linux/kernel/pid_namespace.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Pid namespaces
   4 *
   5 * Authors:
   6 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
   7 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
   8 *     Many thanks to Oleg Nesterov for comments and help
   9 *
  10 */
  11
  12#include <linux/pid.h>
  13#include <linux/pid_namespace.h>
  14#include <linux/user_namespace.h>
  15#include <linux/syscalls.h>
  16#include <linux/cred.h>
  17#include <linux/err.h>
  18#include <linux/acct.h>
  19#include <linux/slab.h>
  20#include <linux/proc_ns.h>
  21#include <linux/reboot.h>
  22#include <linux/export.h>
  23#include <linux/sched/task.h>
  24#include <linux/sched/signal.h>
  25#include <linux/idr.h>
  26
  27static DEFINE_MUTEX(pid_caches_mutex);
  28static struct kmem_cache *pid_ns_cachep;
  29/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
  30#define MAX_PID_NS_LEVEL 32
  31/* Write once array, filled from the beginning. */
  32static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
  33
  34/*
  35 * creates the kmem cache to allocate pids from.
  36 * @level: pid namespace level
  37 */
  38
  39static struct kmem_cache *create_pid_cachep(unsigned int level)
  40{
  41        /* Level 0 is init_pid_ns.pid_cachep */
  42        struct kmem_cache **pkc = &pid_cache[level - 1];
  43        struct kmem_cache *kc;
  44        char name[4 + 10 + 1];
  45        unsigned int len;
  46
  47        kc = READ_ONCE(*pkc);
  48        if (kc)
  49                return kc;
  50
  51        snprintf(name, sizeof(name), "pid_%u", level + 1);
  52        len = sizeof(struct pid) + level * sizeof(struct upid);
  53        mutex_lock(&pid_caches_mutex);
  54        /* Name collision forces to do allocation under mutex. */
  55        if (!*pkc)
  56                *pkc = kmem_cache_create(name, len, 0, SLAB_HWCACHE_ALIGN, 0);
  57        mutex_unlock(&pid_caches_mutex);
  58        /* current can fail, but someone else can succeed. */
  59        return READ_ONCE(*pkc);
  60}
  61
  62static void proc_cleanup_work(struct work_struct *work)
  63{
  64        struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
  65        pid_ns_release_proc(ns);
  66}
  67
  68static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
  69{
  70        return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
  71}
  72
  73static void dec_pid_namespaces(struct ucounts *ucounts)
  74{
  75        dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
  76}
  77
  78static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
  79        struct pid_namespace *parent_pid_ns)
  80{
  81        struct pid_namespace *ns;
  82        unsigned int level = parent_pid_ns->level + 1;
  83        struct ucounts *ucounts;
  84        int err;
  85
  86        err = -EINVAL;
  87        if (!in_userns(parent_pid_ns->user_ns, user_ns))
  88                goto out;
  89
  90        err = -ENOSPC;
  91        if (level > MAX_PID_NS_LEVEL)
  92                goto out;
  93        ucounts = inc_pid_namespaces(user_ns);
  94        if (!ucounts)
  95                goto out;
  96
  97        err = -ENOMEM;
  98        ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
  99        if (ns == NULL)
 100                goto out_dec;
 101
 102        idr_init(&ns->idr);
 103
 104        ns->pid_cachep = create_pid_cachep(level);
 105        if (ns->pid_cachep == NULL)
 106                goto out_free_idr;
 107
 108        err = ns_alloc_inum(&ns->ns);
 109        if (err)
 110                goto out_free_idr;
 111        ns->ns.ops = &pidns_operations;
 112
 113        kref_init(&ns->kref);
 114        ns->level = level;
 115        ns->parent = get_pid_ns(parent_pid_ns);
 116        ns->user_ns = get_user_ns(user_ns);
 117        ns->ucounts = ucounts;
 118        ns->pid_allocated = PIDNS_ADDING;
