linux/kernel/rcu/tree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion
   4 *
   5 * Copyright IBM Corporation, 2008
   6 *
   7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
   8 *          Manfred Spraul <manfred@colorfullife.com>
   9 *          Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version
  10 *
  11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
  12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  13 *
  14 * For detailed explanation of Read-Copy Update mechanism see -
  15 *      Documentation/RCU
  16 */
  17
  18#define pr_fmt(fmt) "rcu: " fmt
  19
  20#include <linux/types.h>
  21#include <linux/kernel.h>
  22#include <linux/init.h>
  23#include <linux/spinlock.h>
  24#include <linux/smp.h>
  25#include <linux/rcupdate_wait.h>
  26#include <linux/interrupt.h>
  27#include <linux/sched.h>
  28#include <linux/sched/debug.h>
  29#include <linux/nmi.h>
  30#include <linux/atomic.h>
  31#include <linux/bitops.h>
  32#include <linux/export.h>
  33#include <linux/completion.h>
  34#include <linux/moduleparam.h>
  35#include <linux/percpu.h>
  36#include <linux/notifier.h>
  37#include <linux/cpu.h>
  38#include <linux/mutex.h>
  39#include <linux/time.h>
  40#include <linux/kernel_stat.h>
  41#include <linux/wait.h>
  42#include <linux/kthread.h>
  43#include <uapi/linux/sched/types.h>
  44#include <linux/prefetch.h>
  45#include <linux/delay.h>
  46#include <linux/stop_machine.h>
  47#include <linux/random.h>
  48#include <linux/trace_events.h>
  49#include <linux/suspend.h>
  50#include <linux/ftrace.h>
  51#include <linux/tick.h>
  52#include <linux/sysrq.h>
  53#include <linux/kprobes.h>
  54#include <linux/gfp.h>
  55#include <linux/oom.h>
  56#include <linux/smpboot.h>
  57#include <linux/jiffies.h>
  58#include <linux/sched/isolation.h>
  59#include "../time/tick-internal.h"
  60
  61#include "tree.h"
  62#include "rcu.h"
  63
  64#ifdef MODULE_PARAM_PREFIX
  65#undef MODULE_PARAM_PREFIX
  66#endif
  67#define MODULE_PARAM_PREFIX "rcutree."
  68
  69/* Data structures. */
  70
  71/*
  72 * Steal a bit from the bottom of ->dynticks for idle entry/exit
  73 * control.  Initially this is for TLB flushing.
  74 */
  75#define RCU_DYNTICK_CTRL_MASK 0x1
  76#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
  77#ifndef rcu_eqs_special_exit
  78#define rcu_eqs_special_exit() do { } while (0)
  79#endif
  80
  81static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
  82        .dynticks_nesting = 1,
  83        .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
  84        .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
  85};
  86struct rcu_state rcu_state = {
  87        .level = { &rcu_state.node[0] },
  88        .gp_state = RCU_GP_IDLE,
  89        .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
  90        .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
  91        .name = RCU_NAME,
  92        .abbr = RCU_ABBR,
  93        .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
  94        .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
  95        .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
  96};
  97
  98/* Dump rcu_node combining tree at boot to verify correct setup. */
  99static bool dump_tree;
 100module_param(dump_tree, bool, 0444);
 101/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
 102static bool use_softirq = 1;
 103module_param(use_softirq, bool, 0444);
 104/* Control rcu_node-tree auto-balancing at boot time. */
 105static bool rcu_fanout_exact;
 106module_param(rcu_fanout_exact, bool, 0444);
 107/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 108static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 109module_param(rcu_fanout_leaf, int, 0444);
 110int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 111/* Number of rcu_nodes at specified level. */
 112int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 113int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 114
 115/*
 116 * The rcu_scheduler_active variable is initialized to the value
 117 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 118 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 119 * RCU can assume that there is but one task, allowing RCU to (for example)
 120 * optimize synchronize_rcu() to a simple barrier().  When this variable
 121 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 122 * to detect real grace periods.  This variable is also used to suppress
 123 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 124 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 125 * is fully initialized, including all of its kthreads having been spawned.
 126 */
 127int rcu_scheduler_active __read_mostly;
 128EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 129
 130/*
 131 * The rcu_scheduler_fully_active variable transitions from zero to one
 132 * during the early_initcall() processing, which is after the scheduler
 133 * is capable of creating new tasks.  So RCU processing (for example,
 134 * creating tasks for RCU priority boosting) must be delayed until after
 135 * rcu_scheduler_fully_active transitions from zero to one.  We also
 136 * currently delay invocation of any RCU callbacks until after this point.
 137 *
 138 * It might later prove better for people registering RCU callbacks during
 139 * early boot to take responsibility for these callbacks, but one step at
 140 * a time.
 141 */
 142static int rcu_scheduler_fully_active __read_mostly;
 143
 144static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
 145                              unsigned long gps, unsigned long flags);
 146static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 147static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 148static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 149static void invoke_rcu_core(void);
 150static void rcu_report_exp_rdp(struct rcu_data *rdp);
 151static void sync_sched_exp_online_cleanup(int cpu);
 152
 153/* rcuc/rcub kthread realtime priority */
 154static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 155module_param(kthread_prio, int, 0444);
 156
 157/* Delay in jiffies for grace-period initialization delays, debug only. */
 158
 159static int gp_preinit_delay;
 160module_param(gp_preinit_delay, int, 0444);
 161static int gp_init_delay;
 162module_param(gp_init_delay, int, 0444);
 163static int gp_cleanup_delay;
 164module_param(gp_cleanup_delay, int, 0444);
 165
 166/* Retrieve RCU kthreads priority for rcutorture */
 167int rcu_get_gp_kthreads_prio(void)
 168{
 169        return kthread_prio;
 170}
 171EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
 172
 173/*
 174 * Number of grace periods between delays, normalized by the duration of
 175 * the delay.  The longer the delay, the more the grace periods between
 176 * each delay.  The reason for this normalization is that it means that,
 177 * for non-zero delays, the overall slowdown of grace periods is constant
 178 * regardless of the duration of the delay.  This arrangement balances
 179 * the need for long delays to increase some race probabilities with the
 180 * need for fast grace periods to increase other race probabilities.
 181 */
 182#define PER_RCU_NODE_PERIOD 3   /* Number of grace periods between delays. */
 183
 184/*
 185 * Compute the mask of online CPUs for the specified rcu_node structure.
 186 * This will not be stable unless the rcu_node structure's ->lock is
 187 * held, but the bit corresponding to the current CPU will be stable
 188 * in most contexts.
 189 */
 190unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 191{
 192        return READ_ONCE(rnp->qsmaskinitnext);
 193}
 194
 195/*
 196 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 197 * permit this function to be invoked without holding the root rcu_node
 198 * structure's ->lock, but of course results can be subject to change.
 199 */
 200static int rcu_gp_in_progress(void)
 201{
 202        return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
 203}
 204
 205/*
 206 * Return the number of callbacks queued on the specified CPU.
 207 * Handles both the nocbs and normal cases.
 208 */
 209static long rcu_get_n_cbs_cpu(int cpu)
 210{
 211        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 212
 213        if (rcu_segcblist_is_enabled(&rdp->cblist)) /* Online normal CPU? */
 214                return rcu_segcblist_n_cbs(&rdp->cblist);
 215        return rcu_get_n_cbs_nocb_cpu(rdp); /* Works for offline, too. */
 216}
 217
 218void rcu_softirq_qs(void)
 219{
 220        rcu_qs();
 221        rcu_preempt_deferred_qs(current);
 222}
 223
 224/*
 225 * Record entry into an extended quiescent state.  This is only to be
 226 * called when not already in an extended quiescent state.
 227 */
 228static void rcu_dynticks_eqs_enter(void)
 229{
 230        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 231        int seq;
 232
 233        /*
 234         * CPUs seeing atomic_add_return() must see prior RCU read-side
 235         * critical sections, and we also must force ordering with the
 236         * next idle sojourn.
 237         */
 238        seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 239        /* Better be in an extended quiescent state! */
 240        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 241                     (seq & RCU_DYNTICK_CTRL_CTR));
 242        /* Better not have special action (TLB flush) pending! */
 243        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 244                     (seq & RCU_DYNTICK_CTRL_MASK));
 245}
 246
 247/*
 248 * Record exit from an extended quiescent state.  This is only to be
 249 * called from an extended quiescent state.
 250 */
 251static void rcu_dynticks_eqs_exit(void)
 252{
 253        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 254        int seq;
 255
 256        /*
 257         * CPUs seeing atomic_add_return() must see prior idle sojourns,
 258         * and we also must force ordering with the next RCU read-side
 259         * critical section.
 260         */
 261        seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 262        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 263                     !(seq & RCU_DYNTICK_CTRL_CTR));
 264        if (seq & RCU_DYNTICK_CTRL_MASK) {
 265                atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
 266                smp_mb__after_atomic(); /* _exit after clearing mask. */
 267                /* Prefer duplicate flushes to losing a flush. */
 268                rcu_eqs_special_exit();
 269        }
 270}
 271
 272/*
 273 * Reset the current CPU's ->dynticks counter to indicate that the
 274 * newly onlined CPU is no longer in an extended quiescent state.
 275 * This will either leave the counter unchanged, or increment it
 276 * to the next non-quiescent value.
 277 *
 278 * The non-atomic test/increment sequence works because the upper bits
 279 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 280 * or when the corresponding CPU is offline.
 281 */
 282static void rcu_dynticks_eqs_online(void)
 283{
 284        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 285
 286        if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
 287                return;
 288        atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 289}
 290
 291/*
 292 * Is the current CPU in an extended quiescent state?
 293 *
 294 * No ordering, as we are sampling CPU-local information.
 295 */
 296bool rcu_dynticks_curr_cpu_in_eqs(void)
 297{
 298        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 299
 300        return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
 301}
 302
 303/*
 304 * Snapshot the ->dynticks counter with full ordering so as to allow
 305 * stable comparison of this counter with past and future snapshots.
 306 */
 307int rcu_dynticks_snap(struct rcu_data *rdp)
 308{
 309        int snap = atomic_add_return(0, &rdp->dynticks);
 310
 311        return snap & ~RCU_DYNTICK_CTRL_MASK;
 312}
 313
 314/*
 315 * Return true if the snapshot returned from rcu_dynticks_snap()
 316 * indicates that RCU is in an extended quiescent state.
 317 */
 318static bool rcu_dynticks_in_eqs(int snap)
 319{
 320        return !(snap & RCU_DYNTICK_CTRL_CTR);
 321}
 322
 323/*
 324 * Return true if the CPU corresponding to the specified rcu_data
 325 * structure has spent some time in an extended quiescent state since
 326 * rcu_dynticks_snap() returned the specified snapshot.
 327 */
 328static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
 329{
 330        return snap != rcu_dynticks_snap(rdp);
 331}
 332
 333/*
 334 * Set the special (bottom) bit of the specified CPU so that it
 335 * will take special action (such as flushing its TLB) on the
 336 * next exit from an extended quiescent state.  Returns true if
 337 * the bit was successfully set, or false if the CPU was not in
 338 * an extended quiescent state.
 339 */
 340bool rcu_eqs_special_set(int cpu)
 341{
 342        int old;
 343        int new;
 344        struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
 345
 346        do {
 347                old = atomic_read(&rdp->dynticks);
 348                if (old & RCU_DYNTICK_CTRL_CTR)
 349                        return false;
 350                new = old | RCU_DYNTICK_CTRL_MASK;
 351        } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
 352        return true;
 353}
 354
 355/*
 356 * Let the RCU core know that this CPU has gone through the scheduler,
 357 * which is a quiescent state.  This is called when the need for a
 358 * quiescent state is urgent, so we burn an atomic operation and full
 359 * memory barriers to let the RCU core know about it, regardless of what
 360 * this CPU might (or might not) do in the near future.
 361 *
 362 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 363 *
 364 * The caller must have disabled interrupts and must not be idle.
 365 */
 366static void __maybe_unused rcu_momentary_dyntick_idle(void)
 367{
 368        int special;
 369
 370        raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
 371        special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
 372                                    &this_cpu_ptr(&rcu_data)->dynticks);
 373        /* It is illegal to call this from idle state. */
 374        WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
 375        rcu_preempt_deferred_qs(current);
 376}
 377
 378/**
 379 * rcu_is_cpu_rrupt_from_idle - see if interrupted from idle
 380 *
 381 * If the current CPU is idle and running at a first-level (not nested)
 382 * interrupt from idle, return true.  The caller must have at least
 383 * disabled preemption.
 384 */
 385static int rcu_is_cpu_rrupt_from_idle(void)
 386{
 387        /* Called only from within the scheduling-clock interrupt */
 388        lockdep_assert_in_irq();
 389
 390        /* Check for counter underflows */
 391        RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
 392                         "RCU dynticks_nesting counter underflow!");
 393        RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
 394                         "RCU dynticks_nmi_nesting counter underflow/zero!");
 395
 396        /* Are we at first interrupt nesting level? */
 397        if (__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 1)
 398                return false;
 399
 400        /* Does CPU appear to be idle from an RCU standpoint? */
 401        return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
 402}
 403
 404#define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch ... */
 405#define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
 406static long blimit = DEFAULT_RCU_BLIMIT;
 407#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
 408static long qhimark = DEFAULT_RCU_QHIMARK;
 409#define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
 410static long qlowmark = DEFAULT_RCU_QLOMARK;
 411
 412module_param(blimit, long, 0444);
 413module_param(qhimark, long, 0444);
 414module_param(qlowmark, long, 0444);
 415
 416static ulong jiffies_till_first_fqs = ULONG_MAX;
 417static ulong jiffies_till_next_fqs = ULONG_MAX;
 418static bool rcu_kick_kthreads;
 419
 420/*
 421 * How long the grace period must be before we start recruiting
 422 * quiescent-state help from rcu_note_context_switch().
 423 */
 424static ulong jiffies_till_sched_qs = ULONG_MAX;
 425module_param(jiffies_till_sched_qs, ulong, 0444);
 426static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
 427module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
 428
 429/*
 430 * Make sure that we give the grace-period kthread time to detect any
 431 * idle CPUs before taking active measures to force quiescent states.
 432 * However, don't go below 100 milliseconds, adjusted upwards for really
 433 * large systems.
