linux/kernel/sched/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  kernel/sched/core.c
   4 *
   5 *  Core kernel scheduler code and related syscalls
   6 *
   7 *  Copyright (C) 1991-2002  Linus Torvalds
   8 */
   9#include "sched.h"
  10
  11#include <linux/nospec.h>
  12
  13#include <linux/kcov.h>
  14
  15#include <asm/switch_to.h>
  16#include <asm/tlb.h>
  17
  18#include "../workqueue_internal.h"
  19#include "../smpboot.h"
  20
  21#include "pelt.h"
  22
  23#define CREATE_TRACE_POINTS
  24#include <trace/events/sched.h>
  25
  26/*
  27 * Export tracepoints that act as a bare tracehook (ie: have no trace event
  28 * associated with them) to allow external modules to probe them.
  29 */
  30EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
  31EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
  32EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
  33EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
  34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
  35EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
  36
  37DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  38
  39#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
  40/*
  41 * Debugging: various feature bits
  42 *
  43 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
  44 * sysctl_sched_features, defined in sched.h, to allow constants propagation
  45 * at compile time and compiler optimization based on features default.
  46 */
  47#define SCHED_FEAT(name, enabled)       \
  48        (1UL << __SCHED_FEAT_##name) * enabled |
  49const_debug unsigned int sysctl_sched_features =
  50#include "features.h"
  51        0;
  52#undef SCHED_FEAT
  53#endif
  54
  55/*
  56 * Number of tasks to iterate in a single balance run.
  57 * Limited because this is done with IRQs disabled.
  58 */
  59const_debug unsigned int sysctl_sched_nr_migrate = 32;
  60
  61/*
  62 * period over which we measure -rt task CPU usage in us.
  63 * default: 1s
  64 */
  65unsigned int sysctl_sched_rt_period = 1000000;
  66
  67__read_mostly int scheduler_running;
  68
  69/*
  70 * part of the period that we allow rt tasks to run in us.
  71 * default: 0.95s
  72 */
  73int sysctl_sched_rt_runtime = 950000;
  74
  75/*
  76 * __task_rq_lock - lock the rq @p resides on.
  77 */
  78struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  79        __acquires(rq->lock)
  80{
  81        struct rq *rq;
  82
  83        lockdep_assert_held(&p->pi_lock);
  84
  85        for (;;) {
  86                rq = task_rq(p);
  87                raw_spin_lock(&rq->lock);
  88                if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  89                        rq_pin_lock(rq, rf);
  90                        return rq;
  91                }
  92                raw_spin_unlock(&rq->lock);
  93
  94                while (unlikely(task_on_rq_migrating(p)))
  95                        cpu_relax();
  96        }
  97}
  98
  99/*
 100 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 101 */
 102struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
 103        __acquires(p->pi_lock)
 104        __acquires(rq->lock)
 105{
 106        struct rq *rq;
 107
 108        for (;;) {
 109                raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
 110                rq = task_rq(p);
 111                raw_spin_lock(&rq->lock);
 112                /*
 113                 *      move_queued_task()              task_rq_lock()
 114                 *
 115                 *      ACQUIRE (rq->lock)
 116                 *      [S] ->on_rq = MIGRATING         [L] rq = task_rq()
 117                 *      WMB (__set_task_cpu())          ACQUIRE (rq->lock);
 118                 *      [S] ->cpu = new_cpu             [L] task_rq()
 119                 *                                      [L] ->on_rq
 120                 *      RELEASE (rq->lock)
 121                 *
 122                 * If we observe the old CPU in task_rq_lock(), the acquire of
 123                 * the old rq->lock will fully serialize against the stores.
 124                 *
 125                 * If we observe the new CPU in task_rq_lock(), the address
 126                 * dependency headed by '[L] rq = task_rq()' and the acquire
 127                 * will pair with the WMB to ensure we then also see migrating.
 128                 */
 129                if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 130                        rq_pin_lock(rq, rf);
 131                        return rq;
 132                }
 133                raw_spin_unlock(&rq->lock);
 134                raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
 135
 136                while (unlikely(task_on_rq_migrating(p)))
 137                        cpu_relax();
 138        }
 139}
 140
 141/*
 142 * RQ-clock updating methods:
 143 */
 144
 145static void update_rq_clock_task(struct rq *rq, s64 delta)
 146{
 147/*
 148 * In theory, the compile should just see 0 here, and optimize out the call
 149 * to sched_rt_avg_update. But I don't trust it...
 150 */
 151        s64 __maybe_unused steal = 0, irq_delta = 0;
 152
 153#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 154        irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 155
 156        /*
 157         * Since irq_time is only updated on {soft,}irq_exit, we might run into
 158         * this case when a previous update_rq_clock() happened inside a
 159         * {soft,}irq region.
 160         *
 161         * When this happens, we stop ->clock_task and only update the
 162         * prev_irq_time stamp to account for the part that fit, so that a next
 163         * update will consume the rest. This ensures ->clock_task is
 164         * monotonic.
 165         *
 166         * It does however cause some slight miss-attribution of {soft,}irq
 167         * time, a more accurate solution would be to update the irq_time using
 168         * the current rq->clock timestamp, except that would require using
 169         * atomic ops.
 170         */
 171        if (irq_delta > delta)
 172                irq_delta = delta;
 173
 174        rq->prev_irq_time += irq_delta;
 175        delta -= irq_delta;
 176#endif
 177#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 178        if (static_key_false((&paravirt_steal_rq_enabled))) {
 179                steal = paravirt_steal_clock(cpu_of(rq));
 180                steal -= rq->prev_steal_time_rq;
 181
 182                if (unlikely(steal > delta))
 183                        steal = delta;
 184
 185                rq->prev_steal_time_rq += steal;
 186                delta -= steal;
 187        }
 188#endif
 189
 190        rq->clock_task += delta;
 191
 192#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
 193        if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
 194                update_irq_load_avg(rq, irq_delta + steal);
 195#endif
 196        update_rq_clock_pelt(rq, delta);
 197}
 198
 199void update_rq_clock(struct rq *rq)
 200{
 201        s64 delta;
 202
 203        lockdep_assert_held(&rq->lock);
 204
 205        if (rq->clock_update_flags & RQCF_ACT_SKIP)
 206                return;
 207
 208#ifdef CONFIG_SCHED_DEBUG
 209        if (sched_feat(WARN_DOUBLE_CLOCK))
 210                SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
 211        rq->clock_update_flags |= RQCF_UPDATED;
 212#endif
 213
 214        delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 215        if (delta < 0)
 216                return;
 217        rq->clock += delta;
 218        update_rq_clock_task(rq, delta);
 219}
 220
 221
 222#ifdef CONFIG_SCHED_HRTICK
 223/*
 224 * Use HR-timers to deliver accurate preemption points.
 225 */
 226
 227static void hrtick_clear(struct rq *rq)
 228{
 229        if (hrtimer_active(&rq->hrtick_timer))
 230                hrtimer_cancel(&rq->hrtick_timer);
 231}
 232
 233/*
 234 * High-resolution timer tick.
 235 * Runs from hardirq context with interrupts disabled.
 236 */
 237static enum hrtimer_restart hrtick(struct hrtimer *timer)
 238{
 239        struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 240        struct rq_flags rf;
 241
 242        WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 243
 244        rq_lock(rq, &rf);
 245        update_rq_clock(rq);
 246        rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 247        rq_unlock(rq, &rf);
 248
 249        return HRTIMER_NORESTART;
 250}
 251
 252#ifdef CONFIG_SMP
 253
 254static void __hrtick_restart(struct rq *rq)
 255{
 256        struct hrtimer *timer = &rq->hrtick_timer;
 257
 258        hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
 259}
 260
 261/*
 262 * called from hardirq (IPI) context
 263 */
 264static void __hrtick_start(void *arg)
 265{
 266        struct rq *rq = arg;
 267        struct rq_flags rf;
 268
 269        rq_lock(rq, &rf);
 270        __hrtick_restart(rq);
 271        rq->hrtick_csd_pending = 0;
 272        rq_unlock(rq, &rf);
 273}
 274
 275/*
 276 * Called to set the hrtick timer state.
 277 *
 278 * called with rq->lock held and irqs disabled
 279 */
 280void hrtick_start(struct rq *rq, u64 delay)
 281{
 282        struct hrtimer *timer = &rq->hrtick_timer;
 283        ktime_t time;
 284        s64 delta;
 285
 286        /*
 287         * Don't schedule slices shorter than 10000ns, that just
 288         * doesn't make sense and can cause timer DoS.
 289         */
 290        delta = max_t(s64, delay, 10000LL);
 291        time = ktime_add_ns(timer->base->get_time(), delta);
 292
 293        hrtimer_set_expires(timer, time);
 294
 295        if (rq == this_rq()) {
 296                __hrtick_restart(rq);
 297        } else if (!rq->hrtick_csd_pending) {
 298                smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
 299                rq->hrtick_csd_pending = 1;
 300        }
 301}
 302
 303#else
 304/*
 305 * Called to set the hrtick timer state.
 306 *
 307 * called with rq->lock held and irqs disabled
 308 */
 309void hrtick_start(struct rq *rq, u64 delay)
 310{
 311        /*
 312         * Don't schedule slices shorter than 10000ns, that just
 313         * doesn't make sense. Rely on vruntime for fairness.
 314         */
 315        delay = max_t(u64, delay, 10000LL);
 316        hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
 317                      HRTIMER_MODE_REL_PINNED);
 318}
 319#endif /* CONFIG_SMP */
 320
 321static void hrtick_rq_init(struct rq *rq)
 322{
 323#ifdef CONFIG_SMP
 324        rq->hrtick_csd_pending = 0;
 325
 326        rq->hrtick_csd.flags = 0;
 327        rq->hrtick_csd.func = __hrtick_start;
 328        rq->hrtick_csd.info = rq;
 329#endif
 330
 331        hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 332        rq->hrtick_timer.function = hrtick;
 333}
 334#else   /* CONFIG_SCHED_HRTICK */
 335static inline void hrtick_clear(struct rq *rq)
 336{
 337}
 338
 339static inline void hrtick_rq_init(struct rq *rq)
 340{
 341}
 342#endif  /* CONFIG_SCHED_HRTICK */
 343
 344/*
 345 * cmpxchg based fetch_or, macro so it works for different integer types
 346 */
 347#define fetch_or(ptr, mask)                                             \
 348        ({                                                              \
 349                typeof(ptr) _ptr = (ptr);                               \
 350                typeof(mask) _mask = (mask);                            \
 351                typeof(*_ptr) _old, _val = *_ptr;                       \
 352                                                                        \
 353                for (;;) {                                              \
 354                        _old = cmpxchg(_ptr, _val, _val | _mask);       \
 355                        if (_old == _val)                               \
 356                                break;                                  \
 357                        _val = _old;                                    \
 358                }                                                       \
 359        _old;                                                           \
 360})
 361
 362#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
 363/*
 364 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 365 * this avoids any races wrt polling state changes and thereby avoids
 366 * spurious IPIs.
 367 */
 368static bool set_nr_and_not_polling(struct task_struct *p)
 369{
 370        struct thread_info *ti = task_thread_info(p);
 371        return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
 372}
 373
 374/*
 375 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 376 *
 377 * If this returns true, then the idle task promises to call
 378 * sched_ttwu_pending() and reschedule soon.
 379 */
 380static bool set_nr_if_polling(struct task_struct *p)
 381{
 382        struct thread_info *ti = task_thread_info(p);
 383        typeof(ti->flags) old, val = READ_ONCE(ti->flags);
 384
 385        for (;;) {
 386                if (!(val & _TIF_POLLING_NRFLAG))
 387                        return false;
 388                if (val & _TIF_NEED_RESCHED)
 389                        return true;
 390                old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
 391                if (old == val)
 392                        break;
 393                val = old;
 394        }
 395        return true;
 396}
 397
 398#else
 399static bool set_nr_and_not_polling(struct task_struct *p)
 400{
 401        set_tsk_need_resched(p);
 402        return true;
 403}
 404
 405#ifdef CONFIG_SMP
 406static bool set_nr_if_polling(struct task_struct *p)
 407{
 408        return false;
 409}
 410#endif
 411#endif
 412
 413static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
 414{
 415        struct wake_q_node *node = &task->wake_q;
 416
 417        /*
 418         * Atomically grab the task, if ->wake_q is !nil already it means
 419         * its already queued (either by us or someone else) and will get the
 420         * wakeup due to that.
 421         *
 422         * In order to ensure that a pending wakeup will observe our pending
 423         * state, even in the failed case, an explicit smp_mb() must be used.
 424         */
 425        smp_mb__before_atomic();
 426        if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
 427                return false;
 428
 429        /*
 430         * The head is context local, there can be no concurrency.
 431         */
 432        *head->lastp = node;
 433        head->lastp = &node->next;
 434        return true;
 435}
 436
 437/**
 438 * wake_q_add() - queue a wakeup for 'later' waking.
 439 * @head: the wake_q_head to add @task to
 440 * @task: the task to queue for 'later' wakeup
 441 *
 442 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
 443 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
 444 * instantly.
 445 *
 446 * This function must be used as-if it were wake_up_process(); IOW the task
 447 * must be ready to be woken at this location.
 448 */
 449void wake_q_add(struct wake_q_head *head, struct task_struct *task)
 450{
 451        if (__wake_q_add(head, task))
 452                get_task_struct(task);
 453}
 454
 455/**
 456 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
 457 * @head: the wake_q_head to add @task to
 458 * @task: the task to queue for 'later' wakeup
 459 *
 460 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
 461 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
 462 * instantly.
 463 *
 464 * This function must be used as-if it were wake_up_process(); IOW the task
 465 * must be ready to be woken at this location.
 466 *
 467 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
 468 * that already hold reference to @task can call the 'safe' version and trust
 469 * wake_q to do the right thing depending whether or not the @task is already
 470 * queued for wakeup.
 471 */
 472void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
 473{
 474        if (!__wake_q_add(head, task))
 475                put_task_struct(task);
 476}
 477
 478void wake_up_q(struct wake_q_head *head)
 479{
 480        struct wake_q_node *node = head->first;
 481
 482        while (node != WAKE_Q_TAIL) {
 483                struct task_struct *task;
 484
 485                task = container_of(node, struct task_struct, wake_q);
 486                BUG_ON(!task);
 487                /* Task can safely be re-inserted now: */
 488                node = node->next;
 489                task->wake_q.next = NULL;
 490
 491                /*
 492                 * wake_up_process() executes a full barrier, which pairs with
 493                 * the queueing in wake_q_add() so as not to miss wakeups.
 494                 */
 495                wake_up_process(task);
 496                put_task_struct(task);
 497        }
 498}
 499
 500/*
 501 * resched_curr - mark rq's current task 'to be rescheduled now'.
 502 *
 503 * On UP this means the setting of the need_resched flag, on SMP it
 504 * might also involve a cross-CPU call to trigger the scheduler on
 505 * the target CPU.
 506 */
 507void resched_curr(struct rq *rq)
 508{
 509        struct task_struct *curr = rq->curr;
 510        int cpu;
 511
 512        lockdep_assert_held(&rq->lock);
 513
 514        if (test_tsk_need_resched(curr))
 515                return;
 516
 517        cpu = cpu_of(rq);
 518
 519        if (cpu == smp_processor_id()) {
 520                set_tsk_need_resched(curr);
 521                set_preempt_need_resched();
 522                return;
 523        }
 524
 525        if (set_nr_and_not_polling(curr))
 526                smp_send_reschedule(cpu);
 527        else
 528                trace_sched_wake_idle_without_ipi(cpu);
 529}
 530
 531void resched_cpu(int cpu)
 532{
 533        struct rq *rq = cpu_rq(cpu);
 534        unsigned long flags;
 535
 536        raw_spin_lock_irqsave(&rq->lock, flags);
 537        if (cpu_online(cpu) || cpu == smp_processor_id())
 538                resched_curr(rq);
 539        raw_spin_unlock_irqrestore(&rq->lock, flags);
 540}
 541
 542#ifdef CONFIG_SMP
 543#ifdef CONFIG_NO_HZ_COMMON
 544/*
 545 * In the semi idle case, use the nearest busy CPU for migrating timers
 546 * from an idle CPU.  This is good for power-savings.
 547 *
 548 * We don't do similar optimization for completely idle system, as
 549 * selecting an idle CPU will add more delays to the timers than intended
 550 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
 551 */
 552int get_nohz_timer_target(void)
 553{
 554        int i, cpu = smp_processor_id();
 555        struct sched_domain *sd;
 556
 557        if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
 558                return cpu;
 559
 560        rcu_read_lock();
 561        for_each_domain(cpu, sd) {
 562                for_each_cpu(i, sched_domain_span(sd)) {
 563                        if (cpu == i)
 564                                continue;
 565
 566                        if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
 567                                cpu = i;
 568                                goto unlock;
 569                        }
 570                }
 571        }
 572
 573        if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
 574                cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
 575unlock:
 576        rcu_read_unlock();
 577        return cpu;
 578}
 579
 580/*
 581 * When add_timer_on() enqueues a timer into the timer wheel of an
 582 * idle CPU then this timer might expire before the next timer event
 583 * which is scheduled to wake up that CPU. In case of a completely
 584 * idle system the next event might even be infinite time into the
 585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 586 * leaves the inner idle loop so the newly added timer is taken into
 587 * account when the CPU goes back to idle and evaluates the timer
 588 * wheel for the next timer event.
 589 */
 590static void wake_up_idle_cpu(int cpu)
 591{
 592        struct rq *rq = cpu_rq(cpu);
 593
 594        if (cpu == smp_processor_id())
 595                return;
 596
 597        if (set_nr_and_not_polling(rq->idle))
 598                smp_send_reschedule(cpu);
 599        else
 600                trace_sched_wake_idle_without_ipi(cpu);
 601}
 602
 603static bool wake_up_full_nohz_cpu(int cpu)
 604{
 605        /*
 606         * We just need the target to call irq_exit() and re-evaluate
 607         * the next tick. The nohz full kick at least implies that.
 608         * If needed we can still optimize that later with an
 609         * empty IRQ.
 610         */
 611        if (cpu_is_offline(cpu))
 612                return true;  /* Don't try to wake offline CPUs. */
 613        if (tick_nohz_full_cpu(cpu)) {
 614                if (cpu != smp_processor_id() ||
 615                    tick_nohz_tick_stopped())
 616                        tick_nohz_full_kick_cpu(cpu);
 617                return true;
 618        }
 619
 620        return false;
 621}
 622
 623/*
 624 * Wake up the specified CPU.  If the CPU is going offline, it is the
 625 * caller's responsibility to deal with the lost wakeup, for example,
 626 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 627 */
 628void wake_up_nohz_cpu(int cpu)
 629{
 630        if (!wake_up_full_nohz_cpu(cpu))
 631                wake_up_idle_cpu(cpu);
 632}
 633
 634static inline bool got_nohz_idle_kick(void)
 635{
 636        int cpu = smp_processor_id();
 637
 638        if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
 639                return false;
 640
 641        if (idle_cpu(cpu) && !need_resched())
 642                return true;
 643
 644        /*
 645         * We can't run Idle Load Balance on this CPU for this time so we
 646         * cancel it and clear NOHZ_BALANCE_KICK
 647         */
 648        atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
 649        return false;
 650}
 651
 652#else /* CONFIG_NO_HZ_COMMON */
 653
 654static inline bool got_nohz_idle_kick(void)
 655{
 656        return false;
 657}
 658
 659#endif /* CONFIG_NO_HZ_COMMON */
 660
 661#ifdef CONFIG_NO_HZ_FULL
 662bool sched_can_stop_tick(struct rq *rq)
 663{
 664        int fifo_nr_running;
 665
 666        /* Deadline tasks, even if single, need the tick */
 667        if (rq->dl.dl_nr_running)
 668                return false;
 669
 670        /*
 671         * If there are more than one RR tasks, we need the tick to effect the
 672         * actual RR behaviour.
 673         */
 674        if (rq->rt.rr_nr_running) {
 675                if (rq->rt.rr_nr_running == 1)
 676                        return true;
 677                else
 678                        return false;
 679        }
 680
 681        /*
 682         * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
 683         * forced preemption between FIFO tasks.
 684         */
 685        fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
 686        if (fifo_nr_running)
 687                return true;
 688
 689        /*
 690         * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
 691         * if there's more than one we need the tick for involuntary
 692         * preemption.
 693         */
 694        if (rq->nr_running > 1)
 695                return false;
 696
 697        return true;
 698}
 699#endif /* CONFIG_NO_HZ_FULL */
 700#endif /* CONFIG_SMP */
 701
 702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 703                        (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 704/*
 705 * Iterate task_group tree rooted at *from, calling @down when first entering a
 706 * node and @up when leaving it for the final time.
 707 *
 708 * Caller must hold rcu_lock or sufficient equivalent.
 709 */
 710int walk_tg_tree_from(struct task_group *from,
 711                             tg_visitor down, tg_visitor up, void *data)
 712{
 713        struct task_group *parent, *child;
 714        int ret;
 715
 716        parent = from;
 717
 718down:
 719        ret = (*down)(parent, data);
 720        if (ret)
 721                goto out;
 722        list_for_each_entry_rcu(child, &parent->children, siblings) {
 723                parent = child;
 724                goto down;
 725
 726up:
 727                continue;
 728        }
 729        ret = (*up)(parent, data);
 730        if (ret || parent == from)
 731                goto out;
 732
 733        child = parent;
 734        parent = parent->parent;
 735        if (parent)
 736                goto up;
 737out:
 738        return ret;
 739}
 740
 741int tg_nop(struct task_group *tg, void *data)
 742{
 743        return 0;
 744}
 745#endif
 746
 747static void set_load_weight(struct task_struct *p, bool update_load)
 748{
 749        int prio = p->static_prio - MAX_RT_PRIO;
 750        struct load_weight *load = &p->se.load;
 751
 752        /*
 753         * SCHED_IDLE tasks get minimal weight:
 754         */
 755        if (task_has_idle_policy(p)) {
 756                load->weight = scale_load(WEIGHT_IDLEPRIO);
 757                load->inv_weight = WMULT_IDLEPRIO;
 758                p->se.runnable_weight = load->weight;
 759                return;
 760        }
 761
 762        /*
 763         * SCHED_OTHER tasks have to update their load when changing their
 764         * weight
 765         */
 766        if (update_load && p->sched_class == &fair_sched_class) {
 767                reweight_task(p, prio);
 768        } else {
 769                load->weight = scale_load(sched_prio_to_weight[prio]);
 770                load->inv_weight = sched_prio_to_wmult[prio];
 771                p->se.runnable_weight = load->weight;
 772        }
 773}
 774
 775#ifdef CONFIG_UCLAMP_TASK
 776/* Max allowed minimum utilization */
 777unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
 778
 779/* Max allowed maximum utilization */
 780unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
 781
 782/* All clamps are required to be less or equal than these values */
 783static struct uclamp_se uclamp_default[UCLAMP_CNT];
 784
 785/* Integer rounded range for each bucket */
 786#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
 787
 788#define for_each_clamp_id(clamp_id) \
 789        for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
 790
 791static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
 792{
 793        return clamp_value / UCLAMP_BUCKET_DELTA;
 794}
 795
 796static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
 797{
 798        return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
 799}
 800
 801static inline unsigned int uclamp_none(int clamp_id)
 802{
 803        if (clamp_id == UCLAMP_MIN)
 804                return 0;
 805        return SCHED_CAPACITY_SCALE;
 806}
 807
 808static inline void uclamp_se_set(struct uclamp_se *uc_se,
 809                                 unsigned int value, bool user_defined)
 810{
 811        uc_se->value = value;
 812        uc_se->bucket_id = uclamp_bucket_id(value);
 813        uc_se->user_defined = user_defined;
 814}
 815
 816static inline unsigned int
 817uclamp_idle_value(struct rq *rq, unsigned int clamp_id,
 818                  unsigned int clamp_value)
 819{
 820        /*
 821         * Avoid blocked utilization pushing up the frequency when we go
 822         * idle (which drops the max-clamp) by retaining the last known
 823         * max-clamp.
 824         */
 825        if (clamp_id == UCLAMP_MAX) {
 826                rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
 827                return clamp_value;
 828        }
 829
 830        return uclamp_none(UCLAMP_MIN);
 831}
 832
 833static inline void uclamp_idle_reset(struct rq *rq, unsigned int clamp_id,
 834                                     unsigned int clamp_value)
 835{
 836        /* Reset max-clamp retention only on idle exit */
 837        if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
 838                return;
 839
 840        WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
 841}
 842
 843static inline
 844unsigned int uclamp_rq_max_value(struct rq *rq, unsigned int clamp_id,
 845                                 unsigned int clamp_value)
 846{
 847        struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
 848        int bucket_id = UCLAMP_BUCKETS - 1;
 849
 850        /*
 851         * Since both min and max clamps are max aggregated, find the
 852         * top most bucket with tasks in.
 853         */
 854        for ( ; bucket_id >= 0; bucket_id--) {
 855                if (!bucket[bucket_id].tasks)
 856                        continue;
 857                return bucket[bucket_id].value;
 858        }
 859
 860        /* No tasks -- default clamp values */
 861        return uclamp_idle_value(rq, clamp_id, clamp_value);
 862}
 863
 864/*
 865 * The effective clamp bucket index of a task depends on, by increasing
 866 * priority:
 867 * - the task specific clamp value, when explicitly requested from userspace
 868 * - the system default clamp value, defined by the sysadmin
 869 */
 870static inline struct uclamp_se
 871uclamp_eff_get(struct task_struct *p, unsigned int clamp_id)
 872{
 873        struct uclamp_se uc_req = p->uclamp_req[clamp_id];
 874        struct uclamp_se uc_max = uclamp_default[clamp_id];
 875
 876        /* System default restrictions always apply */
 877        if (unlikely(uc_req.value > uc_max.value))
 878                return uc_max;
 879
 880        return uc_req;
 881}
 882
 883unsigned int uclamp_eff_value(struct task_struct *p, unsigned int clamp_id)
 884{
 885        struct uclamp_se uc_eff;
 886
 887        /* Task currently refcounted: use back-annotated (effective) value */
 888        if (p->uclamp[clamp_id].active)
 889                return p->uclamp[clamp_id].value;
 890
 891        uc_eff = uclamp_eff_get(p, clamp_id);
 892
 893        return uc_eff.value;
 894}
 895
 896/*
 897 * When a task is enqueued on a rq, the clamp bucket currently defined by the
 898 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
 899 * updates the rq's clamp value if required.
 900 *
 901 * Tasks can have a task-specific value requested from user-space, track
 902 * within each bucket the maximum value for tasks refcounted in it.
 903 * This "local max aggregation" allows to track the exact "requested" value
 904 * for each bucket when all its RUNNABLE tasks require the same clamp.
 905 */
 906static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
 907                                    unsigned int clamp_id)
 908{
 909        struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
 910        struct uclamp_se *uc_se = &p->uclamp[clamp_id];
 911        struct uclamp_bucket *bucket;
 912
 913        lockdep_assert_held(&rq->lock);
 914
 915        /* Update task effective clamp */
 916        p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
 917
 918        bucket = &uc_rq->bucket[uc_se->bucket_id];
 919        bucket->tasks++;
 920        uc_se->active = true;
 921
 922        uclamp_idle_reset(rq, clamp_id, uc_se->value);
 923
 924        /*
 925         * Local max aggregation: rq buckets always track the max
 926         * "requested" clamp value of its RUNNABLE tasks.
 927         */
 928        if (bucket->tasks == 1 || uc_se->value > bucket->value)
 929                bucket->value = uc_se->value;
 930
 931        if (uc_se->value > READ_ONCE(uc_rq->value))
 932                WRITE_ONCE(uc_rq->value, uc_se->value);
 933}
 934
 935/*
 936 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
 937 * is released. If this is the last task reference counting the rq's max
 938 * active clamp value, then the rq's clamp value is updated.
 939 *
 940 * Both refcounted tasks and rq's cached clamp values are expected to be
 941 * always valid. If it's detected they are not, as defensive programming,
 942 * enforce the expected state and warn.
 943 */
 944static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
 945                                    unsigned int clamp_id)
 946{
 947        struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
 948        struct uclamp_se *uc_se = &p->uclamp[clamp_id];
 949        struct uclamp_bucket *bucket;
 950        unsigned int bkt_clamp;
 951        unsigned int rq_clamp;
 952
 953        lockdep_assert_held(&rq->lock);
 954
 955        bucket = &uc_rq->bucket[uc_se->bucket_id];
 956        SCHED_WARN_ON(!bucket->tasks);
 957        if (likely(bucket->tasks))
 958                bucket->tasks--;
 959        uc_se->active = false;
 960
 961        /*
 962         * Keep "local max aggregation" simple and accept to (possibly)
 963         * overboost some RUNNABLE tasks in the same bucket.