 119        INIT_WORK(&ns->proc_work, proc_cleanup_work);
 120
 121        return ns;
 122
 123out_free_idr:
 124        idr_destroy(&ns->idr);
 125        kmem_cache_free(pid_ns_cachep, ns);
 126out_dec:
 127        dec_pid_namespaces(ucounts);
 128out:
 129        return ERR_PTR(err);
 130}
 131
 132static void delayed_free_pidns(struct rcu_head *p)
 133{
 134        struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
 135
 136        dec_pid_namespaces(ns->ucounts);
 137        put_user_ns(ns->user_ns);
 138
 139        kmem_cache_free(pid_ns_cachep, ns);
 140}
 141
 142static void destroy_pid_namespace(struct pid_namespace *ns)
 143{
 144        ns_free_inum(&ns->ns);
 145
 146        idr_destroy(&ns->idr);
 147        call_rcu(&ns->rcu, delayed_free_pidns);
 148}
 149
 150struct pid_namespace *copy_pid_ns(unsigned long flags,
 151        struct user_namespace *user_ns, struct pid_namespace *old_ns)
 152{
 153        if (!(flags & CLONE_NEWPID))
 154                return get_pid_ns(old_ns);
 155        if (task_active_pid_ns(current) != old_ns)
 156                return ERR_PTR(-EINVAL);
 157        return create_pid_namespace(user_ns, old_ns);
 158}
 159
 160static void free_pid_ns(struct kref *kref)
 161{
 162        struct pid_namespace *ns;
 163
 164        ns = container_of(kref, struct pid_namespace, kref);
 165        destroy_pid_namespace(ns);
 166}
 167
 168void put_pid_ns(struct pid_namespace *ns)
 169{
 170        struct pid_namespace *parent;
 171
 172        while (ns != &init_pid_ns) {
 173                parent = ns->parent;
 174                if (!kref_put(&ns->kref, free_pid_ns))
 175                        break;
 176                ns = parent;
 177        }
 178}
 179EXPORT_SYMBOL_GPL(put_pid_ns);
 180
 181void zap_pid_ns_processes(struct pid_namespace *pid_ns)
 182{
 183        int nr;
 184        int rc;
 185        struct task_struct *task, *me = current;
 186        int init_pids = thread_group_leader(me) ? 1 : 2;
 187        struct pid *pid;
 188
 189        /* Don't allow any more processes into the pid namespace */
 190        disable_pid_allocation(pid_ns);
 191
 192        /*
 193         * Ignore SIGCHLD causing any terminated children to autoreap.
 194         * This speeds up the namespace shutdown, plus see the comment
 195         * below.
 196         */
 197        spin_lock_irq(&me->sighand->siglock);
 198        me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
 199        spin_unlock_irq(&me->sighand->siglock);
 200
 201        /*
 202         * The last thread in the cgroup-init thread group is terminating.
 203         * Find remaining pid_ts in the namespace, signal and wait for them
 204         * to exit.
 205         *
 206         * Note:  This signals each threads in the namespace - even those that
 207         *        belong to the same thread group, To avoid this, we would have
 208         *        to walk the entire tasklist looking a processes in this
 209         *        namespace, but that could be unnecessarily expensive if the
 210         *        pid namespace has just a few processes. Or we need to
 211         *        maintain a tasklist for each pid namespace.
 212         *
 213         */
 214        rcu_read_lock();
 215        read_lock(&tasklist_lock);
 216        nr = 2;
 217        idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
 218                task = pid_task(pid, PIDTYPE_PID);
 219                if (task && !__fatal_signal_pending(task))
 220                        group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
 221        }
 222        read_unlock(&tasklist_lock);
 223        rcu_read_unlock();
 224
 225        /*
 226         * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
 227         * kernel_wait4() will also block until our children traced from the
 228         * parent namespace are detached and become EXIT_DEAD.
