linux/kernel/rcu/update.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion
   4 *
   5 * Copyright IBM Corporation, 2001
   6 *
   7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
   8 *          Manfred Spraul <manfred@colorfullife.com>
   9 *
  10 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
  11 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  12 * Papers:
  13 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  14 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  15 *
  16 * For detailed explanation of Read-Copy Update mechanism see -
  17 *              http://lse.sourceforge.net/locking/rcupdate.html
  18 *
  19 */
  20#include <linux/types.h>
  21#include <linux/kernel.h>
  22#include <linux/init.h>
  23#include <linux/spinlock.h>
  24#include <linux/smp.h>
  25#include <linux/interrupt.h>
  26#include <linux/sched/signal.h>
  27#include <linux/sched/debug.h>
  28#include <linux/atomic.h>
  29#include <linux/bitops.h>
  30#include <linux/percpu.h>
  31#include <linux/notifier.h>
  32#include <linux/cpu.h>
  33#include <linux/mutex.h>
  34#include <linux/export.h>
  35#include <linux/hardirq.h>
  36#include <linux/delay.h>
  37#include <linux/moduleparam.h>
  38#include <linux/kthread.h>
  39#include <linux/tick.h>
  40#include <linux/rcupdate_wait.h>
  41#include <linux/sched/isolation.h>
  42#include <linux/kprobes.h>
  43
  44#define CREATE_TRACE_POINTS
  45
  46#include "rcu.h"
  47
  48#ifdef MODULE_PARAM_PREFIX
  49#undef MODULE_PARAM_PREFIX
  50#endif
  51#define MODULE_PARAM_PREFIX "rcupdate."
  52
  53#ifndef CONFIG_TINY_RCU
  54extern int rcu_expedited; /* from sysctl */
  55module_param(rcu_expedited, int, 0);
  56extern int rcu_normal; /* from sysctl */
  57module_param(rcu_normal, int, 0);
  58static int rcu_normal_after_boot;
  59module_param(rcu_normal_after_boot, int, 0);
  60#endif /* #ifndef CONFIG_TINY_RCU */
  61
  62#ifdef CONFIG_DEBUG_LOCK_ALLOC
  63/**
  64 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
  65 *
  66 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
  67 * RCU-sched read-side critical section.  In absence of
  68 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
  69 * critical section unless it can prove otherwise.  Note that disabling
  70 * of preemption (including disabling irqs) counts as an RCU-sched
  71 * read-side critical section.  This is useful for debug checks in functions
  72 * that required that they be called within an RCU-sched read-side
  73 * critical section.
  74 *
  75 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
  76 * and while lockdep is disabled.
  77 *
  78 * Note that if the CPU is in the idle loop from an RCU point of
  79 * view (ie: that we are in the section between rcu_idle_enter() and
  80 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
  81 * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
  82 * that are in such a section, considering these as in extended quiescent
  83 * state, so such a CPU is effectively never in an RCU read-side critical
  84 * section regardless of what RCU primitives it invokes.  This state of
  85 * affairs is required --- we need to keep an RCU-free window in idle
  86 * where the CPU may possibly enter into low power mode. This way we can
  87 * notice an extended quiescent state to other CPUs that started a grace
  88 * period. Otherwise we would delay any grace period as long as we run in
  89 * the idle task.
  90 *
  91 * Similarly, we avoid claiming an SRCU read lock held if the current
  92 * CPU is offline.
