linux/kernel/sched/deadline.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Deadline Scheduling Class (SCHED_DEADLINE)
   4 *
   5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
   6 *
   7 * Tasks that periodically executes their instances for less than their
   8 * runtime won't miss any of their deadlines.
   9 * Tasks that are not periodic or sporadic or that tries to execute more
  10 * than their reserved bandwidth will be slowed down (and may potentially
  11 * miss some of their deadlines), and won't affect any other task.
  12 *
  13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
  14 *                    Juri Lelli <juri.lelli@gmail.com>,
  15 *                    Michael Trimarchi <michael@amarulasolutions.com>,
  16 *                    Fabio Checconi <fchecconi@gmail.com>
  17 */
  18#include "sched.h"
  19#include "pelt.h"
  20
  21struct dl_bandwidth def_dl_bandwidth;
  22
  23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
  24{
  25        return container_of(dl_se, struct task_struct, dl);
  26}
  27
  28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
  29{
  30        return container_of(dl_rq, struct rq, dl);
  31}
  32
  33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
  34{
  35        struct task_struct *p = dl_task_of(dl_se);
  36        struct rq *rq = task_rq(p);
  37
  38        return &rq->dl;
  39}
  40
  41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
  42{
  43        return !RB_EMPTY_NODE(&dl_se->rb_node);
  44}
  45
  46#ifdef CONFIG_SMP
  47static inline struct dl_bw *dl_bw_of(int i)
  48{
  49        RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  50                         "sched RCU must be held");
  51        return &cpu_rq(i)->rd->dl_bw;
  52}
  53
  54static inline int dl_bw_cpus(int i)
  55{
  56        struct root_domain *rd = cpu_rq(i)->rd;
  57        int cpus = 0;
  58
  59        RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  60                         "sched RCU must be held");
  61        for_each_cpu_and(i, rd->span, cpu_active_mask)
  62                cpus++;
  63
  64        return cpus;
  65}
  66#else
  67static inline struct dl_bw *dl_bw_of(int i)
  68{
  69        return &cpu_rq(i)->dl.dl_bw;
  70}
  71
  72static inline int dl_bw_cpus(int i)
  73{
  74        return 1;
  75}
  76#endif
  77
  78static inline
  79void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
  80{
  81        u64 old = dl_rq->running_bw;
  82
  83        lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
  84        dl_rq->running_bw += dl_bw;
  85        SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
  86        SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
  87        /* kick cpufreq (see the comment in kernel/sched/sched.h). */
  88        cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
  89}
  90
  91static inline
  92void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
  93{
  94        u64 old = dl_rq->running_bw;
  95
  96        lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
  97        dl_rq->running_bw -= dl_bw;
  98        SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
  99        if (dl_rq->running_bw > old)
 100                dl_rq->running_bw = 0;
 101        /* kick cpufreq (see the comment in kernel/sched/sched.h). */
 102        cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
 103}
 104
 105static inline
 106void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 107{
 108        u64 old = dl_rq->this_bw;
 109
 110        lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
 111        dl_rq->this_bw += dl_bw;
 112        SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
 113}
 114
 115static inline
 116void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 117{
 118        u64 old = dl_rq->this_bw;
 119
 120        lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
 121        dl_rq->this_bw -= dl_bw;
 122        SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
 123        if (dl_rq->this_bw > old)
 124                dl_rq->this_bw = 0;
 125        SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
 126}
 127
 128static inline
 129void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 130{
 131        if (!dl_entity_is_special(dl_se))
 132                __add_rq_bw(dl_se->dl_bw, dl_rq);
 133}
 134
 135static inline
 136void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 137{
 138        if (!dl_entity_is_special(dl_se))
 139                __sub_rq_bw(dl_se->dl_bw, dl_rq);
 140}
 141
 142static inline
 143void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 144{
 145        if (!dl_entity_is_special(dl_se))
 146                __add_running_bw(dl_se->dl_bw, dl_rq);
 147}
 148
 149static inline
 150void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 151{
 152        if (!dl_entity_is_special(dl_se))
 153                __sub_running_bw(dl_se->dl_bw, dl_rq);
 154}
 155
 156void dl_change_utilization(struct task_struct *p, u64 new_bw)
 157{
 158        struct rq *rq;
 159
 160        BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
 161
 162        if (task_on_rq_queued(p))
 163                return;
 164
 165        rq = task_rq(p);
 166        if (p->dl.dl_non_contending) {
 167                sub_running_bw(&p->dl, &rq->dl);
 168                p->dl.dl_non_contending = 0;
 169                /*
 170                 * If the timer handler is currently running and the
 171                 * timer cannot be cancelled, inactive_task_timer()
 172                 * will see that dl_not_contending is not set, and
 173                 * will not touch the rq's active utilization,
 174                 * so we are still safe.
 175                 */
 176                if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
 177                        put_task_struct(p);
 178        }
 179        __sub_rq_bw(p->dl.dl_bw, &rq->dl);
 180        __add_rq_bw(new_bw, &rq->dl);
 181}
 182
 183/*
 184 * The utilization of a task cannot be immediately removed from
 185 * the rq active utilization (running_bw) when the task blocks.
 186 * Instead, we have to wait for the so called "0-lag time".
 187 *
 188 * If a task blocks before the "0-lag time", a timer (the inactive
 189 * timer) is armed, and running_bw is decreased when the timer
 190 * fires.
 191 *
 192 * If the task wakes up again before the inactive timer fires,
 193 * the timer is cancelled, whereas if the task wakes up after the
 194 * inactive timer fired (and running_bw has been decreased) the
 195 * task's utilization has to be added to running_bw again.
 196 * A flag in the deadline scheduling entity (dl_non_contending)
 197 * is used to avoid race conditions between the inactive timer handler
 198 * and task wakeups.
 199 *
 200 * The following diagram shows how running_bw is updated. A task is
 201 * "ACTIVE" when its utilization contributes to running_bw; an
 202 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
 203 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
 204 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
 205 * time already passed, which does not contribute to running_bw anymore.
 206 *                              +------------------+
 207 *             wakeup           |    ACTIVE        |
 208 *          +------------------>+   contending     |
 209 *          | add_running_bw    |                  |
 210 *          |                   +----+------+------+
 211 *          |                        |      ^
 212 *          |                dequeue |      |
 213 * +--------+-------+                |      |
 214 * |                |   t >= 0-lag   |      | wakeup
 215 * |    INACTIVE    |<---------------+      |
 216 * |                | sub_running_bw |      |
 217 * +--------+-------+                |      |
 218 *          ^                        |      |
 219 *          |              t < 0-lag |      |
 220 *          |                        |      |
 221 *          |                        V      |
 222 *          |                   +----+------+------+
 223 *          | sub_running_bw    |    ACTIVE        |
 224 *          +-------------------+                  |
 225 *            inactive timer    |  non contending  |
 226 *            fired             +------------------+
 227 *
 228 * The task_non_contending() function is invoked when a task
 229 * blocks, and checks if the 0-lag time already passed or
 230 * not (in the first case, it directly updates running_bw;
 231 * in the second case, it arms the inactive timer).
 232 *
 233 * The task_contending() function is invoked when a task wakes
 234 * up, and checks if the task is still in the "ACTIVE non contending"
 235 * state or not (in the second case, it updates running_bw).
 236 */
 237static void task_non_contending(struct task_struct *p)
 238{
 239        struct sched_dl_entity *dl_se = &p->dl;
 240        struct hrtimer *timer = &dl_se->inactive_timer;
 241        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 242        struct rq *rq = rq_of_dl_rq(dl_rq);
 243        s64 zerolag_time;
 244
 245        /*
 246         * If this is a non-deadline task that has been boosted,
 247         * do nothing
 248         */
 249        if (dl_se->dl_runtime == 0)
 250                return;
 251
 252        if (dl_entity_is_special(dl_se))
 253                return;
 254
 255        WARN_ON(dl_se->dl_non_contending);
 256
 257        zerolag_time = dl_se->deadline -
 258                 div64_long((dl_se->runtime * dl_se->dl_period),
 259                        dl_se->dl_runtime);
 260
 261        /*
 262         * Using relative times instead of the absolute "0-lag time"
 263         * allows to simplify the code
 264         */
 265        zerolag_time -= rq_clock(rq);
 266
 267        /*
 268         * If the "0-lag time" already passed, decrease the active
 269         * utilization now, instead of starting a timer
 270         */
 271        if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
 272                if (dl_task(p))
 273                        sub_running_bw(dl_se, dl_rq);
 274                if (!dl_task(p) || p->state == TASK_DEAD) {
 275                        struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
 276
 277                        if (p->state == TASK_DEAD)
 278                                sub_rq_bw(&p->dl, &rq->dl);
 279                        raw_spin_lock(&dl_b->lock);
 280                        __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
 281                        __dl_clear_params(p);
 282                        raw_spin_unlock(&dl_b->lock);
 283                }
 284
 285                return;
 286        }
 287
 288        dl_se->dl_non_contending = 1;
 289        get_task_struct(p);
 290        hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
 291}
 292
 293static void task_contending(struct sched_dl_entity *dl_se, int flags)
 294{
 295        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 296
 297        /*
 298         * If this is a non-deadline task that has been boosted,
 299         * do nothing
 300         */
 301        if (dl_se->dl_runtime == 0)
 302                return;
 303
 304        if (flags & ENQUEUE_MIGRATED)
 305                add_rq_bw(dl_se, dl_rq);
 306
 307        if (dl_se->dl_non_contending) {
 308                dl_se->dl_non_contending = 0;
 309                /*
 310                 * If the timer handler is currently running and the
 311                 * timer cannot be cancelled, inactive_task_timer()
 312                 * will see that dl_not_contending is not set, and
 313                 * will not touch the rq's active utilization,
 314                 * so we are still safe.