 229         */
 230        do {
 231                clear_thread_flag(TIF_SIGPENDING);
 232                rc = kernel_wait4(-1, NULL, __WALL, NULL);
 233        } while (rc != -ECHILD);
 234
 235        /*
 236         * kernel_wait4() above can't reap the EXIT_DEAD children but we do not
 237         * really care, we could reparent them to the global init. We could
 238         * exit and reap ->child_reaper even if it is not the last thread in
 239         * this pid_ns, free_pid(pid_allocated == 0) calls proc_cleanup_work(),
 240         * pid_ns can not go away until proc_kill_sb() drops the reference.
 241         *
 242         * But this ns can also have other tasks injected by setns()+fork().
 243         * Again, ignoring the user visible semantics we do not really need
 244         * to wait until they are all reaped, but they can be reparented to
 245         * us and thus we need to ensure that pid->child_reaper stays valid
 246         * until they all go away. See free_pid()->wake_up_process().
 247         *
 248         * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
 249         * if reparented.
 250         */
 251        for (;;) {
 252                set_current_state(TASK_INTERRUPTIBLE);
 253                if (pid_ns->pid_allocated == init_pids)
 254                        break;
 255                schedule();
 256        }
 257        __set_current_state(TASK_RUNNING);
 258
 259        if (pid_ns->reboot)
 260                current->signal->group_exit_code = pid_ns->reboot;
 261
 262        acct_exit_ns(pid_ns);
 263        return;
 264}
 265
 266#ifdef CONFIG_CHECKPOINT_RESTORE
 267static int pid_ns_ctl_handler(struct ctl_table *table, int write,
 268                void __user *buffer, size_t *lenp, loff_t *ppos)
 269{
 270        struct pid_namespace *pid_ns = task_active_pid_ns(current);
 271        struct ctl_table tmp = *table;
 272        int ret, next;
 273
 274        if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
 275                return -EPERM;
 276
 277        /*
 278         * Writing directly to ns' last_pid field is OK, since this field
 279         * is volatile in a living namespace anyway and a code writing to
 280         * it should synchronize its usage with external means.
 281         */
 282
 283        next = idr_get_cursor(&pid_ns->idr) - 1;
 284
 285        tmp.data = &next;
 286        ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
 287        if (!ret && write)
 288                idr_set_cursor(&pid_ns->idr, next + 1);
 289
 290        return ret;
 291}
 292
 293extern int pid_max;
 294static struct ctl_table pid_ns_ctl_table[] = {
 295        {
 296                .procname = "ns_last_pid",
 297                .maxlen = sizeof(int),
 298                .mode = 0666, /* permissions are checked in the handler */
 299                .proc_handler = pid_ns_ctl_handler,
 300                .extra1 = SYSCTL_ZERO,
 301                .extra2 = &pid_max,
 302        },
 303        { }
 304};
 305static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
 306#endif  /* CONFIG_CHECKPOINT_RESTORE */
 307
 308int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
 309{
 310        if (pid_ns == &init_pid_ns)
 311                return 0;
 312
 313        switch (cmd) {
 314        case LINUX_REBOOT_CMD_RESTART2:
 315        case LINUX_REBOOT_CMD_RESTART:
 316                pid_ns->reboot = SIGHUP;
 317                break;
 318
 319        case LINUX_REBOOT_CMD_POWER_OFF:
 320        case LINUX_REBOOT_CMD_HALT:
 321                pid_ns->reboot = SIGINT;
 322                break;
 323        default:
 324                return -EINVAL;
 325        }
 326
 327        read_lock(&tasklist_lock);
 328        send_sig(SIGKILL, pid_ns->child_reaper, 1);
 329        read_unlock(&tasklist_lock);
 330
 331        do_exit(0);
 332
 333        /* Not reached */
 334        return 0;
 335}
 336
 337static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
 338{
 339        return container_of(ns, struct pid_namespace, ns);
 340}
 341
 342static struct ns_common *pidns_get(struct task_struct *task)
