linux/kernel/power/snapshot.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/kernel/power/snapshot.c
   4 *
   5 * This file provides system snapshot/restore functionality for swsusp.
   6 *
   7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   9 */
  10
  11#define pr_fmt(fmt) "PM: " fmt
  12
  13#include <linux/version.h>
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/suspend.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/spinlock.h>
  20#include <linux/kernel.h>
  21#include <linux/pm.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/memblock.h>
  25#include <linux/nmi.h>
  26#include <linux/syscalls.h>
  27#include <linux/console.h>
  28#include <linux/highmem.h>
  29#include <linux/list.h>
  30#include <linux/slab.h>
  31#include <linux/compiler.h>
  32#include <linux/ktime.h>
  33#include <linux/set_memory.h>
  34
  35#include <linux/uaccess.h>
  36#include <asm/mmu_context.h>
  37#include <asm/pgtable.h>
  38#include <asm/tlbflush.h>
  39#include <asm/io.h>
  40
  41#include "power.h"
  42
  43#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
  44static bool hibernate_restore_protection;
  45static bool hibernate_restore_protection_active;
  46
  47void enable_restore_image_protection(void)
  48{
  49        hibernate_restore_protection = true;
  50}
  51
  52static inline void hibernate_restore_protection_begin(void)
  53{
  54        hibernate_restore_protection_active = hibernate_restore_protection;
  55}
  56
  57static inline void hibernate_restore_protection_end(void)
  58{
  59        hibernate_restore_protection_active = false;
  60}
  61
  62static inline void hibernate_restore_protect_page(void *page_address)
  63{
  64        if (hibernate_restore_protection_active)
  65                set_memory_ro((unsigned long)page_address, 1);
  66}
  67
  68static inline void hibernate_restore_unprotect_page(void *page_address)
  69{
  70        if (hibernate_restore_protection_active)
  71                set_memory_rw((unsigned long)page_address, 1);
  72}
  73#else
  74static inline void hibernate_restore_protection_begin(void) {}
  75static inline void hibernate_restore_protection_end(void) {}
  76static inline void hibernate_restore_protect_page(void *page_address) {}
  77static inline void hibernate_restore_unprotect_page(void *page_address) {}
  78#endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
  79
  80static int swsusp_page_is_free(struct page *);
  81static void swsusp_set_page_forbidden(struct page *);
  82static void swsusp_unset_page_forbidden(struct page *);
  83
  84/*
  85 * Number of bytes to reserve for memory allocations made by device drivers
  86 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
  87 * cause image creation to fail (tunable via /sys/power/reserved_size).
  88 */
  89unsigned long reserved_size;
  90
  91void __init hibernate_reserved_size_init(void)
  92{
  93        reserved_size = SPARE_PAGES * PAGE_SIZE;
  94}
  95
  96/*
  97 * Preferred image size in bytes (tunable via /sys/power/image_size).
  98 * When it is set to N, swsusp will do its best to ensure the image
  99 * size will not exceed N bytes, but if that is impossible, it will
 100 * try to create the smallest image possible.
 101 */
 102unsigned long image_size;
 103
 104void __init hibernate_image_size_init(void)
 105{
 106        image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
 107}
 108
 109/*
 110 * List of PBEs needed for restoring the pages that were allocated before
 111 * the suspend and included in the suspend image, but have also been
 112 * allocated by the "resume" kernel, so their contents cannot be written
 113 * directly to their "original" page frames.
 114 */
 115struct pbe *restore_pblist;
 116
 117/* struct linked_page is used to build chains of pages */
 118
 119#define LINKED_PAGE_DATA_SIZE   (PAGE_SIZE - sizeof(void *))
 120
 121struct linked_page {
 122        struct linked_page *next;
 123        char data[LINKED_PAGE_DATA_SIZE];
 124} __packed;
 125
 126/*
 127 * List of "safe" pages (ie. pages that were not used by the image kernel
 128 * before hibernation) that may be used as temporary storage for image kernel
 129 * memory contents.
 130 */
 131static struct linked_page *safe_pages_list;
 132
 133/* Pointer to an auxiliary buffer (1 page) */
 134static void *buffer;
 135
 136#define PG_ANY          0
 137#define PG_SAFE         1
 138#define PG_UNSAFE_CLEAR 1
 139#define PG_UNSAFE_KEEP  0
 140
 141static unsigned int allocated_unsafe_pages;
 142
 143/**
 144 * get_image_page - Allocate a page for a hibernation image.
 145 * @gfp_mask: GFP mask for the allocation.
 146 * @safe_needed: Get pages that were not used before hibernation (restore only)
 147 *
 148 * During image restoration, for storing the PBE list and the image data, we can
 149 * only use memory pages that do not conflict with the pages used before
 150 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 151 * using allocated_unsafe_pages.
 152 *
 153 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 154 * swsusp_free() can release it.
 155 */
 156static void *get_image_page(gfp_t gfp_mask, int safe_needed)
 157{
 158        void *res;
 159
 160        res = (void *)get_zeroed_page(gfp_mask);
 161        if (safe_needed)
 162                while (res && swsusp_page_is_free(virt_to_page(res))) {
 163                        /* The page is unsafe, mark it for swsusp_free() */
 164                        swsusp_set_page_forbidden(virt_to_page(res));
 165                        allocated_unsafe_pages++;
 166                        res = (void *)get_zeroed_page(gfp_mask);
 167                }
 168        if (res) {
 169                swsusp_set_page_forbidden(virt_to_page(res));
 170                swsusp_set_page_free(virt_to_page(res));
 171        }
 172        return res;
 173}
 174
 175static void *__get_safe_page(gfp_t gfp_mask)
 176{
 177        if (safe_pages_list) {
 178                void *ret = safe_pages_list;
 179
 180                safe_pages_list = safe_pages_list->next;
 181                memset(ret, 0, PAGE_SIZE);
 182                return ret;
 183        }
 184        return get_image_page(gfp_mask, PG_SAFE);
 185}
 186
 187unsigned long get_safe_page(gfp_t gfp_mask)
 188{
 189        return (unsigned long)__get_safe_page(gfp_mask);
 190}
 191
 192static struct page *alloc_image_page(gfp_t gfp_mask)
 193{
 194        struct page *page;
 195
 196        page = alloc_page(gfp_mask);
 197        if (page) {
 198                swsusp_set_page_forbidden(page);
 199                swsusp_set_page_free(page);
 200        }
 201        return page;
 202}
 203
 204static void recycle_safe_page(void *page_address)
 205{
 206        struct linked_page *lp = page_address;
 207
 208        lp->next = safe_pages_list;
 209        safe_pages_list = lp;
 210}
 211
 212/**
 213 * free_image_page - Free a page allocated for hibernation image.
 214 * @addr: Address of the page to free.
 215 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 216 *
 217 * The page to free should have been allocated by get_image_page() (page flags
 218 * set by it are affected).
 219 */
 220static inline void free_image_page(void *addr, int clear_nosave_free)
 221{
 222        struct page *page;
 223
 224        BUG_ON(!virt_addr_valid(addr));
 225
 226        page = virt_to_page(addr);
 227
 228        swsusp_unset_page_forbidden(page);
 229        if (clear_nosave_free)
 230                swsusp_unset_page_free(page);
 231
 232        __free_page(page);
 233}
 234
 235static inline void free_list_of_pages(struct linked_page *list,
 236                                      int clear_page_nosave)
 237{
 238        while (list) {
 239                struct linked_page *lp = list->next;
 240
 241                free_image_page(list, clear_page_nosave);
 242                list = lp;
 243        }
 244}
 245
 246/*
 247 * struct chain_allocator is used for allocating small objects out of
 248 * a linked list of pages called 'the chain'.
 249 *
 250 * The chain grows each time when there is no room for a new object in
 251 * the current page.  The allocated objects cannot be freed individually.
 252 * It is only possible to free them all at once, by freeing the entire
 253 * chain.
 254 *
 255 * NOTE: The chain allocator may be inefficient if the allocated objects
 256 * are not much smaller than PAGE_SIZE.
 257 */
 258struct chain_allocator {
 259        struct linked_page *chain;      /* the chain */
 260        unsigned int used_space;        /* total size of objects allocated out
 261                                           of the current page */
 262        gfp_t gfp_mask;         /* mask for allocating pages */
 263        int safe_needed;        /* if set, only "safe" pages are allocated */
 264};
 265
 266static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
 267                       int safe_needed)
 268{
 269        ca->chain = NULL;
 270        ca->used_space = LINKED_PAGE_DATA_SIZE;
 271        ca->gfp_mask = gfp_mask;
 272        ca->safe_needed = safe_needed;
 273}
 274
 275static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 276{
 277        void *ret;
 278
 279        if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 280                struct linked_page *lp;
 281
 282                lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
 283                                        get_image_page(ca->gfp_mask, PG_ANY);
 284                if (!lp)
 285                        return NULL;
 286
 287                lp->next = ca->chain;
 288                ca->chain = lp;
 289                ca->used_space = 0;
 290        }
 291        ret = ca->chain->data + ca->used_space;
 292        ca->used_space += size;
 293        return ret;
 294}
 295
 296/**
 297 * Data types related to memory bitmaps.
 298 *
 299 * Memory bitmap is a structure consiting of many linked lists of
 300 * objects.  The main list's elements are of type struct zone_bitmap
 301 * and each of them corresonds to one zone.  For each zone bitmap
 302 * object there is a list of objects of type struct bm_block that
 303 * represent each blocks of bitmap in which information is stored.
 304 *
 305 * struct memory_bitmap contains a pointer to the main list of zone
 306 * bitmap objects, a struct bm_position used for browsing the bitmap,
 307 * and a pointer to the list of pages used for allocating all of the
 308 * zone bitmap objects and bitmap block objects.
 309 *
 310 * NOTE: It has to be possible to lay out the bitmap in memory
 311 * using only allocations of order 0.  Additionally, the bitmap is
 312 * designed to work with arbitrary number of zones (this is over the
 313 * top for now, but let's avoid making unnecessary assumptions ;-).
 314 *
 315 * struct zone_bitmap contains a pointer to a list of bitmap block
 316 * objects and a pointer to the bitmap block object that has been
 317 * most recently used for setting bits.  Additionally, it contains the
 318 * PFNs that correspond to the start and end of the represented zone.
 319 *
 320 * struct bm_block contains a pointer to the memory page in which
 321 * information is stored (in the form of a block of bitmap)
 322 * It also contains the pfns that correspond to the start and end of
 323 * the represented memory area.