 964         * The rq clamp bucket value is reset to its base value whenever
 965         * there are no more RUNNABLE tasks refcounting it.
 966         */
 967        if (likely(bucket->tasks))
 968                return;
 969
 970        rq_clamp = READ_ONCE(uc_rq->value);
 971        /*
 972         * Defensive programming: this should never happen. If it happens,
 973         * e.g. due to future modification, warn and fixup the expected value.
 974         */
 975        SCHED_WARN_ON(bucket->value > rq_clamp);
 976        if (bucket->value >= rq_clamp) {
 977                bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
 978                WRITE_ONCE(uc_rq->value, bkt_clamp);
 979        }
 980}
 981
 982static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
 983{
 984        unsigned int clamp_id;
 985
 986        if (unlikely(!p->sched_class->uclamp_enabled))
 987                return;
 988
 989        for_each_clamp_id(clamp_id)
 990                uclamp_rq_inc_id(rq, p, clamp_id);
 991
 992        /* Reset clamp idle holding when there is one RUNNABLE task */
 993        if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
 994                rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
 995}
 996
 997static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
 998{
 999        unsigned int clamp_id;
1000
1001        if (unlikely(!p->sched_class->uclamp_enabled))
1002                return;
1003
1004        for_each_clamp_id(clamp_id)
1005                uclamp_rq_dec_id(rq, p, clamp_id);
1006}
1007
1008int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1009                                void __user *buffer, size_t *lenp,
1010                                loff_t *ppos)
1011{
1012        int old_min, old_max;
1013        static DEFINE_MUTEX(mutex);
1014        int result;
1015
1016        mutex_lock(&mutex);
1017        old_min = sysctl_sched_uclamp_util_min;
1018        old_max = sysctl_sched_uclamp_util_max;
1019
1020        result = proc_dointvec(table, write, buffer, lenp, ppos);
1021        if (result)
1022                goto undo;
1023        if (!write)
1024                goto done;
1025
1026        if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1027            sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1028                result = -EINVAL;
1029                goto undo;
1030        }
1031
1032        if (old_min != sysctl_sched_uclamp_util_min) {
1033                uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1034                              sysctl_sched_uclamp_util_min, false);
1035        }
1036        if (old_max != sysctl_sched_uclamp_util_max) {
1037                uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1038                              sysctl_sched_uclamp_util_max, false);
1039        }
1040
1041        /*
1042         * Updating all the RUNNABLE task is expensive, keep it simple and do
1043         * just a lazy update at each next enqueue time.
1044         */
1045        goto done;
1046
1047undo:
1048        sysctl_sched_uclamp_util_min = old_min;
1049        sysctl_sched_uclamp_util_max = old_max;
1050done:
1051        mutex_unlock(&mutex);
1052
1053        return result;
1054}
1055
1056static int uclamp_validate(struct task_struct *p,
1057                           const struct sched_attr *attr)
1058{
1059        unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1060        unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1061
1062        if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1063                lower_bound = attr->sched_util_min;
1064        if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1065                upper_bound = attr->sched_util_max;
1066
1067        if (lower_bound > upper_bound)
1068                return -EINVAL;
1069        if (upper_bound > SCHED_CAPACITY_SCALE)
1070                return -EINVAL;
1071
1072        return 0;
1073}
1074
1075static void __setscheduler_uclamp(struct task_struct *p,
1076                                  const struct sched_attr *attr)
1077{
1078        unsigned int clamp_id;
1079
1080        /*
1081         * On scheduling class change, reset to default clamps for tasks
1082         * without a task-specific value.
1083         */
1084        for_each_clamp_id(clamp_id) {
1085                struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1086                unsigned int clamp_value = uclamp_none(clamp_id);
1087
1088                /* Keep using defined clamps across class changes */
1089                if (uc_se->user_defined)
1090                        continue;
1091
1092                /* By default, RT tasks always get 100% boost */
1093                if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1094                        clamp_value = uclamp_none(UCLAMP_MAX);
1095
1096                uclamp_se_set(uc_se, clamp_value, false);
1097        }
1098
1099        if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1100                return;
1101
1102        if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1103                uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1104                              attr->sched_util_min, true);
1105        }
1106
1107        if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1108                uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1109                              attr->sched_util_max, true);
1110        }
1111}
1112
1113static void uclamp_fork(struct task_struct *p)
1114{
1115        unsigned int clamp_id;
1116
1117        for_each_clamp_id(clamp_id)
1118                p->uclamp[clamp_id].active = false;
1119
1120        if (likely(!p->sched_reset_on_fork))
1121                return;
1122
1123        for_each_clamp_id(clamp_id) {
1124                unsigned int clamp_value = uclamp_none(clamp_id);
1125
1126                /* By default, RT tasks always get 100% boost */
1127                if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1128                        clamp_value = uclamp_none(UCLAMP_MAX);
1129
1130                uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false);
1131        }
1132}
1133
1134static void __init init_uclamp(void)
1135{
1136        struct uclamp_se uc_max = {};
1137        unsigned int clamp_id;
1138        int cpu;
1139
1140        for_each_possible_cpu(cpu) {
1141                memset(&cpu_rq(cpu)->uclamp, 0, sizeof(struct uclamp_rq));
1142                cpu_rq(cpu)->uclamp_flags = 0;
1143        }
1144
1145        for_each_clamp_id(clamp_id) {
1146                uclamp_se_set(&init_task.uclamp_req[clamp_id],
1147                              uclamp_none(clamp_id), false);
1148        }
1149
1150        /* System defaults allow max clamp values for both indexes */
1151        uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1152        for_each_clamp_id(clamp_id)
1153                uclamp_default[clamp_id] = uc_max;
1154}
1155
1156#else /* CONFIG_UCLAMP_TASK */
1157static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1158static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1159static inline int uclamp_validate(struct task_struct *p,
1160                                  const struct sched_attr *attr)
1161{
1162        return -EOPNOTSUPP;
1163}
1164static void __setscheduler_uclamp(struct task_struct *p,
1165                                  const struct sched_attr *attr) { }
1166static inline void uclamp_fork(struct task_struct *p) { }
1167static inline void init_uclamp(void) { }
1168#endif /* CONFIG_UCLAMP_TASK */
1169
1170static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1171{
1172        if (!(flags & ENQUEUE_NOCLOCK))
1173                update_rq_clock(rq);
1174
1175        if (!(flags & ENQUEUE_RESTORE)) {
1176                sched_info_queued(rq, p);
1177                psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1178        }
1179
1180        uclamp_rq_inc(rq, p);
1181        p->sched_class->enqueue_task(rq, p, flags);
1182}
1183
1184static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1185{
1186        if (!(flags & DEQUEUE_NOCLOCK))
1187                update_rq_clock(rq);
1188
1189        if (!(flags & DEQUEUE_SAVE)) {
1190                sched_info_dequeued(rq, p);
1191                psi_dequeue(p, flags & DEQUEUE_SLEEP);
1192        }
1193
1194        uclamp_rq_dec(rq, p);
1195        p->sched_class->dequeue_task(rq, p, flags);
1196}
1197
1198void activate_task(struct rq *rq, struct task_struct *p, int flags)
1199{
1200        if (task_contributes_to_load(p))
1201                rq->nr_uninterruptible--;
1202
1203        enqueue_task(rq, p, flags);
1204
1205        p->on_rq = TASK_ON_RQ_QUEUED;
1206}
1207
1208void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1209{
1210        p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1211
1212        if (task_contributes_to_load(p))
1213                rq->nr_uninterruptible++;
1214
1215        dequeue_task(rq, p, flags);
1216}
1217
1218/*
1219 * __normal_prio - return the priority that is based on the static prio
1220 */
1221static inline int __normal_prio(struct task_struct *p)
1222{
1223        return p->static_prio;
1224}
1225
1226/*
1227 * Calculate the expected normal priority: i.e. priority
1228 * without taking RT-inheritance into account. Might be
1229 * boosted by interactivity modifiers. Changes upon fork,
1230 * setprio syscalls, and whenever the interactivity
1231 * estimator recalculates.
1232 */
1233static inline int normal_prio(struct task_struct *p)
1234{
1235        int prio;
1236
1237        if (task_has_dl_policy(p))
1238                prio = MAX_DL_PRIO-1;
1239        else if (task_has_rt_policy(p))
1240                prio = MAX_RT_PRIO-1 - p->rt_priority;
1241        else
1242                prio = __normal_prio(p);
1243        return prio;
1244}
1245
1246/*
1247 * Calculate the current priority, i.e. the priority
1248 * taken into account by the scheduler. This value might
1249 * be boosted by RT tasks, or might be boosted by
1250 * interactivity modifiers. Will be RT if the task got
1251 * RT-boosted. If not then it returns p->normal_prio.
1252 */
1253static int effective_prio(struct task_struct *p)
1254{
1255        p->normal_prio = normal_prio(p);
1256        /*
1257         * If we are RT tasks or we were boosted to RT priority,
1258         * keep the priority unchanged. Otherwise, update priority
1259         * to the normal priority:
1260         */
1261        if (!rt_prio(p->prio))
1262                return p->normal_prio;
1263        return p->prio;
1264}
1265
1266/**
1267 * task_curr - is this task currently executing on a CPU?
1268 * @p: the task in question.
1269 *
1270 * Return: 1 if the task is currently executing. 0 otherwise.
1271 */
1272inline int task_curr(const struct task_struct *p)
1273{
1274        return cpu_curr(task_cpu(p)) == p;
1275}
1276
1277/*
1278 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1279 * use the balance_callback list if you want balancing.
1280 *
1281 * this means any call to check_class_changed() must be followed by a call to
1282 * balance_callback().
1283 */
1284static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1285                                       const struct sched_class *prev_class,
1286                                       int oldprio)
1287{
1288        if (prev_class != p->sched_class) {
1289                if (prev_class->switched_from)
1290                        prev_class->switched_from(rq, p);
1291
1292                p->sched_class->switched_to(rq, p);
1293        } else if (oldprio != p->prio || dl_task(p))
1294                p->sched_class->prio_changed(rq, p, oldprio);
1295}
1296
1297void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1298{
1299        const struct sched_class *class;
1300
1301        if (p->sched_class == rq->curr->sched_class) {
1302                rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1303        } else {
1304                for_each_class(class) {
1305                        if (class == rq->curr->sched_class)
1306                                break;
1307                        if (class == p->sched_class) {
1308                                resched_curr(rq);
1309                                break;
1310                        }
1311                }
1312        }
1313
1314        /*
1315         * A queue event has occurred, and we're going to schedule.  In
1316         * this case, we can save a useless back to back clock update.
1317         */
1318        if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1319                rq_clock_skip_update(rq);
1320}
1321
1322#ifdef CONFIG_SMP
1323
1324static inline bool is_per_cpu_kthread(struct task_struct *p)
1325{
1326        if (!(p->flags & PF_KTHREAD))
1327                return false;
1328
1329        if (p->nr_cpus_allowed != 1)
1330                return false;
1331
1332        return true;
1333}
1334
1335/*
1336 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1337 * __set_cpus_allowed_ptr() and select_fallback_rq().
1338 */
1339static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1340{
1341        if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1342                return false;
1343
1344        if (is_per_cpu_kthread(p))
1345                return cpu_online(cpu);
1346
1347        return cpu_active(cpu);
1348}
1349
1350/*
1351 * This is how migration works:
1352 *
1353 * 1) we invoke migration_cpu_stop() on the target CPU using
1354 *    stop_one_cpu().
1355 * 2) stopper starts to run (implicitly forcing the migrated thread
1356 *    off the CPU)
1357 * 3) it checks whether the migrated task is still in the wrong runqueue.
1358 * 4) if it's in the wrong runqueue then the migration thread removes
1359 *    it and puts it into the right queue.
1360 * 5) stopper completes and stop_one_cpu() returns and the migration
1361 *    is done.
1362 */
1363
1364/*
1365 * move_queued_task - move a queued task to new rq.
1366 *
1367 * Returns (locked) new rq. Old rq's lock is released.
1368 */
1369static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1370                                   struct task_struct *p, int new_cpu)
1371{
1372        lockdep_assert_held(&rq->lock);
1373
1374        WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1375        dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1376        set_task_cpu(p, new_cpu);
1377        rq_unlock(rq, rf);
1378
1379        rq = cpu_rq(new_cpu);
1380
1381        rq_lock(rq, rf);
1382        BUG_ON(task_cpu(p) != new_cpu);
1383        enqueue_task(rq, p, 0);
1384        p->on_rq = TASK_ON_RQ_QUEUED;
1385        check_preempt_curr(rq, p, 0);
1386
1387        return rq;
1388}
1389
1390struct migration_arg {
1391        struct task_struct *task;
1392        int dest_cpu;
1393};
1394
1395/*
1396 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1397 * this because either it can't run here any more (set_cpus_allowed()
1398 * away from this CPU, or CPU going down), or because we're
1399 * attempting to rebalance this task on exec (sched_exec).
1400 *
1401 * So we race with normal scheduler movements, but that's OK, as long
1402 * as the task is no longer on this CPU.
1403 */
1404static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1405                                 struct task_struct *p, int dest_cpu)
1406{
1407        /* Affinity changed (again). */
1408        if (!is_cpu_allowed(p, dest_cpu))
1409                return rq;
1410
1411        update_rq_clock(rq);
1412        rq = move_queued_task(rq, rf, p, dest_cpu);
1413
1414        return rq;
1415}
1416
1417/*
1418 * migration_cpu_stop - this will be executed by a highprio stopper thread
1419 * and performs thread migration by bumping thread off CPU then
1420 * 'pushing' onto another runqueue.
1421 */
1422static int migration_cpu_stop(void *data)
1423{
1424        struct migration_arg *arg = data;
1425        struct task_struct *p = arg->task;
1426        struct rq *rq = this_rq();
1427        struct rq_flags rf;
1428
1429        /*
1430         * The original target CPU might have gone down and we might
1431         * be on another CPU but it doesn't matter.
1432         */
1433        local_irq_disable();
1434        /*
1435         * We need to explicitly wake pending tasks before running
1436         * __migrate_task() such that we will not miss enforcing cpus_ptr
1437         * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1438         */
1439        sched_ttwu_pending();
1440
1441        raw_spin_lock(&p->pi_lock);
1442        rq_lock(rq, &rf);
1443        /*
1444         * If task_rq(p) != rq, it cannot be migrated here, because we're
1445         * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1446         * we're holding p->pi_lock.
1447         */
1448        if (task_rq(p) == rq) {
1449                if (task_on_rq_queued(p))
1450                        rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1451                else
1452                        p->wake_cpu = arg->dest_cpu;
1453        }
1454        rq_unlock(rq, &rf);
1455        raw_spin_unlock(&p->pi_lock);
1456
1457        local_irq_enable();
1458        return 0;
1459}
1460
1461/*
1462 * sched_class::set_cpus_allowed must do the below, but is not required to
1463 * actually call this function.
1464 */
1465void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1466{
1467        cpumask_copy(&p->cpus_mask, new_mask);
1468        p->nr_cpus_allowed = cpumask_weight(new_mask);
1469}
1470
1471void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1472{
1473        struct rq *rq = task_rq(p);
1474        bool queued, running;
1475
1476        lockdep_assert_held(&p->pi_lock);
1477
1478        queued = task_on_rq_queued(p);
1479        running = task_current(rq, p);
1480
1481        if (queued) {
1482                /*
1483                 * Because __kthread_bind() calls this on blocked tasks without
1484                 * holding rq->lock.
1485                 */
1486                lockdep_assert_held(&rq->lock);
1487                dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1488        }
1489        if (running)
1490                put_prev_task(rq, p);
1491
1492        p->sched_class->set_cpus_allowed(p, new_mask);
1493
1494        if (queued)
1495                enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1496        if (running)
1497                set_curr_task(rq, p);
1498}
1499
1500/*
1501 * Change a given task's CPU affinity. Migrate the thread to a
1502 * proper CPU and schedule it away if the CPU it's executing on
1503 * is removed from the allowed bitmask.
1504 *
1505 * NOTE: the caller must have a valid reference to the task, the
1506 * task must not exit() & deallocate itself prematurely. The
1507 * call is not atomic; no spinlocks may be held.
1508 */
1509static int __set_cpus_allowed_ptr(struct task_struct *p,
1510                                  const struct cpumask *new_mask, bool check)
1511{
1512        const struct cpumask *cpu_valid_mask = cpu_active_mask;
1513        unsigned int dest_cpu;
1514        struct rq_flags rf;
1515        struct rq *rq;
1516        int ret = 0;
1517
1518        rq = task_rq_lock(p, &rf);
1519        update_rq_clock(rq);
1520
1521        if (p->flags & PF_KTHREAD) {
1522                /*
1523                 * Kernel threads are allowed on online && !active CPUs
1524                 */
1525                cpu_valid_mask = cpu_online_mask;
1526        }
1527
1528        /*
1529         * Must re-check here, to close a race against __kthread_bind(),
1530         * sched_setaffinity() is not guaranteed to observe the flag.
1531         */
1532        if (check && (p->flags & PF_NO_SETAFFINITY)) {
1533                ret = -EINVAL;
1534                goto out;
1535        }
1536
1537        if (cpumask_equal(p->cpus_ptr, new_mask))
1538                goto out;
1539
1540        if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1541                ret = -EINVAL;
1542                goto out;
1543        }
1544
1545        do_set_cpus_allowed(p, new_mask);
1546
1547        if (p->flags & PF_KTHREAD) {
1548                /*
1549                 * For kernel threads that do indeed end up on online &&
1550                 * !active we want to ensure they are strict per-CPU threads.
1551                 */
1552                WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1553                        !cpumask_intersects(new_mask, cpu_active_mask) &&
1554                        p->nr_cpus_allowed != 1);
1555        }
1556
1557        /* Can the task run on the task's current CPU? If so, we're done */
1558        if (cpumask_test_cpu(task_cpu(p), new_mask))
1559                goto out;
1560
1561        dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1562        if (task_running(rq, p) || p->state == TASK_WAKING) {
1563                struct migration_arg arg = { p, dest_cpu };
1564                /* Need help from migration thread: drop lock and wait. */
1565                task_rq_unlock(rq, p, &rf);
1566                stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1567                return 0;
1568        } else if (task_on_rq_queued(p)) {
1569                /*
1570                 * OK, since we're going to drop the lock immediately
1571                 * afterwards anyway.
1572                 */
1573                rq = move_queued_task(rq, &rf, p, dest_cpu);
1574        }
1575out:
1576        task_rq_unlock(rq, p, &rf);
1577
1578        return ret;
1579}
1580
1581int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1582{
1583        return __set_cpus_allowed_ptr(p, new_mask, false);
1584}
1585EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1586
1587void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1588{
1589#ifdef CONFIG_SCHED_DEBUG
1590        /*
1591         * We should never call set_task_cpu() on a blocked task,
1592         * ttwu() will sort out the placement.
1593         */
1594        WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1595                        !p->on_rq);
1596
1597        /*
1598         * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1599         * because schedstat_wait_{start,end} rebase migrating task's wait_start
1600         * time relying on p->on_rq.
1601         */
1602        WARN_ON_ONCE(p->state == TASK_RUNNING &&
1603                     p->sched_class == &fair_sched_class &&
1604                     (p->on_rq && !task_on_rq_migrating(p)));
1605
1606#ifdef CONFIG_LOCKDEP
1607        /*
1608         * The caller should hold either p->pi_lock or rq->lock, when changing
1609         * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1610         *
1611         * sched_move_task() holds both and thus holding either pins the cgroup,
1612         * see task_group().
1613         *
1614         * Furthermore, all task_rq users should acquire both locks, see
1615         * task_rq_lock().
1616         */
1617        WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1618                                      lockdep_is_held(&task_rq(p)->lock)));
1619#endif
1620        /*
1621         * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1622         */
1623        WARN_ON_ONCE(!cpu_online(new_cpu));
1624#endif
1625
1626        trace_sched_migrate_task(p, new_cpu);
1627
1628        if (task_cpu(p) != new_cpu) {
1629                if (p->sched_class->migrate_task_rq)
1630                        p->sched_class->migrate_task_rq(p, new_cpu);
1631                p->se.nr_migrations++;
1632                rseq_migrate(p);
1633                perf_event_task_migrate(p);
1634        }
1635
1636        __set_task_cpu(p, new_cpu);
1637}
1638
1639#ifdef CONFIG_NUMA_BALANCING
1640static void __migrate_swap_task(struct task_struct *p, int cpu)
1641{
1642        if (task_on_rq_queued(p)) {
1643                struct rq *src_rq, *dst_rq;
1644                struct rq_flags srf, drf;
1645
1646                src_rq = task_rq(p);
1647                dst_rq = cpu_rq(cpu);
1648
1649                rq_pin_lock(src_rq, &srf);
1650                rq_pin_lock(dst_rq, &drf);
1651
1652                deactivate_task(src_rq, p, 0);
1653                set_task_cpu(p, cpu);
1654                activate_task(dst_rq, p, 0);
1655                check_preempt_curr(dst_rq, p, 0);
1656
1657                rq_unpin_lock(dst_rq, &drf);
1658                rq_unpin_lock(src_rq, &srf);
1659
1660        } else {
1661                /*
1662                 * Task isn't running anymore; make it appear like we migrated
1663                 * it before it went to sleep. This means on wakeup we make the
1664                 * previous CPU our target instead of where it really is.
1665                 */
1666                p->wake_cpu = cpu;
1667        }
1668}
1669
1670struct migration_swap_arg {
1671        struct task_struct *src_task, *dst_task;
1672        int src_cpu, dst_cpu;
1673};
1674
1675static int migrate_swap_stop(void *data)
1676{
1677        struct migration_swap_arg *arg = data;
1678        struct rq *src_rq, *dst_rq;
1679        int ret = -EAGAIN;
1680
1681        if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1682                return -EAGAIN;
1683
1684        src_rq = cpu_rq(arg->src_cpu);
1685        dst_rq = cpu_rq(arg->dst_cpu);
1686
1687        double_raw_lock(&arg->src_task->pi_lock,
1688                        &arg->dst_task->pi_lock);
1689        double_rq_lock(src_rq, dst_rq);
1690
1691        if (task_cpu(arg->dst_task) != arg->dst_cpu)
1692                goto unlock;
1693
1694        if (task_cpu(arg->src_task) != arg->src_cpu)
1695                goto unlock;
1696
1697        if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1698                goto unlock;
1699
1700        if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1701                goto unlock;
1702
1703        __migrate_swap_task(arg->src_task, arg->dst_cpu);
1704        __migrate_swap_task(arg->dst_task, arg->src_cpu);
1705
1706        ret = 0;
1707
1708unlock:
1709        double_rq_unlock(src_rq, dst_rq);
1710        raw_spin_unlock(&arg->dst_task->pi_lock);
1711        raw_spin_unlock(&arg->src_task->pi_lock);
1712
1713        return ret;
1714}
1715
1716/*
1717 * Cross migrate two tasks
1718 */
1719int migrate_swap(struct task_struct *cur, struct task_struct *p,
1720                int target_cpu, int curr_cpu)
1721{
1722        struct migration_swap_arg arg;
1723        int ret = -EINVAL;
1724
1725        arg = (struct migration_swap_arg){
1726                .src_task = cur,
1727                .src_cpu = curr_cpu,
1728                .dst_task = p,
1729                .dst_cpu = target_cpu,
1730        };
1731
1732        if (arg.src_cpu == arg.dst_cpu)
1733                goto out;
1734
1735        /*
1736         * These three tests are all lockless; this is OK since all of them
1737         * will be re-checked with proper locks held further down the line.
1738         */
1739        if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1740                goto out;
1741
1742        if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1743                goto out;
1744
1745        if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1746                goto out;
1747
1748        trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1749        ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1750
1751out:
1752        return ret;
1753}
1754#endif /* CONFIG_NUMA_BALANCING */
1755
1756/*
1757 * wait_task_inactive - wait for a thread to unschedule.
1758 *
1759 * If @match_state is nonzero, it's the @p->state value just checked and
1760 * not expected to change.  If it changes, i.e. @p might have woken up,
1761 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1762 * we return a positive number (its total switch count).  If a second call
1763 * a short while later returns the same number, the caller can be sure that
1764 * @p has remained unscheduled the whole time.
1765 *
1766 * The caller must ensure that the task *will* unschedule sometime soon,
1767 * else this function might spin for a *long* time. This function can't
1768 * be called with interrupts off, or it may introduce deadlock with
1769 * smp_call_function() if an IPI is sent by the same process we are
1770 * waiting to become inactive.
1771 */
1772unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1773{
1774        int running, queued;
1775        struct rq_flags rf;
1776        unsigned long ncsw;
1777        struct rq *rq;
1778
1779        for (;;) {
1780                /*
1781                 * We do the initial early heuristics without holding
1782                 * any task-queue locks at all. We'll only try to get
1783                 * the runqueue lock when things look like they will
1784                 * work out!
1785                 */
1786                rq = task_rq(p);
1787
1788                /*
1789                 * If the task is actively running on another CPU
1790                 * still, just relax and busy-wait without holding
1791                 * any locks.
1792                 *
1793                 * NOTE! Since we don't hold any locks, it's not
1794                 * even sure that "rq" stays as the right runqueue!
1795                 * But we don't care, since "task_running()" will
1796                 * return false if the runqueue has changed and p
1797                 * is actually now running somewhere else!
1798                 */
1799                while (task_running(rq, p)) {
1800                        if (match_state && unlikely(p->state != match_state))
1801                                return 0;
1802                        cpu_relax();
1803                }
1804
1805                /*
1806                 * Ok, time to look more closely! We need the rq
1807                 * lock now, to be *sure*. If we're wrong, we'll
1808                 * just go back and repeat.
1809                 */
1810                rq = task_rq_lock(p, &rf);
1811                trace_sched_wait_task(p);
1812                running = task_running(rq, p);
1813                queued = task_on_rq_queued(p);
1814                ncsw = 0;
1815                if (!match_state || p->state == match_state)
1816                        ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1817                task_rq_unlock(rq, p, &rf);
1818
1819                /*
1820                 * If it changed from the expected state, bail out now.
1821                 */
1822                if (unlikely(!ncsw))
1823                        break;
1824
1825                /*
1826                 * Was it really running after all now that we
1827                 * checked with the proper locks actually held?
1828                 *
1829                 * Oops. Go back and try again..
1830                 */
1831                if (unlikely(running)) {
1832                        cpu_relax();
1833                        continue;
1834                }
1835
1836                /*
1837                 * It's not enough that it's not actively running,
1838                 * it must be off the runqueue _entirely_, and not
1839                 * preempted!
1840                 *
1841                 * So if it was still runnable (but just not actively
1842                 * running right now), it's preempted, and we should
1843                 * yield - it could be a while.
1844                 */
1845                if (unlikely(queued)) {
1846                        ktime_t to = NSEC_PER_SEC / HZ;
1847
1848                        set_current_state(TASK_UNINTERRUPTIBLE);
1849                        schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1850                        continue;
1851                }
1852
1853                /*
1854                 * Ahh, all good. It wasn't running, and it wasn't
1855                 * runnable, which means that it will never become
1856                 * running in the future either. We're all done!
1857                 */
1858                break;
1859        }
1860
1861        return ncsw;
1862}
1863
1864/***
1865 * kick_process - kick a running thread to enter/exit the kernel
1866 * @p: the to-be-kicked thread
1867 *
1868 * Cause a process which is running on another CPU to enter
1869 * kernel-mode, without any delay. (to get signals handled.)
1870 *
1871 * NOTE: this function doesn't have to take the runqueue lock,
1872 * because all it wants to ensure is that the remote task enters
1873 * the kernel. If the IPI races and the task has been migrated
1874 * to another CPU then no harm is done and the purpose has been
1875 * achieved as well.
1876 */
1877void kick_process(struct task_struct *p)
1878{
1879        int cpu;
1880
1881        preempt_disable();
1882        cpu = task_cpu(p);
1883        if ((cpu != smp_processor_id()) && task_curr(p))
1884                smp_send_reschedule(cpu);
1885        preempt_enable();
1886}
1887EXPORT_SYMBOL_GPL(kick_process);
1888
1889/*
1890 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
1891 *
1892 * A few notes on cpu_active vs cpu_online:
1893 *
1894 *  - cpu_active must be a subset of cpu_online
1895 *
1896 *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1897 *    see __set_cpus_allowed_ptr(). At this point the newly online
1898 *    CPU isn't yet part of the sched domains, and balancing will not
1899 *    see it.