  93 */
  94int rcu_read_lock_sched_held(void)
  95{
  96        int lockdep_opinion = 0;
  97
  98        if (!debug_lockdep_rcu_enabled())
  99                return 1;
 100        if (!rcu_is_watching())
 101                return 0;
 102        if (!rcu_lockdep_current_cpu_online())
 103                return 0;
 104        if (debug_locks)
 105                lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
 106        return lockdep_opinion || !preemptible();
 107}
 108EXPORT_SYMBOL(rcu_read_lock_sched_held);
 109#endif
 110
 111#ifndef CONFIG_TINY_RCU
 112
 113/*
 114 * Should expedited grace-period primitives always fall back to their
 115 * non-expedited counterparts?  Intended for use within RCU.  Note
 116 * that if the user specifies both rcu_expedited and rcu_normal, then
 117 * rcu_normal wins.  (Except during the time period during boot from
 118 * when the first task is spawned until the rcu_set_runtime_mode()
 119 * core_initcall() is invoked, at which point everything is expedited.)
 120 */
 121bool rcu_gp_is_normal(void)
 122{
 123        return READ_ONCE(rcu_normal) &&
 124               rcu_scheduler_active != RCU_SCHEDULER_INIT;
 125}
 126EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
 127
 128static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
 129
 130/*
 131 * Should normal grace-period primitives be expedited?  Intended for
 132 * use within RCU.  Note that this function takes the rcu_expedited
 133 * sysfs/boot variable and rcu_scheduler_active into account as well
 134 * as the rcu_expedite_gp() nesting.  So looping on rcu_unexpedite_gp()
 135 * until rcu_gp_is_expedited() returns false is a -really- bad idea.
 136 */
 137bool rcu_gp_is_expedited(void)
 138{
 139        return rcu_expedited || atomic_read(&rcu_expedited_nesting) ||
 140               rcu_scheduler_active == RCU_SCHEDULER_INIT;
 141}
 142EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
 143
 144/**
 145 * rcu_expedite_gp - Expedite future RCU grace periods
 146 *
 147 * After a call to this function, future calls to synchronize_rcu() and
 148 * friends act as the corresponding synchronize_rcu_expedited() function
 149 * had instead been called.
 150 */
 151void rcu_expedite_gp(void)
 152{
 153        atomic_inc(&rcu_expedited_nesting);
 154}
 155EXPORT_SYMBOL_GPL(rcu_expedite_gp);
 156
 157/**
 158 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
 159 *
 160 * Undo a prior call to rcu_expedite_gp().  If all prior calls to
 161 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
 162 * and if the rcu_expedited sysfs/boot parameter is not set, then all
 163 * subsequent calls to synchronize_rcu() and friends will return to
 164 * their normal non-expedited behavior.
 165 */
 166void rcu_unexpedite_gp(void)
 167{
 168        atomic_dec(&rcu_expedited_nesting);
 169}
 170EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
 171
 172/*
 173 * Inform RCU of the end of the in-kernel boot sequence.
 174 */
 175void rcu_end_inkernel_boot(void)
 176{
 177        rcu_unexpedite_gp();
 178        if (rcu_normal_after_boot)
 179                WRITE_ONCE(rcu_normal, 1);
 180}
 181
 182#endif /* #ifndef CONFIG_TINY_RCU */
 183
 184/*
 185 * Test each non-SRCU synchronous grace-period wait API.  This is
 186 * useful just after a change in mode for these primitives, and
 187 * during early boot.
 188 */
 189void rcu_test_sync_prims(void)
 190{
 191        if (!IS_ENABLED(CONFIG_PROVE_RCU))
 192                return;
 193        synchronize_rcu();
 194        synchronize_rcu_expedited();
 195}
 196
 197#if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
 198
 199/*
 200 * Switch to run-time mode once RCU has fully initialized.