 315                 */
 316                if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
 317                        put_task_struct(dl_task_of(dl_se));
 318        } else {
 319                /*
 320                 * Since "dl_non_contending" is not set, the
 321                 * task's utilization has already been removed from
 322                 * active utilization (either when the task blocked,
 323                 * when the "inactive timer" fired).
 324                 * So, add it back.
 325                 */
 326                add_running_bw(dl_se, dl_rq);
 327        }
 328}
 329
 330static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
 331{
 332        struct sched_dl_entity *dl_se = &p->dl;
 333
 334        return dl_rq->root.rb_leftmost == &dl_se->rb_node;
 335}
 336
 337void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
 338{
 339        raw_spin_lock_init(&dl_b->dl_runtime_lock);
 340        dl_b->dl_period = period;
 341        dl_b->dl_runtime = runtime;
 342}
 343
 344void init_dl_bw(struct dl_bw *dl_b)
 345{
 346        raw_spin_lock_init(&dl_b->lock);
 347        raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
 348        if (global_rt_runtime() == RUNTIME_INF)
 349                dl_b->bw = -1;
 350        else
 351                dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
 352        raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
 353        dl_b->total_bw = 0;
 354}
 355
 356void init_dl_rq(struct dl_rq *dl_rq)
 357{
 358        dl_rq->root = RB_ROOT_CACHED;
 359
 360#ifdef CONFIG_SMP
 361        /* zero means no -deadline tasks */
 362        dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
 363
 364        dl_rq->dl_nr_migratory = 0;
 365        dl_rq->overloaded = 0;
 366        dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
 367#else
 368        init_dl_bw(&dl_rq->dl_bw);
 369#endif
 370
 371        dl_rq->running_bw = 0;
 372        dl_rq->this_bw = 0;
 373        init_dl_rq_bw_ratio(dl_rq);
 374}
 375
 376#ifdef CONFIG_SMP
 377
 378static inline int dl_overloaded(struct rq *rq)
 379{
 380        return atomic_read(&rq->rd->dlo_count);
 381}
 382
 383static inline void dl_set_overload(struct rq *rq)
 384{
 385        if (!rq->online)
 386                return;
 387
 388        cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
 389        /*
 390         * Must be visible before the overload count is
 391         * set (as in sched_rt.c).
 392         *
 393         * Matched by the barrier in pull_dl_task().
 394         */
 395        smp_wmb();
 396        atomic_inc(&rq->rd->dlo_count);
 397}
 398
 399static inline void dl_clear_overload(struct rq *rq)
 400{
 401        if (!rq->online)
 402                return;
 403
 404        atomic_dec(&rq->rd->dlo_count);
 405        cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
 406}
 407
 408static void update_dl_migration(struct dl_rq *dl_rq)
 409{
 410        if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
 411                if (!dl_rq->overloaded) {
 412                        dl_set_overload(rq_of_dl_rq(dl_rq));
 413                        dl_rq->overloaded = 1;
 414                }
 415        } else if (dl_rq->overloaded) {
 416                dl_clear_overload(rq_of_dl_rq(dl_rq));
 417                dl_rq->overloaded = 0;
 418        }
 419}
 420
 421static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 422{
 423        struct task_struct *p = dl_task_of(dl_se);
 424
 425        if (p->nr_cpus_allowed > 1)
 426                dl_rq->dl_nr_migratory++;
 427
 428        update_dl_migration(dl_rq);
 429}
 430
 431static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 432{
 433        struct task_struct *p = dl_task_of(dl_se);
 434
 435        if (p->nr_cpus_allowed > 1)
 436                dl_rq->dl_nr_migratory--;
 437
 438        update_dl_migration(dl_rq);
 439}
 440
 441/*
 442 * The list of pushable -deadline task is not a plist, like in
 443 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 444 */
 445static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 446{
 447        struct dl_rq *dl_rq = &rq->dl;
 448        struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
 449        struct rb_node *parent = NULL;
 450        struct task_struct *entry;
 451        bool leftmost = true;
 452
 453        BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
 454
 455        while (*link) {
 456                parent = *link;
 457                entry = rb_entry(parent, struct task_struct,
 458                                 pushable_dl_tasks);
 459                if (dl_entity_preempt(&p->dl, &entry->dl))
 460                        link = &parent->rb_left;
 461                else {
 462                        link = &parent->rb_right;
 463                        leftmost = false;
 464                }
 465        }
 466
 467        if (leftmost)
 468                dl_rq->earliest_dl.next = p->dl.deadline;
 469
 470        rb_link_node(&p->pushable_dl_tasks, parent, link);
 471        rb_insert_color_cached(&p->pushable_dl_tasks,
 472                               &dl_rq->pushable_dl_tasks_root, leftmost);
 473}
 474
 475static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 476{
 477        struct dl_rq *dl_rq = &rq->dl;
 478
 479        if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
 480                return;
 481
 482        if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
 483                struct rb_node *next_node;
 484
 485                next_node = rb_next(&p->pushable_dl_tasks);
 486                if (next_node) {
 487                        dl_rq->earliest_dl.next = rb_entry(next_node,
 488                                struct task_struct, pushable_dl_tasks)->dl.deadline;
 489                }
 490        }
 491
 492        rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
 493        RB_CLEAR_NODE(&p->pushable_dl_tasks);
 494}
 495
 496static inline int has_pushable_dl_tasks(struct rq *rq)
 497{
 498        return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
 499}
 500
 501static int push_dl_task(struct rq *rq);
 502
 503static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 504{
 505        return dl_task(prev);
 506}
 507
 508static DEFINE_PER_CPU(struct callback_head, dl_push_head);
 509static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
 510
 511static void push_dl_tasks(struct rq *);
 512static void pull_dl_task(struct rq *);
 513
 514static inline void deadline_queue_push_tasks(struct rq *rq)
 515{
 516        if (!has_pushable_dl_tasks(rq))
 517                return;
 518
 519        queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
 520}
 521
 522static inline void deadline_queue_pull_task(struct rq *rq)
 523{
 524        queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
 525}
 526
 527static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
 528
 529static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
 530{
 531        struct rq *later_rq = NULL;
 532
 533        later_rq = find_lock_later_rq(p, rq);
 534        if (!later_rq) {
 535                int cpu;
 536
 537                /*
 538                 * If we cannot preempt any rq, fall back to pick any
 539                 * online CPU:
 540                 */
 541                cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
 542                if (cpu >= nr_cpu_ids) {
 543                        /*
 544                         * Failed to find any suitable CPU.
 545                         * The task will never come back!
 546                         */
 547                        BUG_ON(dl_bandwidth_enabled());
 548
 549                        /*
 550                         * If admission control is disabled we
 551                         * try a little harder to let the task
 552                         * run.
 553                         */
 554                        cpu = cpumask_any(cpu_active_mask);
 555                }
 556                later_rq = cpu_rq(cpu);
 557                double_lock_balance(rq, later_rq);
 558        }
 559
 560        set_task_cpu(p, later_rq->cpu);
 561        double_unlock_balance(later_rq, rq);
 562
 563        return later_rq;
 564}
 565
 566#else
 567
 568static inline
 569void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 570{
 571}
 572
 573static inline
 574void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 575{
 576}
 577
 578static inline
 579void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 580{
 581}
 582
 583static inline
 584void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 585{
 586}
 587
 588static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 589{
 590        return false;
 591}
 592
 593static inline void pull_dl_task(struct rq *rq)
 594{
 595}
 596
 597static inline void deadline_queue_push_tasks(struct rq *rq)
 598{
 599}
 600
 601static inline void deadline_queue_pull_task(struct rq *rq)
 602{
 603}
 604#endif /* CONFIG_SMP */
 605
 606static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 607static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 608static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
 609
 610/*
 611 * We are being explicitly informed that a new instance is starting,
 612 * and this means that:
 613 *  - the absolute deadline of the entity has to be placed at
 614 *    current time + relative deadline;
 615 *  - the runtime of the entity has to be set to the maximum value.
 616 *
 617 * The capability of specifying such event is useful whenever a -deadline
 618 * entity wants to (try to!) synchronize its behaviour with the scheduler's
 619 * one, and to (try to!) reconcile itself with its own scheduling
 620 * parameters.
 621 */
 622static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
 623{
 624        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 625        struct rq *rq = rq_of_dl_rq(dl_rq);
 626
 627        WARN_ON(dl_se->dl_boosted);
 628        WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
 629
 630        /*
 631         * We are racing with the deadline timer. So, do nothing because
 632         * the deadline timer handler will take care of properly recharging
 633         * the runtime and postponing the deadline
 634         */
 635        if (dl_se->dl_throttled)
 636                return;
 637
 638        /*
 639         * We use the regular wall clock time to set deadlines in the
 640         * future; in fact, we must consider execution overheads (time
 641         * spent on hardirq context, etc.).
 642         */
 643        dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
 644        dl_se->runtime = dl_se->dl_runtime;
 645}
 646
 647/*
 648 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 649 * possibility of a entity lasting more than what it declared, and thus
 650 * exhausting its runtime.