1900 *
1901 *  - on CPU-down we clear cpu_active() to mask the sched domains and
1902 *    avoid the load balancer to place new tasks on the to be removed
1903 *    CPU. Existing tasks will remain running there and will be taken
1904 *    off.
1905 *
1906 * This means that fallback selection must not select !active CPUs.
1907 * And can assume that any active CPU must be online. Conversely
1908 * select_task_rq() below may allow selection of !active CPUs in order
1909 * to satisfy the above rules.
1910 */
1911static int select_fallback_rq(int cpu, struct task_struct *p)
1912{
1913        int nid = cpu_to_node(cpu);
1914        const struct cpumask *nodemask = NULL;
1915        enum { cpuset, possible, fail } state = cpuset;
1916        int dest_cpu;
1917
1918        /*
1919         * If the node that the CPU is on has been offlined, cpu_to_node()
1920         * will return -1. There is no CPU on the node, and we should
1921         * select the CPU on the other node.
1922         */
1923        if (nid != -1) {
1924                nodemask = cpumask_of_node(nid);
1925
1926                /* Look for allowed, online CPU in same node. */
1927                for_each_cpu(dest_cpu, nodemask) {
1928                        if (!cpu_active(dest_cpu))
1929                                continue;
1930                        if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
1931                                return dest_cpu;
1932                }
1933        }
1934
1935        for (;;) {
1936                /* Any allowed, online CPU? */
1937                for_each_cpu(dest_cpu, p->cpus_ptr) {
1938                        if (!is_cpu_allowed(p, dest_cpu))
1939                                continue;
1940
1941                        goto out;
1942                }
1943
1944                /* No more Mr. Nice Guy. */
1945                switch (state) {
1946                case cpuset:
1947                        if (IS_ENABLED(CONFIG_CPUSETS)) {
1948                                cpuset_cpus_allowed_fallback(p);
1949                                state = possible;
1950                                break;
1951                        }
1952                        /* Fall-through */
1953                case possible:
1954                        do_set_cpus_allowed(p, cpu_possible_mask);
1955                        state = fail;
1956                        break;
1957
1958                case fail:
1959                        BUG();
1960                        break;
1961                }
1962        }
1963
1964out:
1965        if (state != cpuset) {
1966                /*
1967                 * Don't tell them about moving exiting tasks or
1968                 * kernel threads (both mm NULL), since they never
1969                 * leave kernel.
1970                 */
1971                if (p->mm && printk_ratelimit()) {
1972                        printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1973                                        task_pid_nr(p), p->comm, cpu);
1974                }
1975        }
1976
1977        return dest_cpu;
1978}
1979
1980/*
1981 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
1982 */
1983static inline
1984int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1985{
1986        lockdep_assert_held(&p->pi_lock);
1987
1988        if (p->nr_cpus_allowed > 1)
1989                cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1990        else
1991                cpu = cpumask_any(p->cpus_ptr);
1992
1993        /*
1994         * In order not to call set_task_cpu() on a blocking task we need
1995         * to rely on ttwu() to place the task on a valid ->cpus_ptr
1996         * CPU.
1997         *
1998         * Since this is common to all placement strategies, this lives here.
1999         *
2000         * [ this allows ->select_task() to simply return task_cpu(p) and
2001         *   not worry about this generic constraint ]
2002         */
2003        if (unlikely(!is_cpu_allowed(p, cpu)))
2004                cpu = select_fallback_rq(task_cpu(p), p);
2005
2006        return cpu;
2007}
2008
2009static void update_avg(u64 *avg, u64 sample)
2010{
2011        s64 diff = sample - *avg;
2012        *avg += diff >> 3;
2013}
2014
2015void sched_set_stop_task(int cpu, struct task_struct *stop)
2016{
2017        struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2018        struct task_struct *old_stop = cpu_rq(cpu)->stop;
2019
2020        if (stop) {
2021                /*
2022                 * Make it appear like a SCHED_FIFO task, its something
2023                 * userspace knows about and won't get confused about.
2024                 *
2025                 * Also, it will make PI more or less work without too
2026                 * much confusion -- but then, stop work should not
2027                 * rely on PI working anyway.
2028                 */
2029                sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2030
2031                stop->sched_class = &stop_sched_class;
2032        }
2033
2034        cpu_rq(cpu)->stop = stop;
2035
2036        if (old_stop) {
2037                /*
2038                 * Reset it back to a normal scheduling class so that
2039                 * it can die in pieces.
2040                 */
2041                old_stop->sched_class = &rt_sched_class;
2042        }
2043}
2044
2045#else
2046
2047static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2048                                         const struct cpumask *new_mask, bool check)
2049{
2050        return set_cpus_allowed_ptr(p, new_mask);
2051}
2052
2053#endif /* CONFIG_SMP */
2054
2055static void
2056ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2057{
2058        struct rq *rq;
2059
2060        if (!schedstat_enabled())
2061                return;
2062
2063        rq = this_rq();
2064
2065#ifdef CONFIG_SMP
2066        if (cpu == rq->cpu) {
2067                __schedstat_inc(rq->ttwu_local);
2068                __schedstat_inc(p->se.statistics.nr_wakeups_local);
2069        } else {
2070                struct sched_domain *sd;
2071
2072                __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2073                rcu_read_lock();
2074                for_each_domain(rq->cpu, sd) {
2075                        if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2076                                __schedstat_inc(sd->ttwu_wake_remote);
2077                                break;
2078                        }
2079                }
2080                rcu_read_unlock();
2081        }
2082
2083        if (wake_flags & WF_MIGRATED)
2084                __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2085#endif /* CONFIG_SMP */
2086
2087        __schedstat_inc(rq->ttwu_count);
2088        __schedstat_inc(p->se.statistics.nr_wakeups);
2089
2090        if (wake_flags & WF_SYNC)
2091                __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2092}
2093
2094/*
2095 * Mark the task runnable and perform wakeup-preemption.
2096 */
2097static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2098                           struct rq_flags *rf)
2099{
2100        check_preempt_curr(rq, p, wake_flags);
2101        p->state = TASK_RUNNING;
2102        trace_sched_wakeup(p);
2103
2104#ifdef CONFIG_SMP
2105        if (p->sched_class->task_woken) {
2106                /*
2107                 * Our task @p is fully woken up and running; so its safe to
2108                 * drop the rq->lock, hereafter rq is only used for statistics.
2109                 */
2110                rq_unpin_lock(rq, rf);
2111                p->sched_class->task_woken(rq, p);
2112                rq_repin_lock(rq, rf);
2113        }
2114
2115        if (rq->idle_stamp) {
2116                u64 delta = rq_clock(rq) - rq->idle_stamp;
2117                u64 max = 2*rq->max_idle_balance_cost;
2118
2119                update_avg(&rq->avg_idle, delta);
2120
2121                if (rq->avg_idle > max)
2122                        rq->avg_idle = max;
2123
2124                rq->idle_stamp = 0;
2125        }
2126#endif
2127}
2128
2129static void
2130ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2131                 struct rq_flags *rf)
2132{
2133        int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2134
2135        lockdep_assert_held(&rq->lock);
2136
2137#ifdef CONFIG_SMP
2138        if (p->sched_contributes_to_load)
2139                rq->nr_uninterruptible--;
2140
2141        if (wake_flags & WF_MIGRATED)
2142                en_flags |= ENQUEUE_MIGRATED;
2143#endif
2144
2145        activate_task(rq, p, en_flags);
2146        ttwu_do_wakeup(rq, p, wake_flags, rf);
2147}
2148
2149/*
2150 * Called in case the task @p isn't fully descheduled from its runqueue,
2151 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2152 * since all we need to do is flip p->state to TASK_RUNNING, since
2153 * the task is still ->on_rq.
2154 */
2155static int ttwu_remote(struct task_struct *p, int wake_flags)
2156{
2157        struct rq_flags rf;
2158        struct rq *rq;
2159        int ret = 0;
2160
2161        rq = __task_rq_lock(p, &rf);
2162        if (task_on_rq_queued(p)) {
2163                /* check_preempt_curr() may use rq clock */
2164                update_rq_clock(rq);
2165                ttwu_do_wakeup(rq, p, wake_flags, &rf);
2166                ret = 1;
2167        }
2168        __task_rq_unlock(rq, &rf);
2169
2170        return ret;
2171}
2172
2173#ifdef CONFIG_SMP
2174void sched_ttwu_pending(void)
2175{
2176        struct rq *rq = this_rq();
2177        struct llist_node *llist = llist_del_all(&rq->wake_list);
2178        struct task_struct *p, *t;
2179        struct rq_flags rf;
2180
2181        if (!llist)
2182                return;
2183
2184        rq_lock_irqsave(rq, &rf);
2185        update_rq_clock(rq);
2186
2187        llist_for_each_entry_safe(p, t, llist, wake_entry)
2188                ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2189
2190        rq_unlock_irqrestore(rq, &rf);
2191}
2192
2193void scheduler_ipi(void)
2194{
2195        /*
2196         * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2197         * TIF_NEED_RESCHED remotely (for the first time) will also send
2198         * this IPI.
2199         */
2200        preempt_fold_need_resched();
2201
2202        if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2203                return;
2204
2205        /*
2206         * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2207         * traditionally all their work was done from the interrupt return
2208         * path. Now that we actually do some work, we need to make sure
2209         * we do call them.
2210         *
2211         * Some archs already do call them, luckily irq_enter/exit nest
2212         * properly.
2213         *
2214         * Arguably we should visit all archs and update all handlers,
2215         * however a fair share of IPIs are still resched only so this would
2216         * somewhat pessimize the simple resched case.
2217         */
2218        irq_enter();
2219        sched_ttwu_pending();
2220
2221        /*
2222         * Check if someone kicked us for doing the nohz idle load balance.
2223         */
2224        if (unlikely(got_nohz_idle_kick())) {
2225                this_rq()->idle_balance = 1;
2226                raise_softirq_irqoff(SCHED_SOFTIRQ);
2227        }
2228        irq_exit();
2229}
2230
2231static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2232{
2233        struct rq *rq = cpu_rq(cpu);
2234
2235        p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2236
2237        if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2238                if (!set_nr_if_polling(rq->idle))
2239                        smp_send_reschedule(cpu);
2240                else
2241                        trace_sched_wake_idle_without_ipi(cpu);
2242        }
2243}
2244
2245void wake_up_if_idle(int cpu)
2246{
2247        struct rq *rq = cpu_rq(cpu);
2248        struct rq_flags rf;
2249
2250        rcu_read_lock();
2251
2252        if (!is_idle_task(rcu_dereference(rq->curr)))
2253                goto out;
2254
2255        if (set_nr_if_polling(rq->idle)) {
2256                trace_sched_wake_idle_without_ipi(cpu);
2257        } else {
2258                rq_lock_irqsave(rq, &rf);
2259                if (is_idle_task(rq->curr))
2260                        smp_send_reschedule(cpu);
2261                /* Else CPU is not idle, do nothing here: */
2262                rq_unlock_irqrestore(rq, &rf);
2263        }
2264
2265out:
2266        rcu_read_unlock();
2267}
2268
2269bool cpus_share_cache(int this_cpu, int that_cpu)
2270{
2271        return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2272}
2273#endif /* CONFIG_SMP */
2274
2275static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2276{
2277        struct rq *rq = cpu_rq(cpu);
2278        struct rq_flags rf;
2279
2280#if defined(CONFIG_SMP)
2281        if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2282                sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2283                ttwu_queue_remote(p, cpu, wake_flags);
2284                return;
2285        }
2286#endif
2287
2288        rq_lock(rq, &rf);
2289        update_rq_clock(rq);
2290        ttwu_do_activate(rq, p, wake_flags, &rf);
2291        rq_unlock(rq, &rf);
2292}
2293
2294/*
2295 * Notes on Program-Order guarantees on SMP systems.
2296 *
2297 *  MIGRATION
2298 *
2299 * The basic program-order guarantee on SMP systems is that when a task [t]
2300 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2301 * execution on its new CPU [c1].
2302 *
2303 * For migration (of runnable tasks) this is provided by the following means:
2304 *
2305 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2306 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2307 *     rq(c1)->lock (if not at the same time, then in that order).
2308 *  C) LOCK of the rq(c1)->lock scheduling in task
2309 *
2310 * Release/acquire chaining guarantees that B happens after A and C after B.
2311 * Note: the CPU doing B need not be c0 or c1
2312 *
2313 * Example:
2314 *
2315 *   CPU0            CPU1            CPU2
2316 *
2317 *   LOCK rq(0)->lock
2318 *   sched-out X
2319 *   sched-in Y
2320 *   UNLOCK rq(0)->lock
2321 *
2322 *                                   LOCK rq(0)->lock // orders against CPU0
2323 *                                   dequeue X
2324 *                                   UNLOCK rq(0)->lock
2325 *
2326 *                                   LOCK rq(1)->lock
2327 *                                   enqueue X
2328 *                                   UNLOCK rq(1)->lock
2329 *
2330 *                   LOCK rq(1)->lock // orders against CPU2
2331 *                   sched-out Z
2332 *                   sched-in X
2333 *                   UNLOCK rq(1)->lock
2334 *
2335 *
2336 *  BLOCKING -- aka. SLEEP + WAKEUP
2337 *
2338 * For blocking we (obviously) need to provide the same guarantee as for
2339 * migration. However the means are completely different as there is no lock
2340 * chain to provide order. Instead we do:
2341 *
2342 *   1) smp_store_release(X->on_cpu, 0)
2343 *   2) smp_cond_load_acquire(!X->on_cpu)
2344 *
2345 * Example:
2346 *
2347 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2348 *
2349 *   LOCK rq(0)->lock LOCK X->pi_lock
2350 *   dequeue X
2351 *   sched-out X
2352 *   smp_store_release(X->on_cpu, 0);
2353 *
2354 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2355 *                    X->state = WAKING
2356 *                    set_task_cpu(X,2)
2357 *
2358 *                    LOCK rq(2)->lock
2359 *                    enqueue X
2360 *                    X->state = RUNNING
2361 *                    UNLOCK rq(2)->lock
2362 *
2363 *                                          LOCK rq(2)->lock // orders against CPU1
2364 *                                          sched-out Z
2365 *                                          sched-in X
2366 *                                          UNLOCK rq(2)->lock
2367 *
2368 *                    UNLOCK X->pi_lock
2369 *   UNLOCK rq(0)->lock
2370 *
2371 *
2372 * However, for wakeups there is a second guarantee we must provide, namely we
2373 * must ensure that CONDITION=1 done by the caller can not be reordered with
2374 * accesses to the task state; see try_to_wake_up() and set_current_state().
2375 */
2376
2377/**
2378 * try_to_wake_up - wake up a thread
2379 * @p: the thread to be awakened
2380 * @state: the mask of task states that can be woken
2381 * @wake_flags: wake modifier flags (WF_*)
2382 *
2383 * If (@state & @p->state) @p->state = TASK_RUNNING.
2384 *
2385 * If the task was not queued/runnable, also place it back on a runqueue.
2386 *
2387 * Atomic against schedule() which would dequeue a task, also see
2388 * set_current_state().
2389 *
2390 * This function executes a full memory barrier before accessing the task
2391 * state; see set_current_state().
2392 *
2393 * Return: %true if @p->state changes (an actual wakeup was done),
2394 *         %false otherwise.
2395 */
2396static int
2397try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2398{
2399        unsigned long flags;
2400        int cpu, success = 0;
2401
2402        preempt_disable();
2403        if (p == current) {
2404                /*
2405                 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2406                 * == smp_processor_id()'. Together this means we can special
2407                 * case the whole 'p->on_rq && ttwu_remote()' case below
2408                 * without taking any locks.
2409                 *
2410                 * In particular:
2411                 *  - we rely on Program-Order guarantees for all the ordering,
2412                 *  - we're serialized against set_special_state() by virtue of
2413                 *    it disabling IRQs (this allows not taking ->pi_lock).
2414                 */
2415                if (!(p->state & state))
2416                        goto out;
2417
2418                success = 1;
2419                cpu = task_cpu(p);
2420                trace_sched_waking(p);
2421                p->state = TASK_RUNNING;
2422                trace_sched_wakeup(p);
2423                goto out;
2424        }
2425
2426        /*
2427         * If we are going to wake up a thread waiting for CONDITION we
2428         * need to ensure that CONDITION=1 done by the caller can not be
2429         * reordered with p->state check below. This pairs with mb() in
2430         * set_current_state() the waiting thread does.
2431         */
2432        raw_spin_lock_irqsave(&p->pi_lock, flags);
2433        smp_mb__after_spinlock();
2434        if (!(p->state & state))
2435                goto unlock;
2436
2437        trace_sched_waking(p);
2438
2439        /* We're going to change ->state: */
2440        success = 1;
2441        cpu = task_cpu(p);
2442
2443        /*
2444         * Ensure we load p->on_rq _after_ p->state, otherwise it would
2445         * be possible to, falsely, observe p->on_rq == 0 and get stuck
2446         * in smp_cond_load_acquire() below.
2447         *
2448         * sched_ttwu_pending()                 try_to_wake_up()
2449         *   STORE p->on_rq = 1                   LOAD p->state
2450         *   UNLOCK rq->lock
2451         *
2452         * __schedule() (switch to task 'p')
2453         *   LOCK rq->lock                        smp_rmb();
2454         *   smp_mb__after_spinlock();
2455         *   UNLOCK rq->lock
2456         *
2457         * [task p]
2458         *   STORE p->state = UNINTERRUPTIBLE     LOAD p->on_rq
2459         *
2460         * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2461         * __schedule().  See the comment for smp_mb__after_spinlock().
2462         */
2463        smp_rmb();
2464        if (p->on_rq && ttwu_remote(p, wake_flags))
2465                goto unlock;
2466
2467#ifdef CONFIG_SMP
2468        /*
2469         * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2470         * possible to, falsely, observe p->on_cpu == 0.
2471         *
2472         * One must be running (->on_cpu == 1) in order to remove oneself
2473         * from the runqueue.
2474         *
2475         * __schedule() (switch to task 'p')    try_to_wake_up()
2476         *   STORE p->on_cpu = 1                  LOAD p->on_rq
2477         *   UNLOCK rq->lock
2478         *
2479         * __schedule() (put 'p' to sleep)
2480         *   LOCK rq->lock                        smp_rmb();
2481         *   smp_mb__after_spinlock();
2482         *   STORE p->on_rq = 0                   LOAD p->on_cpu
2483         *
2484         * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2485         * __schedule().  See the comment for smp_mb__after_spinlock().
2486         */
2487        smp_rmb();
2488
2489        /*
2490         * If the owning (remote) CPU is still in the middle of schedule() with
2491         * this task as prev, wait until its done referencing the task.
2492         *
2493         * Pairs with the smp_store_release() in finish_task().
2494         *
2495         * This ensures that tasks getting woken will be fully ordered against
2496         * their previous state and preserve Program Order.
2497         */
2498        smp_cond_load_acquire(&p->on_cpu, !VAL);
2499
2500        p->sched_contributes_to_load = !!task_contributes_to_load(p);
2501        p->state = TASK_WAKING;
2502
2503        if (p->in_iowait) {
2504                delayacct_blkio_end(p);
2505                atomic_dec(&task_rq(p)->nr_iowait);
2506        }
2507
2508        cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2509        if (task_cpu(p) != cpu) {
2510                wake_flags |= WF_MIGRATED;
2511                psi_ttwu_dequeue(p);
2512                set_task_cpu(p, cpu);
2513        }
2514
2515#else /* CONFIG_SMP */
2516
2517        if (p->in_iowait) {
2518                delayacct_blkio_end(p);
2519                atomic_dec(&task_rq(p)->nr_iowait);
2520        }
2521
2522#endif /* CONFIG_SMP */
2523
2524        ttwu_queue(p, cpu, wake_flags);
2525unlock:
2526        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2527out:
2528        if (success)
2529                ttwu_stat(p, cpu, wake_flags);
2530        preempt_enable();
2531
2532        return success;
2533}
2534
2535/**
2536 * wake_up_process - Wake up a specific process
2537 * @p: The process to be woken up.
2538 *
2539 * Attempt to wake up the nominated process and move it to the set of runnable
2540 * processes.
2541 *
2542 * Return: 1 if the process was woken up, 0 if it was already running.
2543 *
2544 * This function executes a full memory barrier before accessing the task state.
2545 */
2546int wake_up_process(struct task_struct *p)
2547{
2548        return try_to_wake_up(p, TASK_NORMAL, 0);
2549}
2550EXPORT_SYMBOL(wake_up_process);
2551
2552int wake_up_state(struct task_struct *p, unsigned int state)
2553{
2554        return try_to_wake_up(p, state, 0);
2555}
2556
2557/*
2558 * Perform scheduler related setup for a newly forked process p.
2559 * p is forked by current.
2560 *
2561 * __sched_fork() is basic setup used by init_idle() too:
2562 */
2563static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2564{
2565        p->on_rq                        = 0;
2566
2567        p->se.on_rq                     = 0;
2568        p->se.exec_start                = 0;
2569        p->se.sum_exec_runtime          = 0;
2570        p->se.prev_sum_exec_runtime     = 0;
2571        p->se.nr_migrations             = 0;
2572        p->se.vruntime                  = 0;
2573        INIT_LIST_HEAD(&p->se.group_node);
2574
2575#ifdef CONFIG_FAIR_GROUP_SCHED
2576        p->se.cfs_rq                    = NULL;
2577#endif
2578
2579#ifdef CONFIG_SCHEDSTATS
2580        /* Even if schedstat is disabled, there should not be garbage */
2581        memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2582#endif
2583
2584        RB_CLEAR_NODE(&p->dl.rb_node);
2585        init_dl_task_timer(&p->dl);
2586        init_dl_inactive_task_timer(&p->dl);
2587        __dl_clear_params(p);
2588
2589        INIT_LIST_HEAD(&p->rt.run_list);
2590        p->rt.timeout           = 0;
2591        p->rt.time_slice        = sched_rr_timeslice;
2592        p->rt.on_rq             = 0;
2593        p->rt.on_list           = 0;
2594
2595#ifdef CONFIG_PREEMPT_NOTIFIERS
2596        INIT_HLIST_HEAD(&p->preempt_notifiers);
2597#endif
2598
2599#ifdef CONFIG_COMPACTION
2600        p->capture_control = NULL;
2601#endif
2602        init_numa_balancing(clone_flags, p);
2603}
2604
2605DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2606
2607#ifdef CONFIG_NUMA_BALANCING
2608
2609void set_numabalancing_state(bool enabled)
2610{
2611        if (enabled)
2612                static_branch_enable(&sched_numa_balancing);
2613        else
2614                static_branch_disable(&sched_numa_balancing);
2615}
2616
2617#ifdef CONFIG_PROC_SYSCTL
2618int sysctl_numa_balancing(struct ctl_table *table, int write,
2619                         void __user *buffer, size_t *lenp, loff_t *ppos)
2620{
2621        struct ctl_table t;
2622        int err;
2623        int state = static_branch_likely(&sched_numa_balancing);
2624
2625        if (write && !capable(CAP_SYS_ADMIN))
2626                return -EPERM;
2627
2628        t = *table;
2629        t.data = &state;
2630        err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2631        if (err < 0)
2632                return err;
2633        if (write)
2634                set_numabalancing_state(state);
2635        return err;
2636}
2637#endif
2638#endif
2639
2640#ifdef CONFIG_SCHEDSTATS
2641
2642DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2643static bool __initdata __sched_schedstats = false;
2644
2645static void set_schedstats(bool enabled)
2646{
2647        if (enabled)
2648                static_branch_enable(&sched_schedstats);
2649        else
2650                static_branch_disable(&sched_schedstats);
2651}
2652
2653void force_schedstat_enabled(void)
2654{
2655        if (!schedstat_enabled()) {
2656                pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2657                static_branch_enable(&sched_schedstats);
2658        }
2659}
2660
2661static int __init setup_schedstats(char *str)
2662{
2663        int ret = 0;
2664        if (!str)
2665                goto out;
2666
2667        /*
2668         * This code is called before jump labels have been set up, so we can't
2669         * change the static branch directly just yet.  Instead set a temporary
2670         * variable so init_schedstats() can do it later.
2671         */
2672        if (!strcmp(str, "enable")) {
2673                __sched_schedstats = true;
2674                ret = 1;
2675        } else if (!strcmp(str, "disable")) {
2676                __sched_schedstats = false;
2677                ret = 1;
2678        }
2679out:
2680        if (!ret)
2681                pr_warn("Unable to parse schedstats=\n");
2682
2683        return ret;
2684}
2685__setup("schedstats=", setup_schedstats);
2686
2687static void __init init_schedstats(void)
2688{
2689        set_schedstats(__sched_schedstats);
2690}
2691
2692#ifdef CONFIG_PROC_SYSCTL
2693int sysctl_schedstats(struct ctl_table *table, int write,
2694                         void __user *buffer, size_t *lenp, loff_t *ppos)
2695{
2696        struct ctl_table t;
2697        int err;
2698        int state = static_branch_likely(&sched_schedstats);
2699
2700        if (write && !capable(CAP_SYS_ADMIN))
2701                return -EPERM;
2702
2703        t = *table;
2704        t.data = &state;
2705        err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2706        if (err < 0)
2707                return err;
2708        if (write)
2709                set_schedstats(state);
2710        return err;
2711}
2712#endif /* CONFIG_PROC_SYSCTL */
2713#else  /* !CONFIG_SCHEDSTATS */
2714static inline void init_schedstats(void) {}
2715#endif /* CONFIG_SCHEDSTATS */
2716
2717/*
2718 * fork()/clone()-time setup:
2719 */
2720int sched_fork(unsigned long clone_flags, struct task_struct *p)
2721{
2722        unsigned long flags;
2723
2724        __sched_fork(clone_flags, p);
2725        /*
2726         * We mark the process as NEW here. This guarantees that
2727         * nobody will actually run it, and a signal or other external
2728         * event cannot wake it up and insert it on the runqueue either.
2729         */
2730        p->state = TASK_NEW;
2731
2732        /*
2733         * Make sure we do not leak PI boosting priority to the child.
2734         */
2735        p->prio = current->normal_prio;
2736
2737        uclamp_fork(p);
2738
2739        /*
2740         * Revert to default priority/policy on fork if requested.
2741         */
2742        if (unlikely(p->sched_reset_on_fork)) {
2743                if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2744                        p->policy = SCHED_NORMAL;
2745                        p->static_prio = NICE_TO_PRIO(0);
2746                        p->rt_priority = 0;
2747                } else if (PRIO_TO_NICE(p->static_prio) < 0)
2748                        p->static_prio = NICE_TO_PRIO(0);
2749
2750                p->prio = p->normal_prio = __normal_prio(p);
2751                set_load_weight(p, false);
2752
2753                /*
2754                 * We don't need the reset flag anymore after the fork. It has
2755                 * fulfilled its duty:
2756                 */
2757                p->sched_reset_on_fork = 0;
2758        }
2759
2760        if (dl_prio(p->prio))
2761                return -EAGAIN;
2762        else if (rt_prio(p->prio))
2763                p->sched_class = &rt_sched_class;
2764        else
2765                p->sched_class = &fair_sched_class;
2766
2767        init_entity_runnable_average(&p->se);
2768
2769        /*
2770         * The child is not yet in the pid-hash so no cgroup attach races,
2771         * and the cgroup is pinned to this child due to cgroup_fork()
2772         * is ran before sched_fork().
2773         *
2774         * Silence PROVE_RCU.
2775         */
2776        raw_spin_lock_irqsave(&p->pi_lock, flags);
2777        /*
2778         * We're setting the CPU for the first time, we don't migrate,
2779         * so use __set_task_cpu().
2780         */
2781        __set_task_cpu(p, smp_processor_id());
2782        if (p->sched_class->task_fork)
2783                p->sched_class->task_fork(p);
2784        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2785
2786#ifdef CONFIG_SCHED_INFO
2787        if (likely(sched_info_on()))
2788                memset(&p->sched_info, 0, sizeof(p->sched_info));
2789#endif
2790#if defined(CONFIG_SMP)
2791        p->on_cpu = 0;
2792#endif
2793        init_task_preempt_count(p);
2794#ifdef CONFIG_SMP
2795        plist_node_init(&p->pushable_tasks, MAX_PRIO);
2796        RB_CLEAR_NODE(&p->pushable_dl_tasks);
2797#endif
2798        return 0;
2799}
2800
2801unsigned long to_ratio(u64 period, u64 runtime)
2802{
2803        if (runtime == RUNTIME_INF)
2804                return BW_UNIT;
2805
2806        /*
2807         * Doing this here saves a lot of checks in all
2808         * the calling paths, and returning zero seems
2809         * safe for them anyway.
2810         */
2811        if (period == 0)
2812                return 0;
2813
2814        return div64_u64(runtime << BW_SHIFT, period);
2815}
2816
2817/*
2818 * wake_up_new_task - wake up a newly created task for the first time.