 324 *
 325 * The memory bitmap is organized as a radix tree to guarantee fast random
 326 * access to the bits. There is one radix tree for each zone (as returned
 327 * from create_mem_extents).
 328 *
 329 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 330 * two linked lists for the nodes of the tree, one for the inner nodes and
 331 * one for the leave nodes. The linked leave nodes are used for fast linear
 332 * access of the memory bitmap.
 333 *
 334 * The struct rtree_node represents one node of the radix tree.
 335 */
 336
 337#define BM_END_OF_MAP   (~0UL)
 338
 339#define BM_BITS_PER_BLOCK       (PAGE_SIZE * BITS_PER_BYTE)
 340#define BM_BLOCK_SHIFT          (PAGE_SHIFT + 3)
 341#define BM_BLOCK_MASK           ((1UL << BM_BLOCK_SHIFT) - 1)
 342
 343/*
 344 * struct rtree_node is a wrapper struct to link the nodes
 345 * of the rtree together for easy linear iteration over
 346 * bits and easy freeing
 347 */
 348struct rtree_node {
 349        struct list_head list;
 350        unsigned long *data;
 351};
 352
 353/*
 354 * struct mem_zone_bm_rtree represents a bitmap used for one
 355 * populated memory zone.
 356 */
 357struct mem_zone_bm_rtree {
 358        struct list_head list;          /* Link Zones together         */
 359        struct list_head nodes;         /* Radix Tree inner nodes      */
 360        struct list_head leaves;        /* Radix Tree leaves           */
 361        unsigned long start_pfn;        /* Zone start page frame       */
 362        unsigned long end_pfn;          /* Zone end page frame + 1     */
 363        struct rtree_node *rtree;       /* Radix Tree Root             */
 364        int levels;                     /* Number of Radix Tree Levels */
 365        unsigned int blocks;            /* Number of Bitmap Blocks     */
 366};
 367
 368/* strcut bm_position is used for browsing memory bitmaps */
 369
 370struct bm_position {
 371        struct mem_zone_bm_rtree *zone;
 372        struct rtree_node *node;
 373        unsigned long node_pfn;
 374        int node_bit;
 375};
 376
 377struct memory_bitmap {
 378        struct list_head zones;
 379        struct linked_page *p_list;     /* list of pages used to store zone
 380                                           bitmap objects and bitmap block
 381                                           objects */
 382        struct bm_position cur; /* most recently used bit position */
 383};
 384
 385/* Functions that operate on memory bitmaps */
 386
 387#define BM_ENTRIES_PER_LEVEL    (PAGE_SIZE / sizeof(unsigned long))
 388#if BITS_PER_LONG == 32
 389#define BM_RTREE_LEVEL_SHIFT    (PAGE_SHIFT - 2)
 390#else
 391#define BM_RTREE_LEVEL_SHIFT    (PAGE_SHIFT - 3)
 392#endif
 393#define BM_RTREE_LEVEL_MASK     ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
 394
 395/**
 396 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
 397 *
 398 * This function is used to allocate inner nodes as well as the
 399 * leave nodes of the radix tree. It also adds the node to the
 400 * corresponding linked list passed in by the *list parameter.
 401 */
 402static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
 403                                           struct chain_allocator *ca,
 404                                           struct list_head *list)
 405{
 406        struct rtree_node *node;
 407
 408        node = chain_alloc(ca, sizeof(struct rtree_node));
 409        if (!node)
 410                return NULL;
 411
 412        node->data = get_image_page(gfp_mask, safe_needed);
 413        if (!node->data)
 414                return NULL;
 415
 416        list_add_tail(&node->list, list);
 417
 418        return node;
 419}
 420
 421/**
 422 * add_rtree_block - Add a new leave node to the radix tree.
 423 *
 424 * The leave nodes need to be allocated in order to keep the leaves
 425 * linked list in order. This is guaranteed by the zone->blocks
 426 * counter.
 427 */
 428static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
 429                           int safe_needed, struct chain_allocator *ca)
 430{
 431        struct rtree_node *node, *block, **dst;
 432        unsigned int levels_needed, block_nr;
 433        int i;
 434
 435        block_nr = zone->blocks;
 436        levels_needed = 0;
 437
 438        /* How many levels do we need for this block nr? */
 439        while (block_nr) {
 440                levels_needed += 1;
 441                block_nr >>= BM_RTREE_LEVEL_SHIFT;
 442        }
 443
 444        /* Make sure the rtree has enough levels */
 445        for (i = zone->levels; i < levels_needed; i++) {
 446                node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 447                                        &zone->nodes);
 448                if (!node)
 449                        return -ENOMEM;
 450
 451                node->data[0] = (unsigned long)zone->rtree;
 452                zone->rtree = node;
 453                zone->levels += 1;
 454        }
 455
 456        /* Allocate new block */
 457        block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
 458        if (!block)
 459                return -ENOMEM;
 460
 461        /* Now walk the rtree to insert the block */
 462        node = zone->rtree;
 463        dst = &zone->rtree;
 464        block_nr = zone->blocks;
 465        for (i = zone->levels; i > 0; i--) {
 466                int index;
 467
 468                if (!node) {
 469                        node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 470                                                &zone->nodes);
 471                        if (!node)
 472                                return -ENOMEM;
 473                        *dst = node;
 474                }
 475
 476                index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 477                index &= BM_RTREE_LEVEL_MASK;
 478                dst = (struct rtree_node **)&((*dst)->data[index]);
 479                node = *dst;
 480        }
 481
 482        zone->blocks += 1;
 483        *dst = block;
 484
 485        return 0;
 486}
 487
 488static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 489                               int clear_nosave_free);
 490
 491/**
 492 * create_zone_bm_rtree - Create a radix tree for one zone.
 493 *
 494 * Allocated the mem_zone_bm_rtree structure and initializes it.
 495 * This function also allocated and builds the radix tree for the
 496 * zone.
 497 */
 498static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
 499                                                      int safe_needed,
 500                                                      struct chain_allocator *ca,
 501                                                      unsigned long start,
 502                                                      unsigned long end)
 503{
 504        struct mem_zone_bm_rtree *zone;
 505        unsigned int i, nr_blocks;
 506        unsigned long pages;
 507
 508        pages = end - start;
 509        zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
 510        if (!zone)
 511                return NULL;
 512
 513        INIT_LIST_HEAD(&zone->nodes);
 514        INIT_LIST_HEAD(&zone->leaves);
 515        zone->start_pfn = start;
 516        zone->end_pfn = end;
 517        nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 518
 519        for (i = 0; i < nr_blocks; i++) {
 520                if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
 521                        free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
 522                        return NULL;
 523                }
 524        }
 525
 526        return zone;
 527}
 528
 529/**
 530 * free_zone_bm_rtree - Free the memory of the radix tree.
 531 *
 532 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 533 * structure itself is not freed here nor are the rtree_node
 534 * structs.
 535 */
 536static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 537                               int clear_nosave_free)
 538{
 539        struct rtree_node *node;
 540
 541        list_for_each_entry(node, &zone->nodes, list)
 542                free_image_page(node->data, clear_nosave_free);
 543
 544        list_for_each_entry(node, &zone->leaves, list)
 545                free_image_page(node->data, clear_nosave_free);
 546}
 547
 548static void memory_bm_position_reset(struct memory_bitmap *bm)
 549{
 550        bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
 551                                  list);
 552        bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 553                                  struct rtree_node, list);
 554        bm->cur.node_pfn = 0;
 555        bm->cur.node_bit = 0;
 556}
 557
 558static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 559
 560struct mem_extent {
 561        struct list_head hook;
 562        unsigned long start;
 563        unsigned long end;
 564};
 565
 566/**
 567 * free_mem_extents - Free a list of memory extents.
 568 * @list: List of extents to free.
 569 */
 570static void free_mem_extents(struct list_head *list)
 571{
 572        struct mem_extent *ext, *aux;
 573
 574        list_for_each_entry_safe(ext, aux, list, hook) {
 575                list_del(&ext->hook);
 576                kfree(ext);
 577        }
 578}
 579
 580/**
 581 * create_mem_extents - Create a list of memory extents.
 582 * @list: List to put the extents into.
 583 * @gfp_mask: Mask to use for memory allocations.
 584 *
 585 * The extents represent contiguous ranges of PFNs.
 586 */
 587static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 588{
 589        struct zone *zone;
 590
 591        INIT_LIST_HEAD(list);
 592
 593        for_each_populated_zone(zone) {
 594                unsigned long zone_start, zone_end;
 595                struct mem_extent *ext, *cur, *aux;
 596
 597                zone_start = zone->zone_start_pfn;
 598                zone_end = zone_end_pfn(zone);
 599
 600                list_for_each_entry(ext, list, hook)
 601                        if (zone_start <= ext->end)
 602                                break;
 603
 604                if (&ext->hook == list || zone_end < ext->start) {
 605                        /* New extent is necessary */
 606                        struct mem_extent *new_ext;
 607
 608                        new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 609                        if (!new_ext) {
 610                                free_mem_extents(list);
 611                                return -ENOMEM;
 612                        }
 613                        new_ext->start = zone_start;
 614                        new_ext->end = zone_end;
 615                        list_add_tail(&new_ext->hook, &ext->hook);
 616                        continue;
 617                }
 618
 619                /* Merge this zone's range of PFNs with the existing one */
 620                if (zone_start < ext->start)
 621                        ext->start = zone_start;
 622                if (zone_end > ext->end)
 623                        ext->end = zone_end;
 624
 625                /* More merging may be possible */
 626                cur = ext;
 627                list_for_each_entry_safe_continue(cur, aux, list, hook) {
 628                        if (zone_end < cur->start)
 629                                break;
 630                        if (zone_end < cur->end)
 631                                ext->end = cur->end;
 632                        list_del(&cur->hook);
 633                        kfree(cur);
 634                }
 635        }
 636
 637        return 0;
 638}
 639
 640/**
 641 * memory_bm_create - Allocate memory for a memory bitmap.
 642 */
 643static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
 644                            int safe_needed)
 645{
 646        struct chain_allocator ca;
 647        struct list_head mem_extents;
 648        struct mem_extent *ext;
 649        int error;
 650
 651        chain_init(&ca, gfp_mask, safe_needed);
 652        INIT_LIST_HEAD(&bm->zones);
 653
 654        error = create_mem_extents(&mem_extents, gfp_mask);
 655        if (error)
 656                return error;
 657
 658        list_for_each_entry(ext, &mem_extents, hook) {
 659                struct mem_zone_bm_rtree *zone;
 660
 661                zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
 662                                            ext->start, ext->end);
 663                if (!zone) {
 664                        error = -ENOMEM;
 665                        goto Error;
 666                }
 667                list_add_tail(&zone->list, &bm->zones);
 668        }
 669
 670        bm->p_list = ca.chain;
 671        memory_bm_position_reset(bm);
 672 Exit:
 673        free_mem_extents(&mem_extents);
 674        return error;
 675
 676 Error:
 677        bm->p_list = ca.chain;
 678        memory_bm_free(bm, PG_UNSAFE_CLEAR);
 679        goto Exit;
 680}
 681
 682/**
 683 * memory_bm_free - Free memory occupied by the memory bitmap.