 651 *
 652 * Here we are interested in making runtime overrun possible, but we do
 653 * not want a entity which is misbehaving to affect the scheduling of all
 654 * other entities.
 655 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 656 * is used, in order to confine each entity within its own bandwidth.
 657 *
 658 * This function deals exactly with that, and ensures that when the runtime
 659 * of a entity is replenished, its deadline is also postponed. That ensures
 660 * the overrunning entity can't interfere with other entity in the system and
 661 * can't make them miss their deadlines. Reasons why this kind of overruns
 662 * could happen are, typically, a entity voluntarily trying to overcome its
 663 * runtime, or it just underestimated it during sched_setattr().
 664 */
 665static void replenish_dl_entity(struct sched_dl_entity *dl_se,
 666                                struct sched_dl_entity *pi_se)
 667{
 668        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 669        struct rq *rq = rq_of_dl_rq(dl_rq);
 670
 671        BUG_ON(pi_se->dl_runtime <= 0);
 672
 673        /*
 674         * This could be the case for a !-dl task that is boosted.
 675         * Just go with full inherited parameters.
 676         */
 677        if (dl_se->dl_deadline == 0) {
 678                dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 679                dl_se->runtime = pi_se->dl_runtime;
 680        }
 681
 682        if (dl_se->dl_yielded && dl_se->runtime > 0)
 683                dl_se->runtime = 0;
 684
 685        /*
 686         * We keep moving the deadline away until we get some
 687         * available runtime for the entity. This ensures correct
 688         * handling of situations where the runtime overrun is
 689         * arbitrary large.
 690         */
 691        while (dl_se->runtime <= 0) {
 692                dl_se->deadline += pi_se->dl_period;
 693                dl_se->runtime += pi_se->dl_runtime;
 694        }
 695
 696        /*
 697         * At this point, the deadline really should be "in
 698         * the future" with respect to rq->clock. If it's
 699         * not, we are, for some reason, lagging too much!
 700         * Anyway, after having warn userspace abut that,
 701         * we still try to keep the things running by
 702         * resetting the deadline and the budget of the
 703         * entity.
 704         */
 705        if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
 706                printk_deferred_once("sched: DL replenish lagged too much\n");
 707                dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 708                dl_se->runtime = pi_se->dl_runtime;
 709        }
 710
 711        if (dl_se->dl_yielded)
 712                dl_se->dl_yielded = 0;
 713        if (dl_se->dl_throttled)
 714                dl_se->dl_throttled = 0;
 715}
 716
 717/*
 718 * Here we check if --at time t-- an entity (which is probably being
 719 * [re]activated or, in general, enqueued) can use its remaining runtime
 720 * and its current deadline _without_ exceeding the bandwidth it is
 721 * assigned (function returns true if it can't). We are in fact applying
 722 * one of the CBS rules: when a task wakes up, if the residual runtime
 723 * over residual deadline fits within the allocated bandwidth, then we
 724 * can keep the current (absolute) deadline and residual budget without
 725 * disrupting the schedulability of the system. Otherwise, we should
 726 * refill the runtime and set the deadline a period in the future,
 727 * because keeping the current (absolute) deadline of the task would
 728 * result in breaking guarantees promised to other tasks (refer to
 729 * Documentation/scheduler/sched-deadline.rst for more information).
 730 *
 731 * This function returns true if:
 732 *
 733 *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
 734 *
 735 * IOW we can't recycle current parameters.
 736 *
 737 * Notice that the bandwidth check is done against the deadline. For
 738 * task with deadline equal to period this is the same of using
 739 * dl_period instead of dl_deadline in the equation above.
 740 */
 741static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
 742                               struct sched_dl_entity *pi_se, u64 t)
 743{
 744        u64 left, right;
 745
 746        /*
 747         * left and right are the two sides of the equation above,
 748         * after a bit of shuffling to use multiplications instead
 749         * of divisions.
 750         *
 751         * Note that none of the time values involved in the two
 752         * multiplications are absolute: dl_deadline and dl_runtime
 753         * are the relative deadline and the maximum runtime of each
 754         * instance, runtime is the runtime left for the last instance
 755         * and (deadline - t), since t is rq->clock, is the time left
 756         * to the (absolute) deadline. Even if overflowing the u64 type
 757         * is very unlikely to occur in both cases, here we scale down
 758         * as we want to avoid that risk at all. Scaling down by 10
 759         * means that we reduce granularity to 1us. We are fine with it,
 760         * since this is only a true/false check and, anyway, thinking
 761         * of anything below microseconds resolution is actually fiction
 762         * (but still we want to give the user that illusion >;).
 763         */
 764        left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
 765        right = ((dl_se->deadline - t) >> DL_SCALE) *
 766                (pi_se->dl_runtime >> DL_SCALE);
 767
 768        return dl_time_before(right, left);
 769}
 770
 771/*
 772 * Revised wakeup rule [1]: For self-suspending tasks, rather then
 773 * re-initializing task's runtime and deadline, the revised wakeup
 774 * rule adjusts the task's runtime to avoid the task to overrun its
 775 * density.
 776 *
 777 * Reasoning: a task may overrun the density if:
 778 *    runtime / (deadline - t) > dl_runtime / dl_deadline
 779 *
 780 * Therefore, runtime can be adjusted to:
 781 *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
 782 *
 783 * In such way that runtime will be equal to the maximum density
 784 * the task can use without breaking any rule.
 785 *
 786 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
 787 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
 788 */
 789static void
 790update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
 791{
 792        u64 laxity = dl_se->deadline - rq_clock(rq);
 793
 794        /*
 795         * If the task has deadline < period, and the deadline is in the past,
 796         * it should already be throttled before this check.
 797         *
 798         * See update_dl_entity() comments for further details.
 799         */
 800        WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
 801
 802        dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
 803}
 804
 805/*
 806 * Regarding the deadline, a task with implicit deadline has a relative
 807 * deadline == relative period. A task with constrained deadline has a
 808 * relative deadline <= relative period.
 809 *
 810 * We support constrained deadline tasks. However, there are some restrictions
 811 * applied only for tasks which do not have an implicit deadline. See
 812 * update_dl_entity() to know more about such restrictions.
 813 *
 814 * The dl_is_implicit() returns true if the task has an implicit deadline.
 815 */
 816static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
 817{
 818        return dl_se->dl_deadline == dl_se->dl_period;
 819}
 820
 821/*
 822 * When a deadline entity is placed in the runqueue, its runtime and deadline
 823 * might need to be updated. This is done by a CBS wake up rule. There are two
 824 * different rules: 1) the original CBS; and 2) the Revisited CBS.
 825 *
 826 * When the task is starting a new period, the Original CBS is used. In this
 827 * case, the runtime is replenished and a new absolute deadline is set.
 828 *
 829 * When a task is queued before the begin of the next period, using the
 830 * remaining runtime and deadline could make the entity to overflow, see
 831 * dl_entity_overflow() to find more about runtime overflow. When such case
 832 * is detected, the runtime and deadline need to be updated.
 833 *
 834 * If the task has an implicit deadline, i.e., deadline == period, the Original
 835 * CBS is applied. the runtime is replenished and a new absolute deadline is
 836 * set, as in the previous cases.
 837 *
 838 * However, the Original CBS does not work properly for tasks with
 839 * deadline < period, which are said to have a constrained deadline. By
 840 * applying the Original CBS, a constrained deadline task would be able to run
 841 * runtime/deadline in a period. With deadline < period, the task would
 842 * overrun the runtime/period allowed bandwidth, breaking the admission test.
 843 *
 844 * In order to prevent this misbehave, the Revisited CBS is used for
 845 * constrained deadline tasks when a runtime overflow is detected. In the
 846 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
 847 * the remaining runtime of the task is reduced to avoid runtime overflow.
 848 * Please refer to the comments update_dl_revised_wakeup() function to find
 849 * more about the Revised CBS rule.
 850 */
 851static void update_dl_entity(struct sched_dl_entity *dl_se,
 852                             struct sched_dl_entity *pi_se)
 853{
 854        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 855        struct rq *rq = rq_of_dl_rq(dl_rq);
 856
 857        if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
 858            dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
 859
 860                if (unlikely(!dl_is_implicit(dl_se) &&
 861                             !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
 862                             !dl_se->dl_boosted)){
 863                        update_dl_revised_wakeup(dl_se, rq);
 864                        return;
 865                }
 866
 867                dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 868                dl_se->runtime = pi_se->dl_runtime;
 869        }
 870}
 871
 872static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
 873{
 874        return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
 875}
 876
 877/*
 878 * If the entity depleted all its runtime, and if we want it to sleep
 879 * while waiting for some new execution time to become available, we
 880 * set the bandwidth replenishment timer to the replenishment instant
 881 * and try to activate it.
 882 *
 883 * Notice that it is important for the caller to know if the timer
 884 * actually started or not (i.e., the replenishment instant is in
 885 * the future or in the past).
 886 */
 887static int start_dl_timer(struct task_struct *p)
 888{
 889        struct sched_dl_entity *dl_se = &p->dl;
 890        struct hrtimer *timer = &dl_se->dl_timer;
 891        struct rq *rq = task_rq(p);
 892        ktime_t now, act;
 893        s64 delta;
 894
 895        lockdep_assert_held(&rq->lock);
 896
 897        /*
 898         * We want the timer to fire at the deadline, but considering
 899         * that it is actually coming from rq->clock and not from
 900         * hrtimer's time base reading.