 201 */
 202static int __init rcu_set_runtime_mode(void)
 203{
 204        rcu_test_sync_prims();
 205        rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
 206        rcu_test_sync_prims();
 207        return 0;
 208}
 209core_initcall(rcu_set_runtime_mode);
 210
 211#endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
 212
 213#ifdef CONFIG_DEBUG_LOCK_ALLOC
 214static struct lock_class_key rcu_lock_key;
 215struct lockdep_map rcu_lock_map =
 216        STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
 217EXPORT_SYMBOL_GPL(rcu_lock_map);
 218
 219static struct lock_class_key rcu_bh_lock_key;
 220struct lockdep_map rcu_bh_lock_map =
 221        STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
 222EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
 223
 224static struct lock_class_key rcu_sched_lock_key;
 225struct lockdep_map rcu_sched_lock_map =
 226        STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
 227EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
 228
 229static struct lock_class_key rcu_callback_key;
 230struct lockdep_map rcu_callback_map =
 231        STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
 232EXPORT_SYMBOL_GPL(rcu_callback_map);
 233
 234int notrace debug_lockdep_rcu_enabled(void)
 235{
 236        return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
 237               current->lockdep_recursion == 0;
 238}
 239EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
 240NOKPROBE_SYMBOL(debug_lockdep_rcu_enabled);
 241
 242/**
 243 * rcu_read_lock_held() - might we be in RCU read-side critical section?
 244 *
 245 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
 246 * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
 247 * this assumes we are in an RCU read-side critical section unless it can
 248 * prove otherwise.  This is useful for debug checks in functions that
 249 * require that they be called within an RCU read-side critical section.
 250 *
 251 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
 252 * and while lockdep is disabled.
 253 *
 254 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
 255 * occur in the same context, for example, it is illegal to invoke
 256 * rcu_read_unlock() in process context if the matching rcu_read_lock()
 257 * was invoked from within an irq handler.
 258 *
 259 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 260 * offline from an RCU perspective, so check for those as well.
 261 */
 262int rcu_read_lock_held(void)
 263{
 264        if (!debug_lockdep_rcu_enabled())
 265                return 1;
 266        if (!rcu_is_watching())
 267                return 0;
 268        if (!rcu_lockdep_current_cpu_online())
 269                return 0;
 270        return lock_is_held(&rcu_lock_map);
 271}
 272EXPORT_SYMBOL_GPL(rcu_read_lock_held);
 273
 274/**
 275 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
 276 *
 277 * Check for bottom half being disabled, which covers both the
 278 * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
 279 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
 280 * will show the situation.  This is useful for debug checks in functions
 281 * that require that they be called within an RCU read-side critical
 282 * section.
 283 *
 284 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
 285 *
 286 * Note that rcu_read_lock_bh() is disallowed if the CPU is either idle or
 287 * offline from an RCU perspective, so check for those as well.
 288 */
 289int rcu_read_lock_bh_held(void)
 290{
 291        if (!debug_lockdep_rcu_enabled())
 292                return 1;
 293        if (!rcu_is_watching())
 294                return 0;
 295        if (!rcu_lockdep_current_cpu_online())
 296                return 0;
 297        return in_softirq() || irqs_disabled();
 298}
 299EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
 300
 301#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 302
 303/**
 304 * wakeme_after_rcu() - Callback function to awaken a task after grace period
 305 * @head: Pointer to rcu_head member within rcu_synchronize structure
 306 *
 307 * Awaken the corresponding task now that a grace period has elapsed.