 434 */
 435static void adjust_jiffies_till_sched_qs(void)
 436{
 437        unsigned long j;
 438
 439        /* If jiffies_till_sched_qs was specified, respect the request. */
 440        if (jiffies_till_sched_qs != ULONG_MAX) {
 441                WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
 442                return;
 443        }
 444        /* Otherwise, set to third fqs scan, but bound below on large system. */
 445        j = READ_ONCE(jiffies_till_first_fqs) +
 446                      2 * READ_ONCE(jiffies_till_next_fqs);
 447        if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
 448                j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
 449        pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
 450        WRITE_ONCE(jiffies_to_sched_qs, j);
 451}
 452
 453static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
 454{
 455        ulong j;
 456        int ret = kstrtoul(val, 0, &j);
 457
 458        if (!ret) {
 459                WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
 460                adjust_jiffies_till_sched_qs();
 461        }
 462        return ret;
 463}
 464
 465static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
 466{
 467        ulong j;
 468        int ret = kstrtoul(val, 0, &j);
 469
 470        if (!ret) {
 471                WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
 472                adjust_jiffies_till_sched_qs();
 473        }
 474        return ret;
 475}
 476
 477static struct kernel_param_ops first_fqs_jiffies_ops = {
 478        .set = param_set_first_fqs_jiffies,
 479        .get = param_get_ulong,
 480};
 481
 482static struct kernel_param_ops next_fqs_jiffies_ops = {
 483        .set = param_set_next_fqs_jiffies,
 484        .get = param_get_ulong,
 485};
 486
 487module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
 488module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
 489module_param(rcu_kick_kthreads, bool, 0644);
 490
 491static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
 492static int rcu_pending(void);
 493
 494/*
 495 * Return the number of RCU GPs completed thus far for debug & stats.
 496 */
 497unsigned long rcu_get_gp_seq(void)
 498{
 499        return READ_ONCE(rcu_state.gp_seq);
 500}
 501EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
 502
 503/*
 504 * Return the number of RCU expedited batches completed thus far for
 505 * debug & stats.  Odd numbers mean that a batch is in progress, even
 506 * numbers mean idle.  The value returned will thus be roughly double
 507 * the cumulative batches since boot.
 508 */
 509unsigned long rcu_exp_batches_completed(void)
 510{
 511        return rcu_state.expedited_sequence;
 512}
 513EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 514
 515/*
 516 * Return the root node of the rcu_state structure.
 517 */
 518static struct rcu_node *rcu_get_root(void)
 519{
 520        return &rcu_state.node[0];
 521}
 522
 523/*
 524 * Convert a ->gp_state value to a character string.
 525 */
 526static const char *gp_state_getname(short gs)
 527{
 528        if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
 529                return "???";
 530        return gp_state_names[gs];
 531}
 532
 533/*
 534 * Send along grace-period-related data for rcutorture diagnostics.
 535 */
 536void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 537                            unsigned long *gp_seq)
 538{
 539        switch (test_type) {
 540        case RCU_FLAVOR:
 541                *flags = READ_ONCE(rcu_state.gp_flags);
 542                *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
 543                break;
 544        default:
 545                break;
 546        }
 547}
 548EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 549
 550/*
 551 * Enter an RCU extended quiescent state, which can be either the
 552 * idle loop or adaptive-tickless usermode execution.
 553 *
 554 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
 555 * the possibility of usermode upcalls having messed up our count
 556 * of interrupt nesting level during the prior busy period.
 557 */
 558static void rcu_eqs_enter(bool user)
 559{
 560        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 561
 562        WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
 563        WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
 564        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 565                     rdp->dynticks_nesting == 0);
 566        if (rdp->dynticks_nesting != 1) {
 567                rdp->dynticks_nesting--;
 568                return;
 569        }
 570
 571        lockdep_assert_irqs_disabled();
 572        trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
 573        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 574        rdp = this_cpu_ptr(&rcu_data);
 575        do_nocb_deferred_wakeup(rdp);
 576        rcu_prepare_for_idle();
 577        rcu_preempt_deferred_qs(current);
 578        WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
 579        rcu_dynticks_eqs_enter();
 580        rcu_dynticks_task_enter();
 581}
 582
 583/**
 584 * rcu_idle_enter - inform RCU that current CPU is entering idle
 585 *
 586 * Enter idle mode, in other words, -leave- the mode in which RCU
 587 * read-side critical sections can occur.  (Though RCU read-side
 588 * critical sections can occur in irq handlers in idle, a possibility
 589 * handled by irq_enter() and irq_exit().)
 590 *
 591 * If you add or remove a call to rcu_idle_enter(), be sure to test with
 592 * CONFIG_RCU_EQS_DEBUG=y.
 593 */
 594void rcu_idle_enter(void)
 595{
 596        lockdep_assert_irqs_disabled();
 597        rcu_eqs_enter(false);
 598}
 599
 600#ifdef CONFIG_NO_HZ_FULL
 601/**
 602 * rcu_user_enter - inform RCU that we are resuming userspace.
 603 *
 604 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 605 * is permitted between this call and rcu_user_exit(). This way the
 606 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 607 * when the CPU runs in userspace.
 608 *
 609 * If you add or remove a call to rcu_user_enter(), be sure to test with
 610 * CONFIG_RCU_EQS_DEBUG=y.
 611 */
 612void rcu_user_enter(void)
 613{
 614        lockdep_assert_irqs_disabled();
 615        rcu_eqs_enter(true);
 616}
 617#endif /* CONFIG_NO_HZ_FULL */
 618
 619/*
 620 * If we are returning from the outermost NMI handler that interrupted an
 621 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
 622 * to let the RCU grace-period handling know that the CPU is back to
 623 * being RCU-idle.
 624 *
 625 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
 626 * with CONFIG_RCU_EQS_DEBUG=y.
 627 */
 628static __always_inline void rcu_nmi_exit_common(bool irq)
 629{
 630        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 631
 632        /*
 633         * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
 634         * (We are exiting an NMI handler, so RCU better be paying attention
 635         * to us!)
 636         */
 637        WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
 638        WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
 639
 640        /*
 641         * If the nesting level is not 1, the CPU wasn't RCU-idle, so
 642         * leave it in non-RCU-idle state.
 643         */
 644        if (rdp->dynticks_nmi_nesting != 1) {
 645                trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
 646                WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
 647                           rdp->dynticks_nmi_nesting - 2);
 648                return;
 649        }
 650
 651        /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
 652        trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
 653        WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
 654
 655        if (irq)
 656                rcu_prepare_for_idle();
 657
 658        rcu_dynticks_eqs_enter();
 659
 660        if (irq)
 661                rcu_dynticks_task_enter();
 662}
 663
 664/**
 665 * rcu_nmi_exit - inform RCU of exit from NMI context
 666 *
 667 * If you add or remove a call to rcu_nmi_exit(), be sure to test
 668 * with CONFIG_RCU_EQS_DEBUG=y.
 669 */
 670void rcu_nmi_exit(void)
 671{
 672        rcu_nmi_exit_common(false);
 673}
 674
 675/**
 676 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 677 *
 678 * Exit from an interrupt handler, which might possibly result in entering
 679 * idle mode, in other words, leaving the mode in which read-side critical
 680 * sections can occur.  The caller must have disabled interrupts.
 681 *
 682 * This code assumes that the idle loop never does anything that might
 683 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 684 * architecture's idle loop violates this assumption, RCU will give you what
 685 * you deserve, good and hard.  But very infrequently and irreproducibly.
 686 *
 687 * Use things like work queues to work around this limitation.
 688 *
 689 * You have been warned.
 690 *
 691 * If you add or remove a call to rcu_irq_exit(), be sure to test with
 692 * CONFIG_RCU_EQS_DEBUG=y.
 693 */
 694void rcu_irq_exit(void)
 695{
 696        lockdep_assert_irqs_disabled();
 697        rcu_nmi_exit_common(true);
 698}
 699
 700/*
 701 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 702 *
 703 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
 704 * with CONFIG_RCU_EQS_DEBUG=y.
 705 */
 706void rcu_irq_exit_irqson(void)
 707{
 708        unsigned long flags;
 709
 710        local_irq_save(flags);
 711        rcu_irq_exit();
 712        local_irq_restore(flags);
 713}
 714
 715/*
 716 * Exit an RCU extended quiescent state, which can be either the
 717 * idle loop or adaptive-tickless usermode execution.
 718 *
 719 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
 720 * allow for the possibility of usermode upcalls messing up our count of
 721 * interrupt nesting level during the busy period that is just now starting.
 722 */
 723static void rcu_eqs_exit(bool user)
 724{
 725        struct rcu_data *rdp;
 726        long oldval;
 727
 728        lockdep_assert_irqs_disabled();
 729        rdp = this_cpu_ptr(&rcu_data);
 730        oldval = rdp->dynticks_nesting;
 731        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
 732        if (oldval) {
 733                rdp->dynticks_nesting++;
 734                return;
 735        }
 736        rcu_dynticks_task_exit();
 737        rcu_dynticks_eqs_exit();
 738        rcu_cleanup_after_idle();
 739        trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
 740        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 741        WRITE_ONCE(rdp->dynticks_nesting, 1);
 742        WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
 743        WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
 744}
 745
 746/**
 747 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 748 *
 749 * Exit idle mode, in other words, -enter- the mode in which RCU
 750 * read-side critical sections can occur.
 751 *
 752 * If you add or remove a call to rcu_idle_exit(), be sure to test with
 753 * CONFIG_RCU_EQS_DEBUG=y.
 754 */
 755void rcu_idle_exit(void)
 756{
 757        unsigned long flags;
 758
 759        local_irq_save(flags);
 760        rcu_eqs_exit(false);
 761        local_irq_restore(flags);
 762}
 763
 764#ifdef CONFIG_NO_HZ_FULL
 765/**
 766 * rcu_user_exit - inform RCU that we are exiting userspace.
 767 *
 768 * Exit RCU idle mode while entering the kernel because it can
 769 * run a RCU read side critical section anytime.
 770 *
 771 * If you add or remove a call to rcu_user_exit(), be sure to test with
 772 * CONFIG_RCU_EQS_DEBUG=y.
 773 */
 774void rcu_user_exit(void)
 775{
 776        rcu_eqs_exit(1);
 777}
 778#endif /* CONFIG_NO_HZ_FULL */
 779
 780/**
 781 * rcu_nmi_enter_common - inform RCU of entry to NMI context
 782 * @irq: Is this call from rcu_irq_enter?
 783 *
 784 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
 785 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
 786 * that the CPU is active.  This implementation permits nested NMIs, as
 787 * long as the nesting level does not overflow an int.  (You will probably
 788 * run out of stack space first.)
 789 *
 790 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
 791 * with CONFIG_RCU_EQS_DEBUG=y.
 792 */
 793static __always_inline void rcu_nmi_enter_common(bool irq)
 794{
 795        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 796        long incby = 2;
 797
 798        /* Complain about underflow. */
 799        WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
 800
 801        /*
 802         * If idle from RCU viewpoint, atomically increment ->dynticks
 803         * to mark non-idle and increment ->dynticks_nmi_nesting by one.
 804         * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
 805         * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
 806         * to be in the outermost NMI handler that interrupted an RCU-idle
 807         * period (observation due to Andy Lutomirski).
 808         */
 809        if (rcu_dynticks_curr_cpu_in_eqs()) {
 810
 811                if (irq)
 812                        rcu_dynticks_task_exit();
 813
 814                rcu_dynticks_eqs_exit();
 815
 816                if (irq)
 817                        rcu_cleanup_after_idle();
 818
 819                incby = 1;
 820        }
 821        trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
 822                          rdp->dynticks_nmi_nesting,
 823                          rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
 824        WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
 825                   rdp->dynticks_nmi_nesting + incby);
 826        barrier();
 827}
 828
 829/**
 830 * rcu_nmi_enter - inform RCU of entry to NMI context
 831 */
 832void rcu_nmi_enter(void)
 833{
 834        rcu_nmi_enter_common(false);
 835}
 836NOKPROBE_SYMBOL(rcu_nmi_enter);
 837
 838/**
 839 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 840 *
 841 * Enter an interrupt handler, which might possibly result in exiting
 842 * idle mode, in other words, entering the mode in which read-side critical
 843 * sections can occur.  The caller must have disabled interrupts.
 844 *
 845 * Note that the Linux kernel is fully capable of entering an interrupt
 846 * handler that it never exits, for example when doing upcalls to user mode!
 847 * This code assumes that the idle loop never does upcalls to user mode.
 848 * If your architecture's idle loop does do upcalls to user mode (or does
 849 * anything else that results in unbalanced calls to the irq_enter() and
 850 * irq_exit() functions), RCU will give you what you deserve, good and hard.
 851 * But very infrequently and irreproducibly.
 852 *
 853 * Use things like work queues to work around this limitation.
 854 *
 855 * You have been warned.
 856 *
 857 * If you add or remove a call to rcu_irq_enter(), be sure to test with
 858 * CONFIG_RCU_EQS_DEBUG=y.
 859 */
 860void rcu_irq_enter(void)
 861{
 862        lockdep_assert_irqs_disabled();
 863        rcu_nmi_enter_common(true);
 864}
 865
 866/*
 867 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 868 *
 869 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
 870 * with CONFIG_RCU_EQS_DEBUG=y.
 871 */
 872void rcu_irq_enter_irqson(void)
 873{
 874        unsigned long flags;
 875
 876        local_irq_save(flags);
 877        rcu_irq_enter();
 878        local_irq_restore(flags);
 879}
 880
 881/**
 882 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
 883 *
 884 * Return true if RCU is watching the running CPU, which means that this
 885 * CPU can safely enter RCU read-side critical sections.  In other words,
 886 * if the current CPU is not in its idle loop or is in an interrupt or
 887 * NMI handler, return true.
 888 */
 889bool notrace rcu_is_watching(void)
 890{
 891        bool ret;
 892
 893        preempt_disable_notrace();
 894        ret = !rcu_dynticks_curr_cpu_in_eqs();
 895        preempt_enable_notrace();
 896        return ret;
 897}
 898EXPORT_SYMBOL_GPL(rcu_is_watching);
 899
 900/*
 901 * If a holdout task is actually running, request an urgent quiescent
 902 * state from its CPU.  This is unsynchronized, so migrations can cause
 903 * the request to go to the wrong CPU.  Which is OK, all that will happen
 904 * is that the CPU's next context switch will be a bit slower and next
 905 * time around this task will generate another request.
 906 */
 907void rcu_request_urgent_qs_task(struct task_struct *t)
 908{
 909        int cpu;
 910
 911        barrier();
 912        cpu = task_cpu(t);
 913        if (!task_curr(t))
 914                return; /* This task is not running on that CPU. */
 915        smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
 916}
 917
 918#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
 919
 920/*
 921 * Is the current CPU online as far as RCU is concerned?
 922 *
 923 * Disable preemption to avoid false positives that could otherwise
 924 * happen due to the current CPU number being sampled, this task being
 925 * preempted, its old CPU being taken offline, resuming on some other CPU,
 926 * then determining that its old CPU is now offline.
 927 *
 928 * Disable checking if in an NMI handler because we cannot safely
 929 * report errors from NMI handlers anyway.  In addition, it is OK to use
 930 * RCU on an offline processor during initial boot, hence the check for
 931 * rcu_scheduler_fully_active.