 684 * @bm: Memory bitmap.
 685 */
 686static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 687{
 688        struct mem_zone_bm_rtree *zone;
 689
 690        list_for_each_entry(zone, &bm->zones, list)
 691                free_zone_bm_rtree(zone, clear_nosave_free);
 692
 693        free_list_of_pages(bm->p_list, clear_nosave_free);
 694
 695        INIT_LIST_HEAD(&bm->zones);
 696}
 697
 698/**
 699 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
 700 *
 701 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 702 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 703 *
 704 * Walk the radix tree to find the page containing the bit that represents @pfn
 705 * and return the position of the bit in @addr and @bit_nr.
 706 */
 707static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 708                              void **addr, unsigned int *bit_nr)
 709{
 710        struct mem_zone_bm_rtree *curr, *zone;
 711        struct rtree_node *node;
 712        int i, block_nr;
 713
 714        zone = bm->cur.zone;
 715
 716        if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
 717                goto zone_found;
 718
 719        zone = NULL;
 720
 721        /* Find the right zone */
 722        list_for_each_entry(curr, &bm->zones, list) {
 723                if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
 724                        zone = curr;
 725                        break;
 726                }
 727        }
 728
 729        if (!zone)
 730                return -EFAULT;
 731
 732zone_found:
 733        /*
 734         * We have found the zone. Now walk the radix tree to find the leaf node
 735         * for our PFN.
 736         */
 737        node = bm->cur.node;
 738        if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
 739                goto node_found;
 740
 741        node      = zone->rtree;
 742        block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
 743
 744        for (i = zone->levels; i > 0; i--) {
 745                int index;
 746
 747                index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 748                index &= BM_RTREE_LEVEL_MASK;
 749                BUG_ON(node->data[index] == 0);
 750                node = (struct rtree_node *)node->data[index];
 751        }
 752
 753node_found:
 754        /* Update last position */
 755        bm->cur.zone = zone;
 756        bm->cur.node = node;
 757        bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
 758
 759        /* Set return values */
 760        *addr = node->data;
 761        *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
 762
 763        return 0;
 764}
 765
 766static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 767{
 768        void *addr;
 769        unsigned int bit;
 770        int error;
 771
 772        error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 773        BUG_ON(error);
 774        set_bit(bit, addr);
 775}
 776
 777static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 778{
 779        void *addr;
 780        unsigned int bit;
 781        int error;
 782
 783        error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 784        if (!error)
 785                set_bit(bit, addr);
 786
 787        return error;
 788}
 789
 790static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 791{
 792        void *addr;
 793        unsigned int bit;
 794        int error;
 795
 796        error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 797        BUG_ON(error);
 798        clear_bit(bit, addr);
 799}
 800
 801static void memory_bm_clear_current(struct memory_bitmap *bm)
 802{
 803        int bit;
 804
 805        bit = max(bm->cur.node_bit - 1, 0);
 806        clear_bit(bit, bm->cur.node->data);
 807}
 808
 809static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 810{
 811        void *addr;
 812        unsigned int bit;
 813        int error;
 814
 815        error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 816        BUG_ON(error);
 817        return test_bit(bit, addr);
 818}
 819
 820static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 821{
 822        void *addr;
 823        unsigned int bit;
 824
 825        return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 826}
 827
 828/*
 829 * rtree_next_node - Jump to the next leaf node.
 830 *
 831 * Set the position to the beginning of the next node in the
 832 * memory bitmap. This is either the next node in the current
 833 * zone's radix tree or the first node in the radix tree of the
 834 * next zone.
 835 *
 836 * Return true if there is a next node, false otherwise.
 837 */
 838static bool rtree_next_node(struct memory_bitmap *bm)
 839{
 840        if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
 841                bm->cur.node = list_entry(bm->cur.node->list.next,
 842                                          struct rtree_node, list);
 843                bm->cur.node_pfn += BM_BITS_PER_BLOCK;
 844                bm->cur.node_bit  = 0;
 845                touch_softlockup_watchdog();
 846                return true;
 847        }
 848
 849        /* No more nodes, goto next zone */
 850        if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
 851                bm->cur.zone = list_entry(bm->cur.zone->list.next,
 852                                  struct mem_zone_bm_rtree, list);
 853                bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 854                                          struct rtree_node, list);
 855                bm->cur.node_pfn = 0;
 856                bm->cur.node_bit = 0;
 857                return true;
 858        }
 859
 860        /* No more zones */
 861        return false;
 862}
 863
 864/**
 865 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
 866 * @bm: Memory bitmap.
 867 *
 868 * Starting from the last returned position this function searches for the next
 869 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 870 * set, BM_END_OF_MAP is returned.
 871 *
 872 * It is required to run memory_bm_position_reset() before the first call to
 873 * this function for the given memory bitmap.
 874 */
 875static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 876{
 877        unsigned long bits, pfn, pages;
 878        int bit;
 879
 880        do {
 881                pages     = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
 882                bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
 883                bit       = find_next_bit(bm->cur.node->data, bits,
 884                                          bm->cur.node_bit);
 885                if (bit < bits) {
 886                        pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
 887                        bm->cur.node_bit = bit + 1;
 888                        return pfn;
 889                }
 890        } while (rtree_next_node(bm));
 891
 892        return BM_END_OF_MAP;
 893}
 894
 895/*
 896 * This structure represents a range of page frames the contents of which
 897 * should not be saved during hibernation.
 898 */
 899struct nosave_region {
 900        struct list_head list;
 901        unsigned long start_pfn;
 902        unsigned long end_pfn;
 903};
 904
 905static LIST_HEAD(nosave_regions);
 906
 907static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
 908{
 909        struct rtree_node *node;
 910
 911        list_for_each_entry(node, &zone->nodes, list)
 912                recycle_safe_page(node->data);
 913
 914        list_for_each_entry(node, &zone->leaves, list)
 915                recycle_safe_page(node->data);
 916}
 917
 918static void memory_bm_recycle(struct memory_bitmap *bm)
 919{
 920        struct mem_zone_bm_rtree *zone;
 921        struct linked_page *p_list;
 922
 923        list_for_each_entry(zone, &bm->zones, list)
 924                recycle_zone_bm_rtree(zone);
 925
 926        p_list = bm->p_list;
 927        while (p_list) {
 928                struct linked_page *lp = p_list;
 929
 930                p_list = lp->next;
 931                recycle_safe_page(lp);
 932        }
 933}
 934
 935/**
 936 * register_nosave_region - Register a region of unsaveable memory.
 937 *
 938 * Register a range of page frames the contents of which should not be saved
 939 * during hibernation (to be used in the early initialization code).
 940 */
 941void __init __register_nosave_region(unsigned long start_pfn,
 942                                     unsigned long end_pfn, int use_kmalloc)
 943{
 944        struct nosave_region *region;
 945
 946        if (start_pfn >= end_pfn)
 947                return;
 948
 949        if (!list_empty(&nosave_regions)) {
 950                /* Try to extend the previous region (they should be sorted) */
 951                region = list_entry(nosave_regions.prev,
 952                                        struct nosave_region, list);
 953                if (region->end_pfn == start_pfn) {
 954                        region->end_pfn = end_pfn;
 955                        goto Report;
 956                }
 957        }
 958        if (use_kmalloc) {
 959                /* During init, this shouldn't fail */
 960                region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
 961                BUG_ON(!region);
 962        } else {
 963                /* This allocation cannot fail */
 964                region = memblock_alloc(sizeof(struct nosave_region),
 965                                        SMP_CACHE_BYTES);
 966                if (!region)
 967                        panic("%s: Failed to allocate %zu bytes\n", __func__,
 968                              sizeof(struct nosave_region));
 969        }
 970        region->start_pfn = start_pfn;
 971        region->end_pfn = end_pfn;
 972        list_add_tail(&region->list, &nosave_regions);
 973 Report:
 974        pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
 975                (unsigned long long) start_pfn << PAGE_SHIFT,
 976                ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
 977}
 978
 979/*
 980 * Set bits in this map correspond to the page frames the contents of which
 981 * should not be saved during the suspend.
 982 */
 983static struct memory_bitmap *forbidden_pages_map;
 984
 985/* Set bits in this map correspond to free page frames. */
 986static struct memory_bitmap *free_pages_map;
 987
 988/*
 989 * Each page frame allocated for creating the image is marked by setting the
 990 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 991 */
 992
 993void swsusp_set_page_free(struct page *page)
 994{
 995        if (free_pages_map)
 996                memory_bm_set_bit(free_pages_map, page_to_pfn(page));
 997}
 998
 999static int swsusp_page_is_free(struct page *page)
1000{
1001        return free_pages_map ?
1002                memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1003}
1004
1005void swsusp_unset_page_free(struct page *page)
1006{
1007        if (free_pages_map)
1008                memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1009}
1010
1011static void swsusp_set_page_forbidden(struct page *page)
1012{
1013        if (forbidden_pages_map)
1014                memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1015}
1016
1017int swsusp_page_is_forbidden(struct page *page)
1018{
1019        return forbidden_pages_map ?
1020                memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1021}
1022
1023static void swsusp_unset_page_forbidden(struct page *page)
1024{
1025        if (forbidden_pages_map)
1026                memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1027}
1028
1029/**
1030 * mark_nosave_pages - Mark pages that should not be saved.
1031 * @bm: Memory bitmap.
1032 *
1033 * Set the bits in @bm that correspond to the page frames the contents of which
1034 * should not be saved.
1035 */
1036static void mark_nosave_pages(struct memory_bitmap *bm)
1037{
1038        struct nosave_region *region;
1039
1040        if (list_empty(&nosave_regions))
1041                return;
1042
1043        list_for_each_entry(region, &nosave_regions, list) {
1044                unsigned long pfn;
1045
1046                pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1047                         (unsigned long long) region->start_pfn << PAGE_SHIFT,
1048                         ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1049                                - 1);
1050
1051                for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1052                        if (pfn_valid(pfn)) {
1053                                /*
1054                                 * It is safe to ignore the result of
1055                                 * mem_bm_set_bit_check() here, since we won't
1056                                 * touch the PFNs for which the error is
1057                                 * returned anyway.