2819 *
2820 * This function will do some initial scheduler statistics housekeeping
2821 * that must be done for every newly created context, then puts the task
2822 * on the runqueue and wakes it.
2823 */
2824void wake_up_new_task(struct task_struct *p)
2825{
2826        struct rq_flags rf;
2827        struct rq *rq;
2828
2829        raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2830        p->state = TASK_RUNNING;
2831#ifdef CONFIG_SMP
2832        /*
2833         * Fork balancing, do it here and not earlier because:
2834         *  - cpus_ptr can change in the fork path
2835         *  - any previously selected CPU might disappear through hotplug
2836         *
2837         * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2838         * as we're not fully set-up yet.
2839         */
2840        p->recent_used_cpu = task_cpu(p);
2841        __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2842#endif
2843        rq = __task_rq_lock(p, &rf);
2844        update_rq_clock(rq);
2845        post_init_entity_util_avg(p);
2846
2847        activate_task(rq, p, ENQUEUE_NOCLOCK);
2848        trace_sched_wakeup_new(p);
2849        check_preempt_curr(rq, p, WF_FORK);
2850#ifdef CONFIG_SMP
2851        if (p->sched_class->task_woken) {
2852                /*
2853                 * Nothing relies on rq->lock after this, so its fine to
2854                 * drop it.
2855                 */
2856                rq_unpin_lock(rq, &rf);
2857                p->sched_class->task_woken(rq, p);
2858                rq_repin_lock(rq, &rf);
2859        }
2860#endif
2861        task_rq_unlock(rq, p, &rf);
2862}
2863
2864#ifdef CONFIG_PREEMPT_NOTIFIERS
2865
2866static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2867
2868void preempt_notifier_inc(void)
2869{
2870        static_branch_inc(&preempt_notifier_key);
2871}
2872EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2873
2874void preempt_notifier_dec(void)
2875{
2876        static_branch_dec(&preempt_notifier_key);
2877}
2878EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2879
2880/**
2881 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2882 * @notifier: notifier struct to register
2883 */
2884void preempt_notifier_register(struct preempt_notifier *notifier)
2885{
2886        if (!static_branch_unlikely(&preempt_notifier_key))
2887                WARN(1, "registering preempt_notifier while notifiers disabled\n");
2888
2889        hlist_add_head(&notifier->link, &current->preempt_notifiers);
2890}
2891EXPORT_SYMBOL_GPL(preempt_notifier_register);
2892
2893/**
2894 * preempt_notifier_unregister - no longer interested in preemption notifications
2895 * @notifier: notifier struct to unregister
2896 *
2897 * This is *not* safe to call from within a preemption notifier.
2898 */
2899void preempt_notifier_unregister(struct preempt_notifier *notifier)
2900{
2901        hlist_del(&notifier->link);
2902}
2903EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2904
2905static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2906{
2907        struct preempt_notifier *notifier;
2908
2909        hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2910                notifier->ops->sched_in(notifier, raw_smp_processor_id());
2911}
2912
2913static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2914{
2915        if (static_branch_unlikely(&preempt_notifier_key))
2916                __fire_sched_in_preempt_notifiers(curr);
2917}
2918
2919static void
2920__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2921                                   struct task_struct *next)
2922{
2923        struct preempt_notifier *notifier;
2924
2925        hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2926                notifier->ops->sched_out(notifier, next);
2927}
2928
2929static __always_inline void
2930fire_sched_out_preempt_notifiers(struct task_struct *curr,
2931                                 struct task_struct *next)
2932{
2933        if (static_branch_unlikely(&preempt_notifier_key))
2934                __fire_sched_out_preempt_notifiers(curr, next);
2935}
2936
2937#else /* !CONFIG_PREEMPT_NOTIFIERS */
2938
2939static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2940{
2941}
2942
2943static inline void
2944fire_sched_out_preempt_notifiers(struct task_struct *curr,
2945                                 struct task_struct *next)
2946{
2947}
2948
2949#endif /* CONFIG_PREEMPT_NOTIFIERS */
2950
2951static inline void prepare_task(struct task_struct *next)
2952{
2953#ifdef CONFIG_SMP
2954        /*
2955         * Claim the task as running, we do this before switching to it
2956         * such that any running task will have this set.
2957         */
2958        next->on_cpu = 1;
2959#endif
2960}
2961
2962static inline void finish_task(struct task_struct *prev)
2963{
2964#ifdef CONFIG_SMP
2965        /*
2966         * After ->on_cpu is cleared, the task can be moved to a different CPU.
2967         * We must ensure this doesn't happen until the switch is completely
2968         * finished.
2969         *
2970         * In particular, the load of prev->state in finish_task_switch() must
2971         * happen before this.
2972         *
2973         * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2974         */
2975        smp_store_release(&prev->on_cpu, 0);
2976#endif
2977}
2978
2979static inline void
2980prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2981{
2982        /*
2983         * Since the runqueue lock will be released by the next
2984         * task (which is an invalid locking op but in the case
2985         * of the scheduler it's an obvious special-case), so we
2986         * do an early lockdep release here:
2987         */
2988        rq_unpin_lock(rq, rf);
2989        spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2990#ifdef CONFIG_DEBUG_SPINLOCK
2991        /* this is a valid case when another task releases the spinlock */
2992        rq->lock.owner = next;
2993#endif
2994}
2995
2996static inline void finish_lock_switch(struct rq *rq)
2997{
2998        /*
2999         * If we are tracking spinlock dependencies then we have to
3000         * fix up the runqueue lock - which gets 'carried over' from
3001         * prev into current:
3002         */
3003        spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3004        raw_spin_unlock_irq(&rq->lock);
3005}
3006
3007/*
3008 * NOP if the arch has not defined these:
3009 */
3010
3011#ifndef prepare_arch_switch
3012# define prepare_arch_switch(next)      do { } while (0)
3013#endif
3014
3015#ifndef finish_arch_post_lock_switch
3016# define finish_arch_post_lock_switch() do { } while (0)
3017#endif
3018
3019/**
3020 * prepare_task_switch - prepare to switch tasks
3021 * @rq: the runqueue preparing to switch
3022 * @prev: the current task that is being switched out
3023 * @next: the task we are going to switch to.
3024 *
3025 * This is called with the rq lock held and interrupts off. It must
3026 * be paired with a subsequent finish_task_switch after the context
3027 * switch.
3028 *
3029 * prepare_task_switch sets up locking and calls architecture specific
3030 * hooks.
3031 */
3032static inline void
3033prepare_task_switch(struct rq *rq, struct task_struct *prev,
3034                    struct task_struct *next)
3035{
3036        kcov_prepare_switch(prev);
3037        sched_info_switch(rq, prev, next);
3038        perf_event_task_sched_out(prev, next);
3039        rseq_preempt(prev);
3040        fire_sched_out_preempt_notifiers(prev, next);
3041        prepare_task(next);
3042        prepare_arch_switch(next);
3043}
3044
3045/**
3046 * finish_task_switch - clean up after a task-switch
3047 * @prev: the thread we just switched away from.
3048 *
3049 * finish_task_switch must be called after the context switch, paired
3050 * with a prepare_task_switch call before the context switch.
3051 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3052 * and do any other architecture-specific cleanup actions.
3053 *
3054 * Note that we may have delayed dropping an mm in context_switch(). If
3055 * so, we finish that here outside of the runqueue lock. (Doing it
3056 * with the lock held can cause deadlocks; see schedule() for
3057 * details.)
3058 *
3059 * The context switch have flipped the stack from under us and restored the
3060 * local variables which were saved when this task called schedule() in the
3061 * past. prev == current is still correct but we need to recalculate this_rq
3062 * because prev may have moved to another CPU.
3063 */
3064static struct rq *finish_task_switch(struct task_struct *prev)
3065        __releases(rq->lock)
3066{
3067        struct rq *rq = this_rq();
3068        struct mm_struct *mm = rq->prev_mm;
3069        long prev_state;
3070
3071        /*
3072         * The previous task will have left us with a preempt_count of 2
3073         * because it left us after:
3074         *
3075         *      schedule()
3076         *        preempt_disable();                    // 1
3077         *        __schedule()
3078         *          raw_spin_lock_irq(&rq->lock)        // 2
3079         *
3080         * Also, see FORK_PREEMPT_COUNT.
3081         */
3082        if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3083                      "corrupted preempt_count: %s/%d/0x%x\n",
3084                      current->comm, current->pid, preempt_count()))
3085                preempt_count_set(FORK_PREEMPT_COUNT);
3086
3087        rq->prev_mm = NULL;
3088
3089        /*
3090         * A task struct has one reference for the use as "current".
3091         * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3092         * schedule one last time. The schedule call will never return, and
3093         * the scheduled task must drop that reference.
3094         *
3095         * We must observe prev->state before clearing prev->on_cpu (in
3096         * finish_task), otherwise a concurrent wakeup can get prev
3097         * running on another CPU and we could rave with its RUNNING -> DEAD
3098         * transition, resulting in a double drop.
3099         */
3100        prev_state = prev->state;
3101        vtime_task_switch(prev);
3102        perf_event_task_sched_in(prev, current);
3103        finish_task(prev);
3104        finish_lock_switch(rq);
3105        finish_arch_post_lock_switch();
3106        kcov_finish_switch(current);
3107
3108        fire_sched_in_preempt_notifiers(current);
3109        /*
3110         * When switching through a kernel thread, the loop in
3111         * membarrier_{private,global}_expedited() may have observed that
3112         * kernel thread and not issued an IPI. It is therefore possible to
3113         * schedule between user->kernel->user threads without passing though
3114         * switch_mm(). Membarrier requires a barrier after storing to
3115         * rq->curr, before returning to userspace, so provide them here:
3116         *
3117         * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3118         *   provided by mmdrop(),
3119         * - a sync_core for SYNC_CORE.
3120         */
3121        if (mm) {
3122                membarrier_mm_sync_core_before_usermode(mm);
3123                mmdrop(mm);
3124        }
3125        if (unlikely(prev_state == TASK_DEAD)) {
3126                if (prev->sched_class->task_dead)
3127                        prev->sched_class->task_dead(prev);
3128
3129                /*
3130                 * Remove function-return probe instances associated with this
3131                 * task and put them back on the free list.
3132                 */
3133                kprobe_flush_task(prev);
3134
3135                /* Task is done with its stack. */
3136                put_task_stack(prev);
3137
3138                put_task_struct(prev);
3139        }
3140
3141        tick_nohz_task_switch();
3142        return rq;
3143}
3144
3145#ifdef CONFIG_SMP
3146
3147/* rq->lock is NOT held, but preemption is disabled */
3148static void __balance_callback(struct rq *rq)
3149{
3150        struct callback_head *head, *next;
3151        void (*func)(struct rq *rq);
3152        unsigned long flags;
3153
3154        raw_spin_lock_irqsave(&rq->lock, flags);
3155        head = rq->balance_callback;
3156        rq->balance_callback = NULL;
3157        while (head) {
3158                func = (void (*)(struct rq *))head->func;
3159                next = head->next;
3160                head->next = NULL;
3161                head = next;
3162
3163                func(rq);
3164        }
3165        raw_spin_unlock_irqrestore(&rq->lock, flags);
3166}
3167
3168static inline void balance_callback(struct rq *rq)
3169{
3170        if (unlikely(rq->balance_callback))
3171                __balance_callback(rq);
3172}
3173
3174#else
3175
3176static inline void balance_callback(struct rq *rq)
3177{
3178}
3179
3180#endif
3181
3182/**
3183 * schedule_tail - first thing a freshly forked thread must call.
3184 * @prev: the thread we just switched away from.
3185 */
3186asmlinkage __visible void schedule_tail(struct task_struct *prev)
3187        __releases(rq->lock)
3188{
3189        struct rq *rq;
3190
3191        /*
3192         * New tasks start with FORK_PREEMPT_COUNT, see there and
3193         * finish_task_switch() for details.
3194         *
3195         * finish_task_switch() will drop rq->lock() and lower preempt_count
3196         * and the preempt_enable() will end up enabling preemption (on
3197         * PREEMPT_COUNT kernels).
3198         */
3199
3200        rq = finish_task_switch(prev);
3201        balance_callback(rq);
3202        preempt_enable();
3203
3204        if (current->set_child_tid)
3205                put_user(task_pid_vnr(current), current->set_child_tid);
3206
3207        calculate_sigpending();
3208}
3209
3210/*
3211 * context_switch - switch to the new MM and the new thread's register state.
3212 */
3213static __always_inline struct rq *
3214context_switch(struct rq *rq, struct task_struct *prev,
3215               struct task_struct *next, struct rq_flags *rf)
3216{
3217        struct mm_struct *mm, *oldmm;
3218
3219        prepare_task_switch(rq, prev, next);
3220
3221        mm = next->mm;
3222        oldmm = prev->active_mm;
3223        /*
3224         * For paravirt, this is coupled with an exit in switch_to to
3225         * combine the page table reload and the switch backend into
3226         * one hypercall.
3227         */
3228        arch_start_context_switch(prev);
3229
3230        /*
3231         * If mm is non-NULL, we pass through switch_mm(). If mm is
3232         * NULL, we will pass through mmdrop() in finish_task_switch().
3233         * Both of these contain the full memory barrier required by
3234         * membarrier after storing to rq->curr, before returning to
3235         * user-space.
3236         */
3237        if (!mm) {
3238                next->active_mm = oldmm;
3239                mmgrab(oldmm);
3240                enter_lazy_tlb(oldmm, next);
3241        } else
3242                switch_mm_irqs_off(oldmm, mm, next);
3243
3244        if (!prev->mm) {
3245                prev->active_mm = NULL;
3246                rq->prev_mm = oldmm;
3247        }
3248
3249        rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3250
3251        prepare_lock_switch(rq, next, rf);
3252
3253        /* Here we just switch the register state and the stack. */
3254        switch_to(prev, next, prev);
3255        barrier();
3256
3257        return finish_task_switch(prev);
3258}
3259
3260/*
3261 * nr_running and nr_context_switches:
3262 *
3263 * externally visible scheduler statistics: current number of runnable
3264 * threads, total number of context switches performed since bootup.
3265 */
3266unsigned long nr_running(void)
3267{
3268        unsigned long i, sum = 0;
3269
3270        for_each_online_cpu(i)
3271                sum += cpu_rq(i)->nr_running;
3272
3273        return sum;
3274}
3275
3276/*
3277 * Check if only the current task is running on the CPU.
3278 *
3279 * Caution: this function does not check that the caller has disabled
3280 * preemption, thus the result might have a time-of-check-to-time-of-use
3281 * race.  The caller is responsible to use it correctly, for example:
3282 *
3283 * - from a non-preemptible section (of course)
3284 *
3285 * - from a thread that is bound to a single CPU
3286 *
3287 * - in a loop with very short iterations (e.g. a polling loop)
3288 */
3289bool single_task_running(void)
3290{
3291        return raw_rq()->nr_running == 1;
3292}
3293EXPORT_SYMBOL(single_task_running);
3294
3295unsigned long long nr_context_switches(void)
3296{
3297        int i;
3298        unsigned long long sum = 0;
3299
3300        for_each_possible_cpu(i)
3301                sum += cpu_rq(i)->nr_switches;
3302
3303        return sum;
3304}
3305
3306/*
3307 * Consumers of these two interfaces, like for example the cpuidle menu
3308 * governor, are using nonsensical data. Preferring shallow idle state selection
3309 * for a CPU that has IO-wait which might not even end up running the task when
3310 * it does become runnable.
3311 */
3312
3313unsigned long nr_iowait_cpu(int cpu)
3314{
3315        return atomic_read(&cpu_rq(cpu)->nr_iowait);
3316}
3317
3318/*
3319 * IO-wait accounting, and how its mostly bollocks (on SMP).
3320 *
3321 * The idea behind IO-wait account is to account the idle time that we could
3322 * have spend running if it were not for IO. That is, if we were to improve the
3323 * storage performance, we'd have a proportional reduction in IO-wait time.
3324 *
3325 * This all works nicely on UP, where, when a task blocks on IO, we account
3326 * idle time as IO-wait, because if the storage were faster, it could've been
3327 * running and we'd not be idle.
3328 *
3329 * This has been extended to SMP, by doing the same for each CPU. This however
3330 * is broken.
3331 *
3332 * Imagine for instance the case where two tasks block on one CPU, only the one
3333 * CPU will have IO-wait accounted, while the other has regular idle. Even
3334 * though, if the storage were faster, both could've ran at the same time,
3335 * utilising both CPUs.
3336 *
3337 * This means, that when looking globally, the current IO-wait accounting on
3338 * SMP is a lower bound, by reason of under accounting.
3339 *
3340 * Worse, since the numbers are provided per CPU, they are sometimes
3341 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3342 * associated with any one particular CPU, it can wake to another CPU than it
3343 * blocked on. This means the per CPU IO-wait number is meaningless.
3344 *
3345 * Task CPU affinities can make all that even more 'interesting'.
3346 */
3347
3348unsigned long nr_iowait(void)
3349{
3350        unsigned long i, sum = 0;
3351
3352        for_each_possible_cpu(i)
3353                sum += nr_iowait_cpu(i);
3354
3355        return sum;
3356}
3357
3358#ifdef CONFIG_SMP
3359
3360/*
3361 * sched_exec - execve() is a valuable balancing opportunity, because at
3362 * this point the task has the smallest effective memory and cache footprint.
3363 */
3364void sched_exec(void)
3365{
3366        struct task_struct *p = current;
3367        unsigned long flags;
3368        int dest_cpu;
3369
3370        raw_spin_lock_irqsave(&p->pi_lock, flags);
3371        dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3372        if (dest_cpu == smp_processor_id())
3373                goto unlock;
3374
3375        if (likely(cpu_active(dest_cpu))) {
3376                struct migration_arg arg = { p, dest_cpu };
3377
3378                raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3379                stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3380                return;
3381        }
3382unlock:
3383        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3384}
3385
3386#endif
3387
3388DEFINE_PER_CPU(struct kernel_stat, kstat);
3389DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3390
3391EXPORT_PER_CPU_SYMBOL(kstat);
3392EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3393
3394/*
3395 * The function fair_sched_class.update_curr accesses the struct curr
3396 * and its field curr->exec_start; when called from task_sched_runtime(),
3397 * we observe a high rate of cache misses in practice.
3398 * Prefetching this data results in improved performance.
3399 */
3400static inline void prefetch_curr_exec_start(struct task_struct *p)
3401{
3402#ifdef CONFIG_FAIR_GROUP_SCHED
3403        struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3404#else
3405        struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3406#endif
3407        prefetch(curr);
3408        prefetch(&curr->exec_start);
3409}
3410
3411/*
3412 * Return accounted runtime for the task.
3413 * In case the task is currently running, return the runtime plus current's
3414 * pending runtime that have not been accounted yet.
3415 */
3416unsigned long long task_sched_runtime(struct task_struct *p)
3417{
3418        struct rq_flags rf;
3419        struct rq *rq;
3420        u64 ns;
3421
3422#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3423        /*
3424         * 64-bit doesn't need locks to atomically read a 64-bit value.
3425         * So we have a optimization chance when the task's delta_exec is 0.
3426         * Reading ->on_cpu is racy, but this is ok.
3427         *
3428         * If we race with it leaving CPU, we'll take a lock. So we're correct.
3429         * If we race with it entering CPU, unaccounted time is 0. This is
3430         * indistinguishable from the read occurring a few cycles earlier.
3431         * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3432         * been accounted, so we're correct here as well.
3433         */
3434        if (!p->on_cpu || !task_on_rq_queued(p))
3435                return p->se.sum_exec_runtime;
3436#endif
3437
3438        rq = task_rq_lock(p, &rf);
3439        /*
3440         * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3441         * project cycles that may never be accounted to this
3442         * thread, breaking clock_gettime().
3443         */
3444        if (task_current(rq, p) && task_on_rq_queued(p)) {
3445                prefetch_curr_exec_start(p);
3446                update_rq_clock(rq);
3447                p->sched_class->update_curr(rq);
3448        }
3449        ns = p->se.sum_exec_runtime;
3450        task_rq_unlock(rq, p, &rf);
3451
3452        return ns;
3453}
3454
3455/*
3456 * This function gets called by the timer code, with HZ frequency.
3457 * We call it with interrupts disabled.
3458 */
3459void scheduler_tick(void)
3460{
3461        int cpu = smp_processor_id();
3462        struct rq *rq = cpu_rq(cpu);
3463        struct task_struct *curr = rq->curr;
3464        struct rq_flags rf;
3465
3466        sched_clock_tick();
3467
3468        rq_lock(rq, &rf);
3469
3470        update_rq_clock(rq);
3471        curr->sched_class->task_tick(rq, curr, 0);
3472        calc_global_load_tick(rq);
3473        psi_task_tick(rq);
3474
3475        rq_unlock(rq, &rf);
3476
3477        perf_event_task_tick();
3478
3479#ifdef CONFIG_SMP
3480        rq->idle_balance = idle_cpu(cpu);
3481        trigger_load_balance(rq);
3482#endif
3483}
3484
3485#ifdef CONFIG_NO_HZ_FULL
3486
3487struct tick_work {
3488        int                     cpu;
3489        struct delayed_work     work;
3490};
3491
3492static struct tick_work __percpu *tick_work_cpu;
3493
3494static void sched_tick_remote(struct work_struct *work)
3495{
3496        struct delayed_work *dwork = to_delayed_work(work);
3497        struct tick_work *twork = container_of(dwork, struct tick_work, work);
3498        int cpu = twork->cpu;
3499        struct rq *rq = cpu_rq(cpu);
3500        struct task_struct *curr;
3501        struct rq_flags rf;
3502        u64 delta;
3503
3504        /*
3505         * Handle the tick only if it appears the remote CPU is running in full
3506         * dynticks mode. The check is racy by nature, but missing a tick or
3507         * having one too much is no big deal because the scheduler tick updates
3508         * statistics and checks timeslices in a time-independent way, regardless
3509         * of when exactly it is running.
3510         */
3511        if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3512                goto out_requeue;
3513
3514        rq_lock_irq(rq, &rf);
3515        curr = rq->curr;
3516        if (is_idle_task(curr))
3517                goto out_unlock;
3518
3519        update_rq_clock(rq);
3520        delta = rq_clock_task(rq) - curr->se.exec_start;
3521
3522        /*
3523         * Make sure the next tick runs within a reasonable
3524         * amount of time.
3525         */
3526        WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3527        curr->sched_class->task_tick(rq, curr, 0);
3528
3529out_unlock:
3530        rq_unlock_irq(rq, &rf);
3531
3532out_requeue:
3533        /*
3534         * Run the remote tick once per second (1Hz). This arbitrary
3535         * frequency is large enough to avoid overload but short enough
3536         * to keep scheduler internal stats reasonably up to date.
3537         */
3538        queue_delayed_work(system_unbound_wq, dwork, HZ);
3539}
3540
3541static void sched_tick_start(int cpu)
3542{
3543        struct tick_work *twork;
3544
3545        if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3546                return;
3547
3548        WARN_ON_ONCE(!tick_work_cpu);
3549
3550        twork = per_cpu_ptr(tick_work_cpu, cpu);
3551        twork->cpu = cpu;
3552        INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3553        queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3554}
3555
3556#ifdef CONFIG_HOTPLUG_CPU
3557static void sched_tick_stop(int cpu)
3558{
3559        struct tick_work *twork;
3560
3561        if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3562                return;
3563
3564        WARN_ON_ONCE(!tick_work_cpu);
3565
3566        twork = per_cpu_ptr(tick_work_cpu, cpu);
3567        cancel_delayed_work_sync(&twork->work);
3568}
3569#endif /* CONFIG_HOTPLUG_CPU */
3570
3571int __init sched_tick_offload_init(void)
3572{
3573        tick_work_cpu = alloc_percpu(struct tick_work);
3574        BUG_ON(!tick_work_cpu);
3575
3576        return 0;
3577}
3578
3579#else /* !CONFIG_NO_HZ_FULL */
3580static inline void sched_tick_start(int cpu) { }
3581static inline void sched_tick_stop(int cpu) { }
3582#endif
3583
3584#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3585                                defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3586/*
3587 * If the value passed in is equal to the current preempt count
3588 * then we just disabled preemption. Start timing the latency.
3589 */
3590static inline void preempt_latency_start(int val)
3591{
3592        if (preempt_count() == val) {
3593                unsigned long ip = get_lock_parent_ip();
3594#ifdef CONFIG_DEBUG_PREEMPT
3595                current->preempt_disable_ip = ip;
3596#endif
3597                trace_preempt_off(CALLER_ADDR0, ip);
3598        }
3599}
3600
3601void preempt_count_add(int val)
3602{
3603#ifdef CONFIG_DEBUG_PREEMPT
3604        /*
3605         * Underflow?
3606         */
3607        if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3608                return;
3609#endif
3610        __preempt_count_add(val);
3611#ifdef CONFIG_DEBUG_PREEMPT
3612        /*
3613         * Spinlock count overflowing soon?
3614         */
3615        DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3616                                PREEMPT_MASK - 10);
3617#endif
3618        preempt_latency_start(val);
3619}
3620EXPORT_SYMBOL(preempt_count_add);
3621NOKPROBE_SYMBOL(preempt_count_add);
3622
3623/*
3624 * If the value passed in equals to the current preempt count
3625 * then we just enabled preemption. Stop timing the latency.
3626 */
3627static inline void preempt_latency_stop(int val)
3628{
3629        if (preempt_count() == val)
3630                trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3631}
3632
3633void preempt_count_sub(int val)
3634{
3635#ifdef CONFIG_DEBUG_PREEMPT
3636        /*
3637         * Underflow?
3638         */
3639        if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3640                return;
3641        /*
3642         * Is the spinlock portion underflowing?
3643         */
3644        if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3645                        !(preempt_count() & PREEMPT_MASK)))
3646                return;
3647#endif
3648
3649        preempt_latency_stop(val);
3650        __preempt_count_sub(val);
3651}
3652EXPORT_SYMBOL(preempt_count_sub);
3653NOKPROBE_SYMBOL(preempt_count_sub);
3654
3655#else
3656static inline void preempt_latency_start(int val) { }
3657static inline void preempt_latency_stop(int val) { }
3658#endif
3659
3660static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3661{
3662#ifdef CONFIG_DEBUG_PREEMPT
3663        return p->preempt_disable_ip;
3664#else
3665        return 0;
3666#endif
3667}
3668
3669/*
3670 * Print scheduling while atomic bug:
3671 */
3672static noinline void __schedule_bug(struct task_struct *prev)
3673{
3674        /* Save this before calling printk(), since that will clobber it */
3675        unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3676
3677        if (oops_in_progress)
3678                return;
3679
3680        printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3681                prev->comm, prev->pid, preempt_count());
3682
3683        debug_show_held_locks(prev);
3684        print_modules();
3685        if (irqs_disabled())
3686                print_irqtrace_events(prev);
3687        if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3688            && in_atomic_preempt_off()) {
3689                pr_err("Preemption disabled at:");
3690                print_ip_sym(preempt_disable_ip);
3691                pr_cont("\n");
3692        }
3693        if (panic_on_warn)
3694                panic("scheduling while atomic\n");
3695
3696        dump_stack();
3697        add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3698}
3699
3700/*
3701 * Various schedule()-time debugging checks and statistics:
3702 */
3703static inline void schedule_debug(struct task_struct *prev)
3704{
3705#ifdef CONFIG_SCHED_STACK_END_CHECK
3706        if (task_stack_end_corrupted(prev))
3707                panic("corrupted stack end detected inside scheduler\n");
3708#endif
3709
3710        if (unlikely(in_atomic_preempt_off())) {
3711                __schedule_bug(prev);
3712                preempt_count_set(PREEMPT_DISABLED);
3713        }
3714        rcu_sleep_check();
3715
3716        profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3717
3718        schedstat_inc(this_rq()->sched_count);
3719}
3720
3721/*
3722 * Pick up the highest-prio task:
3723 */
3724static inline struct task_struct *
3725pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3726{
3727        const struct sched_class *class;
3728        struct task_struct *p;
3729
3730        /*
3731         * Optimization: we know that if all tasks are in the fair class we can
3732         * call that function directly, but only if the @prev task wasn't of a
3733         * higher scheduling class, because otherwise those loose the
3734         * opportunity to pull in more work from other CPUs.