 932 */
 933bool rcu_lockdep_current_cpu_online(void)
 934{
 935        struct rcu_data *rdp;
 936        struct rcu_node *rnp;
 937        bool ret = false;
 938
 939        if (in_nmi() || !rcu_scheduler_fully_active)
 940                return true;
 941        preempt_disable();
 942        rdp = this_cpu_ptr(&rcu_data);
 943        rnp = rdp->mynode;
 944        if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
 945                ret = true;
 946        preempt_enable();
 947        return ret;
 948}
 949EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
 950
 951#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
 952
 953/*
 954 * We are reporting a quiescent state on behalf of some other CPU, so
 955 * it is our responsibility to check for and handle potential overflow
 956 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
 957 * After all, the CPU might be in deep idle state, and thus executing no
 958 * code whatsoever.
 959 */
 960static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
 961{
 962        raw_lockdep_assert_held_rcu_node(rnp);
 963        if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
 964                         rnp->gp_seq))
 965                WRITE_ONCE(rdp->gpwrap, true);
 966        if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
 967                rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
 968}
 969
 970/*
 971 * Snapshot the specified CPU's dynticks counter so that we can later
 972 * credit them with an implicit quiescent state.  Return 1 if this CPU
 973 * is in dynticks idle mode, which is an extended quiescent state.
 974 */
 975static int dyntick_save_progress_counter(struct rcu_data *rdp)
 976{
 977        rdp->dynticks_snap = rcu_dynticks_snap(rdp);
 978        if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
 979                trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 980                rcu_gpnum_ovf(rdp->mynode, rdp);
 981                return 1;
 982        }
 983        return 0;
 984}
 985
 986/*
 987 * Return true if the specified CPU has passed through a quiescent
 988 * state by virtue of being in or having passed through an dynticks
 989 * idle state since the last call to dyntick_save_progress_counter()
 990 * for this same CPU, or by virtue of having been offline.
 991 */
 992static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
 993{
 994        unsigned long jtsq;
 995        bool *rnhqp;
 996        bool *ruqp;
 997        struct rcu_node *rnp = rdp->mynode;
 998
 999        /*
1000         * If the CPU passed through or entered a dynticks idle phase with
1001         * no active irq/NMI handlers, then we can safely pretend that the CPU
1002         * already acknowledged the request to pass through a quiescent
1003         * state.  Either way, that CPU cannot possibly be in an RCU
1004         * read-side critical section that started before the beginning
1005         * of the current RCU grace period.
1006         */
1007        if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1008                trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1009                rcu_gpnum_ovf(rnp, rdp);
1010                return 1;
1011        }
1012
1013        /* If waiting too long on an offline CPU, complain. */
1014        if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1015            time_after(jiffies, rcu_state.gp_start + HZ)) {
1016                bool onl;
1017                struct rcu_node *rnp1;
1018
1019                WARN_ON(1);  /* Offline CPUs are supposed to report QS! */
1020                pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1021                        __func__, rnp->grplo, rnp->grphi, rnp->level,
1022                        (long)rnp->gp_seq, (long)rnp->completedqs);
1023                for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1024                        pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1025                                __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1026                onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1027                pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1028                        __func__, rdp->cpu, ".o"[onl],
1029                        (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1030                        (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1031                return 1; /* Break things loose after complaining. */
1032        }
1033
1034        /*
1035         * A CPU running for an extended time within the kernel can
1036         * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1037         * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1038         * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1039         * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1040         * variable are safe because the assignments are repeated if this
1041         * CPU failed to pass through a quiescent state.  This code
1042         * also checks .jiffies_resched in case jiffies_to_sched_qs
1043         * is set way high.
1044         */
1045        jtsq = READ_ONCE(jiffies_to_sched_qs);
1046        ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1047        rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1048        if (!READ_ONCE(*rnhqp) &&
1049            (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1050             time_after(jiffies, rcu_state.jiffies_resched))) {
1051                WRITE_ONCE(*rnhqp, true);
1052                /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1053                smp_store_release(ruqp, true);
1054        } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1055                WRITE_ONCE(*ruqp, true);
1056        }
1057
1058        /*
1059         * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1060         * The above code handles this, but only for straight cond_resched().
1061         * And some in-kernel loops check need_resched() before calling
1062         * cond_resched(), which defeats the above code for CPUs that are
1063         * running in-kernel with scheduling-clock interrupts disabled.
1064         * So hit them over the head with the resched_cpu() hammer!
1065         */
1066        if (tick_nohz_full_cpu(rdp->cpu) &&
1067                   time_after(jiffies,
1068                              READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
1069                resched_cpu(rdp->cpu);
1070                WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1071        }
1072
1073        /*
1074         * If more than halfway to RCU CPU stall-warning time, invoke
1075         * resched_cpu() more frequently to try to loosen things up a bit.
1076         * Also check to see if the CPU is getting hammered with interrupts,
1077         * but only once per grace period, just to keep the IPIs down to
1078         * a dull roar.
1079         */
1080        if (time_after(jiffies, rcu_state.jiffies_resched)) {
1081                if (time_after(jiffies,
1082                               READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1083                        resched_cpu(rdp->cpu);
1084                        WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1085                }
1086                if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1087                    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1088                    (rnp->ffmask & rdp->grpmask)) {
1089                        init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1090                        rdp->rcu_iw_pending = true;
1091                        rdp->rcu_iw_gp_seq = rnp->gp_seq;
1092                        irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1093                }
1094        }
1095
1096        return 0;
1097}
1098
1099/* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1100static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1101                              unsigned long gp_seq_req, const char *s)
1102{
1103        trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
1104                                      rnp->level, rnp->grplo, rnp->grphi, s);
1105}
1106
1107/*
1108 * rcu_start_this_gp - Request the start of a particular grace period
1109 * @rnp_start: The leaf node of the CPU from which to start.
1110 * @rdp: The rcu_data corresponding to the CPU from which to start.
1111 * @gp_seq_req: The gp_seq of the grace period to start.
1112 *
1113 * Start the specified grace period, as needed to handle newly arrived
1114 * callbacks.  The required future grace periods are recorded in each
1115 * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1116 * is reason to awaken the grace-period kthread.
1117 *
1118 * The caller must hold the specified rcu_node structure's ->lock, which
1119 * is why the caller is responsible for waking the grace-period kthread.
1120 *
1121 * Returns true if the GP thread needs to be awakened else false.
1122 */
1123static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1124                              unsigned long gp_seq_req)
1125{
1126        bool ret = false;
1127        struct rcu_node *rnp;
1128
1129        /*
1130         * Use funnel locking to either acquire the root rcu_node
1131         * structure's lock or bail out if the need for this grace period
1132         * has already been recorded -- or if that grace period has in
1133         * fact already started.  If there is already a grace period in
1134         * progress in a non-leaf node, no recording is needed because the
1135         * end of the grace period will scan the leaf rcu_node structures.
1136         * Note that rnp_start->lock must not be released.
1137         */
1138        raw_lockdep_assert_held_rcu_node(rnp_start);
1139        trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1140        for (rnp = rnp_start; 1; rnp = rnp->parent) {
1141                if (rnp != rnp_start)
1142                        raw_spin_lock_rcu_node(rnp);
1143                if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1144                    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1145                    (rnp != rnp_start &&
1146                     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1147                        trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1148                                          TPS("Prestarted"));
1149                        goto unlock_out;
1150                }
1151                rnp->gp_seq_needed = gp_seq_req;
1152                if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1153                        /*
1154                         * We just marked the leaf or internal node, and a
1155                         * grace period is in progress, which means that
1156                         * rcu_gp_cleanup() will see the marking.  Bail to
1157                         * reduce contention.
1158                         */
1159                        trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1160                                          TPS("Startedleaf"));
1161                        goto unlock_out;
1162                }
1163                if (rnp != rnp_start && rnp->parent != NULL)
1164                        raw_spin_unlock_rcu_node(rnp);
1165                if (!rnp->parent)
1166                        break;  /* At root, and perhaps also leaf. */
1167        }
1168
1169        /* If GP already in progress, just leave, otherwise start one. */
1170        if (rcu_gp_in_progress()) {
1171                trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1172                goto unlock_out;
1173        }
1174        trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1175        WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1176        rcu_state.gp_req_activity = jiffies;
1177        if (!rcu_state.gp_kthread) {
1178                trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1179                goto unlock_out;
1180        }
1181        trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
1182        ret = true;  /* Caller must wake GP kthread. */
1183unlock_out:
1184        /* Push furthest requested GP to leaf node and rcu_data structure. */
1185        if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1186                rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1187                rdp->gp_seq_needed = rnp->gp_seq_needed;
1188        }
1189        if (rnp != rnp_start)
1190                raw_spin_unlock_rcu_node(rnp);
1191        return ret;
1192}
1193
1194/*
1195 * Clean up any old requests for the just-ended grace period.  Also return
1196 * whether any additional grace periods have been requested.
1197 */
1198static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1199{
1200        bool needmore;
1201        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1202
1203        needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1204        if (!needmore)
1205                rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1206        trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1207                          needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1208        return needmore;
1209}
1210
1211/*
1212 * Awaken the grace-period kthread.  Don't do a self-awaken (unless in
1213 * an interrupt or softirq handler), and don't bother awakening when there
1214 * is nothing for the grace-period kthread to do (as in several CPUs raced
1215 * to awaken, and we lost), and finally don't try to awaken a kthread that
1216 * has not yet been created.  If all those checks are passed, track some
1217 * debug information and awaken.
1218 *
1219 * So why do the self-wakeup when in an interrupt or softirq handler
1220 * in the grace-period kthread's context?  Because the kthread might have
1221 * been interrupted just as it was going to sleep, and just after the final
1222 * pre-sleep check of the awaken condition.  In this case, a wakeup really
1223 * is required, and is therefore supplied.
1224 */
1225static void rcu_gp_kthread_wake(void)
1226{
1227        if ((current == rcu_state.gp_kthread &&
1228             !in_irq() && !in_serving_softirq()) ||
1229            !READ_ONCE(rcu_state.gp_flags) ||
1230            !rcu_state.gp_kthread)
1231                return;
1232        WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1233        WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1234        swake_up_one(&rcu_state.gp_wq);
1235}
1236
1237/*
1238 * If there is room, assign a ->gp_seq number to any callbacks on this
1239 * CPU that have not already been assigned.  Also accelerate any callbacks
1240 * that were previously assigned a ->gp_seq number that has since proven
1241 * to be too conservative, which can happen if callbacks get assigned a
1242 * ->gp_seq number while RCU is idle, but with reference to a non-root
1243 * rcu_node structure.  This function is idempotent, so it does not hurt
1244 * to call it repeatedly.  Returns an flag saying that we should awaken
1245 * the RCU grace-period kthread.
1246 *
1247 * The caller must hold rnp->lock with interrupts disabled.
1248 */
1249static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1250{
1251        unsigned long gp_seq_req;
1252        bool ret = false;
1253
1254        raw_lockdep_assert_held_rcu_node(rnp);
1255
1256        /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1257        if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1258                return false;
1259
1260        /*
1261         * Callbacks are often registered with incomplete grace-period
1262         * information.  Something about the fact that getting exact
1263         * information requires acquiring a global lock...  RCU therefore
1264         * makes a conservative estimate of the grace period number at which
1265         * a given callback will become ready to invoke.        The following
1266         * code checks this estimate and improves it when possible, thus
1267         * accelerating callback invocation to an earlier grace-period
1268         * number.
1269         */
1270        gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1271        if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1272                ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1273
1274        /* Trace depending on how much we were able to accelerate. */
1275        if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1276                trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1277        else
1278                trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1279        return ret;
1280}
1281
1282/*
1283 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1284 * rcu_node structure's ->lock be held.  It consults the cached value
1285 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1286 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1287 * while holding the leaf rcu_node structure's ->lock.
1288 */
1289static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1290                                        struct rcu_data *rdp)
1291{
1292        unsigned long c;
1293        bool needwake;
1294
1295        lockdep_assert_irqs_disabled();
1296        c = rcu_seq_snap(&rcu_state.gp_seq);
1297        if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1298                /* Old request still live, so mark recent callbacks. */
1299                (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1300                return;
1301        }
1302        raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1303        needwake = rcu_accelerate_cbs(rnp, rdp);
1304        raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1305        if (needwake)
1306                rcu_gp_kthread_wake();
1307}
1308
1309/*
1310 * Move any callbacks whose grace period has completed to the
1311 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1312 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1313 * sublist.  This function is idempotent, so it does not hurt to
1314 * invoke it repeatedly.  As long as it is not invoked -too- often...
1315 * Returns true if the RCU grace-period kthread needs to be awakened.
1316 *
1317 * The caller must hold rnp->lock with interrupts disabled.
1318 */
1319static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1320{
1321        raw_lockdep_assert_held_rcu_node(rnp);
1322
1323        /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1324        if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1325                return false;
1326
1327        /*
1328         * Find all callbacks whose ->gp_seq numbers indicate that they
1329         * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1330         */
1331        rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1332
1333        /* Classify any remaining callbacks. */
1334        return rcu_accelerate_cbs(rnp, rdp);
1335}
1336
1337/*
1338 * Update CPU-local rcu_data state to record the beginnings and ends of
1339 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1340 * structure corresponding to the current CPU, and must have irqs disabled.
1341 * Returns true if the grace-period kthread needs to be awakened.
1342 */
1343static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1344{
1345        bool ret;
1346        bool need_gp;
1347
1348        raw_lockdep_assert_held_rcu_node(rnp);
1349
1350        if (rdp->gp_seq == rnp->gp_seq)
1351                return false; /* Nothing to do. */
1352
1353        /* Handle the ends of any preceding grace periods first. */
1354        if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1355            unlikely(READ_ONCE(rdp->gpwrap))) {
1356                ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */
1357                trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1358        } else {
1359                ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */
1360        }
1361
1362        /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1363        if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1364            unlikely(READ_ONCE(rdp->gpwrap))) {
1365                /*
1366                 * If the current grace period is waiting for this CPU,
1367                 * set up to detect a quiescent state, otherwise don't
1368                 * go looking for one.
1369                 */
1370                trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1371                need_gp = !!(rnp->qsmask & rdp->grpmask);
1372                rdp->cpu_no_qs.b.norm = need_gp;
1373                rdp->core_needs_qs = need_gp;
1374                zero_cpu_stall_ticks(rdp);
1375        }
1376        rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1377        if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1378                rdp->gp_seq_needed = rnp->gp_seq_needed;
1379        WRITE_ONCE(rdp->gpwrap, false);
1380        rcu_gpnum_ovf(rnp, rdp);
1381        return ret;
1382}
1383
1384static void note_gp_changes(struct rcu_data *rdp)
1385{
1386        unsigned long flags;
1387        bool needwake;
1388        struct rcu_node *rnp;
1389
1390        local_irq_save(flags);
1391        rnp = rdp->mynode;
1392        if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1393             !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1394            !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1395                local_irq_restore(flags);
1396                return;
1397        }
1398        needwake = __note_gp_changes(rnp, rdp);
1399        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1400        if (needwake)
1401                rcu_gp_kthread_wake();
1402}
1403
1404static void rcu_gp_slow(int delay)
1405{
1406        if (delay > 0 &&
1407            !(rcu_seq_ctr(rcu_state.gp_seq) %
1408              (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1409                schedule_timeout_uninterruptible(delay);
1410}
1411
1412/*
1413 * Initialize a new grace period.  Return false if no grace period required.