 308 */
 309void wakeme_after_rcu(struct rcu_head *head)
 310{
 311        struct rcu_synchronize *rcu;
 312
 313        rcu = container_of(head, struct rcu_synchronize, head);
 314        complete(&rcu->completion);
 315}
 316EXPORT_SYMBOL_GPL(wakeme_after_rcu);
 317
 318void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
 319                   struct rcu_synchronize *rs_array)
 320{
 321        int i;
 322        int j;
 323
 324        /* Initialize and register callbacks for each crcu_array element. */
 325        for (i = 0; i < n; i++) {
 326                if (checktiny &&
 327                    (crcu_array[i] == call_rcu)) {
 328                        might_sleep();
 329                        continue;
 330                }
 331                init_rcu_head_on_stack(&rs_array[i].head);
 332                init_completion(&rs_array[i].completion);
 333                for (j = 0; j < i; j++)
 334                        if (crcu_array[j] == crcu_array[i])
 335                                break;
 336                if (j == i)
 337                        (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
 338        }
 339
 340        /* Wait for all callbacks to be invoked. */
 341        for (i = 0; i < n; i++) {
 342                if (checktiny &&
 343                    (crcu_array[i] == call_rcu))
 344                        continue;
 345                for (j = 0; j < i; j++)
 346                        if (crcu_array[j] == crcu_array[i])
 347                                break;
 348                if (j == i)
 349                        wait_for_completion(&rs_array[i].completion);
 350                destroy_rcu_head_on_stack(&rs_array[i].head);
 351        }
 352}
 353EXPORT_SYMBOL_GPL(__wait_rcu_gp);
 354
 355#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 356void init_rcu_head(struct rcu_head *head)
 357{
 358        debug_object_init(head, &rcuhead_debug_descr);
 359}
 360EXPORT_SYMBOL_GPL(init_rcu_head);
 361
 362void destroy_rcu_head(struct rcu_head *head)
 363{
 364        debug_object_free(head, &rcuhead_debug_descr);
 365}
 366EXPORT_SYMBOL_GPL(destroy_rcu_head);
 367
 368static bool rcuhead_is_static_object(void *addr)
 369{
 370        return true;
 371}
 372
 373/**
 374 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
 375 * @head: pointer to rcu_head structure to be initialized
 376 *
 377 * This function informs debugobjects of a new rcu_head structure that
 378 * has been allocated as an auto variable on the stack.  This function
 379 * is not required for rcu_head structures that are statically defined or
 380 * that are dynamically allocated on the heap.  This function has no
 381 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 382 */
 383void init_rcu_head_on_stack(struct rcu_head *head)
 384{
 385        debug_object_init_on_stack(head, &rcuhead_debug_descr);
 386}
 387EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
 388
 389/**
 390 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
 391 * @head: pointer to rcu_head structure to be initialized
 392 *
 393 * This function informs debugobjects that an on-stack rcu_head structure
 394 * is about to go out of scope.  As with init_rcu_head_on_stack(), this
 395 * function is not required for rcu_head structures that are statically
 396 * defined or that are dynamically allocated on the heap.  Also as with
 397 * init_rcu_head_on_stack(), this function has no effect for
 398 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 399 */
 400void destroy_rcu_head_on_stack(struct rcu_head *head)
 401{
 402        debug_object_free(head, &rcuhead_debug_descr);
 403}
 404EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
 405
 406struct debug_obj_descr rcuhead_debug_descr = {
 407        .name = "rcu_head",
 408        .is_static_object = rcuhead_is_static_object,
 409};
 410EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
 411#endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 412
 413#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
 414void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
 415                               unsigned long secs,
 416                               unsigned long c_old, unsigned long c)
 417{
 418        trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
 419}
 420EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
 421#else
 422#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
 423        do { } while (0)
 424#endif
 425
 426#if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST)
 427/* Get rcutorture access to sched_setaffinity(). */
 428long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
 429{
 430        int ret;
 431
 432        ret = sched_setaffinity(pid, in_mask);
 433        WARN_ONCE(ret, "%s: sched_setaffinity() returned %d\n", __func__, ret);
 434        return ret;
 435}
 436EXPORT_SYMBOL_GPL(rcutorture_sched_setaffinity);
 437#endif
 438
 439#ifdef CONFIG_RCU_STALL_COMMON
 440int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
 441EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress);
 442module_param(rcu_cpu_stall_suppress, int, 0644);
 443int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
 444module_param(rcu_cpu_stall_timeout, int, 0644);
 445#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
 446
 447#ifdef CONFIG_TASKS_RCU
 448
 449/*
 450 * Simple variant of RCU whose quiescent states are voluntary context
 451 * switch, cond_resched_rcu_qs(), user-space execution, and idle.