 901         */
 902        act = ns_to_ktime(dl_next_period(dl_se));
 903        now = hrtimer_cb_get_time(timer);
 904        delta = ktime_to_ns(now) - rq_clock(rq);
 905        act = ktime_add_ns(act, delta);
 906
 907        /*
 908         * If the expiry time already passed, e.g., because the value
 909         * chosen as the deadline is too small, don't even try to
 910         * start the timer in the past!
 911         */
 912        if (ktime_us_delta(act, now) < 0)
 913                return 0;
 914
 915        /*
 916         * !enqueued will guarantee another callback; even if one is already in
 917         * progress. This ensures a balanced {get,put}_task_struct().
 918         *
 919         * The race against __run_timer() clearing the enqueued state is
 920         * harmless because we're holding task_rq()->lock, therefore the timer
 921         * expiring after we've done the check will wait on its task_rq_lock()
 922         * and observe our state.
 923         */
 924        if (!hrtimer_is_queued(timer)) {
 925                get_task_struct(p);
 926                hrtimer_start(timer, act, HRTIMER_MODE_ABS);
 927        }
 928
 929        return 1;
 930}
 931
 932/*
 933 * This is the bandwidth enforcement timer callback. If here, we know
 934 * a task is not on its dl_rq, since the fact that the timer was running
 935 * means the task is throttled and needs a runtime replenishment.
 936 *
 937 * However, what we actually do depends on the fact the task is active,
 938 * (it is on its rq) or has been removed from there by a call to
 939 * dequeue_task_dl(). In the former case we must issue the runtime
 940 * replenishment and add the task back to the dl_rq; in the latter, we just
 941 * do nothing but clearing dl_throttled, so that runtime and deadline
 942 * updating (and the queueing back to dl_rq) will be done by the
 943 * next call to enqueue_task_dl().
 944 */
 945static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
 946{
 947        struct sched_dl_entity *dl_se = container_of(timer,
 948                                                     struct sched_dl_entity,
 949                                                     dl_timer);
 950        struct task_struct *p = dl_task_of(dl_se);
 951        struct rq_flags rf;
 952        struct rq *rq;
 953
 954        rq = task_rq_lock(p, &rf);
 955
 956        /*
 957         * The task might have changed its scheduling policy to something
 958         * different than SCHED_DEADLINE (through switched_from_dl()).
 959         */
 960        if (!dl_task(p))
 961                goto unlock;
 962
 963        /*
 964         * The task might have been boosted by someone else and might be in the
 965         * boosting/deboosting path, its not throttled.
 966         */
 967        if (dl_se->dl_boosted)
 968                goto unlock;
 969
 970        /*
 971         * Spurious timer due to start_dl_timer() race; or we already received
 972         * a replenishment from rt_mutex_setprio().
 973         */
 974        if (!dl_se->dl_throttled)
 975                goto unlock;
 976
 977        sched_clock_tick();
 978        update_rq_clock(rq);
 979
 980        /*
 981         * If the throttle happened during sched-out; like:
 982         *
 983         *   schedule()
 984         *     deactivate_task()
 985         *       dequeue_task_dl()
 986         *         update_curr_dl()
 987         *           start_dl_timer()
 988         *         __dequeue_task_dl()
 989         *     prev->on_rq = 0;
 990         *
 991         * We can be both throttled and !queued. Replenish the counter
 992         * but do not enqueue -- wait for our wakeup to do that.
 993         */
 994        if (!task_on_rq_queued(p)) {
 995                replenish_dl_entity(dl_se, dl_se);
 996                goto unlock;
 997        }
 998
 999#ifdef CONFIG_SMP
1000        if (unlikely(!rq->online)) {
1001                /*
1002                 * If the runqueue is no longer available, migrate the
1003                 * task elsewhere. This necessarily changes rq.
1004                 */
1005                lockdep_unpin_lock(&rq->lock, rf.cookie);
1006                rq = dl_task_offline_migration(rq, p);
1007                rf.cookie = lockdep_pin_lock(&rq->lock);
1008                update_rq_clock(rq);
1009
1010                /*
1011                 * Now that the task has been migrated to the new RQ and we
1012                 * have that locked, proceed as normal and enqueue the task
1013                 * there.
1014                 */
1015        }
1016#endif
1017
1018        enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1019        if (dl_task(rq->curr))
1020                check_preempt_curr_dl(rq, p, 0);
1021        else
1022                resched_curr(rq);
1023
1024#ifdef CONFIG_SMP
1025        /*
1026         * Queueing this task back might have overloaded rq, check if we need
1027         * to kick someone away.
1028         */
1029        if (has_pushable_dl_tasks(rq)) {
1030                /*
1031                 * Nothing relies on rq->lock after this, so its safe to drop
1032                 * rq->lock.
1033                 */
1034                rq_unpin_lock(rq, &rf);
1035                push_dl_task(rq);
1036                rq_repin_lock(rq, &rf);
1037        }
1038#endif
1039
1040unlock:
1041        task_rq_unlock(rq, p, &rf);
1042
1043        /*
1044         * This can free the task_struct, including this hrtimer, do not touch
1045         * anything related to that after this.
1046         */
1047        put_task_struct(p);
1048
1049        return HRTIMER_NORESTART;
1050}
1051
1052void init_dl_task_timer(struct sched_dl_entity *dl_se)
1053{
1054        struct hrtimer *timer = &dl_se->dl_timer;
1055
1056        hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1057        timer->function = dl_task_timer;
1058}
1059
1060/*
1061 * During the activation, CBS checks if it can reuse the current task's
1062 * runtime and period. If the deadline of the task is in the past, CBS
1063 * cannot use the runtime, and so it replenishes the task. This rule
1064 * works fine for implicit deadline tasks (deadline == period), and the
1065 * CBS was designed for implicit deadline tasks. However, a task with
1066 * constrained deadline (deadine < period) might be awakened after the
1067 * deadline, but before the next period. In this case, replenishing the
1068 * task would allow it to run for runtime / deadline. As in this case
1069 * deadline < period, CBS enables a task to run for more than the
1070 * runtime / period. In a very loaded system, this can cause a domino
1071 * effect, making other tasks miss their deadlines.
1072 *
1073 * To avoid this problem, in the activation of a constrained deadline
1074 * task after the deadline but before the next period, throttle the
1075 * task and set the replenishing timer to the begin of the next period,
1076 * unless it is boosted.
1077 */
1078static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1079{
1080        struct task_struct *p = dl_task_of(dl_se);
1081        struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1082
1083        if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1084            dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1085                if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1086                        return;
1087                dl_se->dl_throttled = 1;
1088                if (dl_se->runtime > 0)
1089                        dl_se->runtime = 0;
1090        }
1091}
1092
1093static
1094int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1095{
1096        return (dl_se->runtime <= 0);
1097}
1098
1099extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1100
1101/*
1102 * This function implements the GRUB accounting rule:
1103 * according to the GRUB reclaiming algorithm, the runtime is
1104 * not decreased as "dq = -dt", but as
1105 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1106 * where u is the utilization of the task, Umax is the maximum reclaimable
1107 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1108 * as the difference between the "total runqueue utilization" and the
1109 * runqueue active utilization, and Uextra is the (per runqueue) extra
1110 * reclaimable utilization.
1111 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1112 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1113 * BW_SHIFT.
1114 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1115 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1116 * Since delta is a 64 bit variable, to have an overflow its value
1117 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1118 * So, overflow is not an issue here.
1119 */
1120static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1121{
1122        u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1123        u64 u_act;
1124        u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1125
1126        /*
1127         * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1128         * we compare u_inact + rq->dl.extra_bw with
1129         * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1130         * u_inact + rq->dl.extra_bw can be larger than
1131         * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1132         * leading to wrong results)
1133         */
1134        if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1135                u_act = u_act_min;
1136        else
1137                u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1138
1139        return (delta * u_act) >> BW_SHIFT;
1140}
1141
1142/*
1143 * Update the current task's runtime statistics (provided it is still
1144 * a -deadline task and has not been removed from the dl_rq).
1145 */
1146static void update_curr_dl(struct rq *rq)
1147{
1148        struct task_struct *curr = rq->curr;
1149        struct sched_dl_entity *dl_se = &curr->dl;
1150        u64 delta_exec, scaled_delta_exec;
1151        int cpu = cpu_of(rq);
1152        u64 now;
1153
1154        if (!dl_task(curr) || !on_dl_rq(dl_se))
1155                return;
1156
1157        /*
1158         * Consumed budget is computed considering the time as
1159         * observed by schedulable tasks (excluding time spent
1160         * in hardirq context, etc.). Deadlines are instead
1161         * computed using hard walltime. This seems to be the more
1162         * natural solution, but the full ramifications of this
1163         * approach need further study.
1164         */
1165        now = rq_clock_task(rq);
1166        delta_exec = now - curr->se.exec_start;
1167        if (unlikely((s64)delta_exec <= 0)) {
1168                if (unlikely(dl_se->dl_yielded))
1169                        goto throttle;
1170                return;
1171        }
1172
1173        schedstat_set(curr->se.statistics.exec_max,
1174                      max(curr->se.statistics.exec_max, delta_exec));
1175
1176        curr->se.sum_exec_runtime += delta_exec;
1177        account_group_exec_runtime(curr, delta_exec);
1178
1179        curr->se.exec_start = now;
1180        cgroup_account_cputime(curr, delta_exec);
1181
1182        if (dl_entity_is_special(dl_se))
1183                return;
1184
1185        /*
1186         * For tasks that participate in GRUB, we implement GRUB-PA: the
1187         * spare reclaimed bandwidth is used to clock down frequency.