1414 */
1415static bool rcu_gp_init(void)
1416{
1417        unsigned long flags;
1418        unsigned long oldmask;
1419        unsigned long mask;
1420        struct rcu_data *rdp;
1421        struct rcu_node *rnp = rcu_get_root();
1422
1423        WRITE_ONCE(rcu_state.gp_activity, jiffies);
1424        raw_spin_lock_irq_rcu_node(rnp);
1425        if (!READ_ONCE(rcu_state.gp_flags)) {
1426                /* Spurious wakeup, tell caller to go back to sleep.  */
1427                raw_spin_unlock_irq_rcu_node(rnp);
1428                return false;
1429        }
1430        WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1431
1432        if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1433                /*
1434                 * Grace period already in progress, don't start another.
1435                 * Not supposed to be able to happen.
1436                 */
1437                raw_spin_unlock_irq_rcu_node(rnp);
1438                return false;
1439        }
1440
1441        /* Advance to a new grace period and initialize state. */
1442        record_gp_stall_check_time();
1443        /* Record GP times before starting GP, hence rcu_seq_start(). */
1444        rcu_seq_start(&rcu_state.gp_seq);
1445        trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1446        raw_spin_unlock_irq_rcu_node(rnp);
1447
1448        /*
1449         * Apply per-leaf buffered online and offline operations to the
1450         * rcu_node tree.  Note that this new grace period need not wait
1451         * for subsequent online CPUs, and that quiescent-state forcing
1452         * will handle subsequent offline CPUs.
1453         */
1454        rcu_state.gp_state = RCU_GP_ONOFF;
1455        rcu_for_each_leaf_node(rnp) {
1456                raw_spin_lock(&rcu_state.ofl_lock);
1457                raw_spin_lock_irq_rcu_node(rnp);
1458                if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1459                    !rnp->wait_blkd_tasks) {
1460                        /* Nothing to do on this leaf rcu_node structure. */
1461                        raw_spin_unlock_irq_rcu_node(rnp);
1462                        raw_spin_unlock(&rcu_state.ofl_lock);
1463                        continue;
1464                }
1465
1466                /* Record old state, apply changes to ->qsmaskinit field. */
1467                oldmask = rnp->qsmaskinit;
1468                rnp->qsmaskinit = rnp->qsmaskinitnext;
1469
1470                /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1471                if (!oldmask != !rnp->qsmaskinit) {
1472                        if (!oldmask) { /* First online CPU for rcu_node. */
1473                                if (!rnp->wait_blkd_tasks) /* Ever offline? */
1474                                        rcu_init_new_rnp(rnp);
1475                        } else if (rcu_preempt_has_tasks(rnp)) {
1476                                rnp->wait_blkd_tasks = true; /* blocked tasks */
1477                        } else { /* Last offline CPU and can propagate. */
1478                                rcu_cleanup_dead_rnp(rnp);
1479                        }
1480                }
1481
1482                /*
1483                 * If all waited-on tasks from prior grace period are
1484                 * done, and if all this rcu_node structure's CPUs are
1485                 * still offline, propagate up the rcu_node tree and
1486                 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1487                 * rcu_node structure's CPUs has since come back online,
1488                 * simply clear ->wait_blkd_tasks.
1489                 */
1490                if (rnp->wait_blkd_tasks &&
1491                    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1492                        rnp->wait_blkd_tasks = false;
1493                        if (!rnp->qsmaskinit)
1494                                rcu_cleanup_dead_rnp(rnp);
1495                }
1496
1497                raw_spin_unlock_irq_rcu_node(rnp);
1498                raw_spin_unlock(&rcu_state.ofl_lock);
1499        }
1500        rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1501
1502        /*
1503         * Set the quiescent-state-needed bits in all the rcu_node
1504         * structures for all currently online CPUs in breadth-first
1505         * order, starting from the root rcu_node structure, relying on the
1506         * layout of the tree within the rcu_state.node[] array.  Note that
1507         * other CPUs will access only the leaves of the hierarchy, thus
1508         * seeing that no grace period is in progress, at least until the
1509         * corresponding leaf node has been initialized.
1510         *
1511         * The grace period cannot complete until the initialization
1512         * process finishes, because this kthread handles both.
1513         */
1514        rcu_state.gp_state = RCU_GP_INIT;
1515        rcu_for_each_node_breadth_first(rnp) {
1516                rcu_gp_slow(gp_init_delay);
1517                raw_spin_lock_irqsave_rcu_node(rnp, flags);
1518                rdp = this_cpu_ptr(&rcu_data);
1519                rcu_preempt_check_blocked_tasks(rnp);
1520                rnp->qsmask = rnp->qsmaskinit;
1521                WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1522                if (rnp == rdp->mynode)
1523                        (void)__note_gp_changes(rnp, rdp);
1524                rcu_preempt_boost_start_gp(rnp);
1525                trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1526                                            rnp->level, rnp->grplo,
1527                                            rnp->grphi, rnp->qsmask);
1528                /* Quiescent states for tasks on any now-offline CPUs. */
1529                mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1530                rnp->rcu_gp_init_mask = mask;
1531                if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1532                        rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1533                else
1534                        raw_spin_unlock_irq_rcu_node(rnp);
1535                cond_resched_tasks_rcu_qs();
1536                WRITE_ONCE(rcu_state.gp_activity, jiffies);
1537        }
1538
1539        return true;
1540}
1541
1542/*
1543 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1544 * time.
1545 */
1546static bool rcu_gp_fqs_check_wake(int *gfp)
1547{
1548        struct rcu_node *rnp = rcu_get_root();
1549
1550        /* Someone like call_rcu() requested a force-quiescent-state scan. */
1551        *gfp = READ_ONCE(rcu_state.gp_flags);
1552        if (*gfp & RCU_GP_FLAG_FQS)
1553                return true;
1554
1555        /* The current grace period has completed. */
1556        if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1557                return true;
1558
1559        return false;
1560}
1561
1562/*
1563 * Do one round of quiescent-state forcing.
1564 */
1565static void rcu_gp_fqs(bool first_time)
1566{
1567        struct rcu_node *rnp = rcu_get_root();
1568
1569        WRITE_ONCE(rcu_state.gp_activity, jiffies);
1570        rcu_state.n_force_qs++;
1571        if (first_time) {
1572                /* Collect dyntick-idle snapshots. */
1573                force_qs_rnp(dyntick_save_progress_counter);
1574        } else {
1575                /* Handle dyntick-idle and offline CPUs. */
1576                force_qs_rnp(rcu_implicit_dynticks_qs);
1577        }
1578        /* Clear flag to prevent immediate re-entry. */
1579        if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1580                raw_spin_lock_irq_rcu_node(rnp);
1581                WRITE_ONCE(rcu_state.gp_flags,
1582                           READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1583                raw_spin_unlock_irq_rcu_node(rnp);
1584        }
1585}
1586
1587/*
1588 * Loop doing repeated quiescent-state forcing until the grace period ends.
1589 */
1590static void rcu_gp_fqs_loop(void)
1591{
1592        bool first_gp_fqs;
1593        int gf;
1594        unsigned long j;
1595        int ret;
1596        struct rcu_node *rnp = rcu_get_root();
1597
1598        first_gp_fqs = true;
1599        j = READ_ONCE(jiffies_till_first_fqs);
1600        ret = 0;
1601        for (;;) {
1602                if (!ret) {
1603                        rcu_state.jiffies_force_qs = jiffies + j;
1604                        WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1605                                   jiffies + (j ? 3 * j : 2));
1606                }
1607                trace_rcu_grace_period(rcu_state.name,
1608                                       READ_ONCE(rcu_state.gp_seq),
1609                                       TPS("fqswait"));
1610                rcu_state.gp_state = RCU_GP_WAIT_FQS;
1611                ret = swait_event_idle_timeout_exclusive(
1612                                rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1613                rcu_state.gp_state = RCU_GP_DOING_FQS;
1614                /* Locking provides needed memory barriers. */
1615                /* If grace period done, leave loop. */
1616                if (!READ_ONCE(rnp->qsmask) &&
1617                    !rcu_preempt_blocked_readers_cgp(rnp))
1618                        break;
1619                /* If time for quiescent-state forcing, do it. */
1620                if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1621                    (gf & RCU_GP_FLAG_FQS)) {
1622                        trace_rcu_grace_period(rcu_state.name,
1623                                               READ_ONCE(rcu_state.gp_seq),
1624                                               TPS("fqsstart"));
1625                        rcu_gp_fqs(first_gp_fqs);
1626                        first_gp_fqs = false;
1627                        trace_rcu_grace_period(rcu_state.name,
1628                                               READ_ONCE(rcu_state.gp_seq),
1629                                               TPS("fqsend"));
1630                        cond_resched_tasks_rcu_qs();
1631                        WRITE_ONCE(rcu_state.gp_activity, jiffies);
1632                        ret = 0; /* Force full wait till next FQS. */
1633                        j = READ_ONCE(jiffies_till_next_fqs);
1634                } else {
1635                        /* Deal with stray signal. */
1636                        cond_resched_tasks_rcu_qs();
1637                        WRITE_ONCE(rcu_state.gp_activity, jiffies);
1638                        WARN_ON(signal_pending(current));
1639                        trace_rcu_grace_period(rcu_state.name,
1640                                               READ_ONCE(rcu_state.gp_seq),
1641                                               TPS("fqswaitsig"));
1642                        ret = 1; /* Keep old FQS timing. */
1643                        j = jiffies;
1644                        if (time_after(jiffies, rcu_state.jiffies_force_qs))
1645                                j = 1;
1646                        else
1647                                j = rcu_state.jiffies_force_qs - j;
1648                }
1649        }
1650}
1651
1652/*
1653 * Clean up after the old grace period.
1654 */
1655static void rcu_gp_cleanup(void)
1656{
1657        unsigned long gp_duration;
1658        bool needgp = false;
1659        unsigned long new_gp_seq;
1660        struct rcu_data *rdp;
1661        struct rcu_node *rnp = rcu_get_root();
1662        struct swait_queue_head *sq;
1663
1664        WRITE_ONCE(rcu_state.gp_activity, jiffies);
1665        raw_spin_lock_irq_rcu_node(rnp);
1666        rcu_state.gp_end = jiffies;
1667        gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1668        if (gp_duration > rcu_state.gp_max)
1669                rcu_state.gp_max = gp_duration;
1670
1671        /*
1672         * We know the grace period is complete, but to everyone else
1673         * it appears to still be ongoing.  But it is also the case
1674         * that to everyone else it looks like there is nothing that
1675         * they can do to advance the grace period.  It is therefore
1676         * safe for us to drop the lock in order to mark the grace
1677         * period as completed in all of the rcu_node structures.
1678         */
1679        raw_spin_unlock_irq_rcu_node(rnp);
1680
1681        /*
1682         * Propagate new ->gp_seq value to rcu_node structures so that
1683         * other CPUs don't have to wait until the start of the next grace
1684         * period to process their callbacks.  This also avoids some nasty
1685         * RCU grace-period initialization races by forcing the end of
1686         * the current grace period to be completely recorded in all of
1687         * the rcu_node structures before the beginning of the next grace
1688         * period is recorded in any of the rcu_node structures.
1689         */
1690        new_gp_seq = rcu_state.gp_seq;
1691        rcu_seq_end(&new_gp_seq);
1692        rcu_for_each_node_breadth_first(rnp) {
1693                raw_spin_lock_irq_rcu_node(rnp);
1694                if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1695                        dump_blkd_tasks(rnp, 10);
1696                WARN_ON_ONCE(rnp->qsmask);
1697                WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1698                rdp = this_cpu_ptr(&rcu_data);
1699                if (rnp == rdp->mynode)
1700                        needgp = __note_gp_changes(rnp, rdp) || needgp;
1701                /* smp_mb() provided by prior unlock-lock pair. */
1702                needgp = rcu_future_gp_cleanup(rnp) || needgp;
1703                sq = rcu_nocb_gp_get(rnp);
1704                raw_spin_unlock_irq_rcu_node(rnp);
1705                rcu_nocb_gp_cleanup(sq);
1706                cond_resched_tasks_rcu_qs();
1707                WRITE_ONCE(rcu_state.gp_activity, jiffies);
1708                rcu_gp_slow(gp_cleanup_delay);
1709        }
1710        rnp = rcu_get_root();
1711        raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1712
1713        /* Declare grace period done, trace first to use old GP number. */
1714        trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1715        rcu_seq_end(&rcu_state.gp_seq);
1716        rcu_state.gp_state = RCU_GP_IDLE;
1717        /* Check for GP requests since above loop. */
1718        rdp = this_cpu_ptr(&rcu_data);
1719        if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1720                trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1721                                  TPS("CleanupMore"));
1722                needgp = true;
1723        }
1724        /* Advance CBs to reduce false positives below. */
1725        if (!rcu_accelerate_cbs(rnp, rdp) && needgp) {
1726                WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1727                rcu_state.gp_req_activity = jiffies;
1728                trace_rcu_grace_period(rcu_state.name,
1729                                       READ_ONCE(rcu_state.gp_seq),
1730                                       TPS("newreq"));
1731        } else {
1732                WRITE_ONCE(rcu_state.gp_flags,
1733                           rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1734        }
1735        raw_spin_unlock_irq_rcu_node(rnp);
1736}
1737
1738/*
1739 * Body of kthread that handles grace periods.
1740 */
1741static int __noreturn rcu_gp_kthread(void *unused)
1742{
1743        rcu_bind_gp_kthread();
1744        for (;;) {
1745
1746                /* Handle grace-period start. */
1747                for (;;) {
1748                        trace_rcu_grace_period(rcu_state.name,
1749                                               READ_ONCE(rcu_state.gp_seq),
1750                                               TPS("reqwait"));
1751                        rcu_state.gp_state = RCU_GP_WAIT_GPS;
1752                        swait_event_idle_exclusive(rcu_state.gp_wq,
1753                                         READ_ONCE(rcu_state.gp_flags) &
1754                                         RCU_GP_FLAG_INIT);
1755                        rcu_state.gp_state = RCU_GP_DONE_GPS;
1756                        /* Locking provides needed memory barrier. */
1757                        if (rcu_gp_init())
1758                                break;
1759                        cond_resched_tasks_rcu_qs();
1760                        WRITE_ONCE(rcu_state.gp_activity, jiffies);
1761                        WARN_ON(signal_pending(current));
1762                        trace_rcu_grace_period(rcu_state.name,
1763                                               READ_ONCE(rcu_state.gp_seq),
1764                                               TPS("reqwaitsig"));
1765                }
1766
1767                /* Handle quiescent-state forcing. */
1768                rcu_gp_fqs_loop();
1769
1770                /* Handle grace-period end. */
1771                rcu_state.gp_state = RCU_GP_CLEANUP;
1772                rcu_gp_cleanup();
1773                rcu_state.gp_state = RCU_GP_CLEANED;
1774        }
1775}
1776
1777/*
1778 * Report a full set of quiescent states to the rcu_state data structure.