1058                                 */
1059                                mem_bm_set_bit_check(bm, pfn);
1060                        }
1061        }
1062}
1063
1064/**
1065 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1066 *
1067 * Create bitmaps needed for marking page frames that should not be saved and
1068 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1069 * only modified if everything goes well, because we don't want the bits to be
1070 * touched before both bitmaps are set up.
1071 */
1072int create_basic_memory_bitmaps(void)
1073{
1074        struct memory_bitmap *bm1, *bm2;
1075        int error = 0;
1076
1077        if (forbidden_pages_map && free_pages_map)
1078                return 0;
1079        else
1080                BUG_ON(forbidden_pages_map || free_pages_map);
1081
1082        bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1083        if (!bm1)
1084                return -ENOMEM;
1085
1086        error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1087        if (error)
1088                goto Free_first_object;
1089
1090        bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1091        if (!bm2)
1092                goto Free_first_bitmap;
1093
1094        error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1095        if (error)
1096                goto Free_second_object;
1097
1098        forbidden_pages_map = bm1;
1099        free_pages_map = bm2;
1100        mark_nosave_pages(forbidden_pages_map);
1101
1102        pr_debug("Basic memory bitmaps created\n");
1103
1104        return 0;
1105
1106 Free_second_object:
1107        kfree(bm2);
1108 Free_first_bitmap:
1109        memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1110 Free_first_object:
1111        kfree(bm1);
1112        return -ENOMEM;
1113}
1114
1115/**
1116 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1117 *
1118 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1119 * auxiliary pointers are necessary so that the bitmaps themselves are not
1120 * referred to while they are being freed.
1121 */
1122void free_basic_memory_bitmaps(void)
1123{
1124        struct memory_bitmap *bm1, *bm2;
1125
1126        if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1127                return;
1128
1129        bm1 = forbidden_pages_map;
1130        bm2 = free_pages_map;
1131        forbidden_pages_map = NULL;
1132        free_pages_map = NULL;
1133        memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1134        kfree(bm1);
1135        memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1136        kfree(bm2);
1137
1138        pr_debug("Basic memory bitmaps freed\n");
1139}
1140
1141void clear_free_pages(void)
1142{
1143#ifdef CONFIG_PAGE_POISONING_ZERO
1144        struct memory_bitmap *bm = free_pages_map;
1145        unsigned long pfn;
1146
1147        if (WARN_ON(!(free_pages_map)))
1148                return;
1149
1150        memory_bm_position_reset(bm);
1151        pfn = memory_bm_next_pfn(bm);
1152        while (pfn != BM_END_OF_MAP) {
1153                if (pfn_valid(pfn))
1154                        clear_highpage(pfn_to_page(pfn));
1155
1156                pfn = memory_bm_next_pfn(bm);
1157        }
1158        memory_bm_position_reset(bm);
1159        pr_info("free pages cleared after restore\n");
1160#endif /* PAGE_POISONING_ZERO */
1161}
1162
1163/**
1164 * snapshot_additional_pages - Estimate the number of extra pages needed.
1165 * @zone: Memory zone to carry out the computation for.
1166 *
1167 * Estimate the number of additional pages needed for setting up a hibernation
1168 * image data structures for @zone (usually, the returned value is greater than
1169 * the exact number).
1170 */
1171unsigned int snapshot_additional_pages(struct zone *zone)
1172{
1173        unsigned int rtree, nodes;
1174
1175        rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1176        rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1177                              LINKED_PAGE_DATA_SIZE);
1178        while (nodes > 1) {
1179                nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1180                rtree += nodes;
1181        }
1182
1183        return 2 * rtree;
1184}
1185
1186#ifdef CONFIG_HIGHMEM
1187/**
1188 * count_free_highmem_pages - Compute the total number of free highmem pages.
1189 *
1190 * The returned number is system-wide.
1191 */
1192static unsigned int count_free_highmem_pages(void)
1193{
1194        struct zone *zone;
1195        unsigned int cnt = 0;
1196
1197        for_each_populated_zone(zone)
1198                if (is_highmem(zone))
1199                        cnt += zone_page_state(zone, NR_FREE_PAGES);
1200
1201        return cnt;
1202}
1203
1204/**
1205 * saveable_highmem_page - Check if a highmem page is saveable.
1206 *
1207 * Determine whether a highmem page should be included in a hibernation image.
1208 *
1209 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1210 * and it isn't part of a free chunk of pages.
1211 */
1212static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1213{
1214        struct page *page;
1215
1216        if (!pfn_valid(pfn))
1217                return NULL;
1218
1219        page = pfn_to_online_page(pfn);
1220        if (!page || page_zone(page) != zone)
1221                return NULL;
1222
1223        BUG_ON(!PageHighMem(page));
1224
1225        if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page))
1226                return NULL;
1227
1228        if (PageReserved(page) || PageOffline(page))
1229                return NULL;
1230
1231        if (page_is_guard(page))
1232                return NULL;
1233
1234        return page;
1235}
1236
1237/**
1238 * count_highmem_pages - Compute the total number of saveable highmem pages.
1239 */
1240static unsigned int count_highmem_pages(void)
1241{
1242        struct zone *zone;
1243        unsigned int n = 0;
1244
1245        for_each_populated_zone(zone) {
1246                unsigned long pfn, max_zone_pfn;
1247
1248                if (!is_highmem(zone))
1249                        continue;
1250
1251                mark_free_pages(zone);
1252                max_zone_pfn = zone_end_pfn(zone);
1253                for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1254                        if (saveable_highmem_page(zone, pfn))
1255                                n++;
1256        }
1257        return n;
1258}
1259#else
1260static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1261{
1262        return NULL;
1263}
1264#endif /* CONFIG_HIGHMEM */
1265
1266/**
1267 * saveable_page - Check if the given page is saveable.
1268 *
1269 * Determine whether a non-highmem page should be included in a hibernation
1270 * image.
1271 *
1272 * We should save the page if it isn't Nosave, and is not in the range
1273 * of pages statically defined as 'unsaveable', and it isn't part of
1274 * a free chunk of pages.
1275 */
1276static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1277{
1278        struct page *page;
1279
1280        if (!pfn_valid(pfn))
1281                return NULL;
1282
1283        page = pfn_to_online_page(pfn);
1284        if (!page || page_zone(page) != zone)
1285                return NULL;
1286
1287        BUG_ON(PageHighMem(page));
1288
1289        if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1290                return NULL;
1291
1292        if (PageOffline(page))
1293                return NULL;
1294
1295        if (PageReserved(page)
1296            && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1297                return NULL;
1298
1299        if (page_is_guard(page))
1300                return NULL;
1301
1302        return page;
1303}
1304
1305/**
1306 * count_data_pages - Compute the total number of saveable non-highmem pages.
1307 */
1308static unsigned int count_data_pages(void)
1309{
1310        struct zone *zone;
1311        unsigned long pfn, max_zone_pfn;
1312        unsigned int n = 0;
1313
1314        for_each_populated_zone(zone) {
1315                if (is_highmem(zone))
1316                        continue;
1317
1318                mark_free_pages(zone);
1319                max_zone_pfn = zone_end_pfn(zone);
1320                for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1321                        if (saveable_page(zone, pfn))
1322                                n++;
1323        }
1324        return n;
1325}
1326
1327/*
1328 * This is needed, because copy_page and memcpy are not usable for copying
1329 * task structs.
1330 */
1331static inline void do_copy_page(long *dst, long *src)
1332{
1333        int n;
1334
1335        for (n = PAGE_SIZE / sizeof(long); n; n--)
1336                *dst++ = *src++;
1337}
1338
1339/**
1340 * safe_copy_page - Copy a page in a safe way.
1341 *
1342 * Check if the page we are going to copy is marked as present in the kernel
1343 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1344 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1345 * always returns 'true'.
1346 */
1347static void safe_copy_page(void *dst, struct page *s_page)
1348{
1349        if (kernel_page_present(s_page)) {
1350                do_copy_page(dst, page_address(s_page));
1351        } else {
1352                kernel_map_pages(s_page, 1, 1);
1353                do_copy_page(dst, page_address(s_page));
1354                kernel_map_pages(s_page, 1, 0);
1355        }
1356}
1357
1358#ifdef CONFIG_HIGHMEM
1359static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1360{
1361        return is_highmem(zone) ?
1362                saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1363}
1364
1365static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1366{
1367        struct page *s_page, *d_page;
1368        void *src, *dst;
1369
1370        s_page = pfn_to_page(src_pfn);
1371        d_page = pfn_to_page(dst_pfn);
1372        if (PageHighMem(s_page)) {
1373                src = kmap_atomic(s_page);
1374                dst = kmap_atomic(d_page);
1375                do_copy_page(dst, src);
1376                kunmap_atomic(dst);
1377                kunmap_atomic(src);
1378        } else {
1379                if (PageHighMem(d_page)) {
1380                        /*
1381                         * The page pointed to by src may contain some kernel
1382                         * data modified by kmap_atomic()
1383                         */
1384                        safe_copy_page(buffer, s_page);
1385                        dst = kmap_atomic(d_page);
1386                        copy_page(dst, buffer);
1387                        kunmap_atomic(dst);
1388                } else {
1389                        safe_copy_page(page_address(d_page), s_page);
1390                }
1391        }
1392}
1393#else
1394#define page_is_saveable(zone, pfn)     saveable_page(zone, pfn)
1395
1396static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1397{
1398        safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1399                                pfn_to_page(src_pfn));
1400}
1401#endif /* CONFIG_HIGHMEM */
1402
1403static void copy_data_pages(struct memory_bitmap *copy_bm,
1404                            struct memory_bitmap *orig_bm)
1405{
1406        struct zone *zone;
1407        unsigned long pfn;
1408
1409        for_each_populated_zone(zone) {
1410                unsigned long max_zone_pfn;
1411
1412                mark_free_pages(zone);
1413                max_zone_pfn = zone_end_pfn(zone);
1414                for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1415                        if (page_is_saveable(zone, pfn))
1416                                memory_bm_set_bit(orig_bm, pfn);
1417        }
1418        memory_bm_position_reset(orig_bm);
1419        memory_bm_position_reset(copy_bm);
1420        for(;;) {
1421                pfn = memory_bm_next_pfn(orig_bm);
1422                if (unlikely(pfn == BM_END_OF_MAP))
1423                        break;
1424                copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1425        }
1426}
1427
1428/* Total number of image pages */
1429static unsigned int nr_copy_pages;
1430/* Number of pages needed for saving the original pfns of the image pages */
1431static unsigned int nr_meta_pages;
1432/*
1433 * Numbers of normal and highmem page frames allocated for hibernation image
1434 * before suspending devices.