 452 * As such, grace periods can take one good long time.  There are no
 453 * read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
 454 * because this implementation is intended to get the system into a safe
 455 * state for some of the manipulations involved in tracing and the like.
 456 * Finally, this implementation does not support high call_rcu_tasks()
 457 * rates from multiple CPUs.  If this is required, per-CPU callback lists
 458 * will be needed.
 459 */
 460
 461/* Global list of callbacks and associated lock. */
 462static struct rcu_head *rcu_tasks_cbs_head;
 463static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
 464static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
 465static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
 466
 467/* Track exiting tasks in order to allow them to be waited for. */
 468DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
 469
 470/* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
 471#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
 472static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
 473module_param(rcu_task_stall_timeout, int, 0644);
 474
 475static struct task_struct *rcu_tasks_kthread_ptr;
 476
 477/**
 478 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
 479 * @rhp: structure to be used for queueing the RCU updates.
 480 * @func: actual callback function to be invoked after the grace period
 481 *
 482 * The callback function will be invoked some time after a full grace
 483 * period elapses, in other words after all currently executing RCU
 484 * read-side critical sections have completed. call_rcu_tasks() assumes
 485 * that the read-side critical sections end at a voluntary context
 486 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
 487 * or transition to usermode execution.  As such, there are no read-side
 488 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
 489 * this primitive is intended to determine that all tasks have passed
 490 * through a safe state, not so much for data-strcuture synchronization.
 491 *
 492 * See the description of call_rcu() for more detailed information on
 493 * memory ordering guarantees.
 494 */
 495void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
 496{
 497        unsigned long flags;
 498        bool needwake;
 499
 500        rhp->next = NULL;
 501        rhp->func = func;
 502        raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
 503        needwake = !rcu_tasks_cbs_head;
 504        *rcu_tasks_cbs_tail = rhp;
 505        rcu_tasks_cbs_tail = &rhp->next;
 506        raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
 507        /* We can't create the thread unless interrupts are enabled. */
 508        if (needwake && READ_ONCE(rcu_tasks_kthread_ptr))
 509                wake_up(&rcu_tasks_cbs_wq);
 510}
 511EXPORT_SYMBOL_GPL(call_rcu_tasks);
 512
 513/**
 514 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
 515 *
 516 * Control will return to the caller some time after a full rcu-tasks
 517 * grace period has elapsed, in other words after all currently
 518 * executing rcu-tasks read-side critical sections have elapsed.  These
 519 * read-side critical sections are delimited by calls to schedule(),
 520 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
 521 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
 522 *
 523 * This is a very specialized primitive, intended only for a few uses in
 524 * tracing and other situations requiring manipulation of function
 525 * preambles and profiling hooks.  The synchronize_rcu_tasks() function
 526 * is not (yet) intended for heavy use from multiple CPUs.
 527 *
 528 * Note that this guarantee implies further memory-ordering guarantees.
 529 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
 530 * each CPU is guaranteed to have executed a full memory barrier since the
 531 * end of its last RCU-tasks read-side critical section whose beginning
 532 * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
 533 * having an RCU-tasks read-side critical section that extends beyond
 534 * the return from synchronize_rcu_tasks() is guaranteed to have executed
 535 * a full memory barrier after the beginning of synchronize_rcu_tasks()
 536 * and before the beginning of that RCU-tasks read-side critical section.
 537 * Note that these guarantees include CPUs that are offline, idle, or
 538 * executing in user mode, as well as CPUs that are executing in the kernel.
 539 *
 540 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
 541 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 542 * to have executed a full memory barrier during the execution of
 543 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
 544 * (but again only if the system has more than one CPU).