1779 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1780 * another grace period is required.  Whether we wake the grace-period
1781 * kthread or it awakens itself for the next round of quiescent-state
1782 * forcing, that kthread will clean up after the just-completed grace
1783 * period.  Note that the caller must hold rnp->lock, which is released
1784 * before return.
1785 */
1786static void rcu_report_qs_rsp(unsigned long flags)
1787        __releases(rcu_get_root()->lock)
1788{
1789        raw_lockdep_assert_held_rcu_node(rcu_get_root());
1790        WARN_ON_ONCE(!rcu_gp_in_progress());
1791        WRITE_ONCE(rcu_state.gp_flags,
1792                   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1793        raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1794        rcu_gp_kthread_wake();
1795}
1796
1797/*
1798 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1799 * Allows quiescent states for a group of CPUs to be reported at one go
1800 * to the specified rcu_node structure, though all the CPUs in the group
1801 * must be represented by the same rcu_node structure (which need not be a
1802 * leaf rcu_node structure, though it often will be).  The gps parameter
1803 * is the grace-period snapshot, which means that the quiescent states
1804 * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1805 * must be held upon entry, and it is released before return.
1806 *
1807 * As a special case, if mask is zero, the bit-already-cleared check is
1808 * disabled.  This allows propagating quiescent state due to resumed tasks
1809 * during grace-period initialization.
1810 */
1811static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1812                              unsigned long gps, unsigned long flags)
1813        __releases(rnp->lock)
1814{
1815        unsigned long oldmask = 0;
1816        struct rcu_node *rnp_c;
1817
1818        raw_lockdep_assert_held_rcu_node(rnp);
1819
1820        /* Walk up the rcu_node hierarchy. */
1821        for (;;) {
1822                if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1823
1824                        /*
1825                         * Our bit has already been cleared, or the
1826                         * relevant grace period is already over, so done.
1827                         */
1828                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1829                        return;
1830                }
1831                WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1832                WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1833                             rcu_preempt_blocked_readers_cgp(rnp));
1834                rnp->qsmask &= ~mask;
1835                trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1836                                                 mask, rnp->qsmask, rnp->level,
1837                                                 rnp->grplo, rnp->grphi,
1838                                                 !!rnp->gp_tasks);
1839                if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1840
1841                        /* Other bits still set at this level, so done. */
1842                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1843                        return;
1844                }
1845                rnp->completedqs = rnp->gp_seq;
1846                mask = rnp->grpmask;
1847                if (rnp->parent == NULL) {
1848
1849                        /* No more levels.  Exit loop holding root lock. */
1850
1851                        break;
1852                }
1853                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1854                rnp_c = rnp;
1855                rnp = rnp->parent;
1856                raw_spin_lock_irqsave_rcu_node(rnp, flags);
1857                oldmask = rnp_c->qsmask;
1858        }
1859
1860        /*
1861         * Get here if we are the last CPU to pass through a quiescent
1862         * state for this grace period.  Invoke rcu_report_qs_rsp()
1863         * to clean up and start the next grace period if one is needed.
1864         */
1865        rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1866}
1867
1868/*
1869 * Record a quiescent state for all tasks that were previously queued
1870 * on the specified rcu_node structure and that were blocking the current
1871 * RCU grace period.  The caller must hold the corresponding rnp->lock with
1872 * irqs disabled, and this lock is released upon return, but irqs remain
1873 * disabled.
1874 */
1875static void __maybe_unused
1876rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1877        __releases(rnp->lock)
1878{
1879        unsigned long gps;
1880        unsigned long mask;
1881        struct rcu_node *rnp_p;
1882
1883        raw_lockdep_assert_held_rcu_node(rnp);
1884        if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) ||
1885            WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1886            rnp->qsmask != 0) {
1887                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1888                return;  /* Still need more quiescent states! */
1889        }
1890
1891        rnp->completedqs = rnp->gp_seq;
1892        rnp_p = rnp->parent;
1893        if (rnp_p == NULL) {
1894                /*
1895                 * Only one rcu_node structure in the tree, so don't
1896                 * try to report up to its nonexistent parent!
1897                 */
1898                rcu_report_qs_rsp(flags);
1899                return;
1900        }
1901
1902        /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1903        gps = rnp->gp_seq;
1904        mask = rnp->grpmask;
1905        raw_spin_unlock_rcu_node(rnp);  /* irqs remain disabled. */
1906        raw_spin_lock_rcu_node(rnp_p);  /* irqs already disabled. */
1907        rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1908}
1909
1910/*
1911 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1912 * structure.  This must be called from the specified CPU.
1913 */
1914static void
1915rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
1916{
1917        unsigned long flags;
1918        unsigned long mask;
1919        bool needwake;
1920        struct rcu_node *rnp;
1921
1922        rnp = rdp->mynode;
1923        raw_spin_lock_irqsave_rcu_node(rnp, flags);
1924        if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1925            rdp->gpwrap) {
1926
1927                /*
1928                 * The grace period in which this quiescent state was
1929                 * recorded has ended, so don't report it upwards.
1930                 * We will instead need a new quiescent state that lies
1931                 * within the current grace period.
1932                 */
1933                rdp->cpu_no_qs.b.norm = true;   /* need qs for new gp. */
1934                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1935                return;
1936        }
1937        mask = rdp->grpmask;
1938        rdp->core_needs_qs = false;
1939        if ((rnp->qsmask & mask) == 0) {
1940                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1941        } else {
1942                /*
1943                 * This GP can't end until cpu checks in, so all of our
1944                 * callbacks can be processed during the next GP.
1945                 */
1946                needwake = rcu_accelerate_cbs(rnp, rdp);
1947
1948                rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1949                /* ^^^ Released rnp->lock */
1950                if (needwake)
1951                        rcu_gp_kthread_wake();
1952        }
1953}
1954
1955/*
1956 * Check to see if there is a new grace period of which this CPU
1957 * is not yet aware, and if so, set up local rcu_data state for it.
1958 * Otherwise, see if this CPU has just passed through its first
1959 * quiescent state for this grace period, and record that fact if so.
1960 */
1961static void
1962rcu_check_quiescent_state(struct rcu_data *rdp)
1963{
1964        /* Check for grace-period ends and beginnings. */
1965        note_gp_changes(rdp);
1966
1967        /*
1968         * Does this CPU still need to do its part for current grace period?
1969         * If no, return and let the other CPUs do their part as well.
1970         */
1971        if (!rdp->core_needs_qs)
1972                return;
1973
1974        /*
1975         * Was there a quiescent state since the beginning of the grace
1976         * period? If no, then exit and wait for the next call.
1977         */
1978        if (rdp->cpu_no_qs.b.norm)
1979                return;
1980
1981        /*
1982         * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1983         * judge of that).
1984         */
1985        rcu_report_qs_rdp(rdp->cpu, rdp);
1986}
1987
1988/*
1989 * Near the end of the offline process.  Trace the fact that this CPU
1990 * is going offline.
1991 */
1992int rcutree_dying_cpu(unsigned int cpu)
1993{
1994        bool blkd;
1995        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1996        struct rcu_node *rnp = rdp->mynode;
1997
1998        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
1999                return 0;
2000
2001        blkd = !!(rnp->qsmask & rdp->grpmask);
2002        trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
2003                               blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2004        return 0;
2005}
2006
2007/*
2008 * All CPUs for the specified rcu_node structure have gone offline,
2009 * and all tasks that were preempted within an RCU read-side critical
2010 * section while running on one of those CPUs have since exited their RCU
2011 * read-side critical section.  Some other CPU is reporting this fact with
2012 * the specified rcu_node structure's ->lock held and interrupts disabled.
2013 * This function therefore goes up the tree of rcu_node structures,
2014 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2015 * the leaf rcu_node structure's ->qsmaskinit field has already been
2016 * updated.
2017 *
2018 * This function does check that the specified rcu_node structure has
2019 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2020 * prematurely.  That said, invoking it after the fact will cost you
2021 * a needless lock acquisition.  So once it has done its work, don't
2022 * invoke it again.
2023 */
2024static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2025{
2026        long mask;
2027        struct rcu_node *rnp = rnp_leaf;
2028
2029        raw_lockdep_assert_held_rcu_node(rnp_leaf);
2030        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2031            WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2032            WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2033                return;
2034        for (;;) {
2035                mask = rnp->grpmask;
2036                rnp = rnp->parent;
2037                if (!rnp)
2038                        break;
2039                raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2040                rnp->qsmaskinit &= ~mask;
2041                /* Between grace periods, so better already be zero! */
2042                WARN_ON_ONCE(rnp->qsmask);
2043                if (rnp->qsmaskinit) {
2044                        raw_spin_unlock_rcu_node(rnp);
2045                        /* irqs remain disabled. */
2046                        return;
2047                }
2048                raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2049        }
2050}
2051
2052/*
2053 * The CPU has been completely removed, and some other CPU is reporting
2054 * this fact from process context.  Do the remainder of the cleanup.
2055 * There can only be one CPU hotplug operation at a time, so no need for
2056 * explicit locking.
2057 */
2058int rcutree_dead_cpu(unsigned int cpu)
2059{
2060        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2061        struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2062
2063        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2064                return 0;
2065
2066        /* Adjust any no-longer-needed kthreads. */
2067        rcu_boost_kthread_setaffinity(rnp, -1);
2068        /* Do any needed no-CB deferred wakeups from this CPU. */
2069        do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2070        return 0;
2071}
2072
2073/*
2074 * Invoke any RCU callbacks that have made it to the end of their grace
2075 * period.  Thottle as specified by rdp->blimit.
2076 */
2077static void rcu_do_batch(struct rcu_data *rdp)
2078{
2079        unsigned long flags;
2080        struct rcu_head *rhp;
2081        struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2082        long bl, count;
2083
2084        /* If no callbacks are ready, just return. */
2085        if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2086                trace_rcu_batch_start(rcu_state.name,
2087                                      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2088                                      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2089                trace_rcu_batch_end(rcu_state.name, 0,
2090                                    !rcu_segcblist_empty(&rdp->cblist),
2091                                    need_resched(), is_idle_task(current),
2092                                    rcu_is_callbacks_kthread());
2093                return;
2094        }
2095
2096        /*
2097         * Extract the list of ready callbacks, disabling to prevent
2098         * races with call_rcu() from interrupt handlers.  Leave the
2099         * callback counts, as rcu_barrier() needs to be conservative.
2100         */
2101        local_irq_save(flags);
2102        WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2103        bl = rdp->blimit;
2104        trace_rcu_batch_start(rcu_state.name,
2105                              rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2106                              rcu_segcblist_n_cbs(&rdp->cblist), bl);
2107        rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2108        local_irq_restore(flags);
2109
2110        /* Invoke callbacks. */
2111        rhp = rcu_cblist_dequeue(&rcl);
2112        for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2113                debug_rcu_head_unqueue(rhp);
2114                if (__rcu_reclaim(rcu_state.name, rhp))
2115                        rcu_cblist_dequeued_lazy(&rcl);
2116                /*
2117                 * Stop only if limit reached and CPU has something to do.
2118                 * Note: The rcl structure counts down from zero.
2119                 */
2120                if (-rcl.len >= bl &&
2121                    (need_resched() ||
2122                     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2123                        break;
2124        }
2125
2126        local_irq_save(flags);
2127        count = -rcl.len;
2128        trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2129                            is_idle_task(current), rcu_is_callbacks_kthread());
2130
2131        /* Update counts and requeue any remaining callbacks. */
2132        rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2133        smp_mb(); /* List handling before counting for rcu_barrier(). */
2134        rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2135
2136        /* Reinstate batch limit if we have worked down the excess. */
2137        count = rcu_segcblist_n_cbs(&rdp->cblist);
2138        if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2139                rdp->blimit = blimit;
2140
2141        /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2142        if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2143                rdp->qlen_last_fqs_check = 0;
2144                rdp->n_force_qs_snap = rcu_state.n_force_qs;
2145        } else if (count < rdp->qlen_last_fqs_check - qhimark)
2146                rdp->qlen_last_fqs_check = count;
2147
2148        /*
2149         * The following usually indicates a double call_rcu().  To track
2150         * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2151         */
2152        WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2153
2154        local_irq_restore(flags);
2155
2156        /* Re-invoke RCU core processing if there are callbacks remaining. */
2157        if (rcu_segcblist_ready_cbs(&rdp->cblist))
2158                invoke_rcu_core();
2159}
2160
2161/*
2162 * This function is invoked from each scheduling-clock interrupt,
2163 * and checks to see if this CPU is in a non-context-switch quiescent
2164 * state, for example, user mode or idle loop.  It also schedules RCU
2165 * core processing.  If the current grace period has gone on too long,
2166 * it will ask the scheduler to manufacture a context switch for the sole
2167 * purpose of providing a providing the needed quiescent state.
2168 */
2169void rcu_sched_clock_irq(int user)
2170{
2171        trace_rcu_utilization(TPS("Start scheduler-tick"));
2172        raw_cpu_inc(rcu_data.ticks_this_gp);
2173        /* The load-acquire pairs with the store-release setting to true. */
2174        if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2175                /* Idle and userspace execution already are quiescent states. */
2176                if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2177                        set_tsk_need_resched(current);
2178                        set_preempt_need_resched();
2179                }
2180                __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2181        }
2182        rcu_flavor_sched_clock_irq(user);
2183        if (rcu_pending())
2184                invoke_rcu_core();
2185
2186        trace_rcu_utilization(TPS("End scheduler-tick"));
2187}
2188
2189/*
2190 * Scan the leaf rcu_node structures.  For each structure on which all
2191 * CPUs have reported a quiescent state and on which there are tasks
2192 * blocking the current grace period, initiate RCU priority boosting.
2193 * Otherwise, invoke the specified function to check dyntick state for
2194 * each CPU that has not yet reported a quiescent state.
2195 */
2196static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2197{
2198        int cpu;
2199        unsigned long flags;
2200        unsigned long mask;
2201        struct rcu_node *rnp;
2202
2203        rcu_for_each_leaf_node(rnp) {
2204                cond_resched_tasks_rcu_qs();
2205                mask = 0;
2206                raw_spin_lock_irqsave_rcu_node(rnp, flags);
2207                if (rnp->qsmask == 0) {
2208                        if (!IS_ENABLED(CONFIG_PREEMPT) ||
2209                            rcu_preempt_blocked_readers_cgp(rnp)) {
2210                                /*
2211                                 * No point in scanning bits because they
2212                                 * are all zero.  But we might need to
2213                                 * priority-boost blocked readers.