1435 */
1436static unsigned int alloc_normal, alloc_highmem;
1437/*
1438 * Memory bitmap used for marking saveable pages (during hibernation) or
1439 * hibernation image pages (during restore)
1440 */
1441static struct memory_bitmap orig_bm;
1442/*
1443 * Memory bitmap used during hibernation for marking allocated page frames that
1444 * will contain copies of saveable pages.  During restore it is initially used
1445 * for marking hibernation image pages, but then the set bits from it are
1446 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1447 * used for marking "safe" highmem pages, but it has to be reinitialized for
1448 * this purpose.
1449 */
1450static struct memory_bitmap copy_bm;
1451
1452/**
1453 * swsusp_free - Free pages allocated for hibernation image.
1454 *
1455 * Image pages are alocated before snapshot creation, so they need to be
1456 * released after resume.
1457 */
1458void swsusp_free(void)
1459{
1460        unsigned long fb_pfn, fr_pfn;
1461
1462        if (!forbidden_pages_map || !free_pages_map)
1463                goto out;
1464
1465        memory_bm_position_reset(forbidden_pages_map);
1466        memory_bm_position_reset(free_pages_map);
1467
1468loop:
1469        fr_pfn = memory_bm_next_pfn(free_pages_map);
1470        fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1471
1472        /*
1473         * Find the next bit set in both bitmaps. This is guaranteed to
1474         * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1475         */
1476        do {
1477                if (fb_pfn < fr_pfn)
1478                        fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1479                if (fr_pfn < fb_pfn)
1480                        fr_pfn = memory_bm_next_pfn(free_pages_map);
1481        } while (fb_pfn != fr_pfn);
1482
1483        if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1484                struct page *page = pfn_to_page(fr_pfn);
1485
1486                memory_bm_clear_current(forbidden_pages_map);
1487                memory_bm_clear_current(free_pages_map);
1488                hibernate_restore_unprotect_page(page_address(page));
1489                __free_page(page);
1490                goto loop;
1491        }
1492
1493out:
1494        nr_copy_pages = 0;
1495        nr_meta_pages = 0;
1496        restore_pblist = NULL;
1497        buffer = NULL;
1498        alloc_normal = 0;
1499        alloc_highmem = 0;
1500        hibernate_restore_protection_end();
1501}
1502
1503/* Helper functions used for the shrinking of memory. */
1504
1505#define GFP_IMAGE       (GFP_KERNEL | __GFP_NOWARN)
1506
1507/**
1508 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1509 * @nr_pages: Number of page frames to allocate.
1510 * @mask: GFP flags to use for the allocation.
1511 *
1512 * Return value: Number of page frames actually allocated
1513 */
1514static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1515{
1516        unsigned long nr_alloc = 0;
1517
1518        while (nr_pages > 0) {
1519                struct page *page;
1520
1521                page = alloc_image_page(mask);
1522                if (!page)
1523                        break;
1524                memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1525                if (PageHighMem(page))
1526                        alloc_highmem++;
1527                else
1528                        alloc_normal++;
1529                nr_pages--;
1530                nr_alloc++;
1531        }
1532
1533        return nr_alloc;
1534}
1535
1536static unsigned long preallocate_image_memory(unsigned long nr_pages,
1537                                              unsigned long avail_normal)
1538{
1539        unsigned long alloc;
1540
1541        if (avail_normal <= alloc_normal)
1542                return 0;
1543
1544        alloc = avail_normal - alloc_normal;
1545        if (nr_pages < alloc)
1546                alloc = nr_pages;
1547
1548        return preallocate_image_pages(alloc, GFP_IMAGE);
1549}
1550
1551#ifdef CONFIG_HIGHMEM
1552static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1553{
1554        return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1555}
1556
1557/**
1558 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1559 */
1560static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1561{
1562        x *= multiplier;
1563        do_div(x, base);
1564        return (unsigned long)x;
1565}
1566
1567static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1568                                                  unsigned long highmem,
1569                                                  unsigned long total)
1570{
1571        unsigned long alloc = __fraction(nr_pages, highmem, total);
1572
1573        return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1574}
1575#else /* CONFIG_HIGHMEM */
1576static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1577{
1578        return 0;
1579}
1580
1581static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1582                                                         unsigned long highmem,
1583                                                         unsigned long total)
1584{
1585        return 0;
1586}
1587#endif /* CONFIG_HIGHMEM */
1588
1589/**
1590 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1591 */
1592static unsigned long free_unnecessary_pages(void)
1593{
1594        unsigned long save, to_free_normal, to_free_highmem, free;
1595
1596        save = count_data_pages();
1597        if (alloc_normal >= save) {
1598                to_free_normal = alloc_normal - save;
1599                save = 0;
1600        } else {
1601                to_free_normal = 0;
1602                save -= alloc_normal;
1603        }
1604        save += count_highmem_pages();
1605        if (alloc_highmem >= save) {
1606                to_free_highmem = alloc_highmem - save;
1607        } else {
1608                to_free_highmem = 0;
1609                save -= alloc_highmem;
1610                if (to_free_normal > save)
1611                        to_free_normal -= save;
1612                else
1613                        to_free_normal = 0;
1614        }
1615        free = to_free_normal + to_free_highmem;
1616
1617        memory_bm_position_reset(&copy_bm);
1618
1619        while (to_free_normal > 0 || to_free_highmem > 0) {
1620                unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1621                struct page *page = pfn_to_page(pfn);
1622
1623                if (PageHighMem(page)) {
1624                        if (!to_free_highmem)
1625                                continue;
1626                        to_free_highmem--;
1627                        alloc_highmem--;
1628                } else {
1629                        if (!to_free_normal)
1630                                continue;
1631                        to_free_normal--;
1632                        alloc_normal--;
1633                }
1634                memory_bm_clear_bit(&copy_bm, pfn);
1635                swsusp_unset_page_forbidden(page);
1636                swsusp_unset_page_free(page);
1637                __free_page(page);
1638        }
1639
1640        return free;
1641}
1642
1643/**
1644 * minimum_image_size - Estimate the minimum acceptable size of an image.
1645 * @saveable: Number of saveable pages in the system.
1646 *
1647 * We want to avoid attempting to free too much memory too hard, so estimate the
1648 * minimum acceptable size of a hibernation image to use as the lower limit for
1649 * preallocating memory.
1650 *
1651 * We assume that the minimum image size should be proportional to
1652 *
1653 * [number of saveable pages] - [number of pages that can be freed in theory]
1654 *
1655 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1656 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1657 */
1658static unsigned long minimum_image_size(unsigned long saveable)
1659{
1660        unsigned long size;
1661
1662        size = global_node_page_state(NR_SLAB_RECLAIMABLE)
1663                + global_node_page_state(NR_ACTIVE_ANON)
1664                + global_node_page_state(NR_INACTIVE_ANON)
1665                + global_node_page_state(NR_ACTIVE_FILE)
1666                + global_node_page_state(NR_INACTIVE_FILE);
1667
1668        return saveable <= size ? 0 : saveable - size;
1669}
1670
1671/**
1672 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1673 *
1674 * To create a hibernation image it is necessary to make a copy of every page
1675 * frame in use.  We also need a number of page frames to be free during
1676 * hibernation for allocations made while saving the image and for device
1677 * drivers, in case they need to allocate memory from their hibernation
1678 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1679 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1680 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1681 * total number of available page frames and allocate at least
1682 *
1683 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1684 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1685 *
1686 * of them, which corresponds to the maximum size of a hibernation image.
1687 *
1688 * If image_size is set below the number following from the above formula,
1689 * the preallocation of memory is continued until the total number of saveable
1690 * pages in the system is below the requested image size or the minimum
1691 * acceptable image size returned by minimum_image_size(), whichever is greater.
1692 */
1693int hibernate_preallocate_memory(void)
1694{
1695        struct zone *zone;
1696        unsigned long saveable, size, max_size, count, highmem, pages = 0;
1697        unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1698        ktime_t start, stop;
1699        int error;
1700
1701        pr_info("Preallocating image memory... ");
1702        start = ktime_get();
1703
1704        error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1705        if (error)
1706                goto err_out;
1707
1708        error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1709        if (error)
1710                goto err_out;
1711
1712        alloc_normal = 0;
1713        alloc_highmem = 0;
1714
1715        /* Count the number of saveable data pages. */
1716        save_highmem = count_highmem_pages();
1717        saveable = count_data_pages();
1718
1719        /*
1720         * Compute the total number of page frames we can use (count) and the
1721         * number of pages needed for image metadata (size).
1722         */
1723        count = saveable;
1724        saveable += save_highmem;
1725        highmem = save_highmem;
1726        size = 0;
1727        for_each_populated_zone(zone) {
1728                size += snapshot_additional_pages(zone);
1729                if (is_highmem(zone))
1730                        highmem += zone_page_state(zone, NR_FREE_PAGES);
1731                else
1732                        count += zone_page_state(zone, NR_FREE_PAGES);
1733        }
1734        avail_normal = count;
1735        count += highmem;
1736        count -= totalreserve_pages;
1737
1738        /* Add number of pages required for page keys (s390 only). */
1739        size += page_key_additional_pages(saveable);
1740
1741        /* Compute the maximum number of saveable pages to leave in memory. */
1742        max_size = (count - (size + PAGES_FOR_IO)) / 2
1743                        - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1744        /* Compute the desired number of image pages specified by image_size. */
1745        size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1746        if (size > max_size)
1747                size = max_size;
1748        /*
1749         * If the desired number of image pages is at least as large as the
1750         * current number of saveable pages in memory, allocate page frames for
1751         * the image and we're done.
1752         */
1753        if (size >= saveable) {
1754                pages = preallocate_image_highmem(save_highmem);
1755                pages += preallocate_image_memory(saveable - pages, avail_normal);
1756                goto out;
1757        }
1758
1759        /* Estimate the minimum size of the image. */
1760        pages = minimum_image_size(saveable);
1761        /*
1762         * To avoid excessive pressure on the normal zone, leave room in it to
1763         * accommodate an image of the minimum size (unless it's already too
1764         * small, in which case don't preallocate pages from it at all).