3735         */
3736        if (likely((prev->sched_class == &idle_sched_class ||
3737                    prev->sched_class == &fair_sched_class) &&
3738                   rq->nr_running == rq->cfs.h_nr_running)) {
3739
3740                p = fair_sched_class.pick_next_task(rq, prev, rf);
3741                if (unlikely(p == RETRY_TASK))
3742                        goto again;
3743
3744                /* Assumes fair_sched_class->next == idle_sched_class */
3745                if (unlikely(!p))
3746                        p = idle_sched_class.pick_next_task(rq, prev, rf);
3747
3748                return p;
3749        }
3750
3751again:
3752        for_each_class(class) {
3753                p = class->pick_next_task(rq, prev, rf);
3754                if (p) {
3755                        if (unlikely(p == RETRY_TASK))
3756                                goto again;
3757                        return p;
3758                }
3759        }
3760
3761        /* The idle class should always have a runnable task: */
3762        BUG();
3763}
3764
3765/*
3766 * __schedule() is the main scheduler function.
3767 *
3768 * The main means of driving the scheduler and thus entering this function are:
3769 *
3770 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3771 *
3772 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3773 *      paths. For example, see arch/x86/entry_64.S.
3774 *
3775 *      To drive preemption between tasks, the scheduler sets the flag in timer
3776 *      interrupt handler scheduler_tick().
3777 *
3778 *   3. Wakeups don't really cause entry into schedule(). They add a
3779 *      task to the run-queue and that's it.
3780 *
3781 *      Now, if the new task added to the run-queue preempts the current
3782 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3783 *      called on the nearest possible occasion:
3784 *
3785 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3786 *
3787 *         - in syscall or exception context, at the next outmost
3788 *           preempt_enable(). (this might be as soon as the wake_up()'s
3789 *           spin_unlock()!)
3790 *
3791 *         - in IRQ context, return from interrupt-handler to
3792 *           preemptible context
3793 *
3794 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3795 *         then at the next:
3796 *
3797 *          - cond_resched() call
3798 *          - explicit schedule() call
3799 *          - return from syscall or exception to user-space
3800 *          - return from interrupt-handler to user-space
3801 *
3802 * WARNING: must be called with preemption disabled!
3803 */
3804static void __sched notrace __schedule(bool preempt)
3805{
3806        struct task_struct *prev, *next;
3807        unsigned long *switch_count;
3808        struct rq_flags rf;
3809        struct rq *rq;
3810        int cpu;
3811
3812        cpu = smp_processor_id();
3813        rq = cpu_rq(cpu);
3814        prev = rq->curr;
3815
3816        schedule_debug(prev);
3817
3818        if (sched_feat(HRTICK))
3819                hrtick_clear(rq);
3820
3821        local_irq_disable();
3822        rcu_note_context_switch(preempt);
3823
3824        /*
3825         * Make sure that signal_pending_state()->signal_pending() below
3826         * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3827         * done by the caller to avoid the race with signal_wake_up().
3828         *
3829         * The membarrier system call requires a full memory barrier
3830         * after coming from user-space, before storing to rq->curr.
3831         */
3832        rq_lock(rq, &rf);
3833        smp_mb__after_spinlock();
3834
3835        /* Promote REQ to ACT */
3836        rq->clock_update_flags <<= 1;
3837        update_rq_clock(rq);
3838
3839        switch_count = &prev->nivcsw;
3840        if (!preempt && prev->state) {
3841                if (signal_pending_state(prev->state, prev)) {
3842                        prev->state = TASK_RUNNING;
3843                } else {
3844                        deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3845
3846                        if (prev->in_iowait) {
3847                                atomic_inc(&rq->nr_iowait);
3848                                delayacct_blkio_start();
3849                        }
3850                }
3851                switch_count = &prev->nvcsw;
3852        }
3853
3854        next = pick_next_task(rq, prev, &rf);
3855        clear_tsk_need_resched(prev);
3856        clear_preempt_need_resched();
3857
3858        if (likely(prev != next)) {
3859                rq->nr_switches++;
3860                rq->curr = next;
3861                /*
3862                 * The membarrier system call requires each architecture
3863                 * to have a full memory barrier after updating
3864                 * rq->curr, before returning to user-space.
3865                 *
3866                 * Here are the schemes providing that barrier on the
3867                 * various architectures:
3868                 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3869                 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3870                 * - finish_lock_switch() for weakly-ordered
3871                 *   architectures where spin_unlock is a full barrier,
3872                 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3873                 *   is a RELEASE barrier),
3874                 */
3875                ++*switch_count;
3876
3877                trace_sched_switch(preempt, prev, next);
3878
3879                /* Also unlocks the rq: */
3880                rq = context_switch(rq, prev, next, &rf);
3881        } else {
3882                rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3883                rq_unlock_irq(rq, &rf);
3884        }
3885
3886        balance_callback(rq);
3887}
3888
3889void __noreturn do_task_dead(void)
3890{
3891        /* Causes final put_task_struct in finish_task_switch(): */
3892        set_special_state(TASK_DEAD);
3893
3894        /* Tell freezer to ignore us: */
3895        current->flags |= PF_NOFREEZE;
3896
3897        __schedule(false);
3898        BUG();
3899
3900        /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3901        for (;;)
3902                cpu_relax();
3903}
3904
3905static inline void sched_submit_work(struct task_struct *tsk)
3906{
3907        if (!tsk->state)
3908                return;
3909
3910        /*
3911         * If a worker went to sleep, notify and ask workqueue whether
3912         * it wants to wake up a task to maintain concurrency.
3913         * As this function is called inside the schedule() context,
3914         * we disable preemption to avoid it calling schedule() again
3915         * in the possible wakeup of a kworker.
3916         */
3917        if (tsk->flags & PF_WQ_WORKER) {
3918                preempt_disable();
3919                wq_worker_sleeping(tsk);
3920                preempt_enable_no_resched();
3921        }
3922
3923        if (tsk_is_pi_blocked(tsk))
3924                return;
3925
3926        /*
3927         * If we are going to sleep and we have plugged IO queued,
3928         * make sure to submit it to avoid deadlocks.
3929         */
3930        if (blk_needs_flush_plug(tsk))
3931                blk_schedule_flush_plug(tsk);
3932}
3933
3934static void sched_update_worker(struct task_struct *tsk)
3935{
3936        if (tsk->flags & PF_WQ_WORKER)
3937                wq_worker_running(tsk);
3938}
3939
3940asmlinkage __visible void __sched schedule(void)
3941{
3942        struct task_struct *tsk = current;
3943
3944        sched_submit_work(tsk);
3945        do {
3946                preempt_disable();
3947                __schedule(false);
3948                sched_preempt_enable_no_resched();
3949        } while (need_resched());
3950        sched_update_worker(tsk);
3951}
3952EXPORT_SYMBOL(schedule);
3953
3954/*
3955 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3956 * state (have scheduled out non-voluntarily) by making sure that all
3957 * tasks have either left the run queue or have gone into user space.
3958 * As idle tasks do not do either, they must not ever be preempted
3959 * (schedule out non-voluntarily).
3960 *
3961 * schedule_idle() is similar to schedule_preempt_disable() except that it
3962 * never enables preemption because it does not call sched_submit_work().
3963 */
3964void __sched schedule_idle(void)
3965{
3966        /*
3967         * As this skips calling sched_submit_work(), which the idle task does
3968         * regardless because that function is a nop when the task is in a
3969         * TASK_RUNNING state, make sure this isn't used someplace that the
3970         * current task can be in any other state. Note, idle is always in the
3971         * TASK_RUNNING state.
3972         */
3973        WARN_ON_ONCE(current->state);
3974        do {
3975                __schedule(false);
3976        } while (need_resched());
3977}
3978
3979#ifdef CONFIG_CONTEXT_TRACKING
3980asmlinkage __visible void __sched schedule_user(void)
3981{
3982        /*
3983         * If we come here after a random call to set_need_resched(),
3984         * or we have been woken up remotely but the IPI has not yet arrived,
3985         * we haven't yet exited the RCU idle mode. Do it here manually until
3986         * we find a better solution.
3987         *
3988         * NB: There are buggy callers of this function.  Ideally we
3989         * should warn if prev_state != CONTEXT_USER, but that will trigger
3990         * too frequently to make sense yet.
3991         */
3992        enum ctx_state prev_state = exception_enter();
3993        schedule();
3994        exception_exit(prev_state);
3995}
3996#endif
3997
3998/**
3999 * schedule_preempt_disabled - called with preemption disabled
4000 *
4001 * Returns with preemption disabled. Note: preempt_count must be 1
4002 */
4003void __sched schedule_preempt_disabled(void)
4004{
4005        sched_preempt_enable_no_resched();
4006        schedule();
4007        preempt_disable();
4008}
4009
4010static void __sched notrace preempt_schedule_common(void)
4011{
4012        do {
4013                /*
4014                 * Because the function tracer can trace preempt_count_sub()
4015                 * and it also uses preempt_enable/disable_notrace(), if
4016                 * NEED_RESCHED is set, the preempt_enable_notrace() called
4017                 * by the function tracer will call this function again and
4018                 * cause infinite recursion.
4019                 *
4020                 * Preemption must be disabled here before the function
4021                 * tracer can trace. Break up preempt_disable() into two
4022                 * calls. One to disable preemption without fear of being
4023                 * traced. The other to still record the preemption latency,
4024                 * which can also be traced by the function tracer.
4025                 */
4026                preempt_disable_notrace();
4027                preempt_latency_start(1);
4028                __schedule(true);
4029                preempt_latency_stop(1);
4030                preempt_enable_no_resched_notrace();
4031
4032                /*
4033                 * Check again in case we missed a preemption opportunity
4034                 * between schedule and now.
4035                 */
4036        } while (need_resched());
4037}
4038
4039#ifdef CONFIG_PREEMPT
4040/*
4041 * this is the entry point to schedule() from in-kernel preemption
4042 * off of preempt_enable. Kernel preemptions off return from interrupt
4043 * occur there and call schedule directly.
4044 */
4045asmlinkage __visible void __sched notrace preempt_schedule(void)
4046{
4047        /*
4048         * If there is a non-zero preempt_count or interrupts are disabled,
4049         * we do not want to preempt the current task. Just return..
4050         */
4051        if (likely(!preemptible()))
4052                return;
4053
4054        preempt_schedule_common();
4055}
4056NOKPROBE_SYMBOL(preempt_schedule);
4057EXPORT_SYMBOL(preempt_schedule);
4058
4059/**
4060 * preempt_schedule_notrace - preempt_schedule called by tracing
4061 *
4062 * The tracing infrastructure uses preempt_enable_notrace to prevent
4063 * recursion and tracing preempt enabling caused by the tracing
4064 * infrastructure itself. But as tracing can happen in areas coming
4065 * from userspace or just about to enter userspace, a preempt enable
4066 * can occur before user_exit() is called. This will cause the scheduler
4067 * to be called when the system is still in usermode.
4068 *
4069 * To prevent this, the preempt_enable_notrace will use this function
4070 * instead of preempt_schedule() to exit user context if needed before
4071 * calling the scheduler.
4072 */
4073asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4074{
4075        enum ctx_state prev_ctx;
4076
4077        if (likely(!preemptible()))
4078                return;
4079
4080        do {
4081                /*
4082                 * Because the function tracer can trace preempt_count_sub()
4083                 * and it also uses preempt_enable/disable_notrace(), if
4084                 * NEED_RESCHED is set, the preempt_enable_notrace() called
4085                 * by the function tracer will call this function again and
4086                 * cause infinite recursion.
4087                 *
4088                 * Preemption must be disabled here before the function
4089                 * tracer can trace. Break up preempt_disable() into two
4090                 * calls. One to disable preemption without fear of being
4091                 * traced. The other to still record the preemption latency,
4092                 * which can also be traced by the function tracer.
4093                 */
4094                preempt_disable_notrace();
4095                preempt_latency_start(1);
4096                /*
4097                 * Needs preempt disabled in case user_exit() is traced
4098                 * and the tracer calls preempt_enable_notrace() causing
4099                 * an infinite recursion.
4100                 */
4101                prev_ctx = exception_enter();
4102                __schedule(true);
4103                exception_exit(prev_ctx);
4104
4105                preempt_latency_stop(1);
4106                preempt_enable_no_resched_notrace();
4107        } while (need_resched());
4108}
4109EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4110
4111#endif /* CONFIG_PREEMPT */
4112
4113/*
4114 * this is the entry point to schedule() from kernel preemption
4115 * off of irq context.
4116 * Note, that this is called and return with irqs disabled. This will
4117 * protect us against recursive calling from irq.
4118 */
4119asmlinkage __visible void __sched preempt_schedule_irq(void)
4120{
4121        enum ctx_state prev_state;
4122
4123        /* Catch callers which need to be fixed */
4124        BUG_ON(preempt_count() || !irqs_disabled());
4125
4126        prev_state = exception_enter();
4127
4128        do {
4129                preempt_disable();
4130                local_irq_enable();
4131                __schedule(true);
4132                local_irq_disable();
4133                sched_preempt_enable_no_resched();
4134        } while (need_resched());
4135
4136        exception_exit(prev_state);
4137}
4138
4139int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4140                          void *key)
4141{
4142        return try_to_wake_up(curr->private, mode, wake_flags);
4143}
4144EXPORT_SYMBOL(default_wake_function);
4145
4146#ifdef CONFIG_RT_MUTEXES
4147
4148static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4149{
4150        if (pi_task)
4151                prio = min(prio, pi_task->prio);
4152
4153        return prio;
4154}
4155
4156static inline int rt_effective_prio(struct task_struct *p, int prio)
4157{
4158        struct task_struct *pi_task = rt_mutex_get_top_task(p);
4159
4160        return __rt_effective_prio(pi_task, prio);
4161}
4162
4163/*
4164 * rt_mutex_setprio - set the current priority of a task
4165 * @p: task to boost
4166 * @pi_task: donor task
4167 *
4168 * This function changes the 'effective' priority of a task. It does
4169 * not touch ->normal_prio like __setscheduler().
4170 *
4171 * Used by the rt_mutex code to implement priority inheritance
4172 * logic. Call site only calls if the priority of the task changed.
4173 */
4174void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4175{
4176        int prio, oldprio, queued, running, queue_flag =
4177                DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4178        const struct sched_class *prev_class;
4179        struct rq_flags rf;
4180        struct rq *rq;
4181
4182        /* XXX used to be waiter->prio, not waiter->task->prio */
4183        prio = __rt_effective_prio(pi_task, p->normal_prio);
4184
4185        /*
4186         * If nothing changed; bail early.
4187         */
4188        if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4189                return;
4190
4191        rq = __task_rq_lock(p, &rf);
4192        update_rq_clock(rq);
4193        /*
4194         * Set under pi_lock && rq->lock, such that the value can be used under
4195         * either lock.
4196         *
4197         * Note that there is loads of tricky to make this pointer cache work
4198         * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4199         * ensure a task is de-boosted (pi_task is set to NULL) before the
4200         * task is allowed to run again (and can exit). This ensures the pointer
4201         * points to a blocked task -- which guaratees the task is present.
4202         */
4203        p->pi_top_task = pi_task;
4204
4205        /*
4206         * For FIFO/RR we only need to set prio, if that matches we're done.
4207         */
4208        if (prio == p->prio && !dl_prio(prio))
4209                goto out_unlock;
4210
4211        /*
4212         * Idle task boosting is a nono in general. There is one
4213         * exception, when PREEMPT_RT and NOHZ is active:
4214         *
4215         * The idle task calls get_next_timer_interrupt() and holds
4216         * the timer wheel base->lock on the CPU and another CPU wants
4217         * to access the timer (probably to cancel it). We can safely
4218         * ignore the boosting request, as the idle CPU runs this code
4219         * with interrupts disabled and will complete the lock
4220         * protected section without being interrupted. So there is no
4221         * real need to boost.
4222         */
4223        if (unlikely(p == rq->idle)) {
4224                WARN_ON(p != rq->curr);
4225                WARN_ON(p->pi_blocked_on);
4226                goto out_unlock;
4227        }
4228
4229        trace_sched_pi_setprio(p, pi_task);
4230        oldprio = p->prio;
4231
4232        if (oldprio == prio)
4233                queue_flag &= ~DEQUEUE_MOVE;
4234
4235        prev_class = p->sched_class;
4236        queued = task_on_rq_queued(p);
4237        running = task_current(rq, p);
4238        if (queued)
4239                dequeue_task(rq, p, queue_flag);
4240        if (running)
4241                put_prev_task(rq, p);
4242
4243        /*
4244         * Boosting condition are:
4245         * 1. -rt task is running and holds mutex A
4246         *      --> -dl task blocks on mutex A
4247         *
4248         * 2. -dl task is running and holds mutex A
4249         *      --> -dl task blocks on mutex A and could preempt the
4250         *          running task
4251         */
4252        if (dl_prio(prio)) {
4253                if (!dl_prio(p->normal_prio) ||
4254                    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4255                        p->dl.dl_boosted = 1;
4256                        queue_flag |= ENQUEUE_REPLENISH;
4257                } else
4258                        p->dl.dl_boosted = 0;
4259                p->sched_class = &dl_sched_class;
4260        } else if (rt_prio(prio)) {
4261                if (dl_prio(oldprio))
4262                        p->dl.dl_boosted = 0;
4263                if (oldprio < prio)
4264                        queue_flag |= ENQUEUE_HEAD;
4265                p->sched_class = &rt_sched_class;
4266        } else {
4267                if (dl_prio(oldprio))
4268                        p->dl.dl_boosted = 0;
4269                if (rt_prio(oldprio))
4270                        p->rt.timeout = 0;
4271                p->sched_class = &fair_sched_class;
4272        }
4273
4274        p->prio = prio;
4275
4276        if (queued)
4277                enqueue_task(rq, p, queue_flag);
4278        if (running)
4279                set_curr_task(rq, p);
4280
4281        check_class_changed(rq, p, prev_class, oldprio);
4282out_unlock:
4283        /* Avoid rq from going away on us: */
4284        preempt_disable();
4285        __task_rq_unlock(rq, &rf);
4286
4287        balance_callback(rq);
4288        preempt_enable();
4289}
4290#else
4291static inline int rt_effective_prio(struct task_struct *p, int prio)
4292{
4293        return prio;
4294}
4295#endif
4296
4297void set_user_nice(struct task_struct *p, long nice)
4298{
4299        bool queued, running;
4300        int old_prio, delta;
4301        struct rq_flags rf;
4302        struct rq *rq;
4303
4304        if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4305                return;
4306        /*
4307         * We have to be careful, if called from sys_setpriority(),
4308         * the task might be in the middle of scheduling on another CPU.
4309         */
4310        rq = task_rq_lock(p, &rf);
4311        update_rq_clock(rq);
4312
4313        /*
4314         * The RT priorities are set via sched_setscheduler(), but we still
4315         * allow the 'normal' nice value to be set - but as expected
4316         * it wont have any effect on scheduling until the task is
4317         * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4318         */
4319        if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4320                p->static_prio = NICE_TO_PRIO(nice);
4321                goto out_unlock;
4322        }
4323        queued = task_on_rq_queued(p);
4324        running = task_current(rq, p);
4325        if (queued)
4326                dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4327        if (running)
4328                put_prev_task(rq, p);
4329
4330        p->static_prio = NICE_TO_PRIO(nice);
4331        set_load_weight(p, true);
4332        old_prio = p->prio;
4333        p->prio = effective_prio(p);
4334        delta = p->prio - old_prio;
4335
4336        if (queued) {
4337                enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4338                /*
4339                 * If the task increased its priority or is running and
4340                 * lowered its priority, then reschedule its CPU:
4341                 */
4342                if (delta < 0 || (delta > 0 && task_running(rq, p)))
4343                        resched_curr(rq);
4344        }
4345        if (running)
4346                set_curr_task(rq, p);
4347out_unlock:
4348        task_rq_unlock(rq, p, &rf);
4349}
4350EXPORT_SYMBOL(set_user_nice);
4351
4352/*
4353 * can_nice - check if a task can reduce its nice value
4354 * @p: task
4355 * @nice: nice value
4356 */
4357int can_nice(const struct task_struct *p, const int nice)
4358{
4359        /* Convert nice value [19,-20] to rlimit style value [1,40]: */
4360        int nice_rlim = nice_to_rlimit(nice);
4361
4362        return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4363                capable(CAP_SYS_NICE));
4364}
4365
4366#ifdef __ARCH_WANT_SYS_NICE
4367
4368/*
4369 * sys_nice - change the priority of the current process.
4370 * @increment: priority increment
4371 *
4372 * sys_setpriority is a more generic, but much slower function that
4373 * does similar things.
4374 */
4375SYSCALL_DEFINE1(nice, int, increment)
4376{
4377        long nice, retval;
4378
4379        /*
4380         * Setpriority might change our priority at the same moment.
4381         * We don't have to worry. Conceptually one call occurs first
4382         * and we have a single winner.
4383         */
4384        increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4385        nice = task_nice(current) + increment;
4386
4387        nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4388        if (increment < 0 && !can_nice(current, nice))
4389                return -EPERM;
4390
4391        retval = security_task_setnice(current, nice);
4392        if (retval)
4393                return retval;
4394
4395        set_user_nice(current, nice);
4396        return 0;
4397}
4398
4399#endif
4400
4401/**
4402 * task_prio - return the priority value of a given task.
4403 * @p: the task in question.
4404 *
4405 * Return: The priority value as seen by users in /proc.
4406 * RT tasks are offset by -200. Normal tasks are centered
4407 * around 0, value goes from -16 to +15.
4408 */
4409int task_prio(const struct task_struct *p)
4410{
4411        return p->prio - MAX_RT_PRIO;
4412}
4413
4414/**
4415 * idle_cpu - is a given CPU idle currently?
4416 * @cpu: the processor in question.
4417 *
4418 * Return: 1 if the CPU is currently idle. 0 otherwise.
4419 */
4420int idle_cpu(int cpu)
4421{
4422        struct rq *rq = cpu_rq(cpu);
4423
4424        if (rq->curr != rq->idle)
4425                return 0;
4426
4427        if (rq->nr_running)
4428                return 0;
4429
4430#ifdef CONFIG_SMP
4431        if (!llist_empty(&rq->wake_list))
4432                return 0;
4433#endif
4434
4435        return 1;
4436}
4437
4438/**
4439 * available_idle_cpu - is a given CPU idle for enqueuing work.
4440 * @cpu: the CPU in question.
4441 *
4442 * Return: 1 if the CPU is currently idle. 0 otherwise.
4443 */
4444int available_idle_cpu(int cpu)
4445{
4446        if (!idle_cpu(cpu))
4447                return 0;
4448
4449        if (vcpu_is_preempted(cpu))
4450                return 0;
4451
4452        return 1;
4453}
4454
4455/**
4456 * idle_task - return the idle task for a given CPU.
4457 * @cpu: the processor in question.
4458 *
4459 * Return: The idle task for the CPU @cpu.
4460 */
4461struct task_struct *idle_task(int cpu)
4462{
4463        return cpu_rq(cpu)->idle;
4464}
4465
4466/**
4467 * find_process_by_pid - find a process with a matching PID value.
4468 * @pid: the pid in question.
4469 *
4470 * The task of @pid, if found. %NULL otherwise.
4471 */
4472static struct task_struct *find_process_by_pid(pid_t pid)
4473{
4474        return pid ? find_task_by_vpid(pid) : current;
4475}
4476
4477/*
4478 * sched_setparam() passes in -1 for its policy, to let the functions
4479 * it calls know not to change it.
4480 */
4481#define SETPARAM_POLICY -1
4482
4483static void __setscheduler_params(struct task_struct *p,
4484                const struct sched_attr *attr)
4485{
4486        int policy = attr->sched_policy;
4487
4488        if (policy == SETPARAM_POLICY)
4489                policy = p->policy;
4490
4491        p->policy = policy;
4492
4493        if (dl_policy(policy))
4494                __setparam_dl(p, attr);
4495        else if (fair_policy(policy))
4496                p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4497
4498        /*
4499         * __sched_setscheduler() ensures attr->sched_priority == 0 when
4500         * !rt_policy. Always setting this ensures that things like
4501         * getparam()/getattr() don't report silly values for !rt tasks.
4502         */
4503        p->rt_priority = attr->sched_priority;
4504        p->normal_prio = normal_prio(p);
4505        set_load_weight(p, true);
4506}
4507
4508/* Actually do priority change: must hold pi & rq lock. */
4509static void __setscheduler(struct rq *rq, struct task_struct *p,
4510                           const struct sched_attr *attr, bool keep_boost)
4511{
4512        /*
4513         * If params can't change scheduling class changes aren't allowed
4514         * either.
4515         */
4516        if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4517                return;
4518
4519        __setscheduler_params(p, attr);
4520
4521        /*
4522         * Keep a potential priority boosting if called from
4523         * sched_setscheduler().
4524         */
4525        p->prio = normal_prio(p);
4526        if (keep_boost)
4527                p->prio = rt_effective_prio(p, p->prio);
4528
4529        if (dl_prio(p->prio))
4530                p->sched_class = &dl_sched_class;
4531        else if (rt_prio(p->prio))
4532                p->sched_class = &rt_sched_class;
4533        else
4534                p->sched_class = &fair_sched_class;
4535}
4536
4537/*
4538 * Check the target process has a UID that matches the current process's:
4539 */
4540static bool check_same_owner(struct task_struct *p)
4541{
4542        const struct cred *cred = current_cred(), *pcred;
4543        bool match;
4544
4545        rcu_read_lock();
4546        pcred = __task_cred(p);
4547        match = (uid_eq(cred->euid, pcred->euid) ||
4548                 uid_eq(cred->euid, pcred->uid));
4549        rcu_read_unlock();
4550        return match;
4551}
4552
4553static int __sched_setscheduler(struct task_struct *p,
4554                                const struct sched_attr *attr,
4555                                bool user, bool pi)
4556{
4557        int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4558                      MAX_RT_PRIO - 1 - attr->sched_priority;
4559        int retval, oldprio, oldpolicy = -1, queued, running;
4560        int new_effective_prio, policy = attr->sched_policy;
4561        const struct sched_class *prev_class;
4562        struct rq_flags rf;
4563        int reset_on_fork;
4564        int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4565        struct rq *rq;
4566
4567        /* The pi code expects interrupts enabled */
4568        BUG_ON(pi && in_interrupt());
4569recheck:
4570        /* Double check policy once rq lock held: */
4571        if (policy < 0) {
4572                reset_on_fork = p->sched_reset_on_fork;
4573                policy = oldpolicy = p->policy;
4574        } else {
4575                reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4576
4577                if (!valid_policy(policy))
4578                        return -EINVAL;
4579        }
4580
4581        if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4582                return -EINVAL;
4583
4584        /*
4585         * Valid priorities for SCHED_FIFO and SCHED_RR are
4586         * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4587         * SCHED_BATCH and SCHED_IDLE is 0.
4588         */
4589        if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4590            (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4591                return -EINVAL;
4592        if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4593            (rt_policy(policy) != (attr->sched_priority != 0)))
4594                return -EINVAL;
4595
4596        /*
4597         * Allow unprivileged RT tasks to decrease priority:
4598         */
4599        if (user && !capable(CAP_SYS_NICE)) {
4600                if (fair_policy(policy)) {
4601                        if (attr->sched_nice < task_nice(p) &&
4602                            !can_nice(p, attr->sched_nice))
4603                                return -EPERM;
4604                }
4605
4606                if (rt_policy(policy)) {
4607                        unsigned long rlim_rtprio =
4608                                        task_rlimit(p, RLIMIT_RTPRIO);
4609
4610                        /* Can't set/change the rt policy: */
4611                        if (policy != p->policy && !rlim_rtprio)
4612                                return -EPERM;
4613
4614                        /* Can't increase priority: */
4615                        if (attr->sched_priority > p->rt_priority &&
4616                            attr->sched_priority > rlim_rtprio)
4617                                return -EPERM;
4618                }
4619
4620                 /*
4621                  * Can't set/change SCHED_DEADLINE policy at all for now
4622                  * (safest behavior); in the future we would like to allow
4623                  * unprivileged DL tasks to increase their relative deadline
4624                  * or reduce their runtime (both ways reducing utilization)
4625                  */
4626                if (dl_policy(policy))
4627                        return -EPERM;
4628
4629                /*
4630                 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4631                 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4632                 */
4633                if (task_has_idle_policy(p) && !idle_policy(policy)) {
4634                        if (!can_nice(p, task_nice(p)))
4635                                return -EPERM;
4636                }
4637
4638                /* Can't change other user's priorities: */
4639                if (!check_same_owner(p))
4640                        return -EPERM;
4641
4642                /* Normal users shall not reset the sched_reset_on_fork flag: */
4643                if (p->sched_reset_on_fork && !reset_on_fork)
4644                        return -EPERM;
4645        }
4646
4647        if (user) {
4648                if (attr->sched_flags & SCHED_FLAG_SUGOV)
4649                        return -EINVAL;
4650
4651                retval = security_task_setscheduler(p);
4652                if (retval)
4653                        return retval;
4654        }
4655
4656        /* Update task specific "requested" clamps */
4657        if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4658                retval = uclamp_validate(p, attr);
4659                if (retval)
4660                        return retval;
4661        }
4662
4663        /*
4664         * Make sure no PI-waiters arrive (or leave) while we are
4665         * changing the priority of the task:
4666         *
4667         * To be able to change p->policy safely, the appropriate
4668         * runqueue lock must be held.
