner changes.
 932 *
 933 * In the former case, we have transitioned from a writer phase to a
 934 * reader-phase while spinning. In the latter case, it means the reader
 935 * phase hasn't ended when we entered the optimistic spinning loop. In
 936 * both cases, the reader is eligible to acquire the lock. This is the
 937 * secondary path where a read lock is acquired optimistically.
 938 *
 939 * The reader non-spinnable bit wasn't set at time of entry or it will
 940 * not be here at all.
 941 */
 942static inline bool rwsem_reader_phase_trylock(struct rw_semaphore *sem,
 943                                              unsigned long last_rowner)
 944{
 945        unsigned long owner = atomic_long_read(&sem->owner);
 946
 947        if (!(owner & RWSEM_READER_OWNED))
 948                return false;
 949
 950        if (((owner ^ last_rowner) & ~RWSEM_OWNER_FLAGS_MASK) &&
 951            rwsem_try_read_lock_unqueued(sem)) {
 952                lockevent_inc(rwsem_opt_rlock2);
 953                lockevent_add(rwsem_opt_fail, -1);
 954                return true;
 955        }
 956        return false;
 957}
 958#else
 959static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem,
 960                                           unsigned long nonspinnable)
 961{
 962        return false;
 963}
 964
 965static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem, bool wlock)
 966{
 967        return false;
 968}
 969
 970static inline void clear_wr_nonspinnable(struct rw_semaphore *sem) { }
 971
 972static inline bool rwsem_reader_phase_trylock(struct rw_semaphore *sem,
 973                                              unsigned long last_rowner)
 974{
 975        return false;
 976}
 977#endif
 978
 979/*
 980 * Wait for the read lock to be granted
 981 */
 982static struct rw_semaphore __sched *
 983rwsem_down_read_slowpath(struct rw_semaphore *sem, int state)
 984{
 985        long count, adjustment = -RWSEM_READER_BIAS;
 986        struct rwsem_waiter waiter;
 987        DEFINE_WAKE_Q(wake_q);
 988        bool wake = false;
 989
 990        /*
 991         * Save the current read-owner of rwsem, if available, and the
 992         * reader nonspinnable bit.
 993         */
 994        waiter.last_rowner = atomic_long_read(&sem->owner);
 995        if (!(waiter.last_rowner & RWSEM_READER_OWNED))
 996                waiter.last_rowner &= RWSEM_RD_NONSPINNABLE;
 997
 998        if (!rwsem_can_spin_on_owner(sem, RWSEM_RD_NONSPINNABLE))
 999                goto queue;
1000
1001        /*
1002         * Undo read bias from down_read() and do optimistic spinning.
1003         */
1004        atomic_long_add(-RWSEM_READER_BIAS, &sem->count);
1005        adjustment = 0;
1006        if (rwsem_optimistic_spin(sem, false)) {
1007                /* rwsem_optimistic_spin() implies ACQUIRE on success */
1008                /*
1009                 * Wake up other readers in the wait list if the front
1010                 * waiter is a reader.
1011                 */
1012                if ((atomic_long_read(&sem->count) & RWSEM_FLAG_WAITERS)) {
1013                        raw_spin_lock_irq(&sem->wait_lock);
1014                        if (!list_empty(&sem->wait_list))
1015                                rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
1016                                                &wake_q);
1017                        raw_spin_unlock_irq(&sem->wait_lock);
1018                        wake_up_q(&wake_q);
1019                }
1020                return sem;
1021        } else if (rwsem_reader_phase_trylock(sem, waiter.last_rowner)) {
1022                /* rwsem_reader_phase_trylock() implies ACQUIRE on success */
1023                return sem;
1024        }
1025
1026queue:
1027        waiter.task = current;
1028        waiter.type = RWSEM_WAITING_FOR_READ;
1029        waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1030
1031        raw_spin_lock_irq(&sem->wait_lock);
1032        if (list_empty(&sem->wait_list)) {
1033                /*
1034                 * In case the wait queue is empty and the lock isn't owned
1035                 * by a writer or has the handoff bit set, this reader can
1036                 * exit the slowpath and return immediately as its
1037                 * RWSEM_READER_BIAS has already been set in the count.