1188         *
1189         * For the others, we still need to scale reservation parameters
1190         * according to current frequency and CPU maximum capacity.
1191         */
1192        if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1193                scaled_delta_exec = grub_reclaim(delta_exec,
1194                                                 rq,
1195                                                 &curr->dl);
1196        } else {
1197                unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1198                unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1199
1200                scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1201                scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1202        }
1203
1204        dl_se->runtime -= scaled_delta_exec;
1205
1206throttle:
1207        if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1208                dl_se->dl_throttled = 1;
1209
1210                /* If requested, inform the user about runtime overruns. */
1211                if (dl_runtime_exceeded(dl_se) &&
1212                    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1213                        dl_se->dl_overrun = 1;
1214
1215                __dequeue_task_dl(rq, curr, 0);
1216                if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1217                        enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1218
1219                if (!is_leftmost(curr, &rq->dl))
1220                        resched_curr(rq);
1221        }
1222
1223        /*
1224         * Because -- for now -- we share the rt bandwidth, we need to
1225         * account our runtime there too, otherwise actual rt tasks
1226         * would be able to exceed the shared quota.
1227         *
1228         * Account to the root rt group for now.
1229         *
1230         * The solution we're working towards is having the RT groups scheduled
1231         * using deadline servers -- however there's a few nasties to figure
1232         * out before that can happen.
1233         */
1234        if (rt_bandwidth_enabled()) {
1235                struct rt_rq *rt_rq = &rq->rt;
1236
1237                raw_spin_lock(&rt_rq->rt_runtime_lock);
1238                /*
1239                 * We'll let actual RT tasks worry about the overflow here, we
1240                 * have our own CBS to keep us inline; only account when RT
1241                 * bandwidth is relevant.
1242                 */
1243                if (sched_rt_bandwidth_account(rt_rq))
1244                        rt_rq->rt_time += delta_exec;
1245                raw_spin_unlock(&rt_rq->rt_runtime_lock);
1246        }
1247}
1248
1249static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1250{
1251        struct sched_dl_entity *dl_se = container_of(timer,
1252                                                     struct sched_dl_entity,
1253                                                     inactive_timer);
1254        struct task_struct *p = dl_task_of(dl_se);
1255        struct rq_flags rf;
1256        struct rq *rq;
1257
1258        rq = task_rq_lock(p, &rf);
1259
1260        sched_clock_tick();
1261        update_rq_clock(rq);
1262
1263        if (!dl_task(p) || p->state == TASK_DEAD) {
1264                struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1265
1266                if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1267                        sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1268                        sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1269                        dl_se->dl_non_contending = 0;
1270                }
1271
1272                raw_spin_lock(&dl_b->lock);
1273                __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1274                raw_spin_unlock(&dl_b->lock);
1275                __dl_clear_params(p);
1276
1277                goto unlock;
1278        }
1279        if (dl_se->dl_non_contending == 0)
1280                goto unlock;
1281
1282        sub_running_bw(dl_se, &rq->dl);
1283        dl_se->dl_non_contending = 0;
1284unlock:
1285        task_rq_unlock(rq, p, &rf);
1286        put_task_struct(p);
1287
1288        return HRTIMER_NORESTART;
1289}
1290
1291void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1292{
1293        struct hrtimer *timer = &dl_se->inactive_timer;
1294
1295        hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1296        timer->function = inactive_task_timer;
1297}
1298
1299#ifdef CONFIG_SMP
1300
1301static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1302{
1303        struct rq *rq = rq_of_dl_rq(dl_rq);
1304
1305        if (dl_rq->earliest_dl.curr == 0 ||
1306            dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1307                dl_rq->earliest_dl.curr = deadline;
1308                cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1309        }
1310}
1311
1312static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1313{
1314        struct rq *rq = rq_of_dl_rq(dl_rq);
1315
1316        /*
1317         * Since we may have removed our earliest (and/or next earliest)
1318         * task we must recompute them.
1319         */
1320        if (!dl_rq->dl_nr_running) {
1321                dl_rq->earliest_dl.curr = 0;
1322                dl_rq->earliest_dl.next = 0;
1323                cpudl_clear(&rq->rd->cpudl, rq->cpu);
1324        } else {
1325                struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1326                struct sched_dl_entity *entry;
1327
1328                entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1329                dl_rq->earliest_dl.curr = entry->deadline;
1330                cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1331        }
1332}
1333
1334#else
1335
1336static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1337static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1338
1339#endif /* CONFIG_SMP */
1340
1341static inline
1342void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1343{
1344        int prio = dl_task_of(dl_se)->prio;
1345        u64 deadline = dl_se->deadline;
1346
1347        WARN_ON(!dl_prio(prio));
1348        dl_rq->dl_nr_running++;
1349        add_nr_running(rq_of_dl_rq(dl_rq), 1);
1350
1351        inc_dl_deadline(dl_rq, deadline);
1352        inc_dl_migration(dl_se, dl_rq);
1353}
1354
1355static inline
1356void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1357{
1358        int prio = dl_task_of(dl_se)->prio;
1359
1360        WARN_ON(!dl_prio(prio));
1361        WARN_ON(!dl_rq->dl_nr_running);
1362        dl_rq->dl_nr_running--;
1363        sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1364
1365        dec_dl_deadline(dl_rq, dl_se->deadline);
1366        dec_dl_migration(dl_se, dl_rq);
1367}
1368
1369static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1370{
1371        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1372        struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1373        struct rb_node *parent = NULL;
1374        struct sched_dl_entity *entry;
1375        int leftmost = 1;
1376
1377        BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1378
1379        while (*link) {
1380                parent = *link;
1381                entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1382                if (dl_time_before(dl_se->deadline, entry->deadline))
1383                        link = &parent->rb_left;
1384                else {
1385                        link = &parent->rb_right;
1386                        leftmost = 0;
1387                }
1388        }
1389
1390        rb_link_node(&dl_se->rb_node, parent, link);
1391        rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1392
1393        inc_dl_tasks(dl_se, dl_rq);
1394}
1395
1396static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1397{
1398        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1399
1400        if (RB_EMPTY_NODE(&dl_se->rb_node))
1401                return;
1402
1403        rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1404        RB_CLEAR_NODE(&dl_se->rb_node);
1405
1406        dec_dl_tasks(dl_se, dl_rq);
1407}
1408
1409static void
1410enqueue_dl_entity(struct sched_dl_entity *dl_se,
1411                  struct sched_dl_entity *pi_se, int flags)
1412{
1413        BUG_ON(on_dl_rq(dl_se));
1414
1415        /*
1416         * If this is a wakeup or a new instance, the scheduling
1417         * parameters of the task might need updating. Otherwise,
1418         * we want a replenishment of its runtime.
1419         */
1420        if (flags & ENQUEUE_WAKEUP) {
1421                task_contending(dl_se, flags);
1422                update_dl_entity(dl_se, pi_se);
1423        } else if (flags & ENQUEUE_REPLENISH) {
1424                replenish_dl_entity(dl_se, pi_se);
1425        } else if ((flags & ENQUEUE_RESTORE) &&
1426                  dl_time_before(dl_se->deadline,
1427                                 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1428                setup_new_dl_entity(dl_se);
1429        }
1430
1431        __enqueue_dl_entity(dl_se);
1432}
1433
1434static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1435{
1436        __dequeue_dl_entity(dl_se);
1437}
1438
1439static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1440{
1441        struct task_struct *pi_task = rt_mutex_get_top_task(p);
1442        struct sched_dl_entity *pi_se = &p->dl;
1443
1444        /*
1445         * Use the scheduling parameters of the top pi-waiter task if:
1446         * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1447         * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1448         *   smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1449         *   boosted due to a SCHED_DEADLINE pi-waiter).
1450         * Otherwise we keep our runtime and deadline.
1451         */
1452        if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1453                pi_se = &pi_task->dl;
1454        } else if (!dl_prio(p->normal_prio)) {
1455                /*
1456                 * Special case in which we have a !SCHED_DEADLINE task
1457                 * that is going to be deboosted, but exceeds its
1458                 * runtime while doing so. No point in replenishing
1459                 * it, as it's going to return back to its original
1460                 * scheduling class after this.
1461                 */
1462                BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1463                return;
1464        }
1465
1466        /*
1467         * Check if a constrained deadline task was activated
1468         * after the deadline but before the next period.
1469         * If that is the case, the task will be throttled and
1470         * the replenishment timer will be set to the next period.
1471         */
1472        if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1473                dl_check_constrained_dl(&p->dl);
1474
1475        if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1476                add_rq_bw(&p->dl, &rq->dl);
1477                add_running_bw(&p->dl, &rq->dl);
1478        }
1479
1480        /*
1481         * If p is throttled, we do not enqueue it. In fact, if it exhausted
1482         * its budget it needs a replenishment and, since it now is on
1483         * its rq, the bandwidth timer callback (which clearly has not
1484         * run yet) will take care of this.
1485         * However, the active utilization does not depend on the fact
1486         * that the task is on the runqueue or not (but depends on the
1487         * task's state - in GRUB parlance, "inactive" vs "active contending").
1488         * In other words, even if a task is throttled its utilization must
1489         * be counted in the active utilization; hence, we need to call
1490         * add_running_bw().