 545 */
 546void synchronize_rcu_tasks(void)
 547{
 548        /* Complain if the scheduler has not started.  */
 549        RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
 550                         "synchronize_rcu_tasks called too soon");
 551
 552        /* Wait for the grace period. */
 553        wait_rcu_gp(call_rcu_tasks);
 554}
 555EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
 556
 557/**
 558 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
 559 *
 560 * Although the current implementation is guaranteed to wait, it is not
 561 * obligated to, for example, if there are no pending callbacks.
 562 */
 563void rcu_barrier_tasks(void)
 564{
 565        /* There is only one callback queue, so this is easy.  ;-) */
 566        synchronize_rcu_tasks();
 567}
 568EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
 569
 570/* See if tasks are still holding out, complain if so. */
 571static void check_holdout_task(struct task_struct *t,
 572                               bool needreport, bool *firstreport)
 573{
 574        int cpu;
 575
 576        if (!READ_ONCE(t->rcu_tasks_holdout) ||
 577            t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
 578            !READ_ONCE(t->on_rq) ||
 579            (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
 580             !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
 581                WRITE_ONCE(t->rcu_tasks_holdout, false);
 582                list_del_init(&t->rcu_tasks_holdout_list);
 583                put_task_struct(t);
 584                return;
 585        }
 586        rcu_request_urgent_qs_task(t);
 587        if (!needreport)
 588                return;
 589        if (*firstreport) {
 590                pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
 591                *firstreport = false;
 592        }
 593        cpu = task_cpu(t);
 594        pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
 595                 t, ".I"[is_idle_task(t)],
 596                 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
 597                 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
 598                 t->rcu_tasks_idle_cpu, cpu);
 599        sched_show_task(t);
 600}
 601
 602/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
 603static int __noreturn rcu_tasks_kthread(void *arg)
 604{
 605        unsigned long flags;
 606        struct task_struct *g, *t;
 607        unsigned long lastreport;
 608        struct rcu_head *list;
 609        struct rcu_head *next;
 610        LIST_HEAD(rcu_tasks_holdouts);
 611        int fract;
 612
 613        /* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
 614        housekeeping_affine(current, HK_FLAG_RCU);
 615
 616        /*
 617         * Each pass through the following loop makes one check for
 618         * newly arrived callbacks, and, if there are some, waits for
 619         * one RCU-tasks grace period and then invokes the callbacks.
 620         * This loop is terminated by the system going down.  ;-)
 621         */
 622        for (;;) {
 623
 624                /* Pick up any new callbacks. */
 625                raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
 626                list = rcu_tasks_cbs_head;
 627                rcu_tasks_cbs_head = NULL;
 628                rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
 629                raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
 630
 631                /* If there were none, wait a bit and start over. */
 632                if (!list) {
 633                        wait_event_interruptible(rcu_tasks_cbs_wq,
 634                                                 rcu_tasks_cbs_head);
 635                        if (!rcu_tasks_cbs_head) {
 636                                WARN_ON(signal_pending(current));
 637                                schedule_timeout_interruptible(HZ/10);
 638                        }
 639                        continue;
 640                }
 641
 642                /*
 643                 * Wait for all pre-existing t->on_rq and t->nvcsw
 644                 * transitions to complete.  Invoking synchronize_rcu()
 645                 * suffices because all these transitions occur with
 646                 * interrupts disabled.  Without this synchronize_rcu(),
 647                 * a read-side critical section that started before the
 648                 * grace period might be incorrectly seen as having started
 649                 * after the grace period.
 650                 *
 651                 * This synchronize_rcu() also dispenses with the
 652                 * need for a memory barrier on the first store to
 653                 * ->rcu_tasks_holdout, as it forces the store to happen
 654                 * after the beginning of the grace period.
 655                 */
 656                synchronize_rcu();
 657
 658                /*
 659                 * There were callbacks, so we need to wait for an
 660                 * RCU-tasks grace period.  Start off by scanning
 661                 * the task list for tasks that are not already
 662                 * voluntarily blocked.  Mark these tasks and make
 663                 * a list of them in rcu_tasks_holdouts.