4669         */
4670        rq = task_rq_lock(p, &rf);
4671        update_rq_clock(rq);
4672
4673        /*
4674         * Changing the policy of the stop threads its a very bad idea:
4675         */
4676        if (p == rq->stop) {
4677                task_rq_unlock(rq, p, &rf);
4678                return -EINVAL;
4679        }
4680
4681        /*
4682         * If not changing anything there's no need to proceed further,
4683         * but store a possible modification of reset_on_fork.
4684         */
4685        if (unlikely(policy == p->policy)) {
4686                if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4687                        goto change;
4688                if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4689                        goto change;
4690                if (dl_policy(policy) && dl_param_changed(p, attr))
4691                        goto change;
4692                if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4693                        goto change;
4694
4695                p->sched_reset_on_fork = reset_on_fork;
4696                task_rq_unlock(rq, p, &rf);
4697                return 0;
4698        }
4699change:
4700
4701        if (user) {
4702#ifdef CONFIG_RT_GROUP_SCHED
4703                /*
4704                 * Do not allow realtime tasks into groups that have no runtime
4705                 * assigned.
4706                 */
4707                if (rt_bandwidth_enabled() && rt_policy(policy) &&
4708                                task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4709                                !task_group_is_autogroup(task_group(p))) {
4710                        task_rq_unlock(rq, p, &rf);
4711                        return -EPERM;
4712                }
4713#endif
4714#ifdef CONFIG_SMP
4715                if (dl_bandwidth_enabled() && dl_policy(policy) &&
4716                                !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4717                        cpumask_t *span = rq->rd->span;
4718
4719                        /*
4720                         * Don't allow tasks with an affinity mask smaller than
4721                         * the entire root_domain to become SCHED_DEADLINE. We
4722                         * will also fail if there's no bandwidth available.
4723                         */
4724                        if (!cpumask_subset(span, p->cpus_ptr) ||
4725                            rq->rd->dl_bw.bw == 0) {
4726                                task_rq_unlock(rq, p, &rf);
4727                                return -EPERM;
4728                        }
4729                }
4730#endif
4731        }
4732
4733        /* Re-check policy now with rq lock held: */
4734        if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4735                policy = oldpolicy = -1;
4736                task_rq_unlock(rq, p, &rf);
4737                goto recheck;
4738        }
4739
4740        /*
4741         * If setscheduling to SCHED_DEADLINE (or changing the parameters
4742         * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4743         * is available.
4744         */
4745        if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4746                task_rq_unlock(rq, p, &rf);
4747                return -EBUSY;
4748        }
4749
4750        p->sched_reset_on_fork = reset_on_fork;
4751        oldprio = p->prio;
4752
4753        if (pi) {
4754                /*
4755                 * Take priority boosted tasks into account. If the new
4756                 * effective priority is unchanged, we just store the new
4757                 * normal parameters and do not touch the scheduler class and
4758                 * the runqueue. This will be done when the task deboost
4759                 * itself.
4760                 */
4761                new_effective_prio = rt_effective_prio(p, newprio);
4762                if (new_effective_prio == oldprio)
4763                        queue_flags &= ~DEQUEUE_MOVE;
4764        }
4765
4766        queued = task_on_rq_queued(p);
4767        running = task_current(rq, p);
4768        if (queued)
4769                dequeue_task(rq, p, queue_flags);
4770        if (running)
4771                put_prev_task(rq, p);
4772
4773        prev_class = p->sched_class;
4774
4775        __setscheduler(rq, p, attr, pi);
4776        __setscheduler_uclamp(p, attr);
4777
4778        if (queued) {
4779                /*
4780                 * We enqueue to tail when the priority of a task is
4781                 * increased (user space view).
4782                 */
4783                if (oldprio < p->prio)
4784                        queue_flags |= ENQUEUE_HEAD;
4785
4786                enqueue_task(rq, p, queue_flags);
4787        }
4788        if (running)
4789                set_curr_task(rq, p);
4790
4791        check_class_changed(rq, p, prev_class, oldprio);
4792
4793        /* Avoid rq from going away on us: */
4794        preempt_disable();
4795        task_rq_unlock(rq, p, &rf);
4796
4797        if (pi)
4798                rt_mutex_adjust_pi(p);
4799
4800        /* Run balance callbacks after we've adjusted the PI chain: */
4801        balance_callback(rq);
4802        preempt_enable();
4803
4804        return 0;
4805}
4806
4807static int _sched_setscheduler(struct task_struct *p, int policy,
4808                               const struct sched_param *param, bool check)
4809{
4810        struct sched_attr attr = {
4811                .sched_policy   = policy,
4812                .sched_priority = param->sched_priority,
4813                .sched_nice     = PRIO_TO_NICE(p->static_prio),
4814        };
4815
4816        /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4817        if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4818                attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4819                policy &= ~SCHED_RESET_ON_FORK;
4820                attr.sched_policy = policy;
4821        }
4822
4823        return __sched_setscheduler(p, &attr, check, true);
4824}
4825/**
4826 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4827 * @p: the task in question.
4828 * @policy: new policy.
4829 * @param: structure containing the new RT priority.
4830 *
4831 * Return: 0 on success. An error code otherwise.
4832 *
4833 * NOTE that the task may be already dead.
4834 */
4835int sched_setscheduler(struct task_struct *p, int policy,
4836                       const struct sched_param *param)
4837{
4838        return _sched_setscheduler(p, policy, param, true);
4839}
4840EXPORT_SYMBOL_GPL(sched_setscheduler);
4841
4842int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4843{
4844        return __sched_setscheduler(p, attr, true, true);
4845}
4846EXPORT_SYMBOL_GPL(sched_setattr);
4847
4848int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4849{
4850        return __sched_setscheduler(p, attr, false, true);
4851}
4852
4853/**
4854 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4855 * @p: the task in question.
4856 * @policy: new policy.
4857 * @param: structure containing the new RT priority.
4858 *
4859 * Just like sched_setscheduler, only don't bother checking if the
4860 * current context has permission.  For example, this is needed in
4861 * stop_machine(): we create temporary high priority worker threads,
4862 * but our caller might not have that capability.
4863 *
4864 * Return: 0 on success. An error code otherwise.
4865 */
4866int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4867                               const struct sched_param *param)
4868{
4869        return _sched_setscheduler(p, policy, param, false);
4870}
4871EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4872
4873static int
4874do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4875{
4876        struct sched_param lparam;
4877        struct task_struct *p;
4878        int retval;
4879
4880        if (!param || pid < 0)
4881                return -EINVAL;
4882        if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4883                return -EFAULT;
4884
4885        rcu_read_lock();
4886        retval = -ESRCH;
4887        p = find_process_by_pid(pid);
4888        if (p != NULL)
4889                retval = sched_setscheduler(p, policy, &lparam);
4890        rcu_read_unlock();
4891
4892        return retval;
4893}
4894
4895/*
4896 * Mimics kernel/events/core.c perf_copy_attr().
4897 */
4898static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4899{
4900        u32 size;
4901        int ret;
4902
4903        if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0))
4904                return -EFAULT;
4905
4906        /* Zero the full structure, so that a short copy will be nice: */
4907        memset(attr, 0, sizeof(*attr));
4908
4909        ret = get_user(size, &uattr->size);
4910        if (ret)
4911                return ret;
4912
4913        /* Bail out on silly large: */
4914        if (size > PAGE_SIZE)
4915                goto err_size;
4916
4917        /* ABI compatibility quirk: */
4918        if (!size)
4919                size = SCHED_ATTR_SIZE_VER0;
4920
4921        if (size < SCHED_ATTR_SIZE_VER0)
4922                goto err_size;
4923
4924        /*
4925         * If we're handed a bigger struct than we know of,
4926         * ensure all the unknown bits are 0 - i.e. new
4927         * user-space does not rely on any kernel feature
4928         * extensions we dont know about yet.
4929         */
4930        if (size > sizeof(*attr)) {
4931                unsigned char __user *addr;
4932                unsigned char __user *end;
4933                unsigned char val;
4934
4935                addr = (void __user *)uattr + sizeof(*attr);
4936                end  = (void __user *)uattr + size;
4937
4938                for (; addr < end; addr++) {
4939                        ret = get_user(val, addr);
4940                        if (ret)
4941                                return ret;
4942                        if (val)
4943                                goto err_size;
4944                }
4945                size = sizeof(*attr);
4946        }
4947
4948        ret = copy_from_user(attr, uattr, size);
4949        if (ret)
4950                return -EFAULT;
4951
4952        if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
4953            size < SCHED_ATTR_SIZE_VER1)
4954                return -EINVAL;
4955
4956        /*
4957         * XXX: Do we want to be lenient like existing syscalls; or do we want
4958         * to be strict and return an error on out-of-bounds values?
4959         */
4960        attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4961
4962        return 0;
4963
4964err_size:
4965        put_user(sizeof(*attr), &uattr->size);
4966        return -E2BIG;
4967}
4968
4969/**
4970 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4971 * @pid: the pid in question.
4972 * @policy: new policy.
4973 * @param: structure containing the new RT priority.
4974 *
4975 * Return: 0 on success. An error code otherwise.
4976 */
4977SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4978{
4979        if (policy < 0)
4980                return -EINVAL;
4981
4982        return do_sched_setscheduler(pid, policy, param);
4983}
4984
4985/**
4986 * sys_sched_setparam - set/change the RT priority of a thread
4987 * @pid: the pid in question.
4988 * @param: structure containing the new RT priority.
4989 *
4990 * Return: 0 on success. An error code otherwise.
4991 */
4992SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4993{
4994        return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4995}
4996
4997/**
4998 * sys_sched_setattr - same as above, but with extended sched_attr
4999 * @pid: the pid in question.
5000 * @uattr: structure containing the extended parameters.
5001 * @flags: for future extension.
5002 */
5003SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5004                               unsigned int, flags)
5005{
5006        struct sched_attr attr;
5007        struct task_struct *p;
5008        int retval;
5009
5010        if (!uattr || pid < 0 || flags)
5011                return -EINVAL;
5012
5013        retval = sched_copy_attr(uattr, &attr);
5014        if (retval)
5015                return retval;
5016
5017        if ((int)attr.sched_policy < 0)
5018                return -EINVAL;
5019        if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5020                attr.sched_policy = SETPARAM_POLICY;
5021
5022        rcu_read_lock();
5023        retval = -ESRCH;
5024        p = find_process_by_pid(pid);
5025        if (likely(p))
5026                get_task_struct(p);
5027        rcu_read_unlock();
5028
5029        if (likely(p)) {
5030                retval = sched_setattr(p, &attr);
5031                put_task_struct(p);
5032        }
5033
5034        return retval;
5035}
5036
5037/**
5038 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5039 * @pid: the pid in question.
5040 *
5041 * Return: On success, the policy of the thread. Otherwise, a negative error
5042 * code.
5043 */
5044SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5045{
5046        struct task_struct *p;
5047        int retval;
5048
5049        if (pid < 0)
5050                return -EINVAL;
5051
5052        retval = -ESRCH;
5053        rcu_read_lock();
5054        p = find_process_by_pid(pid);
5055        if (p) {
5056                retval = security_task_getscheduler(p);
5057                if (!retval)
5058                        retval = p->policy
5059                                | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5060        }
5061        rcu_read_unlock();
5062        return retval;
5063}
5064
5065/**
5066 * sys_sched_getparam - get the RT priority of a thread
5067 * @pid: the pid in question.
5068 * @param: structure containing the RT priority.
5069 *
5070 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5071 * code.
5072 */
5073SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5074{
5075        struct sched_param lp = { .sched_priority = 0 };
5076        struct task_struct *p;
5077        int retval;
5078
5079        if (!param || pid < 0)
5080                return -EINVAL;
5081
5082        rcu_read_lock();
5083        p = find_process_by_pid(pid);
5084        retval = -ESRCH;
5085        if (!p)
5086                goto out_unlock;
5087
5088        retval = security_task_getscheduler(p);
5089        if (retval)
5090                goto out_unlock;
5091
5092        if (task_has_rt_policy(p))
5093                lp.sched_priority = p->rt_priority;
5094        rcu_read_unlock();
5095
5096        /*
5097         * This one might sleep, we cannot do it with a spinlock held ...
5098         */
5099        retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5100
5101        return retval;
5102
5103out_unlock:
5104        rcu_read_unlock();
5105        return retval;
5106}
5107
5108/*
5109 * Copy the kernel size attribute structure (which might be larger
5110 * than what user-space knows about) to user-space.
5111 *
5112 * Note that all cases are valid: user-space buffer can be larger or
5113 * smaller than the kernel-space buffer. The usual case is that both
5114 * have the same size.
5115 */
5116static int
5117sched_attr_copy_to_user(struct sched_attr __user *uattr,
5118                        struct sched_attr *kattr,
5119                        unsigned int usize)
5120{
5121        unsigned int ksize = sizeof(*kattr);
5122
5123        if (!access_ok(uattr, usize))
5124                return -EFAULT;
5125
5126        /*
5127         * sched_getattr() ABI forwards and backwards compatibility:
5128         *
5129         * If usize == ksize then we just copy everything to user-space and all is good.
5130         *
5131         * If usize < ksize then we only copy as much as user-space has space for,
5132         * this keeps ABI compatibility as well. We skip the rest.
5133         *
5134         * If usize > ksize then user-space is using a newer version of the ABI,
5135         * which part the kernel doesn't know about. Just ignore it - tooling can
5136         * detect the kernel's knowledge of attributes from the attr->size value
5137         * which is set to ksize in this case.
5138         */
5139        kattr->size = min(usize, ksize);
5140
5141        if (copy_to_user(uattr, kattr, kattr->size))
5142                return -EFAULT;
5143
5144        return 0;
5145}
5146
5147/**
5148 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5149 * @pid: the pid in question.
5150 * @uattr: structure containing the extended parameters.
5151 * @usize: sizeof(attr) that user-space knows about, for forwards and backwards compatibility.
5152 * @flags: for future extension.
5153 */
5154SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5155                unsigned int, usize, unsigned int, flags)
5156{
5157        struct sched_attr kattr = { };
5158        struct task_struct *p;
5159        int retval;
5160
5161        if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5162            usize < SCHED_ATTR_SIZE_VER0 || flags)
5163                return -EINVAL;
5164
5165        rcu_read_lock();
5166        p = find_process_by_pid(pid);
5167        retval = -ESRCH;
5168        if (!p)
5169                goto out_unlock;
5170
5171        retval = security_task_getscheduler(p);
5172        if (retval)
5173                goto out_unlock;
5174
5175        kattr.sched_policy = p->policy;
5176        if (p->sched_reset_on_fork)
5177                kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5178        if (task_has_dl_policy(p))
5179                __getparam_dl(p, &kattr);
5180        else if (task_has_rt_policy(p))
5181                kattr.sched_priority = p->rt_priority;
5182        else
5183                kattr.sched_nice = task_nice(p);
5184
5185#ifdef CONFIG_UCLAMP_TASK
5186        kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5187        kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5188#endif
5189
5190        rcu_read_unlock();
5191
5192        return sched_attr_copy_to_user(uattr, &kattr, usize);
5193
5194out_unlock:
5195        rcu_read_unlock();
5196        return retval;
5197}
5198
5199long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5200{
5201        cpumask_var_t cpus_allowed, new_mask;
5202        struct task_struct *p;
5203        int retval;
5204
5205        rcu_read_lock();
5206
5207        p = find_process_by_pid(pid);
5208        if (!p) {
5209                rcu_read_unlock();
5210                return -ESRCH;
5211        }
5212
5213        /* Prevent p going away */
5214        get_task_struct(p);
5215        rcu_read_unlock();
5216
5217        if (p->flags & PF_NO_SETAFFINITY) {
5218                retval = -EINVAL;
5219                goto out_put_task;
5220        }
5221        if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5222                retval = -ENOMEM;
5223                goto out_put_task;
5224        }
5225        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5226                retval = -ENOMEM;
5227                goto out_free_cpus_allowed;
5228        }
5229        retval = -EPERM;
5230        if (!check_same_owner(p)) {
5231                rcu_read_lock();
5232                if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5233                        rcu_read_unlock();
5234                        goto out_free_new_mask;
5235                }
5236                rcu_read_unlock();
5237        }
5238
5239        retval = security_task_setscheduler(p);
5240        if (retval)
5241                goto out_free_new_mask;
5242
5243
5244        cpuset_cpus_allowed(p, cpus_allowed);
5245        cpumask_and(new_mask, in_mask, cpus_allowed);
5246
5247        /*
5248         * Since bandwidth control happens on root_domain basis,
5249         * if admission test is enabled, we only admit -deadline
5250         * tasks allowed to run on all the CPUs in the task's
5251         * root_domain.
5252         */
5253#ifdef CONFIG_SMP
5254        if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5255                rcu_read_lock();
5256                if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5257                        retval = -EBUSY;
5258                        rcu_read_unlock();
5259                        goto out_free_new_mask;
5260                }
5261                rcu_read_unlock();
5262        }
5263#endif
5264again:
5265        retval = __set_cpus_allowed_ptr(p, new_mask, true);
5266
5267        if (!retval) {
5268                cpuset_cpus_allowed(p, cpus_allowed);
5269                if (!cpumask_subset(new_mask, cpus_allowed)) {
5270                        /*
5271                         * We must have raced with a concurrent cpuset
5272                         * update. Just reset the cpus_allowed to the
5273                         * cpuset's cpus_allowed
5274                         */
5275                        cpumask_copy(new_mask, cpus_allowed);
5276                        goto again;
5277                }
5278        }
5279out_free_new_mask:
5280        free_cpumask_var(new_mask);
5281out_free_cpus_allowed:
5282        free_cpumask_var(cpus_allowed);
5283out_put_task:
5284        put_task_struct(p);
5285        return retval;
5286}
5287
5288static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5289                             struct cpumask *new_mask)
5290{
5291        if (len < cpumask_size())
5292                cpumask_clear(new_mask);
5293        else if (len > cpumask_size())
5294                len = cpumask_size();
5295
5296        return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5297}
5298
5299/**
5300 * sys_sched_setaffinity - set the CPU affinity of a process
5301 * @pid: pid of the process
5302 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5303 * @user_mask_ptr: user-space pointer to the new CPU mask
5304 *
5305 * Return: 0 on success. An error code otherwise.
5306 */
5307SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5308                unsigned long __user *, user_mask_ptr)
5309{
5310        cpumask_var_t new_mask;
5311        int retval;
5312
5313        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5314                return -ENOMEM;
5315
5316        retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5317        if (retval == 0)
5318                retval = sched_setaffinity(pid, new_mask);
5319        free_cpumask_var(new_mask);
5320        return retval;
5321}
5322
5323long sched_getaffinity(pid_t pid, struct cpumask *mask)
5324{
5325        struct task_struct *p;
5326        unsigned long flags;
5327        int retval;
5328
5329        rcu_read_lock();
5330
5331        retval = -ESRCH;
5332        p = find_process_by_pid(pid);
5333        if (!p)
5334                goto out_unlock;
5335
5336        retval = security_task_getscheduler(p);
5337        if (retval)
5338                goto out_unlock;
5339
5340        raw_spin_lock_irqsave(&p->pi_lock, flags);
5341        cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5342        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5343
5344out_unlock:
5345        rcu_read_unlock();
5346
5347        return retval;
5348}
5349
5350/**
5351 * sys_sched_getaffinity - get the CPU affinity of a process
5352 * @pid: pid of the process
5353 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5354 * @user_mask_ptr: user-space pointer to hold the current CPU mask
5355 *
5356 * Return: size of CPU mask copied to user_mask_ptr on success. An
5357 * error code otherwise.
5358 */
5359SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5360                unsigned long __user *, user_mask_ptr)
5361{
5362        int ret;
5363        cpumask_var_t mask;
5364
5365        if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5366                return -EINVAL;
5367        if (len & (sizeof(unsigned long)-1))
5368                return -EINVAL;
5369
5370        if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5371                return -ENOMEM;
5372
5373        ret = sched_getaffinity(pid, mask);
5374        if (ret == 0) {
5375                unsigned int retlen = min(len, cpumask_size());
5376
5377                if (copy_to_user(user_mask_ptr, mask, retlen))
5378                        ret = -EFAULT;
5379                else
5380                        ret = retlen;
5381        }
5382        free_cpumask_var(mask);
5383
5384        return ret;
5385}
5386
5387/**
5388 * sys_sched_yield - yield the current processor to other threads.
5389 *
5390 * This function yields the current CPU to other tasks. If there are no
5391 * other threads running on this CPU then this function will return.
5392 *
5393 * Return: 0.
5394 */
5395static void do_sched_yield(void)
5396{
5397        struct rq_flags rf;
5398        struct rq *rq;
5399
5400        rq = this_rq_lock_irq(&rf);
5401
5402        schedstat_inc(rq->yld_count);
5403        current->sched_class->yield_task(rq);
5404
5405        /*
5406         * Since we are going to call schedule() anyway, there's
5407         * no need to preempt or enable interrupts:
5408         */
5409        preempt_disable();
5410        rq_unlock(rq, &rf);
5411        sched_preempt_enable_no_resched();
5412
5413        schedule();
5414}
5415
5416SYSCALL_DEFINE0(sched_yield)
5417{
5418        do_sched_yield();
5419        return 0;
5420}
5421
5422#ifndef CONFIG_PREEMPT
5423int __sched _cond_resched(void)
5424{
5425        if (should_resched(0)) {
5426                preempt_schedule_common();
5427                return 1;
5428        }
5429        rcu_all_qs();
5430        return 0;
5431}
5432EXPORT_SYMBOL(_cond_resched);
5433#endif
5434
5435/*
5436 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5437 * call schedule, and on return reacquire the lock.
5438 *
5439 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5440 * operations here to prevent schedule() from being called twice (once via
5441 * spin_unlock(), once by hand).
5442 */
5443int __cond_resched_lock(spinlock_t *lock)
5444{
5445        int resched = should_resched(PREEMPT_LOCK_OFFSET);
5446        int ret = 0;
5447
5448        lockdep_assert_held(lock);
5449
5450        if (spin_needbreak(lock) || resched) {
5451                spin_unlock(lock);
5452                if (resched)
5453                        preempt_schedule_common();
5454                else
5455                        cpu_relax();
5456                ret = 1;
5457                spin_lock(lock);
5458        }
5459        return ret;
5460}
5461EXPORT_SYMBOL(__cond_resched_lock);
5462
5463/**
5464 * yield - yield the current processor to other threads.
5465 *
5466 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5467 *
5468 * The scheduler is at all times free to pick the calling task as the most
5469 * eligible task to run, if removing the yield() call from your code breaks
5470 * it, its already broken.
5471 *
5472 * Typical broken usage is:
5473 *
5474 * while (!event)
5475 *      yield();
5476 *
5477 * where one assumes that yield() will let 'the other' process run that will
5478 * make event true. If the current task is a SCHED_FIFO task that will never
5479 * happen. Never use yield() as a progress guarantee!!
5480 *
5481 * If you want to use yield() to wait for something, use wait_event().
5482 * If you want to use yield() to be 'nice' for others, use cond_resched().
5483 * If you still want to use yield(), do not!
5484 */
5485void __sched yield(void)
5486{
5487        set_current_state(TASK_RUNNING);
5488        do_sched_yield();
5489}
5490EXPORT_SYMBOL(yield);
5491
5492/**
5493 * yield_to - yield the current processor to another thread in
5494 * your thread group, or accelerate that thread toward the
5495 * processor it's on.
5496 * @p: target task
5497 * @preempt: whether task preemption is allowed or not
5498 *
5499 * It's the caller's job to ensure that the target task struct
5500 * can't go away on us before we can do any checks.
5501 *
5502 * Return:
5503 *      true (>0) if we indeed boosted the target task.
5504 *      false (0) if we failed to boost the target.
5505 *      -ESRCH if there's no task to yield to.
5506 */
5507int __sched yield_to(struct task_struct *p, bool preempt)
5508{
5509        struct task_struct *curr = current;
5510        struct rq *rq, *p_rq;
5511        unsigned long flags;
5512        int yielded = 0;
5513
5514        local_irq_save(flags);
5515        rq = this_rq();
5516
5517again:
5518        p_rq = task_rq(p);
5519        /*
5520         * If we're the only runnable task on the rq and target rq also
5521         * has only one task, there's absolutely no point in yielding.
5522         */
5523        if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5524                yielded = -ESRCH;
5525                goto out_irq;
5526        }
5527
5528        double_rq_lock(rq, p_rq);
5529        if (task_rq(p) != p_rq) {
5530                double_rq_unlock(rq, p_rq);
5531                goto again;
5532        }
5533
5534        if (!curr->sched_class->yield_to_task)
5535                goto out_unlock;
5536
5537        if (curr->sched_class != p->sched_class)
5538                goto out_unlock;
5539
5540        if (task_running(p_rq, p) || p->state)
5541                goto out_unlock;
5542
5543        yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5544        if (yielded) {
5545                schedstat_inc(rq->yld_count);
5546                /*
5547                 * Make p's CPU reschedule; pick_next_entity takes care of
5548                 * fairness.
5549                 */
5550                if (preempt && rq != p_rq)
5551                        resched_curr(p_rq);
5552        }
5553
5554out_unlock:
5555        double_rq_unlock(rq, p_rq);
5556out_irq:
5557        local_irq_restore(flags);
5558
5559        if (yielded > 0)
5560                schedule();
5561
5562        return yielded;
5563}
5564EXPORT_SYMBOL_GPL(yield_to);
5565
5566int io_schedule_prepare(void)
5567{
5568        int old_iowait = current->in_iowait;
5569
5570        current->in_iowait = 1;
5571        blk_schedule_flush_plug(current);
5572
5573        return old_iowait;
5574}
5575
5576void io_schedule_finish(int token)
5577{
5578        current->in_iowait = token;
5579}
5580
5581/*
5582 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5583 * that process accounting knows that this is a task in IO wait state.
5584 */
5585long __sched io_schedule_timeout(long timeout)
5586{
5587        int token;
5588        long ret;
5589
5590        token = io_schedule_prepare();
5591        ret = schedule_timeout(timeout);
5592        io_schedule_finish(token);
5593
5594        return ret;
5595}
5596EXPORT_SYMBOL(io_schedule_timeout);
5597
5598void __sched io_schedule(void)
5599{
5600        int token;
5601
5602        token = io_schedule_prepare();
5603        schedule();
5604        io_schedule_finish(token);
5605}
5606EXPORT_SYMBOL(io_schedule);
5607
5608/**
5609 * sys_sched_get_priority_max - return maximum RT priority.
5610 * @policy: scheduling class.
5611 *
5612 * Return: On success, this syscall returns the maximum
5613 * rt_priority that can be used by a given scheduling class.
5614 * On failure, a negative error code is returned.
5615 */
5616SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5617{
5618        int ret = -EINVAL;
5619
5620        switch (policy) {
5621        case SCHED_FIFO:
5622        case SCHED_RR:
5623                ret = MAX_USER_RT_PRIO-1;
5624                break;
5625        case SCHED_DEADLINE:
5626        case SCHED_NORMAL:
5627        case SCHED_BATCH:
5628        case SCHED_IDLE:
5629                ret = 0;
5630                break;
5631        }
5632        return ret;
5633}
5634
5635/**
5636 * sys_sched_get_priority_min - return minimum RT priority.
5637 * @policy: scheduling class.
5638 *
5639 * Return: On success, this syscall returns the minimum
5640 * rt_priority that can be used by a given scheduling class.
5641 * On failure, a negative error code is returned.