1491         */
1492        if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1493                if (flags & ENQUEUE_WAKEUP)
1494                        task_contending(&p->dl, flags);
1495
1496                return;
1497        }
1498
1499        enqueue_dl_entity(&p->dl, pi_se, flags);
1500
1501        if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1502                enqueue_pushable_dl_task(rq, p);
1503}
1504
1505static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1506{
1507        dequeue_dl_entity(&p->dl);
1508        dequeue_pushable_dl_task(rq, p);
1509}
1510
1511static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1512{
1513        update_curr_dl(rq);
1514        __dequeue_task_dl(rq, p, flags);
1515
1516        if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1517                sub_running_bw(&p->dl, &rq->dl);
1518                sub_rq_bw(&p->dl, &rq->dl);
1519        }
1520
1521        /*
1522         * This check allows to start the inactive timer (or to immediately
1523         * decrease the active utilization, if needed) in two cases:
1524         * when the task blocks and when it is terminating
1525         * (p->state == TASK_DEAD). We can handle the two cases in the same
1526         * way, because from GRUB's point of view the same thing is happening
1527         * (the task moves from "active contending" to "active non contending"
1528         * or "inactive")
1529         */
1530        if (flags & DEQUEUE_SLEEP)
1531                task_non_contending(p);
1532}
1533
1534/*
1535 * Yield task semantic for -deadline tasks is:
1536 *
1537 *   get off from the CPU until our next instance, with
1538 *   a new runtime. This is of little use now, since we
1539 *   don't have a bandwidth reclaiming mechanism. Anyway,
1540 *   bandwidth reclaiming is planned for the future, and
1541 *   yield_task_dl will indicate that some spare budget
1542 *   is available for other task instances to use it.
1543 */
1544static void yield_task_dl(struct rq *rq)
1545{
1546        /*
1547         * We make the task go to sleep until its current deadline by
1548         * forcing its runtime to zero. This way, update_curr_dl() stops
1549         * it and the bandwidth timer will wake it up and will give it
1550         * new scheduling parameters (thanks to dl_yielded=1).
1551         */
1552        rq->curr->dl.dl_yielded = 1;
1553
1554        update_rq_clock(rq);
1555        update_curr_dl(rq);
1556        /*
1557         * Tell update_rq_clock() that we've just updated,
1558         * so we don't do microscopic update in schedule()
1559         * and double the fastpath cost.
1560         */
1561        rq_clock_skip_update(rq);
1562}
1563
1564#ifdef CONFIG_SMP
1565
1566static int find_later_rq(struct task_struct *task);
1567
1568static int
1569select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1570{
1571        struct task_struct *curr;
1572        struct rq *rq;
1573
1574        if (sd_flag != SD_BALANCE_WAKE)
1575                goto out;
1576
1577        rq = cpu_rq(cpu);
1578
1579        rcu_read_lock();
1580        curr = READ_ONCE(rq->curr); /* unlocked access */
1581
1582        /*
1583         * If we are dealing with a -deadline task, we must
1584         * decide where to wake it up.
1585         * If it has a later deadline and the current task
1586         * on this rq can't move (provided the waking task
1587         * can!) we prefer to send it somewhere else. On the
1588         * other hand, if it has a shorter deadline, we
1589         * try to make it stay here, it might be important.
1590         */
1591        if (unlikely(dl_task(curr)) &&
1592            (curr->nr_cpus_allowed < 2 ||
1593             !dl_entity_preempt(&p->dl, &curr->dl)) &&
1594            (p->nr_cpus_allowed > 1)) {
1595                int target = find_later_rq(p);
1596
1597                if (target != -1 &&
1598                                (dl_time_before(p->dl.deadline,
1599                                        cpu_rq(target)->dl.earliest_dl.curr) ||
1600                                (cpu_rq(target)->dl.dl_nr_running == 0)))
1601                        cpu = target;
1602        }
1603        rcu_read_unlock();
1604
1605out:
1606        return cpu;
1607}
1608
1609static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1610{
1611        struct rq *rq;
1612
1613        if (p->state != TASK_WAKING)
1614                return;
1615
1616        rq = task_rq(p);
1617        /*
1618         * Since p->state == TASK_WAKING, set_task_cpu() has been called
1619         * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1620         * rq->lock is not... So, lock it
1621         */
1622        raw_spin_lock(&rq->lock);
1623        if (p->dl.dl_non_contending) {
1624                sub_running_bw(&p->dl, &rq->dl);
1625                p->dl.dl_non_contending = 0;
1626                /*
1627                 * If the timer handler is currently running and the
1628                 * timer cannot be cancelled, inactive_task_timer()
1629                 * will see that dl_not_contending is not set, and
1630                 * will not touch the rq's active utilization,
1631                 * so we are still safe.
1632                 */
1633                if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1634                        put_task_struct(p);
1635        }
1636        sub_rq_bw(&p->dl, &rq->dl);
1637        raw_spin_unlock(&rq->lock);
1638}
1639
1640static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1641{
1642        /*
1643         * Current can't be migrated, useless to reschedule,
1644         * let's hope p can move out.
1645         */
1646        if (rq->curr->nr_cpus_allowed == 1 ||
1647            !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1648                return;
1649
1650        /*
1651         * p is migratable, so let's not schedule it and
1652         * see if it is pushed or pulled somewhere else.
1653         */
1654        if (p->nr_cpus_allowed != 1 &&
1655            cpudl_find(&rq->rd->cpudl, p, NULL))
1656                return;
1657
1658        resched_curr(rq);
1659}
1660
1661#endif /* CONFIG_SMP */
1662
1663/*
1664 * Only called when both the current and waking task are -deadline
1665 * tasks.
1666 */
1667static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1668                                  int flags)
1669{
1670        if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1671                resched_curr(rq);
1672                return;
1673        }
1674
1675#ifdef CONFIG_SMP
1676        /*
1677         * In the unlikely case current and p have the same deadline
1678         * let us try to decide what's the best thing to do...
1679         */
1680        if ((p->dl.deadline == rq->curr->dl.deadline) &&
1681            !test_tsk_need_resched(rq->curr))
1682                check_preempt_equal_dl(rq, p);
1683#endif /* CONFIG_SMP */
1684}
1685
1686#ifdef CONFIG_SCHED_HRTICK
1687static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1688{
1689        hrtick_start(rq, p->dl.runtime);
1690}
1691#else /* !CONFIG_SCHED_HRTICK */
1692static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1693{
1694}
1695#endif
1696
1697static inline void set_next_task(struct rq *rq, struct task_struct *p)
1698{
1699        p->se.exec_start = rq_clock_task(rq);
1700
1701        /* You can't push away the running task */
1702        dequeue_pushable_dl_task(rq, p);
1703}
1704
1705static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1706                                                   struct dl_rq *dl_rq)
1707{
1708        struct rb_node *left = rb_first_cached(&dl_rq->root);
1709
1710        if (!left)
1711                return NULL;
1712
1713        return rb_entry(left, struct sched_dl_entity, rb_node);
1714}
1715
1716static struct task_struct *
1717pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1718{
1719        struct sched_dl_entity *dl_se;
1720        struct task_struct *p;
1721        struct dl_rq *dl_rq;
1722
1723        dl_rq = &rq->dl;
1724
1725        if (need_pull_dl_task(rq, prev)) {
1726                /*
1727                 * This is OK, because current is on_cpu, which avoids it being
1728                 * picked for load-balance and preemption/IRQs are still
1729                 * disabled avoiding further scheduler activity on it and we're
1730                 * being very careful to re-start the picking loop.
1731                 */
1732                rq_unpin_lock(rq, rf);
1733                pull_dl_task(rq);
1734                rq_repin_lock(rq, rf);
1735                /*
1736                 * pull_dl_task() can drop (and re-acquire) rq->lock; this
1737                 * means a stop task can slip in, in which case we need to
1738                 * re-start task selection.
1739                 */
1740                if (rq->stop && task_on_rq_queued(rq->stop))
1741                        return RETRY_TASK;
1742        }
1743
1744        /*
1745         * When prev is DL, we may throttle it in put_prev_task().
1746         * So, we update time before we check for dl_nr_running.
1747         */
1748        if (prev->sched_class == &dl_sched_class)
1749                update_curr_dl(rq);
1750
1751        if (unlikely(!dl_rq->dl_nr_running))
1752                return NULL;
1753
1754        put_prev_task(rq, prev);
1755
1756        dl_se = pick_next_dl_entity(rq, dl_rq);
1757        BUG_ON(!dl_se);
1758
1759        p = dl_task_of(dl_se);
1760
1761        set_next_task(rq, p);
1762
1763        if (hrtick_enabled(rq))
1764                start_hrtick_dl(rq, p);
1765
1766        deadline_queue_push_tasks(rq);
1767
1768        if (rq->curr->sched_class != &dl_sched_class)
1769                update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1770
1771        return p;
1772}
1773
1774static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1775{
1776        update_curr_dl(rq);
1777
1778        update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1779        if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1780                enqueue_pushable_dl_task(rq, p);
1781}
1782
1783/*
1784 * scheduler tick hitting a task of our scheduling class.
1785 *
1786 * NOTE: This function can be called remotely by the tick offload that
1787 * goes along full dynticks. Therefore no local assumption can be made
1788 * and everything must be accessed through the @rq and @curr passed in
1789 * parameters.