2214                                 */
2215                                rcu_initiate_boost(rnp, flags);
2216                                /* rcu_initiate_boost() releases rnp->lock */
2217                                continue;
2218                        }
2219                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2220                        continue;
2221                }
2222                for_each_leaf_node_possible_cpu(rnp, cpu) {
2223                        unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2224                        if ((rnp->qsmask & bit) != 0) {
2225                                if (f(per_cpu_ptr(&rcu_data, cpu)))
2226                                        mask |= bit;
2227                        }
2228                }
2229                if (mask != 0) {
2230                        /* Idle/offline CPUs, report (releases rnp->lock). */
2231                        rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2232                } else {
2233                        /* Nothing to do here, so just drop the lock. */
2234                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2235                }
2236        }
2237}
2238
2239/*
2240 * Force quiescent states on reluctant CPUs, and also detect which
2241 * CPUs are in dyntick-idle mode.
2242 */
2243void rcu_force_quiescent_state(void)
2244{
2245        unsigned long flags;
2246        bool ret;
2247        struct rcu_node *rnp;
2248        struct rcu_node *rnp_old = NULL;
2249
2250        /* Funnel through hierarchy to reduce memory contention. */
2251        rnp = __this_cpu_read(rcu_data.mynode);
2252        for (; rnp != NULL; rnp = rnp->parent) {
2253                ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2254                      !raw_spin_trylock(&rnp->fqslock);
2255                if (rnp_old != NULL)
2256                        raw_spin_unlock(&rnp_old->fqslock);
2257                if (ret)
2258                        return;
2259                rnp_old = rnp;
2260        }
2261        /* rnp_old == rcu_get_root(), rnp == NULL. */
2262
2263        /* Reached the root of the rcu_node tree, acquire lock. */
2264        raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2265        raw_spin_unlock(&rnp_old->fqslock);
2266        if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2267                raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2268                return;  /* Someone beat us to it. */
2269        }
2270        WRITE_ONCE(rcu_state.gp_flags,
2271                   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2272        raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2273        rcu_gp_kthread_wake();
2274}
2275EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2276
2277/* Perform RCU core processing work for the current CPU.  */
2278static __latent_entropy void rcu_core(void)
2279{
2280        unsigned long flags;
2281        struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2282        struct rcu_node *rnp = rdp->mynode;
2283
2284        if (cpu_is_offline(smp_processor_id()))
2285                return;
2286        trace_rcu_utilization(TPS("Start RCU core"));
2287        WARN_ON_ONCE(!rdp->beenonline);
2288
2289        /* Report any deferred quiescent states if preemption enabled. */
2290        if (!(preempt_count() & PREEMPT_MASK)) {
2291                rcu_preempt_deferred_qs(current);
2292        } else if (rcu_preempt_need_deferred_qs(current)) {
2293                set_tsk_need_resched(current);
2294                set_preempt_need_resched();
2295        }
2296
2297        /* Update RCU state based on any recent quiescent states. */
2298        rcu_check_quiescent_state(rdp);
2299
2300        /* No grace period and unregistered callbacks? */
2301        if (!rcu_gp_in_progress() &&
2302            rcu_segcblist_is_enabled(&rdp->cblist)) {
2303                local_irq_save(flags);
2304                if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2305                        rcu_accelerate_cbs_unlocked(rnp, rdp);
2306                local_irq_restore(flags);
2307        }
2308
2309        rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2310
2311        /* If there are callbacks ready, invoke them. */
2312        if (rcu_segcblist_ready_cbs(&rdp->cblist) &&
2313            likely(READ_ONCE(rcu_scheduler_fully_active)))
2314                rcu_do_batch(rdp);
2315
2316        /* Do any needed deferred wakeups of rcuo kthreads. */
2317        do_nocb_deferred_wakeup(rdp);
2318        trace_rcu_utilization(TPS("End RCU core"));
2319}
2320
2321static void rcu_core_si(struct softirq_action *h)
2322{
2323        rcu_core();
2324}
2325
2326static void rcu_wake_cond(struct task_struct *t, int status)
2327{
2328        /*
2329         * If the thread is yielding, only wake it when this
2330         * is invoked from idle
2331         */
2332        if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2333                wake_up_process(t);
2334}
2335
2336static void invoke_rcu_core_kthread(void)
2337{
2338        struct task_struct *t;
2339        unsigned long flags;
2340
2341        local_irq_save(flags);
2342        __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2343        t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2344        if (t != NULL && t != current)
2345                rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2346        local_irq_restore(flags);
2347}
2348
2349/*
2350 * Wake up this CPU's rcuc kthread to do RCU core processing.
2351 */
2352static void invoke_rcu_core(void)
2353{
2354        if (!cpu_online(smp_processor_id()))
2355                return;
2356        if (use_softirq)
2357                raise_softirq(RCU_SOFTIRQ);
2358        else
2359                invoke_rcu_core_kthread();
2360}
2361
2362static void rcu_cpu_kthread_park(unsigned int cpu)
2363{
2364        per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2365}
2366
2367static int rcu_cpu_kthread_should_run(unsigned int cpu)
2368{
2369        return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2370}
2371
2372/*
2373 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2374 * the RCU softirq used in configurations of RCU that do not support RCU
2375 * priority boosting.
2376 */
2377static void rcu_cpu_kthread(unsigned int cpu)
2378{
2379        unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2380        char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2381        int spincnt;
2382
2383        for (spincnt = 0; spincnt < 10; spincnt++) {
2384                trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
2385                local_bh_disable();
2386                *statusp = RCU_KTHREAD_RUNNING;
2387                local_irq_disable();
2388                work = *workp;
2389                *workp = 0;
2390                local_irq_enable();
2391                if (work)
2392                        rcu_core();
2393                local_bh_enable();
2394                if (*workp == 0) {
2395                        trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2396                        *statusp = RCU_KTHREAD_WAITING;
2397                        return;
2398                }
2399        }
2400        *statusp = RCU_KTHREAD_YIELDING;
2401        trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2402        schedule_timeout_interruptible(2);
2403        trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2404        *statusp = RCU_KTHREAD_WAITING;
2405}
2406
2407static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2408        .store                  = &rcu_data.rcu_cpu_kthread_task,
2409        .thread_should_run      = rcu_cpu_kthread_should_run,
2410        .thread_fn              = rcu_cpu_kthread,
2411        .thread_comm            = "rcuc/%u",
2412        .setup                  = rcu_cpu_kthread_setup,
2413        .park                   = rcu_cpu_kthread_park,
2414};
2415
2416/*
2417 * Spawn per-CPU RCU core processing kthreads.
2418 */
2419static int __init rcu_spawn_core_kthreads(void)
2420{
2421        int cpu;
2422
2423        for_each_possible_cpu(cpu)
2424                per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2425        if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2426                return 0;
2427        WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2428                  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2429        return 0;
2430}
2431early_initcall(rcu_spawn_core_kthreads);
2432
2433/*
2434 * Handle any core-RCU processing required by a call_rcu() invocation.
2435 */
2436static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2437                            unsigned long flags)
2438{
2439        /*
2440         * If called from an extended quiescent state, invoke the RCU
2441         * core in order to force a re-evaluation of RCU's idleness.
2442         */
2443        if (!rcu_is_watching())
2444                invoke_rcu_core();
2445
2446        /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2447        if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2448                return;
2449
2450        /*
2451         * Force the grace period if too many callbacks or too long waiting.
2452         * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2453         * if some other CPU has recently done so.  Also, don't bother
2454         * invoking rcu_force_quiescent_state() if the newly enqueued callback
2455         * is the only one waiting for a grace period to complete.
2456         */
2457        if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2458                     rdp->qlen_last_fqs_check + qhimark)) {
2459
2460                /* Are we ignoring a completed grace period? */
2461                note_gp_changes(rdp);
2462
2463                /* Start a new grace period if one not already started. */
2464                if (!rcu_gp_in_progress()) {
2465                        rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2466                } else {
2467                        /* Give the grace period a kick. */
2468                        rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2469                        if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2470                            rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2471                                rcu_force_quiescent_state();
2472                        rdp->n_force_qs_snap = rcu_state.n_force_qs;
2473                        rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2474                }
2475        }
2476}
2477
2478/*
2479 * RCU callback function to leak a callback.
2480 */
2481static void rcu_leak_callback(struct rcu_head *rhp)
2482{
2483}
2484
2485/*
2486 * Helper function for call_rcu() and friends.  The cpu argument will
2487 * normally be -1, indicating "currently running CPU".  It may specify
2488 * a CPU only if that CPU is a no-CBs CPU.  Currently, only rcu_barrier()
2489 * is expected to specify a CPU.
2490 */
2491static void
2492__call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy)
2493{
2494        unsigned long flags;
2495        struct rcu_data *rdp;
2496
2497        /* Misaligned rcu_head! */
2498        WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2499
2500        if (debug_rcu_head_queue(head)) {
2501                /*
2502                 * Probable double call_rcu(), so leak the callback.
2503                 * Use rcu:rcu_callback trace event to find the previous
2504                 * time callback was passed to __call_rcu().
2505                 */
2506                WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2507                          head, head->func);
2508                WRITE_ONCE(head->func, rcu_leak_callback);
2509                return;
2510        }
2511        head->func = func;
2512        head->next = NULL;
2513        local_irq_save(flags);
2514        rdp = this_cpu_ptr(&rcu_data);
2515
2516        /* Add the callback to our list. */
2517        if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
2518                int offline;
2519
2520                if (cpu != -1)
2521                        rdp = per_cpu_ptr(&rcu_data, cpu);
2522                if (likely(rdp->mynode)) {
2523                        /* Post-boot, so this should be for a no-CBs CPU. */
2524                        offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2525                        WARN_ON_ONCE(offline);
2526                        /* Offline CPU, _call_rcu() illegal, leak callback.  */
2527                        local_irq_restore(flags);
2528                        return;
2529                }
2530                /*
2531                 * Very early boot, before rcu_init().  Initialize if needed
2532                 * and then drop through to queue the callback.
2533                 */
2534                WARN_ON_ONCE(cpu != -1);
2535                WARN_ON_ONCE(!rcu_is_watching());
2536                if (rcu_segcblist_empty(&rdp->cblist))
2537                        rcu_segcblist_init(&rdp->cblist);
2538        }
2539        rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2540        if (__is_kfree_rcu_offset((unsigned long)func))
2541                trace_rcu_kfree_callback(rcu_state.name, head,
2542                                         (unsigned long)func,
2543                                         rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2544                                         rcu_segcblist_n_cbs(&rdp->cblist));
2545        else
2546                trace_rcu_callback(rcu_state.name, head,
2547                                   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2548                                   rcu_segcblist_n_cbs(&rdp->cblist));
2549
2550        /* Go handle any RCU core processing required. */
2551        __call_rcu_core(rdp, head, flags);
2552        local_irq_restore(flags);
2553}
2554
2555/**
2556 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2557 * @head: structure to be used for queueing the RCU updates.
2558 * @func: actual callback function to be invoked after the grace period
2559 *
2560 * The callback function will be invoked some time after a full grace
2561 * period elapses, in other words after all pre-existing RCU read-side
2562 * critical sections have completed.  However, the callback function
2563 * might well execute concurrently with RCU read-side critical sections
2564 * that started after call_rcu() was invoked.  RCU read-side critical
2565 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2566 * may be nested.  In addition, regions of code across which interrupts,
2567 * preemption, or softirqs have been disabled also serve as RCU read-side
2568 * critical sections.  This includes hardware interrupt handlers, softirq
2569 * handlers, and NMI handlers.
2570 *
2571 * Note that all CPUs must agree that the grace period extended beyond
2572 * all pre-existing RCU read-side critical section.  On systems with more
2573 * than one CPU, this means that when "func()" is invoked, each CPU is
2574 * guaranteed to have executed a full memory barrier since the end of its
2575 * last RCU read-side critical section whose beginning preceded the call
2576 * to call_rcu().  It also means that each CPU executing an RCU read-side
2577 * critical section that continues beyond the start of "func()" must have
2578 * executed a memory barrier after the call_rcu() but before the beginning
2579 * of that RCU read-side critical section.  Note that these guarantees
2580 * include CPUs that are offline, idle, or executing in user mode, as
2581 * well as CPUs that are executing in the kernel.
2582 *
2583 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2584 * resulting RCU callback function "func()", then both CPU A and CPU B are
2585 * guaranteed to execute a full memory barrier during the time interval
2586 * between the call to call_rcu() and the invocation of "func()" -- even
2587 * if CPU A and CPU B are the same CPU (but again only if the system has
2588 * more than one CPU).
2589 */
2590void call_rcu(struct rcu_head *head, rcu_callback_t func)
2591{
2592        __call_rcu(head, func, -1, 0);
2593}
2594EXPORT_SYMBOL_GPL(call_rcu);
2595
2596/*
2597 * Queue an RCU callback for lazy invocation after a grace period.
2598 * This will likely be later named something like "call_rcu_lazy()",
2599 * but this change will require some way of tagging the lazy RCU
2600 * callbacks in the list of pending callbacks. Until then, this
2601 * function may only be called from __kfree_rcu().
2602 */
2603void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
2604{
2605        __call_rcu(head, func, -1, 1);
2606}
2607EXPORT_SYMBOL_GPL(kfree_call_rcu);
2608
2609/*
2610 * During early boot, any blocking grace-period wait automatically
2611 * implies a grace period.  Later on, this is never the case for PREEMPT.
2612 *
2613 * Howevr, because a context switch is a grace period for !PREEMPT, any
2614 * blocking grace-period wait automatically implies a grace period if
2615 * there is only one CPU online at any point time during execution of
2616 * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
2617 * occasionally incorrectly indicate that there are multiple CPUs online
2618 * when there was in fact only one the whole time, as this just adds some
2619 * overhead: RCU still operates correctly.
2620 */
2621static int rcu_blocking_is_gp(void)
2622{
2623        int ret;
2624
2625        if (IS_ENABLED(CONFIG_PREEMPT))
2626                return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
2627        might_sleep();  /* Check for RCU read-side critical section. */
2628        preempt_disable();
2629        ret = num_online_cpus() <= 1;
2630        preempt_enable();
2631        return ret;
2632}
2633
2634/**
2635 * synchronize_rcu - wait until a grace period has elapsed.