1765         */
1766        if (avail_normal > pages)
1767                avail_normal -= pages;
1768        else
1769                avail_normal = 0;
1770        if (size < pages)
1771                size = min_t(unsigned long, pages, max_size);
1772
1773        /*
1774         * Let the memory management subsystem know that we're going to need a
1775         * large number of page frames to allocate and make it free some memory.
1776         * NOTE: If this is not done, performance will be hurt badly in some
1777         * test cases.
1778         */
1779        shrink_all_memory(saveable - size);
1780
1781        /*
1782         * The number of saveable pages in memory was too high, so apply some
1783         * pressure to decrease it.  First, make room for the largest possible
1784         * image and fail if that doesn't work.  Next, try to decrease the size
1785         * of the image as much as indicated by 'size' using allocations from
1786         * highmem and non-highmem zones separately.
1787         */
1788        pages_highmem = preallocate_image_highmem(highmem / 2);
1789        alloc = count - max_size;
1790        if (alloc > pages_highmem)
1791                alloc -= pages_highmem;
1792        else
1793                alloc = 0;
1794        pages = preallocate_image_memory(alloc, avail_normal);
1795        if (pages < alloc) {
1796                /* We have exhausted non-highmem pages, try highmem. */
1797                alloc -= pages;
1798                pages += pages_highmem;
1799                pages_highmem = preallocate_image_highmem(alloc);
1800                if (pages_highmem < alloc)
1801                        goto err_out;
1802                pages += pages_highmem;
1803                /*
1804                 * size is the desired number of saveable pages to leave in
1805                 * memory, so try to preallocate (all memory - size) pages.
1806                 */
1807                alloc = (count - pages) - size;
1808                pages += preallocate_image_highmem(alloc);
1809        } else {
1810                /*
1811                 * There are approximately max_size saveable pages at this point
1812                 * and we want to reduce this number down to size.
1813                 */
1814                alloc = max_size - size;
1815                size = preallocate_highmem_fraction(alloc, highmem, count);
1816                pages_highmem += size;
1817                alloc -= size;
1818                size = preallocate_image_memory(alloc, avail_normal);
1819                pages_highmem += preallocate_image_highmem(alloc - size);
1820                pages += pages_highmem + size;
1821        }
1822
1823        /*
1824         * We only need as many page frames for the image as there are saveable
1825         * pages in memory, but we have allocated more.  Release the excessive
1826         * ones now.
1827         */
1828        pages -= free_unnecessary_pages();
1829
1830 out:
1831        stop = ktime_get();
1832        pr_cont("done (allocated %lu pages)\n", pages);
1833        swsusp_show_speed(start, stop, pages, "Allocated");
1834
1835        return 0;
1836
1837 err_out:
1838        pr_cont("\n");
1839        swsusp_free();
1840        return -ENOMEM;
1841}
1842
1843#ifdef CONFIG_HIGHMEM
1844/**
1845 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1846 *
1847 * Compute the number of non-highmem pages that will be necessary for creating
1848 * copies of highmem pages.
1849 */
1850static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1851{
1852        unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1853
1854        if (free_highmem >= nr_highmem)
1855                nr_highmem = 0;
1856        else
1857                nr_highmem -= free_highmem;
1858
1859        return nr_highmem;
1860}
1861#else
1862static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1863#endif /* CONFIG_HIGHMEM */
1864
1865/**
1866 * enough_free_mem - Check if there is enough free memory for the image.
1867 */
1868static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1869{
1870        struct zone *zone;
1871        unsigned int free = alloc_normal;
1872
1873        for_each_populated_zone(zone)
1874                if (!is_highmem(zone))
1875                        free += zone_page_state(zone, NR_FREE_PAGES);
1876
1877        nr_pages += count_pages_for_highmem(nr_highmem);
1878        pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1879                 nr_pages, PAGES_FOR_IO, free);
1880
1881        return free > nr_pages + PAGES_FOR_IO;
1882}
1883
1884#ifdef CONFIG_HIGHMEM
1885/**
1886 * get_highmem_buffer - Allocate a buffer for highmem pages.
1887 *
1888 * If there are some highmem pages in the hibernation image, we may need a
1889 * buffer to copy them and/or load their data.
1890 */
1891static inline int get_highmem_buffer(int safe_needed)
1892{
1893        buffer = get_image_page(GFP_ATOMIC, safe_needed);
1894        return buffer ? 0 : -ENOMEM;
1895}
1896
1897/**
1898 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1899 *
1900 * Try to allocate as many pages as needed, but if the number of free highmem
1901 * pages is less than that, allocate them all.
1902 */
1903static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1904                                               unsigned int nr_highmem)
1905{
1906        unsigned int to_alloc = count_free_highmem_pages();
1907
1908        if (to_alloc > nr_highmem)
1909                to_alloc = nr_highmem;
1910
1911        nr_highmem -= to_alloc;
1912        while (to_alloc-- > 0) {
1913                struct page *page;
1914
1915                page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1916                memory_bm_set_bit(bm, page_to_pfn(page));
1917        }
1918        return nr_highmem;
1919}
1920#else
1921static inline int get_highmem_buffer(int safe_needed) { return 0; }
1922
1923static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1924                                               unsigned int n) { return 0; }
1925#endif /* CONFIG_HIGHMEM */
1926
1927/**
1928 * swsusp_alloc - Allocate memory for hibernation image.
1929 *
1930 * We first try to allocate as many highmem pages as there are
1931 * saveable highmem pages in the system.  If that fails, we allocate
1932 * non-highmem pages for the copies of the remaining highmem ones.
1933 *
1934 * In this approach it is likely that the copies of highmem pages will
1935 * also be located in the high memory, because of the way in which
1936 * copy_data_pages() works.
1937 */
1938static int swsusp_alloc(struct memory_bitmap *copy_bm,
1939                        unsigned int nr_pages, unsigned int nr_highmem)
1940{
1941        if (nr_highmem > 0) {
1942                if (get_highmem_buffer(PG_ANY))
1943                        goto err_out;
1944                if (nr_highmem > alloc_highmem) {
1945                        nr_highmem -= alloc_highmem;
1946                        nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1947                }
1948        }
1949        if (nr_pages > alloc_normal) {
1950                nr_pages -= alloc_normal;
1951                while (nr_pages-- > 0) {
1952                        struct page *page;
1953
1954                        page = alloc_image_page(GFP_ATOMIC);
1955                        if (!page)
1956                                goto err_out;
1957                        memory_bm_set_bit(copy_bm, page_to_pfn(page));
1958                }
1959        }
1960
1961        return 0;
1962
1963 err_out:
1964        swsusp_free();
1965        return -ENOMEM;
1966}
1967
1968asmlinkage __visible int swsusp_save(void)
1969{
1970        unsigned int nr_pages, nr_highmem;
1971
1972        pr_info("Creating hibernation image:\n");
1973
1974        drain_local_pages(NULL);
1975        nr_pages = count_data_pages();
1976        nr_highmem = count_highmem_pages();
1977        pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
1978
1979        if (!enough_free_mem(nr_pages, nr_highmem)) {
1980                pr_err("Not enough free memory\n");
1981                return -ENOMEM;
1982        }
1983
1984        if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
1985                pr_err("Memory allocation failed\n");
1986                return -ENOMEM;
1987        }
1988
1989        /*
1990         * During allocating of suspend pagedir, new cold pages may appear.
1991         * Kill them.
1992         */
1993        drain_local_pages(NULL);
1994        copy_data_pages(&copy_bm, &orig_bm);
1995
1996        /*
1997         * End of critical section. From now on, we can write to memory,
1998         * but we should not touch disk. This specially means we must _not_
1999         * touch swap space! Except we must write out our image of course.
2000         */
2001
2002        nr_pages += nr_highmem;
2003        nr_copy_pages = nr_pages;
2004        nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2005
2006        pr_info("Hibernation image created (%d pages copied)\n", nr_pages);
2007
2008        return 0;
2009}
2010
2011#ifndef CONFIG_ARCH_HIBERNATION_HEADER
2012static int init_header_complete(struct swsusp_info *info)
2013{
2014        memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2015        info->version_code = LINUX_VERSION_CODE;
2016        return 0;
2017}
2018
2019static char *check_image_kernel(struct swsusp_info *info)
2020{
2021        if (info->version_code != LINUX_VERSION_CODE)
2022                return "kernel version";
2023        if (strcmp(info->uts.sysname,init_utsname()->sysname))
2024                return "system type";
2025        if (strcmp(info->uts.release,init_utsname()->release))
2026                return "kernel release";
2027        if (strcmp(info->uts.version,init_utsname()->version))
2028                return "version";
2029        if (strcmp(info->uts.machine,init_utsname()->machine))
2030                return "machine";
2031        return NULL;
2032}
2033#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2034
2035unsigned long snapshot_get_image_size(void)
2036{
2037        return nr_copy_pages + nr_meta_pages + 1;
2038}
2039
2040static int init_header(struct swsusp_info *info)
2041{
2042        memset(info, 0, sizeof(struct swsusp_info));
2043        info->num_physpages = get_num_physpages();
2044        info->image_pages = nr_copy_pages;
2045        info->pages = snapshot_get_image_size();
2046        info->size = info->pages;
2047        info->size <<= PAGE_SHIFT;
2048        return init_header_complete(info);
2049}
2050
2051/**
2052 * pack_pfns - Prepare PFNs for saving.
2053 * @bm: Memory bitmap.
2054 * @buf: Memory buffer to store the PFNs in.
2055 *
2056 * PFNs corresponding to set bits in @bm are stored in the area of memory
2057 * pointed to by @buf (1 page at a time).
2058 */
2059static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2060{
2061        int j;
2062
2063        for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2064                buf[j] = memory_bm_next_pfn(bm);
2065                if (unlikely(buf[j] == BM_END_OF_MAP))
2066                        break;
2067                /* Save page key for data page (s390 only). */
2068                page_key_read(buf + j);
2069        }
2070}
2071
2072/**
2073 * snapshot_read_next - Get the address to read the next image page from.
2074 * @handle: Snapshot handle to be used for the reading.
2075 *
2076 * On the first call, @handle should point to a zeroed snapshot_handle
2077 * structure.  The structure gets populated then and a pointer to it should be
2078 * passed to this function every next time.
2079 *
2080 * On success, the function returns a positive number.  Then, the caller
2081 * is allowed to read up to the returned number of bytes from the memory
2082 * location computed by the data_of() macro.
2083 *
2084 * The function returns 0 to indicate the end of the data stream condition,
2085 * and negative numbers are returned on errors.  If that happens, the structure
2086 * pointed to by @handle is not updated and should not be used any more.