1790 */
1791static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1792{
1793        update_curr_dl(rq);
1794
1795        update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1796        /*
1797         * Even when we have runtime, update_curr_dl() might have resulted in us
1798         * not being the leftmost task anymore. In that case NEED_RESCHED will
1799         * be set and schedule() will start a new hrtick for the next task.
1800         */
1801        if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1802            is_leftmost(p, &rq->dl))
1803                start_hrtick_dl(rq, p);
1804}
1805
1806static void task_fork_dl(struct task_struct *p)
1807{
1808        /*
1809         * SCHED_DEADLINE tasks cannot fork and this is achieved through
1810         * sched_fork()
1811         */
1812}
1813
1814static void set_curr_task_dl(struct rq *rq)
1815{
1816        set_next_task(rq, rq->curr);
1817}
1818
1819#ifdef CONFIG_SMP
1820
1821/* Only try algorithms three times */
1822#define DL_MAX_TRIES 3
1823
1824static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1825{
1826        if (!task_running(rq, p) &&
1827            cpumask_test_cpu(cpu, p->cpus_ptr))
1828                return 1;
1829        return 0;
1830}
1831
1832/*
1833 * Return the earliest pushable rq's task, which is suitable to be executed
1834 * on the CPU, NULL otherwise:
1835 */
1836static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1837{
1838        struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1839        struct task_struct *p = NULL;
1840
1841        if (!has_pushable_dl_tasks(rq))
1842                return NULL;
1843
1844next_node:
1845        if (next_node) {
1846                p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1847
1848                if (pick_dl_task(rq, p, cpu))
1849                        return p;
1850
1851                next_node = rb_next(next_node);
1852                goto next_node;
1853        }
1854
1855        return NULL;
1856}
1857
1858static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1859
1860static int find_later_rq(struct task_struct *task)
1861{
1862        struct sched_domain *sd;
1863        struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1864        int this_cpu = smp_processor_id();
1865        int cpu = task_cpu(task);
1866
1867        /* Make sure the mask is initialized first */
1868        if (unlikely(!later_mask))
1869                return -1;
1870
1871        if (task->nr_cpus_allowed == 1)
1872                return -1;
1873
1874        /*
1875         * We have to consider system topology and task affinity
1876         * first, then we can look for a suitable CPU.
1877         */
1878        if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1879                return -1;
1880
1881        /*
1882         * If we are here, some targets have been found, including
1883         * the most suitable which is, among the runqueues where the
1884         * current tasks have later deadlines than the task's one, the
1885         * rq with the latest possible one.
1886         *
1887         * Now we check how well this matches with task's
1888         * affinity and system topology.
1889         *
1890         * The last CPU where the task run is our first
1891         * guess, since it is most likely cache-hot there.
1892         */
1893        if (cpumask_test_cpu(cpu, later_mask))
1894                return cpu;
1895        /*
1896         * Check if this_cpu is to be skipped (i.e., it is
1897         * not in the mask) or not.
1898         */
1899        if (!cpumask_test_cpu(this_cpu, later_mask))
1900                this_cpu = -1;
1901
1902        rcu_read_lock();
1903        for_each_domain(cpu, sd) {
1904                if (sd->flags & SD_WAKE_AFFINE) {
1905                        int best_cpu;
1906
1907                        /*
1908                         * If possible, preempting this_cpu is
1909                         * cheaper than migrating.
1910                         */
1911                        if (this_cpu != -1 &&
1912                            cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1913                                rcu_read_unlock();
1914                                return this_cpu;
1915                        }
1916
1917                        best_cpu = cpumask_first_and(later_mask,
1918                                                        sched_domain_span(sd));
1919                        /*
1920                         * Last chance: if a CPU being in both later_mask
1921                         * and current sd span is valid, that becomes our
1922                         * choice. Of course, the latest possible CPU is
1923                         * already under consideration through later_mask.
1924                         */
1925                        if (best_cpu < nr_cpu_ids) {
1926                                rcu_read_unlock();
1927                                return best_cpu;
1928                        }
1929                }
1930        }
1931        rcu_read_unlock();
1932
1933        /*
1934         * At this point, all our guesses failed, we just return
1935         * 'something', and let the caller sort the things out.
1936         */
1937        if (this_cpu != -1)
1938                return this_cpu;
1939
1940        cpu = cpumask_any(later_mask);
1941        if (cpu < nr_cpu_ids)
1942                return cpu;
1943
1944        return -1;
1945}
1946
1947/* Locks the rq it finds */
1948static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1949{
1950        struct rq *later_rq = NULL;
1951        int tries;
1952        int cpu;
1953
1954        for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1955                cpu = find_later_rq(task);
1956
1957                if ((cpu == -1) || (cpu == rq->cpu))
1958                        break;
1959
1960                later_rq = cpu_rq(cpu);
1961
1962                if (later_rq->dl.dl_nr_running &&
1963                    !dl_time_before(task->dl.deadline,
1964                                        later_rq->dl.earliest_dl.curr)) {
1965                        /*
1966                         * Target rq has tasks of equal or earlier deadline,
1967                         * retrying does not release any lock and is unlikely
1968                         * to yield a different result.
1969                         */
1970                        later_rq = NULL;
1971                        break;
1972                }
1973
1974                /* Retry if something changed. */
1975                if (double_lock_balance(rq, later_rq)) {
1976                        if (unlikely(task_rq(task) != rq ||
1977                                     !cpumask_test_cpu(later_rq->cpu, task->cpus_ptr) ||
1978                                     task_running(rq, task) ||
1979                                     !dl_task(task) ||
1980                                     !task_on_rq_queued(task))) {
1981                                double_unlock_balance(rq, later_rq);
1982                                later_rq = NULL;
1983                                break;
1984                        }
1985                }
1986
1987                /*
1988                 * If the rq we found has no -deadline task, or
1989                 * its earliest one has a later deadline than our
1990                 * task, the rq is a good one.
1991                 */
1992                if (!later_rq->dl.dl_nr_running ||
1993                    dl_time_before(task->dl.deadline,
1994                                   later_rq->dl.earliest_dl.curr))
1995                        break;
1996
1997                /* Otherwise we try again. */
1998                double_unlock_balance(rq, later_rq);
1999                later_rq = NULL;
2000        }
2001
2002        return later_rq;
2003}
2004
2005static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2006{
2007        struct task_struct *p;
2008
2009        if (!has_pushable_dl_tasks(rq))
2010                return NULL;
2011
2012        p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2013                     struct task_struct, pushable_dl_tasks);
2014
2015        BUG_ON(rq->cpu != task_cpu(p));
2016        BUG_ON(task_current(rq, p));
2017        BUG_ON(p->nr_cpus_allowed <= 1);
2018
2019        BUG_ON(!task_on_rq_queued(p));
2020        BUG_ON(!dl_task(p));
2021
2022        return p;
2023}
2024
2025/*
2026 * See if the non running -deadline tasks on this rq
2027 * can be sent to some other CPU where they can preempt
2028 * and start executing.
2029 */
2030static int push_dl_task(struct rq *rq)
2031{
2032        struct task_struct *next_task;
2033        struct rq *later_rq;
2034        int ret = 0;
2035
2036        if (!rq->dl.overloaded)
2037                return 0;
2038
2039        next_task = pick_next_pushable_dl_task(rq);
2040        if (!next_task)
2041                return 0;
2042
2043retry:
2044        if (WARN_ON(next_task == rq->curr))
2045                return 0;
2046
2047        /*
2048         * If next_task preempts rq->curr, and rq->curr
2049         * can move away, it makes sense to just reschedule
2050         * without going further in pushing next_task.
2051         */
2052        if (dl_task(rq->curr) &&
2053            dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2054            rq->curr->nr_cpus_allowed > 1) {
2055                resched_curr(rq);
2056                return 0;
2057        }
2058
2059        /* We might release rq lock */
2060        get_task_struct(next_task);
2061
2062        /* Will lock the rq it'll find */
2063        later_rq = find_lock_later_rq(next_task, rq);
2064        if (!later_rq) {
2065                struct task_struct *task;
2066
2067                /*
2068                 * We must check all this again, since
2069                 * find_lock_later_rq releases rq->lock and it is
2070                 * then possible that next_task has migrated.
2071                 */
2072                task = pick_next_pushable_dl_task(rq);
2073                if (task == next_task) {
2074                        /*
2075                         * The task is still there. We don't try
2076                         * again, some other CPU will pull it when ready.
2077                         */
2078                        goto out;
2079                }
2080
2081                if (!task)
2082                        /* No more tasks */
2083                        goto out;
2084
2085                put_task_struct(next_task);
2086                next_task = task;
2087                goto retry;
2088        }
2089
2090        deactivate_task(rq, next_task, 0);
2091        set_task_cpu(next_task, later_rq->cpu);
2092
2093        /*
2094         * Update the later_rq clock here, because the clock is used
2095         * by the cpufreq_update_util() inside __add_running_bw().
2096         */
2097        update_rq_clock(later_rq);
2098        activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2099        ret = 1;
2100
2101        resched_curr(later_rq);
2102
2103        double_unlock_balance(rq, later_rq);
2104
2105out:
2106        put_task_struct(next_task);
2107
2108        return ret;
2109}
2110
2111static void push_dl_tasks(struct rq *rq)
2112{
2113        /* push_dl_task() will return true if it moved a -deadline task */
2114        while (push_dl_task(rq))
2115                ;
2116}
2117
2118static void pull_dl_task(struct rq *this_rq)
2119{
2120        int this_cpu = this_rq->cpu, cpu;
2121        struct task_struct *p;
2122        bool resched = false;
2123        struct rq *src_rq;
2124        u64 dmin = LONG_MAX;
2125
2126        if (likely(!dl_overloaded(this_rq)))
2127                return;
2128
2129        /*
2130         * Match the barrier from dl_set_overloaded; this guarantees that if we
2131         * see overloaded we must also see the dlo_mask bit.