1038                 */
1039                if (adjustment && !(atomic_long_read(&sem->count) &
1040                     (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) {
1041                        /* Provide lock ACQUIRE */
1042                        smp_acquire__after_ctrl_dep();
1043                        raw_spin_unlock_irq(&sem->wait_lock);
1044                        rwsem_set_reader_owned(sem);
1045                        lockevent_inc(rwsem_rlock_fast);
1046                        return sem;
1047                }
1048                adjustment += RWSEM_FLAG_WAITERS;
1049        }
1050        list_add_tail(&waiter.list, &sem->wait_list);
1051
1052        /* we're now waiting on the lock, but no longer actively locking */
1053        if (adjustment)
1054                count = atomic_long_add_return(adjustment, &sem->count);
1055        else
1056                count = atomic_long_read(&sem->count);
1057
1058        /*
1059         * If there are no active locks, wake the front queued process(es).
1060         *
1061         * If there are no writers and we are first in the queue,
1062         * wake our own waiter to join the existing active readers !
1063         */
1064        if (!(count & RWSEM_LOCK_MASK)) {
1065                clear_wr_nonspinnable(sem);
1066                wake = true;
1067        }
1068        if (wake || (!(count & RWSEM_WRITER_MASK) &&
1069                    (adjustment & RWSEM_FLAG_WAITERS)))
1070                rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1071
1072        raw_spin_unlock_irq(&sem->wait_lock);
1073        wake_up_q(&wake_q);
1074
1075        /* wait to be given the lock */
1076        for (;;) {
1077                set_current_state(state);
1078                if (!smp_load_acquire(&waiter.task)) {
1079                        /* Matches rwsem_mark_wake()'s smp_store_release(). */
1080                        break;
1081                }
1082                if (signal_pending_state(state, current)) {
1083                        raw_spin_lock_irq(&sem->wait_lock);
1084                        if (waiter.task)
1085                                goto out_nolock;
1086                        raw_spin_unlock_irq(&sem->wait_lock);
1087                        /* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1088                        break;
1089                }
1090                schedule();
1091                lockevent_inc(rwsem_sleep_reader);
1092        }
1093
1094        __set_current_state(TASK_RUNNING);
1095        lockevent_inc(rwsem_rlock);
1096        return sem;
1097
1098out_nolock:
1099        list_del(&waiter.list);
1100        if (list_empty(&sem->wait_list)) {
1101                atomic_long_andnot(RWSEM_FLAG_WAITERS|RWSEM_FLAG_HANDOFF,
1102                                   &sem->count);
1103        }
1104        raw_spin_unlock_irq(&sem->wait_lock);
1105        __set_current_state(TASK_RUNNING);
1106        lockevent_inc(rwsem_rlock_fail);
1107        return ERR_PTR(-EINTR);
1108}
1109
1110/*
1111 * This function is called by the a write lock owner. So the owner value
1112 * won't get changed by others.
1113 */
1114static inline void rwsem_disable_reader_optspin(struct rw_semaphore *sem,
1115                                                bool disable)
1116{
1117        if (unlikely(disable)) {
1118                atomic_long_or(RWSEM_RD_NONSPINNABLE, &sem->owner);
1119                lockevent_inc(rwsem_opt_norspin);
1120        }
1121}
1122
1123/*
1124 * Wait until we successfully acquire the write lock
1125 */
1126static struct rw_semaphore *
1127rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1128{
1129        long count;
1130        bool disable_rspin;
1131        enum writer_wait_state wstate;
1132        struct rwsem_waiter waiter;
1133        struct rw_semaphore *ret = sem;
1134        DEFINE_WAKE_Q(wake_q);
1135
1136        /* do optimistic spinning and steal lock if possible */
1137        if (rwsem_can_spin_on_owner(sem, RWSEM_WR_NONSPINNABLE) &&
1138            rwsem_optimistic_spin(sem, true)) {
1139                /* rwsem_optimistic_spin() implies ACQUIRE on success */
1140                return sem;
1141        }
1142
1143        /*
1144         * Disable reader optimistic spinning for this rwsem after
1145         * acquiring the write lock when the setting of the nonspinnable
1146         * bits are observed.
1147         */
1148        disable_rspin = atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE;
1149
1150        /*
1151         * Optimistic spinning failed, proceed to the slowpath
1152         * and block until we can acquire the sem.
1153         */
1154        waiter.task = current;
1155        waiter.type = RWSEM_WAITING_FOR_WRITE;
1156        waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1157
1158        raw_spin_lock_irq(&sem->wait_lock);
1159
1160        /* account for this before adding a new element to the list */
1161        wstate = list_empty(&sem->wait_list) ? WRITER_FIRST : WRITER_NOT_FIRST;
1162
1163        list_add_tail(&waiter.list, &sem->wait_list);
1164
1165        /* we're now waiting on the lock */
1166        if (wstate == WRITER_NOT_FIRST) {
1167                count = atomic_long_read(&sem->count);
1168
1169                /*
1170                 * If there were already threads queued before us and:
1171                 *  1) there are no no active locks, wake the front
1172                 *     queued process(es) as the handoff bit might be set.