2087 */
2088int snapshot_read_next(struct snapshot_handle *handle)
2089{
2090        if (handle->cur > nr_meta_pages + nr_copy_pages)
2091                return 0;
2092
2093        if (!buffer) {
2094                /* This makes the buffer be freed by swsusp_free() */
2095                buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2096                if (!buffer)
2097                        return -ENOMEM;
2098        }
2099        if (!handle->cur) {
2100                int error;
2101
2102                error = init_header((struct swsusp_info *)buffer);
2103                if (error)
2104                        return error;
2105                handle->buffer = buffer;
2106                memory_bm_position_reset(&orig_bm);
2107                memory_bm_position_reset(&copy_bm);
2108        } else if (handle->cur <= nr_meta_pages) {
2109                clear_page(buffer);
2110                pack_pfns(buffer, &orig_bm);
2111        } else {
2112                struct page *page;
2113
2114                page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2115                if (PageHighMem(page)) {
2116                        /*
2117                         * Highmem pages are copied to the buffer,
2118                         * because we can't return with a kmapped
2119                         * highmem page (we may not be called again).
2120                         */
2121                        void *kaddr;
2122
2123                        kaddr = kmap_atomic(page);
2124                        copy_page(buffer, kaddr);
2125                        kunmap_atomic(kaddr);
2126                        handle->buffer = buffer;
2127                } else {
2128                        handle->buffer = page_address(page);
2129                }
2130        }
2131        handle->cur++;
2132        return PAGE_SIZE;
2133}
2134
2135static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2136                                    struct memory_bitmap *src)
2137{
2138        unsigned long pfn;
2139
2140        memory_bm_position_reset(src);
2141        pfn = memory_bm_next_pfn(src);
2142        while (pfn != BM_END_OF_MAP) {
2143                memory_bm_set_bit(dst, pfn);
2144                pfn = memory_bm_next_pfn(src);
2145        }
2146}
2147
2148/**
2149 * mark_unsafe_pages - Mark pages that were used before hibernation.
2150 *
2151 * Mark the pages that cannot be used for storing the image during restoration,
2152 * because they conflict with the pages that had been used before hibernation.
2153 */
2154static void mark_unsafe_pages(struct memory_bitmap *bm)
2155{
2156        unsigned long pfn;
2157
2158        /* Clear the "free"/"unsafe" bit for all PFNs */
2159        memory_bm_position_reset(free_pages_map);
2160        pfn = memory_bm_next_pfn(free_pages_map);
2161        while (pfn != BM_END_OF_MAP) {
2162                memory_bm_clear_current(free_pages_map);
2163                pfn = memory_bm_next_pfn(free_pages_map);
2164        }
2165
2166        /* Mark pages that correspond to the "original" PFNs as "unsafe" */
2167        duplicate_memory_bitmap(free_pages_map, bm);
2168
2169        allocated_unsafe_pages = 0;
2170}
2171
2172static int check_header(struct swsusp_info *info)
2173{
2174        char *reason;
2175
2176        reason = check_image_kernel(info);
2177        if (!reason && info->num_physpages != get_num_physpages())
2178                reason = "memory size";
2179        if (reason) {
2180                pr_err("Image mismatch: %s\n", reason);
2181                return -EPERM;
2182        }
2183        return 0;
2184}
2185
2186/**
2187 * load header - Check the image header and copy the data from it.
2188 */
2189static int load_header(struct swsusp_info *info)
2190{
2191        int error;
2192
2193        restore_pblist = NULL;
2194        error = check_header(info);
2195        if (!error) {
2196                nr_copy_pages = info->image_pages;
2197                nr_meta_pages = info->pages - info->image_pages - 1;
2198        }
2199        return error;
2200}
2201
2202/**
2203 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2204 * @bm: Memory bitmap.
2205 * @buf: Area of memory containing the PFNs.
2206 *
2207 * For each element of the array pointed to by @buf (1 page at a time), set the
2208 * corresponding bit in @bm.
2209 */
2210static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2211{
2212        int j;
2213
2214        for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2215                if (unlikely(buf[j] == BM_END_OF_MAP))
2216                        break;
2217
2218                /* Extract and buffer page key for data page (s390 only). */
2219                page_key_memorize(buf + j);
2220
2221                if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2222                        memory_bm_set_bit(bm, buf[j]);
2223                else
2224                        return -EFAULT;
2225        }
2226
2227        return 0;
2228}
2229
2230#ifdef CONFIG_HIGHMEM
2231/*
2232 * struct highmem_pbe is used for creating the list of highmem pages that
2233 * should be restored atomically during the resume from disk, because the page
2234 * frames they have occupied before the suspend are in use.
2235 */
2236struct highmem_pbe {
2237        struct page *copy_page; /* data is here now */
2238        struct page *orig_page; /* data was here before the suspend */
2239        struct highmem_pbe *next;
2240};
2241
2242/*
2243 * List of highmem PBEs needed for restoring the highmem pages that were
2244 * allocated before the suspend and included in the suspend image, but have
2245 * also been allocated by the "resume" kernel, so their contents cannot be
2246 * written directly to their "original" page frames.
2247 */
2248static struct highmem_pbe *highmem_pblist;
2249
2250/**
2251 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2252 * @bm: Memory bitmap.
2253 *
2254 * The bits in @bm that correspond to image pages are assumed to be set.
2255 */
2256static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2257{
2258        unsigned long pfn;
2259        unsigned int cnt = 0;
2260
2261        memory_bm_position_reset(bm);
2262        pfn = memory_bm_next_pfn(bm);
2263        while (pfn != BM_END_OF_MAP) {
2264                if (PageHighMem(pfn_to_page(pfn)))
2265                        cnt++;
2266
2267                pfn = memory_bm_next_pfn(bm);
2268        }
2269        return cnt;
2270}
2271
2272static unsigned int safe_highmem_pages;
2273
2274static struct memory_bitmap *safe_highmem_bm;
2275
2276/**
2277 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2278 * @bm: Pointer to an uninitialized memory bitmap structure.
2279 * @nr_highmem_p: Pointer to the number of highmem image pages.
2280 *
2281 * Try to allocate as many highmem pages as there are highmem image pages
2282 * (@nr_highmem_p points to the variable containing the number of highmem image
2283 * pages).  The pages that are "safe" (ie. will not be overwritten when the
2284 * hibernation image is restored entirely) have the corresponding bits set in
2285 * @bm (it must be unitialized).
2286 *
2287 * NOTE: This function should not be called if there are no highmem image pages.
2288 */
2289static int prepare_highmem_image(struct memory_bitmap *bm,
2290                                 unsigned int *nr_highmem_p)
2291{
2292        unsigned int to_alloc;
2293
2294        if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2295                return -ENOMEM;
2296
2297        if (get_highmem_buffer(PG_SAFE))
2298                return -ENOMEM;
2299
2300        to_alloc = count_free_highmem_pages();
2301        if (to_alloc > *nr_highmem_p)
2302                to_alloc = *nr_highmem_p;
2303        else
2304                *nr_highmem_p = to_alloc;
2305
2306        safe_highmem_pages = 0;
2307        while (to_alloc-- > 0) {
2308                struct page *page;
2309
2310                page = alloc_page(__GFP_HIGHMEM);
2311                if (!swsusp_page_is_free(page)) {
2312                        /* The page is "safe", set its bit the bitmap */
2313                        memory_bm_set_bit(bm, page_to_pfn(page));
2314                        safe_highmem_pages++;
2315                }
2316                /* Mark the page as allocated */
2317                swsusp_set_page_forbidden(page);
2318                swsusp_set_page_free(page);
2319        }
2320        memory_bm_position_reset(bm);
2321        safe_highmem_bm = bm;
2322        return 0;
2323}
2324
2325static struct page *last_highmem_page;
2326
2327/**
2328 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2329 *
2330 * For a given highmem image page get a buffer that suspend_write_next() should
2331 * return to its caller to write to.
2332 *
2333 * If the page is to be saved to its "original" page frame or a copy of
2334 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2335 * the copy of the page is to be made in normal memory, so the address of
2336 * the copy is returned.
2337 *
2338 * If @buffer is returned, the caller of suspend_write_next() will write
2339 * the page's contents to @buffer, so they will have to be copied to the
2340 * right location on the next call to suspend_write_next() and it is done
2341 * with the help of copy_last_highmem_page().  For this purpose, if
2342 * @buffer is returned, @last_highmem_page is set to the page to which
2343 * the data will have to be copied from @buffer.
2344 */
2345static void *get_highmem_page_buffer(struct page *page,
2346                                     struct chain_allocator *ca)
2347{
2348        struct highmem_pbe *pbe;
2349        void *kaddr;
2350
2351        if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2352                /*
2353                 * We have allocated the "original" page frame and we can
2354                 * use it directly to store the loaded page.
2355                 */
2356                last_highmem_page = page;
2357                return buffer;
2358        }
2359        /*
2360         * The "original" page frame has not been allocated and we have to
2361         * use a "safe" page frame to store the loaded page.
2362         */
2363        pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2364        if (!pbe) {
2365                swsusp_free();
2366                return ERR_PTR(-ENOMEM);
2367        }
2368        pbe->orig_page = page;
2369        if (safe_highmem_pages > 0) {
2370                struct page *tmp;
2371
2372                /* Copy of the page will be stored in high memory */
2373                kaddr = buffer;
2374                tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2375                safe_highmem_pages--;
2376                last_highmem_page = tmp;
2377                pbe->copy_page = tmp;
2378        } else {
2379                /* Copy of the page will be stored in normal memory */
2380                kaddr = safe_pages_list;
2381                safe_pages_list = safe_pages_list->next;
2382                pbe->copy_page = virt_to_page(kaddr);
2383        }
2384        pbe->next = highmem_pblist;
2385        highmem_pblist = pbe;
2386        return kaddr;
2387}
2388
2389/**
2390 * copy_last_highmem_page - Copy most the most recent highmem image page.
2391 *
2392 * Copy the contents of a highmem image from @buffer, where the caller of
2393 * snapshot_write_next() has stored them, to the right location represented by
2394 * @last_highmem_page .