5642 */
5643SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5644{
5645        int ret = -EINVAL;
5646
5647        switch (policy) {
5648        case SCHED_FIFO:
5649        case SCHED_RR:
5650                ret = 1;
5651                break;
5652        case SCHED_DEADLINE:
5653        case SCHED_NORMAL:
5654        case SCHED_BATCH:
5655        case SCHED_IDLE:
5656                ret = 0;
5657        }
5658        return ret;
5659}
5660
5661static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5662{
5663        struct task_struct *p;
5664        unsigned int time_slice;
5665        struct rq_flags rf;
5666        struct rq *rq;
5667        int retval;
5668
5669        if (pid < 0)
5670                return -EINVAL;
5671
5672        retval = -ESRCH;
5673        rcu_read_lock();
5674        p = find_process_by_pid(pid);
5675        if (!p)
5676                goto out_unlock;
5677
5678        retval = security_task_getscheduler(p);
5679        if (retval)
5680                goto out_unlock;
5681
5682        rq = task_rq_lock(p, &rf);
5683        time_slice = 0;
5684        if (p->sched_class->get_rr_interval)
5685                time_slice = p->sched_class->get_rr_interval(rq, p);
5686        task_rq_unlock(rq, p, &rf);
5687
5688        rcu_read_unlock();
5689        jiffies_to_timespec64(time_slice, t);
5690        return 0;
5691
5692out_unlock:
5693        rcu_read_unlock();
5694        return retval;
5695}
5696
5697/**
5698 * sys_sched_rr_get_interval - return the default timeslice of a process.
5699 * @pid: pid of the process.
5700 * @interval: userspace pointer to the timeslice value.
5701 *
5702 * this syscall writes the default timeslice value of a given process
5703 * into the user-space timespec buffer. A value of '0' means infinity.
5704 *
5705 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5706 * an error code.
5707 */
5708SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5709                struct __kernel_timespec __user *, interval)
5710{
5711        struct timespec64 t;
5712        int retval = sched_rr_get_interval(pid, &t);
5713
5714        if (retval == 0)
5715                retval = put_timespec64(&t, interval);
5716
5717        return retval;
5718}
5719
5720#ifdef CONFIG_COMPAT_32BIT_TIME
5721SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5722                struct old_timespec32 __user *, interval)
5723{
5724        struct timespec64 t;
5725        int retval = sched_rr_get_interval(pid, &t);
5726
5727        if (retval == 0)
5728                retval = put_old_timespec32(&t, interval);
5729        return retval;
5730}
5731#endif
5732
5733void sched_show_task(struct task_struct *p)
5734{
5735        unsigned long free = 0;
5736        int ppid;
5737
5738        if (!try_get_task_stack(p))
5739                return;
5740
5741        printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5742
5743        if (p->state == TASK_RUNNING)
5744                printk(KERN_CONT "  running task    ");
5745#ifdef CONFIG_DEBUG_STACK_USAGE
5746        free = stack_not_used(p);
5747#endif
5748        ppid = 0;
5749        rcu_read_lock();
5750        if (pid_alive(p))
5751                ppid = task_pid_nr(rcu_dereference(p->real_parent));
5752        rcu_read_unlock();
5753        printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5754                task_pid_nr(p), ppid,
5755                (unsigned long)task_thread_info(p)->flags);
5756
5757        print_worker_info(KERN_INFO, p);
5758        show_stack(p, NULL);
5759        put_task_stack(p);
5760}
5761EXPORT_SYMBOL_GPL(sched_show_task);
5762
5763static inline bool
5764state_filter_match(unsigned long state_filter, struct task_struct *p)
5765{
5766        /* no filter, everything matches */
5767        if (!state_filter)
5768                return true;
5769
5770        /* filter, but doesn't match */
5771        if (!(p->state & state_filter))
5772                return false;
5773
5774        /*
5775         * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5776         * TASK_KILLABLE).
5777         */
5778        if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5779                return false;
5780
5781        return true;
5782}
5783
5784
5785void show_state_filter(unsigned long state_filter)
5786{
5787        struct task_struct *g, *p;
5788
5789#if BITS_PER_LONG == 32
5790        printk(KERN_INFO
5791                "  task                PC stack   pid father\n");
5792#else
5793        printk(KERN_INFO
5794                "  task                        PC stack   pid father\n");
5795#endif
5796        rcu_read_lock();
5797        for_each_process_thread(g, p) {
5798                /*
5799                 * reset the NMI-timeout, listing all files on a slow
5800                 * console might take a lot of time:
5801                 * Also, reset softlockup watchdogs on all CPUs, because
5802                 * another CPU might be blocked waiting for us to process
5803                 * an IPI.
5804                 */
5805                touch_nmi_watchdog();
5806                touch_all_softlockup_watchdogs();
5807                if (state_filter_match(state_filter, p))
5808                        sched_show_task(p);
5809        }
5810
5811#ifdef CONFIG_SCHED_DEBUG
5812        if (!state_filter)
5813                sysrq_sched_debug_show();
5814#endif
5815        rcu_read_unlock();
5816        /*
5817         * Only show locks if all tasks are dumped:
5818         */
5819        if (!state_filter)
5820                debug_show_all_locks();
5821}
5822
5823/**
5824 * init_idle - set up an idle thread for a given CPU
5825 * @idle: task in question
5826 * @cpu: CPU the idle task belongs to
5827 *
5828 * NOTE: this function does not set the idle thread's NEED_RESCHED
5829 * flag, to make booting more robust.
5830 */
5831void init_idle(struct task_struct *idle, int cpu)
5832{
5833        struct rq *rq = cpu_rq(cpu);
5834        unsigned long flags;
5835
5836        raw_spin_lock_irqsave(&idle->pi_lock, flags);
5837        raw_spin_lock(&rq->lock);
5838
5839        __sched_fork(0, idle);
5840        idle->state = TASK_RUNNING;
5841        idle->se.exec_start = sched_clock();
5842        idle->flags |= PF_IDLE;
5843
5844        kasan_unpoison_task_stack(idle);
5845
5846#ifdef CONFIG_SMP
5847        /*
5848         * Its possible that init_idle() gets called multiple times on a task,
5849         * in that case do_set_cpus_allowed() will not do the right thing.
5850         *
5851         * And since this is boot we can forgo the serialization.
5852         */
5853        set_cpus_allowed_common(idle, cpumask_of(cpu));
5854#endif
5855        /*
5856         * We're having a chicken and egg problem, even though we are
5857         * holding rq->lock, the CPU isn't yet set to this CPU so the
5858         * lockdep check in task_group() will fail.
5859         *
5860         * Similar case to sched_fork(). / Alternatively we could
5861         * use task_rq_lock() here and obtain the other rq->lock.
5862         *
5863         * Silence PROVE_RCU
5864         */
5865        rcu_read_lock();
5866        __set_task_cpu(idle, cpu);
5867        rcu_read_unlock();
5868
5869        rq->curr = rq->idle = idle;
5870        idle->on_rq = TASK_ON_RQ_QUEUED;
5871#ifdef CONFIG_SMP
5872        idle->on_cpu = 1;
5873#endif
5874        raw_spin_unlock(&rq->lock);
5875        raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5876
5877        /* Set the preempt count _outside_ the spinlocks! */
5878        init_idle_preempt_count(idle, cpu);
5879
5880        /*
5881         * The idle tasks have their own, simple scheduling class:
5882         */
5883        idle->sched_class = &idle_sched_class;
5884        ftrace_graph_init_idle_task(idle, cpu);
5885        vtime_init_idle(idle, cpu);
5886#ifdef CONFIG_SMP
5887        sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5888#endif
5889}
5890
5891#ifdef CONFIG_SMP
5892
5893int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5894                              const struct cpumask *trial)
5895{
5896        int ret = 1;
5897
5898        if (!cpumask_weight(cur))
5899                return ret;
5900
5901        ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5902
5903        return ret;
5904}
5905
5906int task_can_attach(struct task_struct *p,
5907                    const struct cpumask *cs_cpus_allowed)
5908{
5909        int ret = 0;
5910
5911        /*
5912         * Kthreads which disallow setaffinity shouldn't be moved
5913         * to a new cpuset; we don't want to change their CPU
5914         * affinity and isolating such threads by their set of
5915         * allowed nodes is unnecessary.  Thus, cpusets are not
5916         * applicable for such threads.  This prevents checking for
5917         * success of set_cpus_allowed_ptr() on all attached tasks
5918         * before cpus_mask may be changed.
5919         */
5920        if (p->flags & PF_NO_SETAFFINITY) {
5921                ret = -EINVAL;
5922                goto out;
5923        }
5924
5925        if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5926                                              cs_cpus_allowed))
5927                ret = dl_task_can_attach(p, cs_cpus_allowed);
5928
5929out:
5930        return ret;
5931}
5932
5933bool sched_smp_initialized __read_mostly;
5934
5935#ifdef CONFIG_NUMA_BALANCING
5936/* Migrate current task p to target_cpu */
5937int migrate_task_to(struct task_struct *p, int target_cpu)
5938{
5939        struct migration_arg arg = { p, target_cpu };
5940        int curr_cpu = task_cpu(p);
5941
5942        if (curr_cpu == target_cpu)
5943                return 0;
5944
5945        if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
5946                return -EINVAL;
5947
5948        /* TODO: This is not properly updating schedstats */
5949
5950        trace_sched_move_numa(p, curr_cpu, target_cpu);
5951        return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5952}
5953
5954/*
5955 * Requeue a task on a given node and accurately track the number of NUMA
5956 * tasks on the runqueues
5957 */
5958void sched_setnuma(struct task_struct *p, int nid)
5959{
5960        bool queued, running;
5961        struct rq_flags rf;
5962        struct rq *rq;
5963
5964        rq = task_rq_lock(p, &rf);
5965        queued = task_on_rq_queued(p);
5966        running = task_current(rq, p);
5967
5968        if (queued)
5969                dequeue_task(rq, p, DEQUEUE_SAVE);
5970        if (running)
5971                put_prev_task(rq, p);
5972
5973        p->numa_preferred_nid = nid;
5974
5975        if (queued)
5976                enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5977        if (running)
5978                set_curr_task(rq, p);
5979        task_rq_unlock(rq, p, &rf);
5980}
5981#endif /* CONFIG_NUMA_BALANCING */
5982
5983#ifdef CONFIG_HOTPLUG_CPU
5984/*
5985 * Ensure that the idle task is using init_mm right before its CPU goes
5986 * offline.
5987 */
5988void idle_task_exit(void)
5989{
5990        struct mm_struct *mm = current->active_mm;
5991
5992        BUG_ON(cpu_online(smp_processor_id()));
5993
5994        if (mm != &init_mm) {
5995                switch_mm(mm, &init_mm, current);
5996                current->active_mm = &init_mm;
5997                finish_arch_post_lock_switch();
5998        }
5999        mmdrop(mm);
6000}
6001
6002/*
6003 * Since this CPU is going 'away' for a while, fold any nr_active delta
6004 * we might have. Assumes we're called after migrate_tasks() so that the
6005 * nr_active count is stable. We need to take the teardown thread which
6006 * is calling this into account, so we hand in adjust = 1 to the load
6007 * calculation.
6008 *
6009 * Also see the comment "Global load-average calculations".
6010 */
6011static void calc_load_migrate(struct rq *rq)
6012{
6013        long delta = calc_load_fold_active(rq, 1);
6014        if (delta)
6015                atomic_long_add(delta, &calc_load_tasks);
6016}
6017
6018static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
6019{
6020}
6021
6022static const struct sched_class fake_sched_class = {
6023        .put_prev_task = put_prev_task_fake,
6024};
6025
6026static struct task_struct fake_task = {
6027        /*
6028         * Avoid pull_{rt,dl}_task()
6029         */
6030        .prio = MAX_PRIO + 1,
6031        .sched_class = &fake_sched_class,
6032};
6033
6034/*
6035 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6036 * try_to_wake_up()->select_task_rq().
6037 *
6038 * Called with rq->lock held even though we'er in stop_machine() and
6039 * there's no concurrency possible, we hold the required locks anyway
6040 * because of lock validation efforts.
6041 */
6042static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6043{
6044        struct rq *rq = dead_rq;
6045        struct task_struct *next, *stop = rq->stop;
6046        struct rq_flags orf = *rf;
6047        int dest_cpu;
6048
6049        /*
6050         * Fudge the rq selection such that the below task selection loop
6051         * doesn't get stuck on the currently eligible stop task.
6052         *
6053         * We're currently inside stop_machine() and the rq is either stuck
6054         * in the stop_machine_cpu_stop() loop, or we're executing this code,
6055         * either way we should never end up calling schedule() until we're
6056         * done here.
6057         */
6058        rq->stop = NULL;
6059
6060        /*
6061         * put_prev_task() and pick_next_task() sched
6062         * class method both need to have an up-to-date
6063         * value of rq->clock[_task]
6064         */
6065        update_rq_clock(rq);
6066
6067        for (;;) {
6068                /*
6069                 * There's this thread running, bail when that's the only
6070                 * remaining thread:
6071                 */
6072                if (rq->nr_running == 1)
6073                        break;
6074
6075                /*
6076                 * pick_next_task() assumes pinned rq->lock:
6077                 */
6078                next = pick_next_task(rq, &fake_task, rf);
6079                BUG_ON(!next);
6080                put_prev_task(rq, next);
6081
6082                /*
6083                 * Rules for changing task_struct::cpus_mask are holding
6084                 * both pi_lock and rq->lock, such that holding either
6085                 * stabilizes the mask.
6086                 *
6087                 * Drop rq->lock is not quite as disastrous as it usually is
6088                 * because !cpu_active at this point, which means load-balance
6089                 * will not interfere. Also, stop-machine.
6090                 */
6091                rq_unlock(rq, rf);
6092                raw_spin_lock(&next->pi_lock);
6093                rq_relock(rq, rf);
6094
6095                /*
6096                 * Since we're inside stop-machine, _nothing_ should have
6097                 * changed the task, WARN if weird stuff happened, because in
6098                 * that case the above rq->lock drop is a fail too.
6099                 */
6100                if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6101                        raw_spin_unlock(&next->pi_lock);
6102                        continue;
6103                }
6104
6105                /* Find suitable destination for @next, with force if needed. */
6106                dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6107                rq = __migrate_task(rq, rf, next, dest_cpu);
6108                if (rq != dead_rq) {
6109                        rq_unlock(rq, rf);
6110                        rq = dead_rq;
6111                        *rf = orf;
6112                        rq_relock(rq, rf);
6113                }
6114                raw_spin_unlock(&next->pi_lock);
6115        }
6116
6117        rq->stop = stop;
6118}
6119#endif /* CONFIG_HOTPLUG_CPU */
6120
6121void set_rq_online(struct rq *rq)
6122{
6123        if (!rq->online) {
6124                const struct sched_class *class;
6125
6126                cpumask_set_cpu(rq->cpu, rq->rd->online);
6127                rq->online = 1;
6128
6129                for_each_class(class) {
6130                        if (class->rq_online)
6131                                class->rq_online(rq);
6132                }
6133        }
6134}
6135
6136void set_rq_offline(struct rq *rq)
6137{
6138        if (rq->online) {
6139                const struct sched_class *class;
6140
6141                for_each_class(class) {
6142                        if (class->rq_offline)
6143                                class->rq_offline(rq);
6144                }
6145
6146                cpumask_clear_cpu(rq->cpu, rq->rd->online);
6147                rq->online = 0;
6148        }
6149}
6150
6151/*
6152 * used to mark begin/end of suspend/resume:
6153 */
6154static int num_cpus_frozen;
6155
6156/*
6157 * Update cpusets according to cpu_active mask.  If cpusets are
6158 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6159 * around partition_sched_domains().
6160 *
6161 * If we come here as part of a suspend/resume, don't touch cpusets because we
6162 * want to restore it back to its original state upon resume anyway.
6163 */
6164static void cpuset_cpu_active(void)
6165{
6166        if (cpuhp_tasks_frozen) {
6167                /*
6168                 * num_cpus_frozen tracks how many CPUs are involved in suspend
6169                 * resume sequence. As long as this is not the last online
6170                 * operation in the resume sequence, just build a single sched
6171                 * domain, ignoring cpusets.
6172                 */
6173                partition_sched_domains(1, NULL, NULL);
6174                if (--num_cpus_frozen)
6175                        return;
6176                /*
6177                 * This is the last CPU online operation. So fall through and
6178                 * restore the original sched domains by considering the
6179                 * cpuset configurations.
6180                 */
6181                cpuset_force_rebuild();
6182        }
6183        cpuset_update_active_cpus();
6184}
6185
6186static int cpuset_cpu_inactive(unsigned int cpu)
6187{
6188        if (!cpuhp_tasks_frozen) {
6189                if (dl_cpu_busy(cpu))
6190                        return -EBUSY;
6191                cpuset_update_active_cpus();
6192        } else {
6193                num_cpus_frozen++;
6194                partition_sched_domains(1, NULL, NULL);
6195        }
6196        return 0;
6197}
6198
6199int sched_cpu_activate(unsigned int cpu)
6200{
6201        struct rq *rq = cpu_rq(cpu);
6202        struct rq_flags rf;
6203
6204#ifdef CONFIG_SCHED_SMT
6205        /*
6206         * When going up, increment the number of cores with SMT present.
6207         */
6208        if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6209                static_branch_inc_cpuslocked(&sched_smt_present);
6210#endif
6211        set_cpu_active(cpu, true);
6212
6213        if (sched_smp_initialized) {
6214                sched_domains_numa_masks_set(cpu);
6215                cpuset_cpu_active();
6216        }
6217
6218        /*
6219         * Put the rq online, if not already. This happens:
6220         *
6221         * 1) In the early boot process, because we build the real domains
6222         *    after all CPUs have been brought up.
6223         *
6224         * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6225         *    domains.
6226         */
6227        rq_lock_irqsave(rq, &rf);
6228        if (rq->rd) {
6229                BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6230                set_rq_online(rq);
6231        }
6232        rq_unlock_irqrestore(rq, &rf);
6233
6234        update_max_interval();
6235
6236        return 0;
6237}
6238
6239int sched_cpu_deactivate(unsigned int cpu)
6240{
6241        int ret;
6242
6243        set_cpu_active(cpu, false);
6244        /*
6245         * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6246         * users of this state to go away such that all new such users will
6247         * observe it.
6248         *
6249         * Do sync before park smpboot threads to take care the rcu boost case.
6250         */
6251        synchronize_rcu();
6252
6253#ifdef CONFIG_SCHED_SMT
6254        /*
6255         * When going down, decrement the number of cores with SMT present.
6256         */
6257        if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6258                static_branch_dec_cpuslocked(&sched_smt_present);
6259#endif
6260
6261        if (!sched_smp_initialized)
6262                return 0;
6263
6264        ret = cpuset_cpu_inactive(cpu);
6265        if (ret) {
6266                set_cpu_active(cpu, true);
6267                return ret;
6268        }
6269        sched_domains_numa_masks_clear(cpu);
6270        return 0;
6271}
6272
6273static void sched_rq_cpu_starting(unsigned int cpu)
6274{
6275        struct rq *rq = cpu_rq(cpu);
6276
6277        rq->calc_load_update = calc_load_update;
6278        update_max_interval();
6279}
6280
6281int sched_cpu_starting(unsigned int cpu)
6282{
6283        sched_rq_cpu_starting(cpu);
6284        sched_tick_start(cpu);
6285        return 0;
6286}
6287
6288#ifdef CONFIG_HOTPLUG_CPU
6289int sched_cpu_dying(unsigned int cpu)
6290{
6291        struct rq *rq = cpu_rq(cpu);
6292        struct rq_flags rf;
6293
6294        /* Handle pending wakeups and then migrate everything off */
6295        sched_ttwu_pending();
6296        sched_tick_stop(cpu);
6297
6298        rq_lock_irqsave(rq, &rf);
6299        if (rq->rd) {
6300                BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6301                set_rq_offline(rq);
6302        }
6303        migrate_tasks(rq, &rf);
6304        BUG_ON(rq->nr_running != 1);
6305        rq_unlock_irqrestore(rq, &rf);
6306
6307        calc_load_migrate(rq);
6308        update_max_interval();
6309        nohz_balance_exit_idle(rq);
6310        hrtick_clear(rq);
6311        return 0;
6312}
6313#endif
6314
6315void __init sched_init_smp(void)
6316{
6317        sched_init_numa();
6318
6319        /*
6320         * There's no userspace yet to cause hotplug operations; hence all the
6321         * CPU masks are stable and all blatant races in the below code cannot
6322         * happen.
6323         */
6324        mutex_lock(&sched_domains_mutex);
6325        sched_init_domains(cpu_active_mask);
6326        mutex_unlock(&sched_domains_mutex);
6327
6328        /* Move init over to a non-isolated CPU */
6329        if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6330                BUG();
6331        sched_init_granularity();
6332
6333        init_sched_rt_class();
6334        init_sched_dl_class();
6335
6336        sched_smp_initialized = true;
6337}
6338
6339static int __init migration_init(void)
6340{
6341        sched_cpu_starting(smp_processor_id());
6342        return 0;
6343}
6344early_initcall(migration_init);
6345
6346#else
6347void __init sched_init_smp(void)
6348{
6349        sched_init_granularity();
6350}
6351#endif /* CONFIG_SMP */
6352
6353int in_sched_functions(unsigned long addr)
6354{
6355        return in_lock_functions(addr) ||
6356                (addr >= (unsigned long)__sched_text_start
6357                && addr < (unsigned long)__sched_text_end);
6358}
6359
6360#ifdef CONFIG_CGROUP_SCHED
6361/*
6362 * Default task group.
6363 * Every task in system belongs to this group at bootup.
6364 */
6365struct task_group root_task_group;
6366LIST_HEAD(task_groups);
6367
6368/* Cacheline aligned slab cache for task_group */
6369static struct kmem_cache *task_group_cache __read_mostly;
6370#endif
6371
6372DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6373DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6374
6375void __init sched_init(void)
6376{
6377        unsigned long alloc_size = 0, ptr;
6378        int i;
6379
6380        wait_bit_init();
6381
6382#ifdef CONFIG_FAIR_GROUP_SCHED
6383        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6384#endif
6385#ifdef CONFIG_RT_GROUP_SCHED
6386        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6387#endif
6388        if (alloc_size) {
6389                ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6390
6391#ifdef CONFIG_FAIR_GROUP_SCHED
6392                root_task_group.se = (struct sched_entity **)ptr;
6393                ptr += nr_cpu_ids * sizeof(void **);
6394
6395                root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6396                ptr += nr_cpu_ids * sizeof(void **);
6397
6398#endif /* CONFIG_FAIR_GROUP_SCHED */
6399#ifdef CONFIG_RT_GROUP_SCHED
6400                root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6401                ptr += nr_cpu_ids * sizeof(void **);
6402
6403                root_task_group.rt_rq = (struct rt_rq **)ptr;
6404                ptr += nr_cpu_ids * sizeof(void **);
6405
6406#endif /* CONFIG_RT_GROUP_SCHED */
6407        }
6408#ifdef CONFIG_CPUMASK_OFFSTACK
6409        for_each_possible_cpu(i) {
6410                per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6411                        cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6412                per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6413                        cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6414        }
6415#endif /* CONFIG_CPUMASK_OFFSTACK */
6416
6417        init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6418        init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6419
6420#ifdef CONFIG_SMP
6421        init_defrootdomain();
6422#endif
6423
6424#ifdef CONFIG_RT_GROUP_SCHED
6425        init_rt_bandwidth(&root_task_group.rt_bandwidth,
6426                        global_rt_period(), global_rt_runtime());
6427#endif /* CONFIG_RT_GROUP_SCHED */
6428
6429#ifdef CONFIG_CGROUP_SCHED
6430        task_group_cache = KMEM_CACHE(task_group, 0);
6431
6432        list_add(&root_task_group.list, &task_groups);
6433        INIT_LIST_HEAD(&root_task_group.children);
6434        INIT_LIST_HEAD(&root_task_group.siblings);
6435        autogroup_init(&init_task);
6436#endif /* CONFIG_CGROUP_SCHED */
6437
6438        for_each_possible_cpu(i) {
6439                struct rq *rq;
6440
6441                rq = cpu_rq(i);
6442                raw_spin_lock_init(&rq->lock);
6443                rq->nr_running = 0;
6444                rq->calc_load_active = 0;
6445                rq->calc_load_update = jiffies + LOAD_FREQ;
6446                init_cfs_rq(&rq->cfs);
6447                init_rt_rq(&rq->rt);
6448                init_dl_rq(&rq->dl);
6449#ifdef CONFIG_FAIR_GROUP_SCHED
6450                root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6451                INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6452                rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6453                /*
6454                 * How much CPU bandwidth does root_task_group get?
6455                 *
6456                 * In case of task-groups formed thr' the cgroup filesystem, it
6457                 * gets 100% of the CPU resources in the system. This overall
6458                 * system CPU resource is divided among the tasks of
6459                 * root_task_group and its child task-groups in a fair manner,
6460                 * based on each entity's (task or task-group's) weight
6461                 * (se->load.weight).
6462                 *
6463                 * In other words, if root_task_group has 10 tasks of weight
6464                 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6465                 * then A0's share of the CPU resource is:
6466                 *
6467                 *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6468                 *
6469                 * We achieve this by letting root_task_group's tasks sit
6470                 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6471                 */
6472                init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6473                init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6474#endif /* CONFIG_FAIR_GROUP_SCHED */
6475
6476                rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6477#ifdef CONFIG_RT_GROUP_SCHED
6478                init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6479#endif
6480#ifdef CONFIG_SMP
6481                rq->sd = NULL;
6482                rq->rd = NULL;
6483                rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6484                rq->balance_callback = NULL;
6485                rq->active_balance = 0;
6486                rq->next_balance = jiffies;
6487                rq->push_cpu = 0;
6488                rq->cpu = i;
6489                rq->online = 0;
6490                rq->idle_stamp = 0;
6491                rq->avg_idle = 2*sysctl_sched_migration_cost;
6492                rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6493
6494                INIT_LIST_HEAD(&rq->cfs_tasks);
6495
6496                rq_attach_root(rq, &def_root_domain);
6497#ifdef CONFIG_NO_HZ_COMMON
6498                rq->last_load_update_tick = jiffies;
6499                rq->last_blocked_load_update_tick = jiffies;
6500                atomic_set(&rq->nohz_flags, 0);
6501#endif
6502#endif /* CONFIG_SMP */
6503                hrtick_rq_init(rq);
6504                atomic_set(&rq->nr_iowait, 0);
6505        }
6506
6507        set_load_weight(&init_task, false);
6508
6509        /*
6510         * The boot idle thread does lazy MMU switching as well:
6511         */
6512        mmgrab(&init_mm);
6513        enter_lazy_tlb(&init_mm, current);
6514
6515        /*
6516         * Make us the idle thread. Technically, schedule() should not be
6517         * called from this thread, however somewhere below it might be,
6518         * but because we are the idle thread, we just pick up running again
6519         * when this runqueue becomes "idle".
6520         */
6521        init_idle(current, smp_processor_id());
6522
6523        calc_load_update = jiffies + LOAD_FREQ;
6524
6525#ifdef CONFIG_SMP
6526        idle_thread_set_boot_cpu();
6527#endif
6528        init_sched_fair_class();
6529
6530        init_schedstats();
6531
6532        psi_init();
6533
6534        init_uclamp();
6535
6536        scheduler_running = 1;
6537}
6538
6539#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6540static inline int preempt_count_equals(int preempt_offset)
6541{
6542        int nested = preempt_count() + rcu_preempt_depth();
6543
6544        return (nested == preempt_offset);
6545}
6546
6547void __might_sleep(const char *file, int line, int preempt_offset)
6548{
6549        /*
6550         * Blocking primitives will set (and therefore destroy) current->state,
6551         * since we will exit with TASK_RUNNING make sure we enter with it,
6552         * otherwise we will destroy state.