1173                 *  2) there are no active writers and some readers, the lock
1174                 *     must be read owned; so we try to wake any read lock
1175                 *     waiters that were queued ahead of us.
1176                 */
1177                if (count & RWSEM_WRITER_MASK)
1178                        goto wait;
1179
1180                rwsem_mark_wake(sem, (count & RWSEM_READER_MASK)
1181                                        ? RWSEM_WAKE_READERS
1182                                        : RWSEM_WAKE_ANY, &wake_q);
1183
1184                if (!wake_q_empty(&wake_q)) {
1185                        /*
1186                         * We want to minimize wait_lock hold time especially
1187                         * when a large number of readers are to be woken up.
1188                         */
1189                        raw_spin_unlock_irq(&sem->wait_lock);
1190                        wake_up_q(&wake_q);
1191                        wake_q_init(&wake_q);   /* Used again, reinit */
1192                        raw_spin_lock_irq(&sem->wait_lock);
1193                }
1194        } else {
1195                atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1196        }
1197
1198wait:
1199        /* wait until we successfully acquire the lock */
1200        set_current_state(state);
1201        for (;;) {
1202                if (rwsem_try_write_lock(sem, wstate)) {
1203                        /* rwsem_try_write_lock() implies ACQUIRE on success */
1204                        break;
1205                }
1206
1207                raw_spin_unlock_irq(&sem->wait_lock);
1208
1209                /* Block until there are no active lockers. */
1210                for (;;) {
1211                        if (signal_pending_state(state, current))
1212                                goto out_nolock;
1213
1214                        schedule();
1215                        lockevent_inc(rwsem_sleep_writer);
1216                        set_current_state(state);
1217                        /*
1218                         * If HANDOFF bit is set, unconditionally do
1219                         * a trylock.
1220                         */
1221                        if (wstate == WRITER_HANDOFF)
1222                                break;
1223
1224                        if ((wstate == WRITER_NOT_FIRST) &&
1225                            (rwsem_first_waiter(sem) == &waiter))
1226                                wstate = WRITER_FIRST;
1227
1228                        count = atomic_long_read(&sem->count);
1229                        if (!(count & RWSEM_LOCK_MASK))
1230                                break;
1231
1232                        /*
1233                         * The setting of the handoff bit is deferred
1234                         * until rwsem_try_write_lock() is called.
1235                         */
1236                        if ((wstate == WRITER_FIRST) && (rt_task(current) ||
1237                            time_after(jiffies, waiter.timeout))) {
1238                                wstate = WRITER_HANDOFF;
1239                                lockevent_inc(rwsem_wlock_handoff);
1240                                break;
1241                        }
1242                }
1243
1244                raw_spin_lock_irq(&sem->wait_lock);
1245        }
1246        __set_current_state(TASK_RUNNING);
1247        list_del(&waiter.list);
1248        rwsem_disable_reader_optspin(sem, disable_rspin);
1249        raw_spin_unlock_irq(&sem->wait_lock);
1250        lockevent_inc(rwsem_wlock);
1251
1252        return ret;
1253
1254out_nolock:
1255        __set_current_state(TASK_RUNNING);
1256        raw_spin_lock_irq(&sem->wait_lock);
1257        list_del(&waiter.list);
1258
1259        if (unlikely(wstate == WRITER_HANDOFF))
1260                atomic_long_add(-RWSEM_FLAG_HANDOFF,  &sem->count);
1261
1262        if (list_empty(&sem->wait_list))
1263                atomic_long_andnot(RWSEM_FLAG_WAITERS, &sem->count);
1264        else
1265                rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1266        raw_spin_unlock_irq(&sem->wait_lock);
1267        wake_up_q(&wake_q);
1268        lockevent_inc(rwsem_wlock_fail);
1269
1270        return ERR_PTR(-EINTR);
1271}
1272
1273/*
1274 * handle waking up a waiter on the semaphore
1275 * - up_read/up_write has decremented the active part of count if we come here
1276 */
1277static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem, long count)
1278{
1279        unsigned long flags;
1280        DEFINE_WAKE_Q(wake_q);
1281
1282        raw_spin_lock_irqsave(&sem->wait_lock, flags);
1283
1284        if (!list_empty(&sem->wait_list))
1285                rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1286
1287        raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1288        wake_up_q(&wake_q);
1289
1290        return sem;
1291}
1292
1293/*
1294 * downgrade a write lock into a read lock
1295 * - caller incremented waiting part of count and discovered it still negative
1296 * - just wake up any readers at the front of the queue