 664                 */
 665                rcu_read_lock();
 666                for_each_process_thread(g, t) {
 667                        if (t != current && READ_ONCE(t->on_rq) &&
 668                            !is_idle_task(t)) {
 669                                get_task_struct(t);
 670                                t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
 671                                WRITE_ONCE(t->rcu_tasks_holdout, true);
 672                                list_add(&t->rcu_tasks_holdout_list,
 673                                         &rcu_tasks_holdouts);
 674                        }
 675                }
 676                rcu_read_unlock();
 677
 678                /*
 679                 * Wait for tasks that are in the process of exiting.
 680                 * This does only part of the job, ensuring that all
 681                 * tasks that were previously exiting reach the point
 682                 * where they have disabled preemption, allowing the
 683                 * later synchronize_rcu() to finish the job.
 684                 */
 685                synchronize_srcu(&tasks_rcu_exit_srcu);
 686
 687                /*
 688                 * Each pass through the following loop scans the list
 689                 * of holdout tasks, removing any that are no longer
 690                 * holdouts.  When the list is empty, we are done.
 691                 */
 692                lastreport = jiffies;
 693
 694                /* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/
 695                fract = 10;
 696
 697                for (;;) {
 698                        bool firstreport;
 699                        bool needreport;
 700                        int rtst;
 701                        struct task_struct *t1;
 702
 703                        if (list_empty(&rcu_tasks_holdouts))
 704                                break;
 705
 706                        /* Slowly back off waiting for holdouts */
 707                        schedule_timeout_interruptible(HZ/fract);
 708
 709                        if (fract > 1)
 710                                fract--;
 711
 712                        rtst = READ_ONCE(rcu_task_stall_timeout);
 713                        needreport = rtst > 0 &&
 714                                     time_after(jiffies, lastreport + rtst);
 715                        if (needreport)
 716                                lastreport = jiffies;
 717                        firstreport = true;
 718                        WARN_ON(signal_pending(current));
 719                        list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
 720                                                rcu_tasks_holdout_list) {
 721                                check_holdout_task(t, needreport, &firstreport);
 722                                cond_resched();
 723                        }
 724                }
 725
 726                /*
 727                 * Because ->on_rq and ->nvcsw are not guaranteed
 728                 * to have a full memory barriers prior to them in the
 729                 * schedule() path, memory reordering on other CPUs could
 730                 * cause their RCU-tasks read-side critical sections to
 731                 * extend past the end of the grace period.  However,
 732                 * because these ->nvcsw updates are carried out with
 733                 * interrupts disabled, we can use synchronize_rcu()
 734                 * to force the needed ordering on all such CPUs.
 735                 *
 736                 * This synchronize_rcu() also confines all
 737                 * ->rcu_tasks_holdout accesses to be within the grace
 738                 * period, avoiding the need for memory barriers for
 739                 * ->rcu_tasks_holdout accesses.
 740                 *
 741                 * In addition, this synchronize_rcu() waits for exiting
 742                 * tasks to complete their final preempt_disable() region
 743                 * of execution, cleaning up after the synchronize_srcu()
 744                 * above.