2636 *
2637 * Control will return to the caller some time after a full grace
2638 * period has elapsed, in other words after all currently executing RCU
2639 * read-side critical sections have completed.  Note, however, that
2640 * upon return from synchronize_rcu(), the caller might well be executing
2641 * concurrently with new RCU read-side critical sections that began while
2642 * synchronize_rcu() was waiting.  RCU read-side critical sections are
2643 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
2644 * In addition, regions of code across which interrupts, preemption, or
2645 * softirqs have been disabled also serve as RCU read-side critical
2646 * sections.  This includes hardware interrupt handlers, softirq handlers,
2647 * and NMI handlers.
2648 *
2649 * Note that this guarantee implies further memory-ordering guarantees.
2650 * On systems with more than one CPU, when synchronize_rcu() returns,
2651 * each CPU is guaranteed to have executed a full memory barrier since
2652 * the end of its last RCU read-side critical section whose beginning
2653 * preceded the call to synchronize_rcu().  In addition, each CPU having
2654 * an RCU read-side critical section that extends beyond the return from
2655 * synchronize_rcu() is guaranteed to have executed a full memory barrier
2656 * after the beginning of synchronize_rcu() and before the beginning of
2657 * that RCU read-side critical section.  Note that these guarantees include
2658 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2659 * that are executing in the kernel.
2660 *
2661 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
2662 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2663 * to have executed a full memory barrier during the execution of
2664 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
2665 * again only if the system has more than one CPU).
2666 */
2667void synchronize_rcu(void)
2668{
2669        RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
2670                         lock_is_held(&rcu_lock_map) ||
2671                         lock_is_held(&rcu_sched_lock_map),
2672                         "Illegal synchronize_rcu() in RCU read-side critical section");
2673        if (rcu_blocking_is_gp())
2674                return;
2675        if (rcu_gp_is_expedited())
2676                synchronize_rcu_expedited();
2677        else
2678                wait_rcu_gp(call_rcu);
2679}
2680EXPORT_SYMBOL_GPL(synchronize_rcu);
2681
2682/**
2683 * get_state_synchronize_rcu - Snapshot current RCU state
2684 *
2685 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2686 * to determine whether or not a full grace period has elapsed in the
2687 * meantime.
2688 */
2689unsigned long get_state_synchronize_rcu(void)
2690{
2691        /*
2692         * Any prior manipulation of RCU-protected data must happen
2693         * before the load from ->gp_seq.
2694         */
2695        smp_mb();  /* ^^^ */
2696        return rcu_seq_snap(&rcu_state.gp_seq);
2697}
2698EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2699
2700/**
2701 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2702 *
2703 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2704 *
2705 * If a full RCU grace period has elapsed since the earlier call to
2706 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
2707 * synchronize_rcu() to wait for a full grace period.
2708 *
2709 * Yes, this function does not take counter wrap into account.  But
2710 * counter wrap is harmless.  If the counter wraps, we have waited for
2711 * more than 2 billion grace periods (and way more on a 64-bit system!),
2712 * so waiting for one additional grace period should be just fine.
2713 */
2714void cond_synchronize_rcu(unsigned long oldstate)
2715{
2716        if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
2717                synchronize_rcu();
2718        else
2719                smp_mb(); /* Ensure GP ends before subsequent accesses. */
2720}
2721EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2722
2723/*
2724 * Check to see if there is any immediate RCU-related work to be done by
2725 * the current CPU, returning 1 if so and zero otherwise.  The checks are
2726 * in order of increasing expense: checks that can be carried out against
2727 * CPU-local state are performed first.  However, we must check for CPU
2728 * stalls first, else we might not get a chance.
2729 */
2730static int rcu_pending(void)
2731{
2732        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2733        struct rcu_node *rnp = rdp->mynode;
2734
2735        /* Check for CPU stalls, if enabled. */
2736        check_cpu_stall(rdp);
2737
2738        /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2739        if (rcu_nohz_full_cpu())
2740                return 0;
2741
2742        /* Is the RCU core waiting for a quiescent state from this CPU? */
2743        if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
2744                return 1;
2745
2746        /* Does this CPU have callbacks ready to invoke? */
2747        if (rcu_segcblist_ready_cbs(&rdp->cblist))
2748                return 1;
2749
2750        /* Has RCU gone idle with this CPU needing another grace period? */
2751        if (!rcu_gp_in_progress() &&
2752            rcu_segcblist_is_enabled(&rdp->cblist) &&
2753            !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2754                return 1;
2755
2756        /* Have RCU grace period completed or started?  */
2757        if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
2758            unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
2759                return 1;
2760
2761        /* Does this CPU need a deferred NOCB wakeup? */
2762        if (rcu_nocb_need_deferred_wakeup(rdp))
2763                return 1;
2764
2765        /* nothing to do */
2766        return 0;
2767}
2768
2769/*
2770 * Helper function for rcu_barrier() tracing.  If tracing is disabled,
2771 * the compiler is expected to optimize this away.
2772 */
2773static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
2774{
2775        trace_rcu_barrier(rcu_state.name, s, cpu,
2776                          atomic_read(&rcu_state.barrier_cpu_count), done);
2777}
2778
2779/*
2780 * RCU callback function for rcu_barrier().  If we are last, wake
2781 * up the task executing rcu_barrier().
2782 */
2783static void rcu_barrier_callback(struct rcu_head *rhp)
2784{
2785        if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
2786                rcu_barrier_trace(TPS("LastCB"), -1,
2787                                   rcu_state.barrier_sequence);
2788                complete(&rcu_state.barrier_completion);
2789        } else {
2790                rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
2791        }
2792}
2793
2794/*
2795 * Called with preemption disabled, and from cross-cpu IRQ context.
2796 */
2797static void rcu_barrier_func(void *unused)
2798{
2799        struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2800
2801        rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
2802        rdp->barrier_head.func = rcu_barrier_callback;
2803        debug_rcu_head_queue(&rdp->barrier_head);
2804        if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
2805                atomic_inc(&rcu_state.barrier_cpu_count);
2806        } else {
2807                debug_rcu_head_unqueue(&rdp->barrier_head);
2808                rcu_barrier_trace(TPS("IRQNQ"), -1,
2809                                   rcu_state.barrier_sequence);
2810        }
2811}
2812
2813/**
2814 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
2815 *
2816 * Note that this primitive does not necessarily wait for an RCU grace period
2817 * to complete.  For example, if there are no RCU callbacks queued anywhere
2818 * in the system, then rcu_barrier() is within its rights to return
2819 * immediately, without waiting for anything, much less an RCU grace period.
2820 */
2821void rcu_barrier(void)
2822{
2823        int cpu;
2824        struct rcu_data *rdp;
2825        unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
2826
2827        rcu_barrier_trace(TPS("Begin"), -1, s);
2828
2829        /* Take mutex to serialize concurrent rcu_barrier() requests. */
2830        mutex_lock(&rcu_state.barrier_mutex);
2831
2832        /* Did someone else do our work for us? */
2833        if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
2834                rcu_barrier_trace(TPS("EarlyExit"), -1,
2835                                   rcu_state.barrier_sequence);
2836                smp_mb(); /* caller's subsequent code after above check. */
2837                mutex_unlock(&rcu_state.barrier_mutex);
2838                return;
2839        }
2840
2841        /* Mark the start of the barrier operation. */
2842        rcu_seq_start(&rcu_state.barrier_sequence);
2843        rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
2844
2845        /*
2846         * Initialize the count to one rather than to zero in order to
2847         * avoid a too-soon return to zero in case of a short grace period
2848         * (or preemption of this task).  Exclude CPU-hotplug operations
2849         * to ensure that no offline CPU has callbacks queued.
2850         */
2851        init_completion(&rcu_state.barrier_completion);
2852        atomic_set(&rcu_state.barrier_cpu_count, 1);
2853        get_online_cpus();
2854
2855        /*
2856         * Force each CPU with callbacks to register a new callback.
2857         * When that callback is invoked, we will know that all of the
2858         * corresponding CPU's preceding callbacks have been invoked.
2859         */
2860        for_each_possible_cpu(cpu) {
2861                if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
2862                        continue;
2863                rdp = per_cpu_ptr(&rcu_data, cpu);
2864                if (rcu_is_nocb_cpu(cpu)) {
2865                        if (!rcu_nocb_cpu_needs_barrier(cpu)) {
2866                                rcu_barrier_trace(TPS("OfflineNoCB"), cpu,
2867                                                   rcu_state.barrier_sequence);
2868                        } else {
2869                                rcu_barrier_trace(TPS("OnlineNoCB"), cpu,
2870                                                   rcu_state.barrier_sequence);
2871                                smp_mb__before_atomic();
2872                                atomic_inc(&rcu_state.barrier_cpu_count);
2873                                __call_rcu(&rdp->barrier_head,
2874                                           rcu_barrier_callback, cpu, 0);
2875                        }
2876                } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
2877                        rcu_barrier_trace(TPS("OnlineQ"), cpu,
2878                                           rcu_state.barrier_sequence);
2879                        smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
2880                } else {
2881                        rcu_barrier_trace(TPS("OnlineNQ"), cpu,
2882                                           rcu_state.barrier_sequence);
2883                }
2884        }
2885        put_online_cpus();
2886
2887        /*
2888         * Now that we have an rcu_barrier_callback() callback on each
2889         * CPU, and thus each counted, remove the initial count.
2890         */
2891        if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
2892                complete(&rcu_state.barrier_completion);
2893
2894        /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2895        wait_for_completion(&rcu_state.barrier_completion);
2896
2897        /* Mark the end of the barrier operation. */
2898        rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
2899        rcu_seq_end(&rcu_state.barrier_sequence);
2900
2901        /* Other rcu_barrier() invocations can now safely proceed. */
2902        mutex_unlock(&rcu_state.barrier_mutex);
2903}
2904EXPORT_SYMBOL_GPL(rcu_barrier);
2905
2906/*
2907 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
2908 * first CPU in a given leaf rcu_node structure coming online.  The caller
2909 * must hold the corresponding leaf rcu_node ->lock with interrrupts
2910 * disabled.
2911 */
2912static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
2913{
2914        long mask;
2915        long oldmask;
2916        struct rcu_node *rnp = rnp_leaf;
2917
2918        raw_lockdep_assert_held_rcu_node(rnp_leaf);
2919        WARN_ON_ONCE(rnp->wait_blkd_tasks);
2920        for (;;) {
2921                mask = rnp->grpmask;
2922                rnp = rnp->parent;
2923                if (rnp == NULL)
2924                        return;
2925                raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
2926                oldmask = rnp->qsmaskinit;
2927                rnp->qsmaskinit |= mask;
2928                raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
2929                if (oldmask)
2930                        return;
2931        }
2932}
2933
2934/*
2935 * Do boot-time initialization of a CPU's per-CPU RCU data.
2936 */
2937static void __init
2938rcu_boot_init_percpu_data(int cpu)
2939{
2940        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2941
2942        /* Set up local state, ensuring consistent view of global state. */
2943        rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
2944        WARN_ON_ONCE(rdp->dynticks_nesting != 1);
2945        WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
2946        rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
2947        rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
2948        rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
2949        rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
2950        rdp->cpu = cpu;
2951        rcu_boot_init_nocb_percpu_data(rdp);
2952}
2953
2954/*
2955 * Invoked early in the CPU-online process, when pretty much all services
2956 * are available.  The incoming CPU is not present.
2957 *
2958 * Initializes a CPU's per-CPU RCU data.  Note that only one online or
2959 * offline event can be happening at a given time.  Note also that we can
2960 * accept some slop in the rsp->gp_seq access due to the fact that this
2961 * CPU cannot possibly have any RCU callbacks in flight yet.
2962 */
2963int rcutree_prepare_cpu(unsigned int cpu)
2964{
2965        unsigned long flags;
2966        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2967        struct rcu_node *rnp = rcu_get_root();
2968
2969        /* Set up local state, ensuring consistent view of global state. */
2970        raw_spin_lock_irqsave_rcu_node(rnp, flags);
2971        rdp->qlen_last_fqs_check = 0;
2972        rdp->n_force_qs_snap = rcu_state.n_force_qs;
2973        rdp->blimit = blimit;
2974        if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
2975            !init_nocb_callback_list(rdp))
2976                rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
2977        rdp->dynticks_nesting = 1;      /* CPU not up, no tearing. */
2978        rcu_dynticks_eqs_online();
2979        raw_spin_unlock_rcu_node(rnp);          /* irqs remain disabled. */
2980
2981        /*
2982         * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
2983         * propagation up the rcu_node tree will happen at the beginning
2984         * of the next grace period.
2985         */
2986        rnp = rdp->mynode;
2987        raw_spin_lock_rcu_node(rnp);            /* irqs already disabled. */
2988        rdp->beenonline = true;  /* We have now been online. */
2989        rdp->gp_seq = rnp->gp_seq;
2990        rdp->gp_seq_needed = rnp->gp_seq;
2991        rdp->cpu_no_qs.b.norm = true;
2992        rdp->core_needs_qs = false;
2993        rdp->rcu_iw_pending = false;
2994        rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
2995        trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
2996        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2997        rcu_prepare_kthreads(cpu);
2998        rcu_spawn_cpu_nocb_kthread(cpu);
2999
3000        return 0;
3001}
3002
3003/*
3004 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3005 */
3006static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3007{
3008        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3009
3010        rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3011}
3012
3013/*
3014 * Near the end of the CPU-online process.  Pretty much all services
3015 * enabled, and the CPU is now very much alive.
3016 */
3017int rcutree_online_cpu(unsigned int cpu)
3018{
3019        unsigned long flags;
3020        struct rcu_data *rdp;
3021        struct rcu_node *rnp;
3022
3023        rdp = per_cpu_ptr(&rcu_data, cpu);
3024        rnp = rdp->mynode;
3025        raw_spin_lock_irqsave_rcu_node(rnp, flags);
3026        rnp->ffmask |= rdp->grpmask;
3027        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3028        if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3029                return 0; /* Too early in boot for scheduler work. */
3030        sync_sched_exp_online_cleanup(cpu);
3031        rcutree_affinity_setting(cpu, -1);
3032        return 0;
3033}
3034
3035/*
3036 * Near the beginning of the process.  The CPU is still very much alive
3037 * with pretty much all services enabled.
3038 */
3039int rcutree_offline_cpu(unsigned int cpu)
3040{
3041        unsigned long flags;
3042        struct rcu_data *rdp;
3043        struct rcu_node *rnp;
3044
3045        rdp = per_cpu_ptr(&rcu_data, cpu);
3046        rnp = rdp->mynode;
3047        raw_spin_lock_irqsave_rcu_node(rnp, flags);
3048        rnp->ffmask &= ~rdp->grpmask;
3049        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3050
3051        rcutree_affinity_setting(cpu, cpu);
3052        return 0;
3053}
3054
3055static DEFINE_PER_CPU(int, rcu_cpu_started);
3056
3057/*
3058 * Mark the specified CPU as being online so that subsequent grace periods
3059 * (both expedited and normal) will wait on it.  Note that this means that
3060 * incoming CPUs are not allowed to use RCU read-side critical sections
3061 * until this function is called.  Failing to observe this restriction
3062 * will result in lockdep splats.