1297 */
1298static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1299{
1300        unsigned long flags;
1301        DEFINE_WAKE_Q(wake_q);
1302
1303        raw_spin_lock_irqsave(&sem->wait_lock, flags);
1304
1305        if (!list_empty(&sem->wait_list))
1306                rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1307
1308        raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1309        wake_up_q(&wake_q);
1310
1311        return sem;
1312}
1313
1314/*
1315 * lock for reading
1316 */
1317inline void __down_read(struct rw_semaphore *sem)
1318{
1319        if (!rwsem_read_trylock(sem)) {
1320                rwsem_down_read_slowpath(sem, TASK_UNINTERRUPTIBLE);
1321                DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1322        } else {
1323                rwsem_set_reader_owned(sem);
1324        }
1325}
1326
1327static inline int __down_read_killable(struct rw_semaphore *sem)
1328{
1329        if (!rwsem_read_trylock(sem)) {
1330                if (IS_ERR(rwsem_down_read_slowpath(sem, TASK_KILLABLE)))
1331                        return -EINTR;
1332                DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1333        } else {
1334                rwsem_set_reader_owned(sem);
1335        }
1336        return 0;
1337}
1338
1339static inline int __down_read_trylock(struct rw_semaphore *sem)
1340{
1341        /*
1342         * Optimize for the case when the rwsem is not locked at all.
1343         */
1344        long tmp = RWSEM_UNLOCKED_VALUE;
1345
1346        do {
1347                if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1348                                        tmp + RWSEM_READER_BIAS)) {
1349                        rwsem_set_reader_owned(sem);
1350                        return 1;
1351                }
1352        } while (!(tmp & RWSEM_READ_FAILED_MASK));
1353        return 0;
1354}
1355
1356/*
1357 * lock for writing
1358 */
1359static inline void __down_write(struct rw_semaphore *sem)
1360{
1361        long tmp = RWSEM_UNLOCKED_VALUE;
1362
1363        if (unlikely(!atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1364                                                      RWSEM_WRITER_LOCKED)))
1365                rwsem_down_write_slowpath(sem, TASK_UNINTERRUPTIBLE);
1366        else
1367                rwsem_set_owner(sem);
1368}
1369
1370static inline int __down_write_killable(struct rw_semaphore *sem)
1371{
1372        long tmp = RWSEM_UNLOCKED_VALUE;
1373
1374        if (unlikely(!atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1375                                                      RWSEM_WRITER_LOCKED))) {
1376                if (IS_ERR(rwsem_down_write_slowpath(sem, TASK_KILLABLE)))
1377                        return -EINTR;
1378        } else {
1379                rwsem_set_owner(sem);
1380        }
1381        return 0;
1382}
1383
1384static inline int __down_write_trylock(struct rw_semaphore *sem)
1385{
1386        long tmp = RWSEM_UNLOCKED_VALUE;
1387
1388        if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1389                                            RWSEM_WRITER_LOCKED)) {
1390                rwsem_set_owner(sem);
1391                return true;
1392        }
1393        return false;
1394}
1395
1396/*
1397 * unlock after reading
1398 */
1399inline void __up_read(struct rw_semaphore *sem)
1400{
1401        long tmp;
1402
1403        DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1404        rwsem_clear_reader_owned(sem);
1405        tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1406        DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1407        if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1408                      RWSEM_FLAG_WAITERS)) {
1409                clear_wr_nonspinnable(sem);
1410                rwsem_wake(sem, tmp);
1411        }
1412}
1413
1414/*
1415 * unlock after writing
1416 */
1417static inline void __up_write(struct rw_semaphore *sem)
1418{
1419        long tmp;
1420
1421        /*
1422         * sem->owner may differ from current if the ownership is transferred
1423         * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1424         */
1425        DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1426                            !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1427        rwsem_clear_owner(sem);
1428        tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1429        if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1430                rwsem_wake(sem, tmp);
1431}
1432
1433/*
1434 * downgrade write lock to read lock
1435 */
1436static inline void __downgrade_write(struct rw_semaphore *sem)
1437{
1438        long tmp;
1439
1440        /*
1441         * When downgrading from exclusive to shared ownership,
1442         * anything inside the write-locked region cannot leak
1443         * into the read side. In contrast, anything in the
1444         * read-locked region is ok to be re-ordered into the
1445         * write side. As such, rely on RELEASE semantics.