 745                 */
 746                synchronize_rcu();
 747
 748                /* Invoke the callbacks. */
 749                while (list) {
 750                        next = list->next;
 751                        local_bh_disable();
 752                        list->func(list);
 753                        local_bh_enable();
 754                        list = next;
 755                        cond_resched();
 756                }
 757                /* Paranoid sleep to keep this from entering a tight loop */
 758                schedule_timeout_uninterruptible(HZ/10);
 759        }
 760}
 761
 762/* Spawn rcu_tasks_kthread() at core_initcall() time. */
 763static int __init rcu_spawn_tasks_kthread(void)
 764{
 765        struct task_struct *t;
 766
 767        t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
 768        if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__))
 769                return 0;
 770        smp_mb(); /* Ensure others see full kthread. */
 771        WRITE_ONCE(rcu_tasks_kthread_ptr, t);
 772        return 0;
 773}
 774core_initcall(rcu_spawn_tasks_kthread);
 775
 776/* Do the srcu_read_lock() for the above synchronize_srcu().  */
 777void exit_tasks_rcu_start(void)
 778{
 779        preempt_disable();
 780        current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
 781        preempt_enable();
 782}
 783
 784/* Do the srcu_read_unlock() for the above synchronize_srcu().  */
 785void exit_tasks_rcu_finish(void)
 786{
 787        preempt_disable();
 788        __srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
 789        preempt_enable();
 790}
 791
 792#endif /* #ifdef CONFIG_TASKS_RCU */
 793
 794#ifndef CONFIG_TINY_RCU
 795
 796/*
 797 * Print any non-default Tasks RCU settings.
 798 */
 799static void __init rcu_tasks_bootup_oddness(void)
 800{
 801#ifdef CONFIG_TASKS_RCU
 802        if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
 803                pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
 804        else
 805                pr_info("\tTasks RCU enabled.\n");
 806#endif /* #ifdef CONFIG_TASKS_RCU */
 807}
 808
 809#endif /* #ifndef CONFIG_TINY_RCU */
 810
 811#ifdef CONFIG_PROVE_RCU
 812
 813/*
 814 * Early boot self test parameters.
 815 */
 816static bool rcu_self_test;
 817module_param(rcu_self_test, bool, 0444);
 818
 819static int rcu_self_test_counter;
 820
 821static void test_callback(struct rcu_head *r)
 822{
 823        rcu_self_test_counter++;
 824        pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
 825}
 826
 827DEFINE_STATIC_SRCU(early_srcu);
 828
 829static void early_boot_test_call_rcu(void)
 830{
 831        static struct rcu_head head;
 832        static struct rcu_head shead;
 833
 834        call_rcu(&head, test_callback);
 835        if (IS_ENABLED(CONFIG_SRCU))
 836                call_srcu(&early_srcu, &shead, test_callback);
 837}
 838
 839void rcu_early_boot_tests(void)
 840{
 841        pr_info("Running RCU self tests\n");
 842
 843        if (rcu_self_test)
 844                early_boot_test_call_rcu();
 845        rcu_test_sync_prims();
 846}
 847
 848static int rcu_verify_early_boot_tests(void)
 849{
 850        int ret = 0;
 851        int early_boot_test_counter = 0;
 852
 853        if (rcu_self_test) {
 854                early_boot_test_counter++;
 855                rcu_barrier();
 856                if (IS_ENABLED(CONFIG_SRCU)) {
 857                        early_boot_test_counter++;
 858                        srcu_barrier(&early_srcu);
 859                }
 860        }
 861        if (rcu_self_test_counter != early_boot_test_counter) {
 862                WARN_ON(1);
 863                ret = -1;
 864        }
 865
 866        return ret;
 867}
 868late_initcall(rcu_verify_early_boot_tests);
 869#else
 870void rcu_early_boot_tests(void) {}
 871#endif /* CONFIG_PROVE_RCU */
 872
 873#ifndef CONFIG_TINY_RCU
 874
 875/*
 876 * Print any significant non-default boot-time settings.
 877 */
 878void __init rcupdate_announce_bootup_oddness(void)
 879{
 880        if (rcu_normal)
 881                pr_info("\tNo expedited grace period (rcu_normal).\n");
 882        else if (rcu_normal_after_boot)
 883                pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n");
 884        else if (rcu_expedited)
 885                pr_info("\tAll grace periods are expedited (rcu_expedited).\n");
 886        if (rcu_cpu_stall_suppress)
 887                pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n");
 888        if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT)
 889                pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout);
 890        rcu_tasks_bootup_oddness();
 891}
 892
 893#endif /* #ifndef CONFIG_TINY_RCU */
 894