2395 */
2396static void copy_last_highmem_page(void)
2397{
2398        if (last_highmem_page) {
2399                void *dst;
2400
2401                dst = kmap_atomic(last_highmem_page);
2402                copy_page(dst, buffer);
2403                kunmap_atomic(dst);
2404                last_highmem_page = NULL;
2405        }
2406}
2407
2408static inline int last_highmem_page_copied(void)
2409{
2410        return !last_highmem_page;
2411}
2412
2413static inline void free_highmem_data(void)
2414{
2415        if (safe_highmem_bm)
2416                memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2417
2418        if (buffer)
2419                free_image_page(buffer, PG_UNSAFE_CLEAR);
2420}
2421#else
2422static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2423
2424static inline int prepare_highmem_image(struct memory_bitmap *bm,
2425                                        unsigned int *nr_highmem_p) { return 0; }
2426
2427static inline void *get_highmem_page_buffer(struct page *page,
2428                                            struct chain_allocator *ca)
2429{
2430        return ERR_PTR(-EINVAL);
2431}
2432
2433static inline void copy_last_highmem_page(void) {}
2434static inline int last_highmem_page_copied(void) { return 1; }
2435static inline void free_highmem_data(void) {}
2436#endif /* CONFIG_HIGHMEM */
2437
2438#define PBES_PER_LINKED_PAGE    (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2439
2440/**
2441 * prepare_image - Make room for loading hibernation image.
2442 * @new_bm: Unitialized memory bitmap structure.
2443 * @bm: Memory bitmap with unsafe pages marked.
2444 *
2445 * Use @bm to mark the pages that will be overwritten in the process of
2446 * restoring the system memory state from the suspend image ("unsafe" pages)
2447 * and allocate memory for the image.
2448 *
2449 * The idea is to allocate a new memory bitmap first and then allocate
2450 * as many pages as needed for image data, but without specifying what those
2451 * pages will be used for just yet.  Instead, we mark them all as allocated and
2452 * create a lists of "safe" pages to be used later.  On systems with high
2453 * memory a list of "safe" highmem pages is created too.
2454 */
2455static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2456{
2457        unsigned int nr_pages, nr_highmem;
2458        struct linked_page *lp;
2459        int error;
2460
2461        /* If there is no highmem, the buffer will not be necessary */
2462        free_image_page(buffer, PG_UNSAFE_CLEAR);
2463        buffer = NULL;
2464
2465        nr_highmem = count_highmem_image_pages(bm);
2466        mark_unsafe_pages(bm);
2467
2468        error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2469        if (error)
2470                goto Free;
2471
2472        duplicate_memory_bitmap(new_bm, bm);
2473        memory_bm_free(bm, PG_UNSAFE_KEEP);
2474        if (nr_highmem > 0) {
2475                error = prepare_highmem_image(bm, &nr_highmem);
2476                if (error)
2477                        goto Free;
2478        }
2479        /*
2480         * Reserve some safe pages for potential later use.
2481         *
2482         * NOTE: This way we make sure there will be enough safe pages for the
2483         * chain_alloc() in get_buffer().  It is a bit wasteful, but
2484         * nr_copy_pages cannot be greater than 50% of the memory anyway.
2485         *
2486         * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2487         */
2488        nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2489        nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2490        while (nr_pages > 0) {
2491                lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2492                if (!lp) {
2493                        error = -ENOMEM;
2494                        goto Free;
2495                }
2496                lp->next = safe_pages_list;
2497                safe_pages_list = lp;
2498                nr_pages--;
2499        }
2500        /* Preallocate memory for the image */
2501        nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2502        while (nr_pages > 0) {
2503                lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2504                if (!lp) {
2505                        error = -ENOMEM;
2506                        goto Free;
2507                }
2508                if (!swsusp_page_is_free(virt_to_page(lp))) {
2509                        /* The page is "safe", add it to the list */
2510                        lp->next = safe_pages_list;
2511                        safe_pages_list = lp;
2512                }
2513                /* Mark the page as allocated */
2514                swsusp_set_page_forbidden(virt_to_page(lp));
2515                swsusp_set_page_free(virt_to_page(lp));
2516                nr_pages--;
2517        }
2518        return 0;
2519
2520 Free:
2521        swsusp_free();
2522        return error;
2523}
2524
2525/**
2526 * get_buffer - Get the address to store the next image data page.
2527 *
2528 * Get the address that snapshot_write_next() should return to its caller to
2529 * write to.
2530 */
2531static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2532{
2533        struct pbe *pbe;
2534        struct page *page;
2535        unsigned long pfn = memory_bm_next_pfn(bm);
2536
2537        if (pfn == BM_END_OF_MAP)
2538                return ERR_PTR(-EFAULT);
2539
2540        page = pfn_to_page(pfn);
2541        if (PageHighMem(page))
2542                return get_highmem_page_buffer(page, ca);
2543
2544        if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2545                /*
2546                 * We have allocated the "original" page frame and we can
2547                 * use it directly to store the loaded page.
2548                 */
2549                return page_address(page);
2550
2551        /*
2552         * The "original" page frame has not been allocated and we have to
2553         * use a "safe" page frame to store the loaded page.
2554         */
2555        pbe = chain_alloc(ca, sizeof(struct pbe));
2556        if (!pbe) {
2557                swsusp_free();
2558                return ERR_PTR(-ENOMEM);
2559        }
2560        pbe->orig_address = page_address(page);
2561        pbe->address = safe_pages_list;
2562        safe_pages_list = safe_pages_list->next;
2563        pbe->next = restore_pblist;
2564        restore_pblist = pbe;
2565        return pbe->address;
2566}
2567
2568/**
2569 * snapshot_write_next - Get the address to store the next image page.
2570 * @handle: Snapshot handle structure to guide the writing.
2571 *
2572 * On the first call, @handle should point to a zeroed snapshot_handle
2573 * structure.  The structure gets populated then and a pointer to it should be
2574 * passed to this function every next time.
2575 *
2576 * On success, the function returns a positive number.  Then, the caller
2577 * is allowed to write up to the returned number of bytes to the memory
2578 * location computed by the data_of() macro.
2579 *
2580 * The function returns 0 to indicate the "end of file" condition.  Negative
2581 * numbers are returned on errors, in which cases the structure pointed to by
2582 * @handle is not updated and should not be used any more.
2583 */
2584int snapshot_write_next(struct snapshot_handle *handle)
2585{
2586        static struct chain_allocator ca;
2587        int error = 0;
2588
2589        /* Check if we have already loaded the entire image */
2590        if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2591                return 0;
2592
2593        handle->sync_read = 1;
2594
2595        if (!handle->cur) {
2596                if (!buffer)
2597                        /* This makes the buffer be freed by swsusp_free() */
2598                        buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2599
2600                if (!buffer)
2601                        return -ENOMEM;
2602
2603                handle->buffer = buffer;
2604        } else if (handle->cur == 1) {
2605                error = load_header(buffer);
2606                if (error)
2607                        return error;
2608
2609                safe_pages_list = NULL;
2610
2611                error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2612                if (error)
2613                        return error;
2614
2615                /* Allocate buffer for page keys. */
2616                error = page_key_alloc(nr_copy_pages);
2617                if (error)
2618                        return error;
2619
2620                hibernate_restore_protection_begin();
2621        } else if (handle->cur <= nr_meta_pages + 1) {
2622                error = unpack_orig_pfns(buffer, &copy_bm);
2623                if (error)
2624                        return error;
2625
2626                if (handle->cur == nr_meta_pages + 1) {
2627                        error = prepare_image(&orig_bm, &copy_bm);
2628                        if (error)
2629                                return error;
2630
2631                        chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2632                        memory_bm_position_reset(&orig_bm);
2633                        restore_pblist = NULL;
2634                        handle->buffer = get_buffer(&orig_bm, &ca);
2635                        handle->sync_read = 0;
2636                        if (IS_ERR(handle->buffer))
2637                                return PTR_ERR(handle->buffer);
2638                }
2639        } else {
2640                copy_last_highmem_page();
2641                /* Restore page key for data page (s390 only). */
2642                page_key_write(handle->buffer);
2643                hibernate_restore_protect_page(handle->buffer);
2644                handle->buffer = get_buffer(&orig_bm, &ca);
2645                if (IS_ERR(handle->buffer))
2646                        return PTR_ERR(handle->buffer);
2647                if (handle->buffer != buffer)
2648                        handle->sync_read = 0;
2649        }
2650        handle->cur++;
2651        return PAGE_SIZE;
2652}
2653
2654/**
2655 * snapshot_write_finalize - Complete the loading of a hibernation image.
2656 *
2657 * Must be called after the last call to snapshot_write_next() in case the last
2658 * page in the image happens to be a highmem page and its contents should be
2659 * stored in highmem.  Additionally, it recycles bitmap memory that's not
2660 * necessary any more.
2661 */
2662void snapshot_write_finalize(struct snapshot_handle *handle)
2663{
2664        copy_last_highmem_page();
2665        /* Restore page key for data page (s390 only). */
2666        page_key_write(handle->buffer);
2667        page_key_free();
2668        hibernate_restore_protect_page(handle->buffer);
2669        /* Do that only if we have loaded the image entirely */
2670        if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2671                memory_bm_recycle(&orig_bm);
2672                free_highmem_data();
2673        }
2674}
2675
2676int snapshot_image_loaded(struct snapshot_handle *handle)
2677{
2678        return !(!nr_copy_pages || !last_highmem_page_copied() ||
2679                        handle->cur <= nr_meta_pages + nr_copy_pages);
2680}
2681
2682#ifdef CONFIG_HIGHMEM
2683/* Assumes that @buf is ready and points to a "safe" page */
2684static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2685                                       void *buf)
2686{
2687        void *kaddr1, *kaddr2;
2688
2689        kaddr1 = kmap_atomic(p1);
2690        kaddr2 = kmap_atomic(p2);
2691        copy_page(buf, kaddr1);
2692        copy_page(kaddr1, kaddr2);
2693        copy_page(kaddr2, buf);
2694        kunmap_atomic(kaddr2);
2695        kunmap_atomic(kaddr1);
2696}
2697
2698/**
2699 * restore_highmem - Put highmem image pages into their original locations.
2700 *
2701 * For each highmem page that was in use before hibernation and is included in
2702 * the image, and also has been allocated by the "restore" kernel, swap its
2703 * current contents with the previous (ie. "before hibernation") ones.
2704 *
2705 * If the restore eventually fails, we can call this function once again and
2706 * restore the highmem state as seen by the restore kernel.
2707 */
2708int restore_highmem(void)
2709{
2710        struct highmem_pbe *pbe = highmem_pblist;
2711        void *buf;
2712
2713        if (!pbe)
2714                return 0;
2715
2716        buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2717        if (!buf)
2718                return -ENOMEM;
2719
2720        while (pbe) {
2721                swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2722                pbe = pbe->next;
2723        }
2724        free_image_page(buf, PG_UNSAFE_CLEAR);
2725        return 0;
2726}
2727#endif /* CONFIG_HIGHMEM */
2728