3063 *
3064 * Note that this function is special in that it is invoked directly
3065 * from the incoming CPU rather than from the cpuhp_step mechanism.
3066 * This is because this function must be invoked at a precise location.
3067 */
3068void rcu_cpu_starting(unsigned int cpu)
3069{
3070        unsigned long flags;
3071        unsigned long mask;
3072        int nbits;
3073        unsigned long oldmask;
3074        struct rcu_data *rdp;
3075        struct rcu_node *rnp;
3076
3077        if (per_cpu(rcu_cpu_started, cpu))
3078                return;
3079
3080        per_cpu(rcu_cpu_started, cpu) = 1;
3081
3082        rdp = per_cpu_ptr(&rcu_data, cpu);
3083        rnp = rdp->mynode;
3084        mask = rdp->grpmask;
3085        raw_spin_lock_irqsave_rcu_node(rnp, flags);
3086        rnp->qsmaskinitnext |= mask;
3087        oldmask = rnp->expmaskinitnext;
3088        rnp->expmaskinitnext |= mask;
3089        oldmask ^= rnp->expmaskinitnext;
3090        nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3091        /* Allow lockless access for expedited grace periods. */
3092        smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
3093        rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3094        rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3095        rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3096        if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3097                /* Report QS -after- changing ->qsmaskinitnext! */
3098                rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3099        } else {
3100                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3101        }
3102        smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3103}
3104
3105#ifdef CONFIG_HOTPLUG_CPU
3106/*
3107 * The outgoing function has no further need of RCU, so remove it from
3108 * the rcu_node tree's ->qsmaskinitnext bit masks.
3109 *
3110 * Note that this function is special in that it is invoked directly
3111 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3112 * This is because this function must be invoked at a precise location.
3113 */
3114void rcu_report_dead(unsigned int cpu)
3115{
3116        unsigned long flags;
3117        unsigned long mask;
3118        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3119        struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3120
3121        /* QS for any half-done expedited grace period. */
3122        preempt_disable();
3123        rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3124        preempt_enable();
3125        rcu_preempt_deferred_qs(current);
3126
3127        /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3128        mask = rdp->grpmask;
3129        raw_spin_lock(&rcu_state.ofl_lock);
3130        raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3131        rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3132        rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3133        if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3134                /* Report quiescent state -before- changing ->qsmaskinitnext! */
3135                rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3136                raw_spin_lock_irqsave_rcu_node(rnp, flags);
3137        }
3138        rnp->qsmaskinitnext &= ~mask;
3139        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3140        raw_spin_unlock(&rcu_state.ofl_lock);
3141
3142        per_cpu(rcu_cpu_started, cpu) = 0;
3143}
3144
3145/*
3146 * The outgoing CPU has just passed through the dying-idle state, and we
3147 * are being invoked from the CPU that was IPIed to continue the offline
3148 * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
3149 */
3150void rcutree_migrate_callbacks(int cpu)
3151{
3152        unsigned long flags;
3153        struct rcu_data *my_rdp;
3154        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3155        struct rcu_node *rnp_root = rcu_get_root();
3156        bool needwake;
3157
3158        if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3159                return;  /* No callbacks to migrate. */
3160
3161        local_irq_save(flags);
3162        my_rdp = this_cpu_ptr(&rcu_data);
3163        if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3164                local_irq_restore(flags);
3165                return;
3166        }
3167        raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3168        /* Leverage recent GPs and set GP for new callbacks. */
3169        needwake = rcu_advance_cbs(rnp_root, rdp) ||
3170                   rcu_advance_cbs(rnp_root, my_rdp);
3171        rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3172        WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3173                     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3174        raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3175        if (needwake)
3176                rcu_gp_kthread_wake();
3177        WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3178                  !rcu_segcblist_empty(&rdp->cblist),
3179                  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3180                  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3181                  rcu_segcblist_first_cb(&rdp->cblist));
3182}
3183#endif
3184
3185/*
3186 * On non-huge systems, use expedited RCU grace periods to make suspend
3187 * and hibernation run faster.
3188 */
3189static int rcu_pm_notify(struct notifier_block *self,
3190                         unsigned long action, void *hcpu)
3191{
3192        switch (action) {
3193        case PM_HIBERNATION_PREPARE:
3194        case PM_SUSPEND_PREPARE:
3195                rcu_expedite_gp();
3196                break;
3197        case PM_POST_HIBERNATION:
3198        case PM_POST_SUSPEND:
3199                rcu_unexpedite_gp();
3200                break;
3201        default:
3202                break;
3203        }
3204        return NOTIFY_OK;
3205}
3206
3207/*
3208 * Spawn the kthreads that handle RCU's grace periods.
3209 */
3210static int __init rcu_spawn_gp_kthread(void)
3211{
3212        unsigned long flags;
3213        int kthread_prio_in = kthread_prio;
3214        struct rcu_node *rnp;
3215        struct sched_param sp;
3216        struct task_struct *t;
3217
3218        /* Force priority into range. */
3219        if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3220            && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3221                kthread_prio = 2;
3222        else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3223                kthread_prio = 1;
3224        else if (kthread_prio < 0)
3225                kthread_prio = 0;
3226        else if (kthread_prio > 99)
3227                kthread_prio = 99;
3228
3229        if (kthread_prio != kthread_prio_in)
3230                pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3231                         kthread_prio, kthread_prio_in);
3232
3233        rcu_scheduler_fully_active = 1;
3234        t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3235        if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3236                return 0;
3237        rnp = rcu_get_root();
3238        raw_spin_lock_irqsave_rcu_node(rnp, flags);
3239        rcu_state.gp_kthread = t;
3240        if (kthread_prio) {
3241                sp.sched_priority = kthread_prio;
3242                sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3243        }
3244        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3245        wake_up_process(t);
3246        rcu_spawn_nocb_kthreads();
3247        rcu_spawn_boost_kthreads();
3248        return 0;
3249}
3250early_initcall(rcu_spawn_gp_kthread);
3251
3252/*
3253 * This function is invoked towards the end of the scheduler's
3254 * initialization process.  Before this is called, the idle task might
3255 * contain synchronous grace-period primitives (during which time, this idle
3256 * task is booting the system, and such primitives are no-ops).  After this
3257 * function is called, any synchronous grace-period primitives are run as
3258 * expedited, with the requesting task driving the grace period forward.
3259 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3260 * runtime RCU functionality.
3261 */
3262void rcu_scheduler_starting(void)
3263{
3264        WARN_ON(num_online_cpus() != 1);
3265        WARN_ON(nr_context_switches() > 0);
3266        rcu_test_sync_prims();
3267        rcu_scheduler_active = RCU_SCHEDULER_INIT;
3268        rcu_test_sync_prims();
3269}
3270
3271/*
3272 * Helper function for rcu_init() that initializes the rcu_state structure.
3273 */
3274static void __init rcu_init_one(void)
3275{
3276        static const char * const buf[] = RCU_NODE_NAME_INIT;
3277        static const char * const fqs[] = RCU_FQS_NAME_INIT;
3278        static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3279        static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3280
3281        int levelspread[RCU_NUM_LVLS];          /* kids/node in each level. */
3282        int cpustride = 1;
3283        int i;
3284        int j;
3285        struct rcu_node *rnp;
3286
3287        BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3288
3289        /* Silence gcc 4.8 false positive about array index out of range. */
3290        if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3291                panic("rcu_init_one: rcu_num_lvls out of range");
3292
3293        /* Initialize the level-tracking arrays. */
3294
3295        for (i = 1; i < rcu_num_lvls; i++)
3296                rcu_state.level[i] =
3297                        rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
3298        rcu_init_levelspread(levelspread, num_rcu_lvl);
3299
3300        /* Initialize the elements themselves, starting from the leaves. */
3301
3302        for (i = rcu_num_lvls - 1; i >= 0; i--) {
3303                cpustride *= levelspread[i];
3304                rnp = rcu_state.level[i];
3305                for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3306                        raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3307                        lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3308                                                   &rcu_node_class[i], buf[i]);
3309                        raw_spin_lock_init(&rnp->fqslock);
3310                        lockdep_set_class_and_name(&rnp->fqslock,
3311                                                   &rcu_fqs_class[i], fqs[i]);
3312                        rnp->gp_seq = rcu_state.gp_seq;
3313                        rnp->gp_seq_needed = rcu_state.gp_seq;
3314                        rnp->completedqs = rcu_state.gp_seq;
3315                        rnp->qsmask = 0;
3316                        rnp->qsmaskinit = 0;
3317                        rnp->grplo = j * cpustride;
3318                        rnp->grphi = (j + 1) * cpustride - 1;
3319                        if (rnp->grphi >= nr_cpu_ids)
3320                                rnp->grphi = nr_cpu_ids - 1;
3321                        if (i == 0) {
3322                                rnp->grpnum = 0;
3323                                rnp->grpmask = 0;
3324                                rnp->parent = NULL;
3325                        } else {
3326                                rnp->grpnum = j % levelspread[i - 1];
3327                                rnp->grpmask = BIT(rnp->grpnum);
3328                                rnp->parent = rcu_state.level[i - 1] +
3329                                              j / levelspread[i - 1];
3330                        }
3331                        rnp->level = i;
3332                        INIT_LIST_HEAD(&rnp->blkd_tasks);
3333                        rcu_init_one_nocb(rnp);
3334                        init_waitqueue_head(&rnp->exp_wq[0]);
3335                        init_waitqueue_head(&rnp->exp_wq[1]);
3336                        init_waitqueue_head(&rnp->exp_wq[2]);
3337                        init_waitqueue_head(&rnp->exp_wq[3]);
3338                        spin_lock_init(&rnp->exp_lock);
3339                }
3340        }
3341
3342        init_swait_queue_head(&rcu_state.gp_wq);
3343        init_swait_queue_head(&rcu_state.expedited_wq);
3344        rnp = rcu_first_leaf_node();
3345        for_each_possible_cpu(i) {
3346                while (i > rnp->grphi)
3347                        rnp++;
3348                per_cpu_ptr(&rcu_data, i)->mynode = rnp;
3349                rcu_boot_init_percpu_data(i);
3350        }
3351}
3352
3353/*
3354 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3355 * replace the definitions in tree.h because those are needed to size
3356 * the ->node array in the rcu_state structure.
3357 */
3358static void __init rcu_init_geometry(void)
3359{
3360        ulong d;
3361        int i;
3362        int rcu_capacity[RCU_NUM_LVLS];
3363
3364        /*
3365         * Initialize any unspecified boot parameters.
3366         * The default values of jiffies_till_first_fqs and
3367         * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3368         * value, which is a function of HZ, then adding one for each
3369         * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3370         */
3371        d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3372        if (jiffies_till_first_fqs == ULONG_MAX)
3373                jiffies_till_first_fqs = d;
3374        if (jiffies_till_next_fqs == ULONG_MAX)
3375                jiffies_till_next_fqs = d;
3376        adjust_jiffies_till_sched_qs();
3377
3378        /* If the compile-time values are accurate, just leave. */
3379        if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3380            nr_cpu_ids == NR_CPUS)
3381                return;
3382        pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3383                rcu_fanout_leaf, nr_cpu_ids);
3384
3385        /*
3386         * The boot-time rcu_fanout_leaf parameter must be at least two
3387         * and cannot exceed the number of bits in the rcu_node masks.
3388         * Complain and fall back to the compile-time values if this
3389         * limit is exceeded.
3390         */
3391        if (rcu_fanout_leaf < 2 ||
3392            rcu_fanout_leaf > sizeof(unsigned long) * 8) {
3393                rcu_fanout_leaf = RCU_FANOUT_LEAF;
3394                WARN_ON(1);
3395                return;
3396        }
3397
3398        /*
3399         * Compute number of nodes that can be handled an rcu_node tree
3400         * with the given number of levels.
3401         */
3402        rcu_capacity[0] = rcu_fanout_leaf;
3403        for (i = 1; i < RCU_NUM_LVLS; i++)
3404                rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
3405
3406        /*
3407         * The tree must be able to accommodate the configured number of CPUs.
3408         * If this limit is exceeded, fall back to the compile-time values.
3409         */
3410        if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3411                rcu_fanout_leaf = RCU_FANOUT_LEAF;
3412                WARN_ON(1);
3413                return;
3414        }
3415
3416        /* Calculate the number of levels in the tree. */
3417        for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
3418        }
3419        rcu_num_lvls = i + 1;
3420
3421        /* Calculate the number of rcu_nodes at each level of the tree. */
3422        for (i = 0; i < rcu_num_lvls; i++) {
3423                int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
3424                num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3425        }
3426
3427        /* Calculate the total number of rcu_node structures. */
3428        rcu_num_nodes = 0;
3429        for (i = 0; i < rcu_num_lvls; i++)
3430                rcu_num_nodes += num_rcu_lvl[i];
3431}
3432
3433/*
3434 * Dump out the structure of the rcu_node combining tree associated
3435 * with the rcu_state structure.
3436 */
3437static void __init rcu_dump_rcu_node_tree(void)
3438{
3439        int level = 0;
3440        struct rcu_node *rnp;
3441
3442        pr_info("rcu_node tree layout dump\n");
3443        pr_info(" ");
3444        rcu_for_each_node_breadth_first(rnp) {
3445                if (rnp->level != level) {
3446                        pr_cont("\n");
3447                        pr_info(" ");
3448                        level = rnp->level;
3449                }
3450                pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
3451        }
3452        pr_cont("\n");
3453}
3454
3455struct workqueue_struct *rcu_gp_wq;
3456struct workqueue_struct *rcu_par_gp_wq;
3457
3458void __init rcu_init(void)
3459{
3460        int cpu;
3461
3462        rcu_early_boot_tests();
3463
3464        rcu_bootup_announce();
3465        rcu_init_geometry();
3466        rcu_init_one();
3467        if (dump_tree)
3468                rcu_dump_rcu_node_tree();
3469        if (use_softirq)
3470                open_softirq(RCU_SOFTIRQ, rcu_core_si);
3471
3472        /*
3473         * We don't need protection against CPU-hotplug here because
3474         * this is called early in boot, before either interrupts
3475         * or the scheduler are operational.
3476         */
3477        pm_notifier(rcu_pm_notify, 0);
3478        for_each_online_cpu(cpu) {
3479                rcutree_prepare_cpu(cpu);
3480                rcu_cpu_starting(cpu);
3481                rcutree_online_cpu(cpu);
3482        }
3483
3484        /* Create workqueue for expedited GPs and for Tree SRCU. */
3485        rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3486        WARN_ON(!rcu_gp_wq);
3487        rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3488        WARN_ON(!rcu_par_gp_wq);
3489        srcu_init();
3490}
3491
3492#include "tree_stall.h"
3493#include "tree_exp.h"
3494#include "tree_plugin.h"
3495