6553         */
6554        WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6555                        "do not call blocking ops when !TASK_RUNNING; "
6556                        "state=%lx set at [<%p>] %pS\n",
6557                        current->state,
6558                        (void *)current->task_state_change,
6559                        (void *)current->task_state_change);
6560
6561        ___might_sleep(file, line, preempt_offset);
6562}
6563EXPORT_SYMBOL(__might_sleep);
6564
6565void ___might_sleep(const char *file, int line, int preempt_offset)
6566{
6567        /* Ratelimiting timestamp: */
6568        static unsigned long prev_jiffy;
6569
6570        unsigned long preempt_disable_ip;
6571
6572        /* WARN_ON_ONCE() by default, no rate limit required: */
6573        rcu_sleep_check();
6574
6575        if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6576             !is_idle_task(current)) ||
6577            system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6578            oops_in_progress)
6579                return;
6580
6581        if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6582                return;
6583        prev_jiffy = jiffies;
6584
6585        /* Save this before calling printk(), since that will clobber it: */
6586        preempt_disable_ip = get_preempt_disable_ip(current);
6587
6588        printk(KERN_ERR
6589                "BUG: sleeping function called from invalid context at %s:%d\n",
6590                        file, line);
6591        printk(KERN_ERR
6592                "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6593                        in_atomic(), irqs_disabled(),
6594                        current->pid, current->comm);
6595
6596        if (task_stack_end_corrupted(current))
6597                printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6598
6599        debug_show_held_locks(current);
6600        if (irqs_disabled())
6601                print_irqtrace_events(current);
6602        if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6603            && !preempt_count_equals(preempt_offset)) {
6604                pr_err("Preemption disabled at:");
6605                print_ip_sym(preempt_disable_ip);
6606                pr_cont("\n");
6607        }
6608        dump_stack();
6609        add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6610}
6611EXPORT_SYMBOL(___might_sleep);
6612
6613void __cant_sleep(const char *file, int line, int preempt_offset)
6614{
6615        static unsigned long prev_jiffy;
6616
6617        if (irqs_disabled())
6618                return;
6619
6620        if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6621                return;
6622
6623        if (preempt_count() > preempt_offset)
6624                return;
6625
6626        if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6627                return;
6628        prev_jiffy = jiffies;
6629
6630        printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6631        printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6632                        in_atomic(), irqs_disabled(),
6633                        current->pid, current->comm);
6634
6635        debug_show_held_locks(current);
6636        dump_stack();
6637        add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6638}
6639EXPORT_SYMBOL_GPL(__cant_sleep);
6640#endif
6641
6642#ifdef CONFIG_MAGIC_SYSRQ
6643void normalize_rt_tasks(void)
6644{
6645        struct task_struct *g, *p;
6646        struct sched_attr attr = {
6647                .sched_policy = SCHED_NORMAL,
6648        };
6649
6650        read_lock(&tasklist_lock);
6651        for_each_process_thread(g, p) {
6652                /*
6653                 * Only normalize user tasks:
6654                 */
6655                if (p->flags & PF_KTHREAD)
6656                        continue;
6657
6658                p->se.exec_start = 0;
6659                schedstat_set(p->se.statistics.wait_start,  0);
6660                schedstat_set(p->se.statistics.sleep_start, 0);
6661                schedstat_set(p->se.statistics.block_start, 0);
6662
6663                if (!dl_task(p) && !rt_task(p)) {
6664                        /*
6665                         * Renice negative nice level userspace
6666                         * tasks back to 0:
6667                         */
6668                        if (task_nice(p) < 0)
6669                                set_user_nice(p, 0);
6670                        continue;
6671                }
6672
6673                __sched_setscheduler(p, &attr, false, false);
6674        }
6675        read_unlock(&tasklist_lock);
6676}
6677
6678#endif /* CONFIG_MAGIC_SYSRQ */
6679
6680#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6681/*
6682 * These functions are only useful for the IA64 MCA handling, or kdb.
6683 *
6684 * They can only be called when the whole system has been
6685 * stopped - every CPU needs to be quiescent, and no scheduling
6686 * activity can take place. Using them for anything else would
6687 * be a serious bug, and as a result, they aren't even visible
6688 * under any other configuration.
6689 */
6690
6691/**
6692 * curr_task - return the current task for a given CPU.
6693 * @cpu: the processor in question.
6694 *
6695 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6696 *
6697 * Return: The current task for @cpu.
6698 */
6699struct task_struct *curr_task(int cpu)
6700{
6701        return cpu_curr(cpu);
6702}
6703
6704#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6705
6706#ifdef CONFIG_IA64
6707/**
6708 * set_curr_task - set the current task for a given CPU.
6709 * @cpu: the processor in question.
6710 * @p: the task pointer to set.
6711 *
6712 * Description: This function must only be used when non-maskable interrupts
6713 * are serviced on a separate stack. It allows the architecture to switch the
6714 * notion of the current task on a CPU in a non-blocking manner. This function
6715 * must be called with all CPU's synchronized, and interrupts disabled, the
6716 * and caller must save the original value of the current task (see
6717 * curr_task() above) and restore that value before reenabling interrupts and
6718 * re-starting the system.
6719 *
6720 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6721 */
6722void ia64_set_curr_task(int cpu, struct task_struct *p)
6723{
6724        cpu_curr(cpu) = p;
6725}
6726
6727#endif
6728
6729#ifdef CONFIG_CGROUP_SCHED
6730/* task_group_lock serializes the addition/removal of task groups */
6731static DEFINE_SPINLOCK(task_group_lock);
6732
6733static void sched_free_group(struct task_group *tg)
6734{
6735        free_fair_sched_group(tg);
6736        free_rt_sched_group(tg);
6737        autogroup_free(tg);
6738        kmem_cache_free(task_group_cache, tg);
6739}
6740
6741/* allocate runqueue etc for a new task group */
6742struct task_group *sched_create_group(struct task_group *parent)
6743{
6744        struct task_group *tg;
6745
6746        tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6747        if (!tg)
6748                return ERR_PTR(-ENOMEM);
6749
6750        if (!alloc_fair_sched_group(tg, parent))
6751                goto err;
6752
6753        if (!alloc_rt_sched_group(tg, parent))
6754                goto err;
6755
6756        return tg;
6757
6758err:
6759        sched_free_group(tg);
6760        return ERR_PTR(-ENOMEM);
6761}
6762
6763void sched_online_group(struct task_group *tg, struct task_group *parent)
6764{
6765        unsigned long flags;
6766
6767        spin_lock_irqsave(&task_group_lock, flags);
6768        list_add_rcu(&tg->list, &task_groups);
6769
6770        /* Root should already exist: */
6771        WARN_ON(!parent);
6772
6773        tg->parent = parent;
6774        INIT_LIST_HEAD(&tg->children);
6775        list_add_rcu(&tg->siblings, &parent->children);
6776        spin_unlock_irqrestore(&task_group_lock, flags);
6777
6778        online_fair_sched_group(tg);
6779}
6780
6781/* rcu callback to free various structures associated with a task group */
6782static void sched_free_group_rcu(struct rcu_head *rhp)
6783{
6784        /* Now it should be safe to free those cfs_rqs: */
6785        sched_free_group(container_of(rhp, struct task_group, rcu));
6786}
6787
6788void sched_destroy_group(struct task_group *tg)
6789{
6790        /* Wait for possible concurrent references to cfs_rqs complete: */
6791        call_rcu(&tg->rcu, sched_free_group_rcu);
6792}
6793
6794void sched_offline_group(struct task_group *tg)
6795{
6796        unsigned long flags;
6797
6798        /* End participation in shares distribution: */
6799        unregister_fair_sched_group(tg);
6800
6801        spin_lock_irqsave(&task_group_lock, flags);
6802        list_del_rcu(&tg->list);
6803        list_del_rcu(&tg->siblings);
6804        spin_unlock_irqrestore(&task_group_lock, flags);
6805}
6806
6807static void sched_change_group(struct task_struct *tsk, int type)
6808{
6809        struct task_group *tg;
6810
6811        /*
6812         * All callers are synchronized by task_rq_lock(); we do not use RCU
6813         * which is pointless here. Thus, we pass "true" to task_css_check()
6814         * to prevent lockdep warnings.
6815         */
6816        tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6817                          struct task_group, css);
6818        tg = autogroup_task_group(tsk, tg);
6819        tsk->sched_task_group = tg;
6820
6821#ifdef CONFIG_FAIR_GROUP_SCHED
6822        if (tsk->sched_class->task_change_group)
6823                tsk->sched_class->task_change_group(tsk, type);
6824        else
6825#endif
6826                set_task_rq(tsk, task_cpu(tsk));
6827}
6828
6829/*
6830 * Change task's runqueue when it moves between groups.
6831 *
6832 * The caller of this function should have put the task in its new group by
6833 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6834 * its new group.
6835 */
6836void sched_move_task(struct task_struct *tsk)
6837{
6838        int queued, running, queue_flags =
6839                DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6840        struct rq_flags rf;
6841        struct rq *rq;
6842
6843        rq = task_rq_lock(tsk, &rf);
6844        update_rq_clock(rq);
6845
6846        running = task_current(rq, tsk);
6847        queued = task_on_rq_queued(tsk);
6848
6849        if (queued)
6850                dequeue_task(rq, tsk, queue_flags);
6851        if (running)
6852                put_prev_task(rq, tsk);
6853
6854        sched_change_group(tsk, TASK_MOVE_GROUP);
6855
6856        if (queued)
6857                enqueue_task(rq, tsk, queue_flags);
6858        if (running)
6859                set_curr_task(rq, tsk);
6860
6861        task_rq_unlock(rq, tsk, &rf);
6862}
6863
6864static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6865{
6866        return css ? container_of(css, struct task_group, css) : NULL;
6867}
6868
6869static struct cgroup_subsys_state *
6870cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6871{
6872        struct task_group *parent = css_tg(parent_css);
6873        struct task_group *tg;
6874
6875        if (!parent) {
6876                /* This is early initialization for the top cgroup */
6877                return &root_task_group.css;
6878        }
6879
6880        tg = sched_create_group(parent);
6881        if (IS_ERR(tg))
6882                return ERR_PTR(-ENOMEM);
6883
6884        return &tg->css;
6885}
6886
6887/* Expose task group only after completing cgroup initialization */
6888static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6889{
6890        struct task_group *tg = css_tg(css);
6891        struct task_group *parent = css_tg(css->parent);
6892
6893        if (parent)
6894                sched_online_group(tg, parent);
6895        return 0;
6896}
6897
6898static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6899{
6900        struct task_group *tg = css_tg(css);
6901
6902        sched_offline_group(tg);
6903}
6904
6905static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6906{
6907        struct task_group *tg = css_tg(css);
6908
6909        /*
6910         * Relies on the RCU grace period between css_released() and this.
6911         */
6912        sched_free_group(tg);
6913}
6914
6915/*
6916 * This is called before wake_up_new_task(), therefore we really only
6917 * have to set its group bits, all the other stuff does not apply.
6918 */
6919static void cpu_cgroup_fork(struct task_struct *task)
6920{
6921        struct rq_flags rf;
6922        struct rq *rq;
6923
6924        rq = task_rq_lock(task, &rf);
6925
6926        update_rq_clock(rq);
6927        sched_change_group(task, TASK_SET_GROUP);
6928
6929        task_rq_unlock(rq, task, &rf);
6930}
6931
6932static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6933{
6934        struct task_struct *task;
6935        struct cgroup_subsys_state *css;
6936        int ret = 0;
6937
6938        cgroup_taskset_for_each(task, css, tset) {
6939#ifdef CONFIG_RT_GROUP_SCHED
6940                if (!sched_rt_can_attach(css_tg(css), task))
6941                        return -EINVAL;
6942#else
6943                /* We don't support RT-tasks being in separate groups */
6944                if (task->sched_class != &fair_sched_class)
6945                        return -EINVAL;
6946#endif
6947                /*
6948                 * Serialize against wake_up_new_task() such that if its
6949                 * running, we're sure to observe its full state.
6950                 */
6951                raw_spin_lock_irq(&task->pi_lock);
6952                /*
6953                 * Avoid calling sched_move_task() before wake_up_new_task()
6954                 * has happened. This would lead to problems with PELT, due to
6955                 * move wanting to detach+attach while we're not attached yet.
6956                 */
6957                if (task->state == TASK_NEW)
6958                        ret = -EINVAL;
6959                raw_spin_unlock_irq(&task->pi_lock);
6960
6961                if (ret)
6962                        break;
6963        }
6964        return ret;
6965}
6966
6967static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6968{
6969        struct task_struct *task;
6970        struct cgroup_subsys_state *css;
6971
6972        cgroup_taskset_for_each(task, css, tset)
6973                sched_move_task(task);
6974}
6975
6976#ifdef CONFIG_FAIR_GROUP_SCHED
6977static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6978                                struct cftype *cftype, u64 shareval)
6979{
6980        if (shareval > scale_load_down(ULONG_MAX))
6981                shareval = MAX_SHARES;
6982        return sched_group_set_shares(css_tg(css), scale_load(shareval));
6983}
6984
6985static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6986                               struct cftype *cft)
6987{
6988        struct task_group *tg = css_tg(css);
6989
6990        return (u64) scale_load_down(tg->shares);
6991}
6992
6993#ifdef CONFIG_CFS_BANDWIDTH
6994static DEFINE_MUTEX(cfs_constraints_mutex);
6995
6996const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6997static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6998
6999static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7000
7001static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7002{
7003        int i, ret = 0, runtime_enabled, runtime_was_enabled;
7004        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7005
7006        if (tg == &root_task_group)
7007                return -EINVAL;
7008
7009        /*
7010         * Ensure we have at some amount of bandwidth every period.  This is
7011         * to prevent reaching a state of large arrears when throttled via
7012         * entity_tick() resulting in prolonged exit starvation.
7013         */
7014        if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7015                return -EINVAL;
7016
7017        /*
7018         * Likewise, bound things on the otherside by preventing insane quota
7019         * periods.  This also allows us to normalize in computing quota
7020         * feasibility.
7021         */
7022        if (period > max_cfs_quota_period)
7023                return -EINVAL;
7024
7025        /*
7026         * Prevent race between setting of cfs_rq->runtime_enabled and
7027         * unthrottle_offline_cfs_rqs().
7028         */
7029        get_online_cpus();
7030        mutex_lock(&cfs_constraints_mutex);
7031        ret = __cfs_schedulable(tg, period, quota);
7032        if (ret)
7033                goto out_unlock;
7034
7035        runtime_enabled = quota != RUNTIME_INF;
7036        runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7037        /*
7038         * If we need to toggle cfs_bandwidth_used, off->on must occur
7039         * before making related changes, and on->off must occur afterwards
7040         */
7041        if (runtime_enabled && !runtime_was_enabled)
7042                cfs_bandwidth_usage_inc();
7043        raw_spin_lock_irq(&cfs_b->lock);
7044        cfs_b->period = ns_to_ktime(period);
7045        cfs_b->quota = quota;
7046
7047        __refill_cfs_bandwidth_runtime(cfs_b);
7048
7049        /* Restart the period timer (if active) to handle new period expiry: */
7050        if (runtime_enabled)
7051                start_cfs_bandwidth(cfs_b);
7052
7053        raw_spin_unlock_irq(&cfs_b->lock);
7054
7055        for_each_online_cpu(i) {
7056                struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7057                struct rq *rq = cfs_rq->rq;
7058                struct rq_flags rf;
7059
7060                rq_lock_irq(rq, &rf);
7061                cfs_rq->runtime_enabled = runtime_enabled;
7062                cfs_rq->runtime_remaining = 0;
7063
7064                if (cfs_rq->throttled)
7065                        unthrottle_cfs_rq(cfs_rq);
7066                rq_unlock_irq(rq, &rf);
7067        }
7068        if (runtime_was_enabled && !runtime_enabled)
7069                cfs_bandwidth_usage_dec();
7070out_unlock:
7071        mutex_unlock(&cfs_constraints_mutex);
7072        put_online_cpus();
7073
7074        return ret;
7075}
7076
7077static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7078{
7079        u64 quota, period;
7080
7081        period = ktime_to_ns(tg->cfs_bandwidth.period);
7082        if (cfs_quota_us < 0)
7083                quota = RUNTIME_INF;
7084        else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7085                quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7086        else
7087                return -EINVAL;
7088
7089        return tg_set_cfs_bandwidth(tg, period, quota);
7090}
7091
7092static long tg_get_cfs_quota(struct task_group *tg)
7093{
7094        u64 quota_us;
7095
7096        if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7097                return -1;
7098
7099        quota_us = tg->cfs_bandwidth.quota;
7100        do_div(quota_us, NSEC_PER_USEC);
7101
7102        return quota_us;
7103}
7104
7105static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7106{
7107        u64 quota, period;
7108
7109        if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7110                return -EINVAL;
7111
7112        period = (u64)cfs_period_us * NSEC_PER_USEC;
7113        quota = tg->cfs_bandwidth.quota;
7114
7115        return tg_set_cfs_bandwidth(tg, period, quota);
7116}
7117
7118static long tg_get_cfs_period(struct task_group *tg)
7119{
7120        u64 cfs_period_us;
7121
7122        cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7123        do_div(cfs_period_us, NSEC_PER_USEC);
7124
7125        return cfs_period_us;
7126}
7127
7128static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7129                                  struct cftype *cft)
7130{
7131        return tg_get_cfs_quota(css_tg(css));
7132}
7133
7134static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7135                                   struct cftype *cftype, s64 cfs_quota_us)
7136{
7137        return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7138}
7139
7140static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7141                                   struct cftype *cft)
7142{
7143        return tg_get_cfs_period(css_tg(css));
7144}
7145
7146static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7147                                    struct cftype *cftype, u64 cfs_period_us)
7148{
7149        return tg_set_cfs_period(css_tg(css), cfs_period_us);
7150}
7151
7152struct cfs_schedulable_data {
7153        struct task_group *tg;
7154        u64 period, quota;
7155};
7156
7157/*
7158 * normalize group quota/period to be quota/max_period
7159 * note: units are usecs
7160 */
7161static u64 normalize_cfs_quota(struct task_group *tg,
7162                               struct cfs_schedulable_data *d)
7163{
7164        u64 quota, period;
7165
7166        if (tg == d->tg) {
7167                period = d->period;
7168                quota = d->quota;
7169        } else {
7170                period = tg_get_cfs_period(tg);
7171                quota = tg_get_cfs_quota(tg);
7172        }
7173
7174        /* note: these should typically be equivalent */
7175        if (quota == RUNTIME_INF || quota == -1)
7176                return RUNTIME_INF;
7177
7178        return to_ratio(period, quota);
7179}
7180
7181static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7182{
7183        struct cfs_schedulable_data *d = data;
7184        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7185        s64 quota = 0, parent_quota = -1;
7186
7187        if (!tg->parent) {
7188                quota = RUNTIME_INF;
7189        } else {
7190                struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7191
7192                quota = normalize_cfs_quota(tg, d);
7193                parent_quota = parent_b->hierarchical_quota;
7194
7195                /*
7196                 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
7197                 * always take the min.  On cgroup1, only inherit when no
7198                 * limit is set:
7199                 */
7200                if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7201                        quota = min(quota, parent_quota);
7202                } else {
7203                        if (quota == RUNTIME_INF)
7204                                quota = parent_quota;
7205                        else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7206                                return -EINVAL;
7207                }
7208        }
7209        cfs_b->hierarchical_quota = quota;
7210
7211        return 0;
7212}
7213
7214static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7215{
7216        int ret;
7217        struct cfs_schedulable_data data = {
7218                .tg = tg,
7219                .period = period,
7220                .quota = quota,
7221        };
7222
7223        if (quota != RUNTIME_INF) {
7224                do_div(data.period, NSEC_PER_USEC);
7225                do_div(data.quota, NSEC_PER_USEC);
7226        }
7227
7228        rcu_read_lock();
7229        ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7230        rcu_read_unlock();
7231
7232        return ret;
7233}
7234
7235static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7236{
7237        struct task_group *tg = css_tg(seq_css(sf));
7238        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7239
7240        seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7241        seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7242        seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7243
7244        if (schedstat_enabled() && tg != &root_task_group) {
7245                u64 ws = 0;
7246                int i;
7247
7248                for_each_possible_cpu(i)
7249                        ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7250
7251                seq_printf(sf, "wait_sum %llu\n", ws);
7252        }
7253
7254        return 0;
7255}
7256#endif /* CONFIG_CFS_BANDWIDTH */
7257#endif /* CONFIG_FAIR_GROUP_SCHED */
7258
7259#ifdef CONFIG_RT_GROUP_SCHED
7260static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7261                                struct cftype *cft, s64 val)
7262{
7263        return sched_group_set_rt_runtime(css_tg(css), val);
7264}
7265
7266static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7267                               struct cftype *cft)
7268{
7269        return sched_group_rt_runtime(css_tg(css));
7270}
7271
7272static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7273                                    struct cftype *cftype, u64 rt_period_us)
7274{
7275        return sched_group_set_rt_period(css_tg(css), rt_period_us);
7276}
7277
7278static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7279                                   struct cftype *cft)
7280{
7281        return sched_group_rt_period(css_tg(css));
7282}
7283#endif /* CONFIG_RT_GROUP_SCHED */
7284
7285static struct cftype cpu_legacy_files[] = {
7286#ifdef CONFIG_FAIR_GROUP_SCHED
7287        {
7288                .name = "shares",
7289                .read_u64 = cpu_shares_read_u64,
7290                .write_u64 = cpu_shares_write_u64,
7291        },
7292#endif
7293#ifdef CONFIG_CFS_BANDWIDTH
7294        {
7295                .name = "cfs_quota_us",
7296                .read_s64 = cpu_cfs_quota_read_s64,
7297                .write_s64 = cpu_cfs_quota_write_s64,
7298        },
7299        {
7300                .name = "cfs_period_us",
7301                .read_u64 = cpu_cfs_period_read_u64,
7302                .write_u64 = cpu_cfs_period_write_u64,
7303        },
7304        {
7305                .name = "stat",
7306                .seq_show = cpu_cfs_stat_show,
7307        },
7308#endif
7309#ifdef CONFIG_RT_GROUP_SCHED
7310        {
7311                .name = "rt_runtime_us",
7312                .read_s64 = cpu_rt_runtime_read,
7313                .write_s64 = cpu_rt_runtime_write,
7314        },
7315        {
7316                .name = "rt_period_us",
7317                .read_u64 = cpu_rt_period_read_uint,
7318                .write_u64 = cpu_rt_period_write_uint,
7319        },
7320#endif
7321        { }     /* Terminate */
7322};
7323
7324static int cpu_extra_stat_show(struct seq_file *sf,
7325                               struct cgroup_subsys_state *css)
7326{
7327#ifdef CONFIG_CFS_BANDWIDTH
7328        {
7329                struct task_group *tg = css_tg(css);
7330                struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7331                u64 throttled_usec;
7332
7333                throttled_usec = cfs_b->throttled_time;
7334                do_div(throttled_usec, NSEC_PER_USEC);
7335
7336                seq_printf(sf, "nr_periods %d\n"
7337                           "nr_throttled %d\n"
7338                           "throttled_usec %llu\n",
7339                           cfs_b->nr_periods, cfs_b->nr_throttled,
7340                           throttled_usec);
7341        }
7342#endif
7343        return 0;
7344}
7345
7346#ifdef CONFIG_FAIR_GROUP_SCHED
7347static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7348                               struct cftype *cft)
7349{
7350        struct task_group *tg = css_tg(css);
7351        u64 weight = scale_load_down(tg->shares);
7352
7353        return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7354}
7355
7356static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7357                                struct cftype *cft, u64 weight)
7358{
7359        /*
7360         * cgroup weight knobs should use the common MIN, DFL and MAX
7361         * values which are 1, 100 and 10000 respectively.  While it loses
7362         * a bit of range on both ends, it maps pretty well onto the shares
7363         * value used by scheduler and the round-trip conversions preserve
7364         * the original value over the entire range.
7365         */
7366        if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7367                return -ERANGE;
7368
7369        weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7370
7371        return sched_group_set_shares(css_tg(css), scale_load(weight));
7372}
7373
7374static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7375                                    struct cftype *cft)
7376{
7377        unsigned long weight = scale_load_down(css_tg(css)->shares);
7378        int last_delta = INT_MAX;
7379        int prio, delta;
7380
7381        /* find the closest nice value to the current weight */
7382        for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7383                delta = abs(sched_prio_to_weight[prio] - weight);
7384                if (delta >= last_delta)
7385                        break;
7386                last_delta = delta;
7387        }
7388
7389        return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7390}
7391
7392static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7393                                     struct cftype *cft, s64 nice)
7394{
7395        unsigned long weight;
7396        int idx;
7397
7398        if (nice < MIN_NICE || nice > MAX_NICE)
7399                return -ERANGE;
7400
7401        idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7402        idx = array_index_nospec(idx, 40);
7403        weight = sched_prio_to_weight[idx];
7404
7405        return sched_group_set_shares(css_tg(css), scale_load(weight));
7406}
7407#endif
7408
7409static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7410                                                  long period, long quota)
7411{
7412        if (quota < 0)
7413                seq_puts(sf, "max");
7414        else
7415                seq_printf(sf, "%ld", quota);
7416
7417        seq_printf(sf, " %ld\n", period);
7418}
7419
7420/* caller should put the current value in *@periodp before calling */
7421static int __maybe_unused cpu_period_quota_parse(char *buf,
7422                                                 u64 *periodp, u64 *quotap)
7423{
7424        char tok[21];   /* U64_MAX */
7425
7426        if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7427                return -EINVAL;
7428
7429        *periodp *= NSEC_PER_USEC;
7430
7431        if (sscanf(tok, "%llu", quotap))
7432                *quotap *= NSEC_PER_USEC;
7433        else if (!strcmp(tok, "max"))
7434                *quotap = RUNTIME_INF;
7435        else
7436                return -EINVAL;
7437
7438        return 0;
7439}
7440
7441#ifdef CONFIG_CFS_BANDWIDTH
7442static int cpu_max_show(struct seq_file *sf, void *v)
7443{
7444        struct task_group *tg = css_tg(seq_css(sf));
7445
7446        cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7447        return 0;
7448}
7449
7450static ssize_t cpu_max_write(struct kernfs_open_file *of,
7451                             char *buf, size_t nbytes, loff_t off)
7452{
7453        struct task_group *tg = css_tg(of_css(of));
7454        u64 period = tg_get_cfs_period(tg);
7455        u64 quota;
7456        int ret;
7457
7458        ret = cpu_period_quota_parse(buf, &period, &quota);
7459        if (!ret)
7460                ret = tg_set_cfs_bandwidth(tg, period, quota);
7461        return ret ?: nbytes;
7462}
7463#endif
7464
7465static struct cftype cpu_files[] = {
7466#ifdef CONFIG_FAIR_GROUP_SCHED
7467        {
7468                .name = "weight",
7469                .flags = CFTYPE_NOT_ON_ROOT,
7470                .read_u64 = cpu_weight_read_u64,
7471                .write_u64 = cpu_weight_write_u64,
7472        },
7473        {
7474                .name = "weight.nice",
7475                .flags = CFTYPE_NOT_ON_ROOT,
7476                .read_s64 = cpu_weight_nice_read_s64,
7477                .write_s64 = cpu_weight_nice_write_s64,
7478        },
7479#endif
7480#ifdef CONFIG_CFS_BANDWIDTH
7481        {
7482                .name = "max",
7483                .flags = CFTYPE_NOT_ON_ROOT,
7484                .seq_show = cpu_max_show,
7485                .write = cpu_max_write,
7486        },
7487#endif
7488        { }     /* terminate */
7489};
7490
7491struct cgroup_subsys cpu_cgrp_subsys = {
7492        .css_alloc      = cpu_cgroup_css_alloc,
7493        .css_online     = cpu_cgroup_css_online,
7494        .css_released   = cpu_cgroup_css_released,
7495        .css_free       = cpu_cgroup_css_free,
7496        .css_extra_stat_show = cpu_extra_stat_show,
7497        .fork           = cpu_cgroup_fork,
7498        .can_attach     = cpu_cgroup_can_attach,
7499        .attach         = cpu_cgroup_attach,
7500        .legacy_cftypes = cpu_legacy_files,
7501        .dfl_cftypes    = cpu_files,
7502        .early_init     = true,
7503        .threaded       = true,
7504};
7505
7506#endif  /* CONFIG_CGROUP_SCHED */
7507
7508void dump_cpu_task(int cpu)
7509{
7510        pr_info("Task dump for CPU %d:\n", cpu);
7511        sched_show_task(cpu_curr(cpu));
7512}
7513
7514/*
7515 * Nice levels are multiplicative, with a gentle 10% change for every
7516 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7517 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7518 * that remained on nice 0.
7519 *
7520 * The "10% effect" is relative and cumulative: from _any_ nice level,
7521 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7522 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7523 * If a task goes up by ~10% and another task goes down by ~10% then
7524 * the relative distance between them is ~25%.)
7525 */
7526const int sched_prio_to_weight[40] = {
7527 /* -20 */     88761,     71755,     56483,     46273,     36291,
7528 /* -15 */     29154,     23254,     18705,     14949,     11916,
7529 /* -10 */      9548,      7620,      6100,      4904,      3906,
7530 /*  -5 */      3121,      2501,      1991,      1586,      1277,
7531 /*   0 */      1024,       820,       655,       526,       423,
7532 /*   5 */       335,       272,       215,       172,       137,
7533 /*  10 */       110,        87,        70,        56,        45,
7534 /*  15 */        36,        29,        23,        18,        15,
7535};
7536
7537/*
7538 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7539 *
7540 * In cases where the weight does not change often, we can use the
7541 * precalculated inverse to speed up arithmetics by turning divisions
7542 * into multiplications:
7543 */
7544const u32 sched_prio_to_wmult[40] = {
7545 /* -20 */     48388,     59856,     76040,     92818,    118348,
7546 /* -15 */    147320,    184698,    229616,    287308,    360437,
7547 /* -10 */    449829,    563644,    704093,    875809,   1099582,
7548 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7549 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7550 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7551 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7552 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7553};
7554
7555#undef CREATE_TRACE_POINTS
7556