 343{
 344        struct pid_namespace *ns;
 345
 346        rcu_read_lock();
 347        ns = task_active_pid_ns(task);
 348        if (ns)
 349                get_pid_ns(ns);
 350        rcu_read_unlock();
 351
 352        return ns ? &ns->ns : NULL;
 353}
 354
 355static struct ns_common *pidns_for_children_get(struct task_struct *task)
 356{
 357        struct pid_namespace *ns = NULL;
 358
 359        task_lock(task);
 360        if (task->nsproxy) {
 361                ns = task->nsproxy->pid_ns_for_children;
 362                get_pid_ns(ns);
 363        }
 364        task_unlock(task);
 365
 366        if (ns) {
 367                read_lock(&tasklist_lock);
 368                if (!ns->child_reaper) {
 369                        put_pid_ns(ns);
 370                        ns = NULL;
 371                }
 372                read_unlock(&tasklist_lock);
 373        }
 374
 375        return ns ? &ns->ns : NULL;
 376}
 377
 378static void pidns_put(struct ns_common *ns)
 379{
 380        put_pid_ns(to_pid_ns(ns));
 381}
 382
 383static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
 384{
 385        struct pid_namespace *active = task_active_pid_ns(current);
 386        struct pid_namespace *ancestor, *new = to_pid_ns(ns);
 387
 388        if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
 389            !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
 390                return -EPERM;
 391
 392        /*
 393         * Only allow entering the current active pid namespace
 394         * or a child of the current active pid namespace.
 395         *
 396         * This is required for fork to return a usable pid value and
 397         * this maintains the property that processes and their
 398         * children can not escape their current pid namespace.
 399         */
 400        if (new->level < active->level)
 401                return -EINVAL;
 402
 403        ancestor = new;
 404        while (ancestor->level > active->level)
 405                ancestor = ancestor->parent;
 406        if (ancestor != active)
 407                return -EINVAL;
 408
 409        put_pid_ns(nsproxy->pid_ns_for_children);
 410        nsproxy->pid_ns_for_children = get_pid_ns(new);
 411        return 0;
 412}
 413
 414static struct ns_common *pidns_get_parent(struct ns_common *ns)
 415{
 416        struct pid_namespace *active = task_active_pid_ns(current);
 417        struct pid_namespace *pid_ns, *p;
 418
 419        /* See if the parent is in the current namespace */
 420        pid_ns = p = to_pid_ns(ns)->parent;
 421        for (;;) {
 422                if (!p)
 423                        return ERR_PTR(-EPERM);
 424                if (p == active)
 425                        break;
 426                p = p->parent;
 427        }
 428
 429        return &get_pid_ns(pid_ns)->ns;
 430}
 431
 432static struct user_namespace *pidns_owner(struct ns_common *ns)
 433{
 434        return to_pid_ns(ns)->user_ns;
 435}
 436
 437const struct proc_ns_operations pidns_operations = {
 438        .name           = "pid",
 439        .type           = CLONE_NEWPID,
 440        .get            = pidns_get,
 441        .put            = pidns_put,
 442        .install        = pidns_install,
 443        .owner          = pidns_owner,
 444        .get_parent     = pidns_get_parent,
 445};
 446
 447const struct proc_ns_operations pidns_for_children_operations = {
 448        .name           = "pid_for_children",
 449        .real_ns_name   = "pid",
 450        .type           = CLONE_NEWPID,
 451        .get            = pidns_for_children_get,
 452        .put            = pidns_put,
 453        .install        = pidns_install,
 454        .owner          = pidns_owner,
 455        .get_parent     = pidns_get_parent,
 456};
 457
 458static __init int pid_namespaces_init(void)
 459{
 460        pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
 461
 462#ifdef CONFIG_CHECKPOINT_RESTORE
 463        register_sysctl_paths(kern_path, pid_ns_ctl_table);
 464#endif
 465        return 0;
 466}
 467
 468__initcall(pid_namespaces_init);
 469