1446         */
1447        DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1448        tmp = atomic_long_fetch_add_release(
1449                -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1450        rwsem_set_reader_owned(sem);
1451        if (tmp & RWSEM_FLAG_WAITERS)
1452                rwsem_downgrade_wake(sem);
1453}
1454
1455/*
1456 * lock for reading
1457 */
1458void __sched down_read(struct rw_semaphore *sem)
1459{
1460        might_sleep();
1461        rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1462
1463        LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1464}
1465EXPORT_SYMBOL(down_read);
1466
1467int __sched down_read_killable(struct rw_semaphore *sem)
1468{
1469        might_sleep();
1470        rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1471
1472        if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1473                rwsem_release(&sem->dep_map, 1, _RET_IP_);
1474                return -EINTR;
1475        }
1476
1477        return 0;
1478}
1479EXPORT_SYMBOL(down_read_killable);
1480
1481/*
1482 * trylock for reading -- returns 1 if successful, 0 if contention
1483 */
1484int down_read_trylock(struct rw_semaphore *sem)
1485{
1486        int ret = __down_read_trylock(sem);
1487
1488        if (ret == 1)
1489                rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1490        return ret;
1491}
1492EXPORT_SYMBOL(down_read_trylock);
1493
1494/*
1495 * lock for writing
1496 */
1497void __sched down_write(struct rw_semaphore *sem)
1498{
1499        might_sleep();
1500        rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1501        LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1502}
1503EXPORT_SYMBOL(down_write);
1504
1505/*
1506 * lock for writing
1507 */
1508int __sched down_write_killable(struct rw_semaphore *sem)
1509{
1510        might_sleep();
1511        rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1512
1513        if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1514                                  __down_write_killable)) {
1515                rwsem_release(&sem->dep_map, 1, _RET_IP_);
1516                return -EINTR;
1517        }
1518
1519        return 0;
1520}
1521EXPORT_SYMBOL(down_write_killable);
1522
1523/*
1524 * trylock for writing -- returns 1 if successful, 0 if contention
1525 */
1526int down_write_trylock(struct rw_semaphore *sem)
1527{
1528        int ret = __down_write_trylock(sem);
1529
1530        if (ret == 1)
1531                rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1532
1533        return ret;
1534}
1535EXPORT_SYMBOL(down_write_trylock);
1536
1537/*
1538 * release a read lock
1539 */
1540void up_read(struct rw_semaphore *sem)
1541{
1542        rwsem_release(&sem->dep_map, 1, _RET_IP_);
1543        __up_read(sem);
1544}
1545EXPORT_SYMBOL(up_read);
1546
1547/*
1548 * release a write lock
1549 */
1550void up_write(struct rw_semaphore *sem)
1551{
1552        rwsem_release(&sem->dep_map, 1, _RET_IP_);
1553        __up_write(sem);
1554}
1555EXPORT_SYMBOL(up_write);
1556
1557/*
1558 * downgrade write lock to read lock
1559 */
1560void downgrade_write(struct rw_semaphore *sem)
1561{
1562        lock_downgrade(&sem->dep_map, _RET_IP_);
1563        __downgrade_write(sem);
1564}
1565EXPORT_SYMBOL(downgrade_write);
1566
1567#ifdef CONFIG_DEBUG_LOCK_ALLOC
1568
1569void down_read_nested(struct rw_semaphore *sem, int subclass)
1570{
1571        might_sleep();
1572        rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1573        LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1574}
1575EXPORT_SYMBOL(down_read_nested);
1576
1577void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1578{
1579        might_sleep();
1580        rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1581        LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1582}
1583EXPORT_SYMBOL(_down_write_nest_lock);
1584
1585void down_read_non_owner(struct rw_semaphore *sem)
1586{
1587        might_sleep();
1588        __down_read(sem);
1589        __rwsem_set_reader_owned(sem, NULL);
1590}
1591EXPORT_SYMBOL(down_read_non_owner);
1592
1593void down_write_nested(struct rw_semaphore *sem, int subclass)
1594{
1595        might_sleep();
1596        rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1597        LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1598}
1599EXPORT_SYMBOL(down_write_nested);
1600
1601int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1602{
1603        might_sleep();
1604        rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1605
1606        if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1607                                  __down_write_killable)) {
1608                rwsem_release(&sem->dep_map, 1, _RET_IP_);
1609                return -EINTR;
1610        }
1611
1612        return 0;
1613}
1614EXPORT_SYMBOL(down_write_killable_nested);
1615
1616void up_read_non_owner(struct rw_semaphore *sem)
1617{
1618        DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1619        __up_read(sem);
1620}
1621EXPORT_SYMBOL(up_read_non_owner);
1622
1623#endif
1624