2132         */
2133        smp_rmb();
2134
2135        for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2136                if (this_cpu == cpu)
2137                        continue;
2138
2139                src_rq = cpu_rq(cpu);
2140
2141                /*
2142                 * It looks racy, abd it is! However, as in sched_rt.c,
2143                 * we are fine with this.
2144                 */
2145                if (this_rq->dl.dl_nr_running &&
2146                    dl_time_before(this_rq->dl.earliest_dl.curr,
2147                                   src_rq->dl.earliest_dl.next))
2148                        continue;
2149
2150                /* Might drop this_rq->lock */
2151                double_lock_balance(this_rq, src_rq);
2152
2153                /*
2154                 * If there are no more pullable tasks on the
2155                 * rq, we're done with it.
2156                 */
2157                if (src_rq->dl.dl_nr_running <= 1)
2158                        goto skip;
2159
2160                p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2161
2162                /*
2163                 * We found a task to be pulled if:
2164                 *  - it preempts our current (if there's one),
2165                 *  - it will preempt the last one we pulled (if any).
2166                 */
2167                if (p && dl_time_before(p->dl.deadline, dmin) &&
2168                    (!this_rq->dl.dl_nr_running ||
2169                     dl_time_before(p->dl.deadline,
2170                                    this_rq->dl.earliest_dl.curr))) {
2171                        WARN_ON(p == src_rq->curr);
2172                        WARN_ON(!task_on_rq_queued(p));
2173
2174                        /*
2175                         * Then we pull iff p has actually an earlier
2176                         * deadline than the current task of its runqueue.
2177                         */
2178                        if (dl_time_before(p->dl.deadline,
2179                                           src_rq->curr->dl.deadline))
2180                                goto skip;
2181
2182                        resched = true;
2183
2184                        deactivate_task(src_rq, p, 0);
2185                        set_task_cpu(p, this_cpu);
2186                        activate_task(this_rq, p, 0);
2187                        dmin = p->dl.deadline;
2188
2189                        /* Is there any other task even earlier? */
2190                }
2191skip:
2192                double_unlock_balance(this_rq, src_rq);
2193        }
2194
2195        if (resched)
2196                resched_curr(this_rq);
2197}
2198
2199/*
2200 * Since the task is not running and a reschedule is not going to happen
2201 * anytime soon on its runqueue, we try pushing it away now.
2202 */
2203static void task_woken_dl(struct rq *rq, struct task_struct *p)
2204{
2205        if (!task_running(rq, p) &&
2206            !test_tsk_need_resched(rq->curr) &&
2207            p->nr_cpus_allowed > 1 &&
2208            dl_task(rq->curr) &&
2209            (rq->curr->nr_cpus_allowed < 2 ||
2210             !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2211                push_dl_tasks(rq);
2212        }
2213}
2214
2215static void set_cpus_allowed_dl(struct task_struct *p,
2216                                const struct cpumask *new_mask)
2217{
2218        struct root_domain *src_rd;
2219        struct rq *rq;
2220
2221        BUG_ON(!dl_task(p));
2222
2223        rq = task_rq(p);
2224        src_rd = rq->rd;
2225        /*
2226         * Migrating a SCHED_DEADLINE task between exclusive
2227         * cpusets (different root_domains) entails a bandwidth
2228         * update. We already made space for us in the destination
2229         * domain (see cpuset_can_attach()).
2230         */
2231        if (!cpumask_intersects(src_rd->span, new_mask)) {
2232                struct dl_bw *src_dl_b;
2233
2234                src_dl_b = dl_bw_of(cpu_of(rq));
2235                /*
2236                 * We now free resources of the root_domain we are migrating
2237                 * off. In the worst case, sched_setattr() may temporary fail
2238                 * until we complete the update.
2239                 */
2240                raw_spin_lock(&src_dl_b->lock);
2241                __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2242                raw_spin_unlock(&src_dl_b->lock);
2243        }
2244
2245        set_cpus_allowed_common(p, new_mask);
2246}
2247
2248/* Assumes rq->lock is held */
2249static void rq_online_dl(struct rq *rq)
2250{
2251        if (rq->dl.overloaded)
2252                dl_set_overload(rq);
2253
2254        cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2255        if (rq->dl.dl_nr_running > 0)
2256                cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2257}
2258
2259/* Assumes rq->lock is held */
2260static void rq_offline_dl(struct rq *rq)
2261{
2262        if (rq->dl.overloaded)
2263                dl_clear_overload(rq);
2264
2265        cpudl_clear(&rq->rd->cpudl, rq->cpu);
2266        cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2267}
2268
2269void __init init_sched_dl_class(void)
2270{
2271        unsigned int i;
2272
2273        for_each_possible_cpu(i)
2274                zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2275                                        GFP_KERNEL, cpu_to_node(i));
2276}
2277
2278#endif /* CONFIG_SMP */
2279
2280static void switched_from_dl(struct rq *rq, struct task_struct *p)
2281{
2282        /*
2283         * task_non_contending() can start the "inactive timer" (if the 0-lag
2284         * time is in the future). If the task switches back to dl before
2285         * the "inactive timer" fires, it can continue to consume its current
2286         * runtime using its current deadline. If it stays outside of
2287         * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2288         * will reset the task parameters.
2289         */
2290        if (task_on_rq_queued(p) && p->dl.dl_runtime)
2291                task_non_contending(p);
2292
2293        if (!task_on_rq_queued(p)) {
2294                /*
2295                 * Inactive timer is armed. However, p is leaving DEADLINE and
2296                 * might migrate away from this rq while continuing to run on
2297                 * some other class. We need to remove its contribution from
2298                 * this rq running_bw now, or sub_rq_bw (below) will complain.
2299                 */
2300                if (p->dl.dl_non_contending)
2301                        sub_running_bw(&p->dl, &rq->dl);
2302                sub_rq_bw(&p->dl, &rq->dl);
2303        }
2304
2305        /*
2306         * We cannot use inactive_task_timer() to invoke sub_running_bw()
2307         * at the 0-lag time, because the task could have been migrated
2308         * while SCHED_OTHER in the meanwhile.
2309         */
2310        if (p->dl.dl_non_contending)
2311                p->dl.dl_non_contending = 0;
2312
2313        /*
2314         * Since this might be the only -deadline task on the rq,
2315         * this is the right place to try to pull some other one
2316         * from an overloaded CPU, if any.
2317         */
2318        if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2319                return;
2320
2321        deadline_queue_pull_task(rq);
2322}
2323
2324/*
2325 * When switching to -deadline, we may overload the rq, then
2326 * we try to push someone off, if possible.
2327 */
2328static void switched_to_dl(struct rq *rq, struct task_struct *p)
2329{
2330        if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2331                put_task_struct(p);
2332
2333        /* If p is not queued we will update its parameters at next wakeup. */
2334        if (!task_on_rq_queued(p)) {
2335                add_rq_bw(&p->dl, &rq->dl);
2336
2337                return;
2338        }
2339
2340        if (rq->curr != p) {
2341#ifdef CONFIG_SMP
2342                if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2343                        deadline_queue_push_tasks(rq);
2344#endif
2345                if (dl_task(rq->curr))
2346                        check_preempt_curr_dl(rq, p, 0);
2347                else
2348                        resched_curr(rq);
2349        }
2350}
2351
2352/*
2353 * If the scheduling parameters of a -deadline task changed,
2354 * a push or pull operation might be needed.
2355 */
2356static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2357                            int oldprio)
2358{
2359        if (task_on_rq_queued(p) || rq->curr == p) {
2360#ifdef CONFIG_SMP
2361                /*
2362                 * This might be too much, but unfortunately
2363                 * we don't have the old deadline value, and
2364                 * we can't argue if the task is increasing
2365                 * or lowering its prio, so...
2366                 */
2367                if (!rq->dl.overloaded)
2368                        deadline_queue_pull_task(rq);
2369
2370                /*
2371                 * If we now have a earlier deadline task than p,
2372                 * then reschedule, provided p is still on this
2373                 * runqueue.
2374                 */
2375                if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2376                        resched_curr(rq);
2377#else
2378                /*
2379                 * Again, we don't know if p has a earlier
2380                 * or later deadline, so let's blindly set a
2381                 * (maybe not needed) rescheduling point.
2382                 */
2383                resched_curr(rq);
2384#endif /* CONFIG_SMP */
2385        }
2386}
2387
2388const struct sched_class dl_sched_class = {
2389        .next                   = &rt_sched_class,
2390        .enqueue_task           = enqueue_task_dl,
2391        .dequeue_task           = dequeue_task_dl,
2392        .yield_task             = yield_task_dl,
2393
2394        .check_preempt_curr     = check_preempt_curr_dl,
2395
2396        .pick_next_task         = pick_next_task_dl,
2397        .put_prev_task          = put_prev_task_dl,
2398
2399#ifdef CONFIG_SMP
2400        .select_task_rq         = select_task_rq_dl,
2401        .migrate_task_rq        = migrate_task_rq_dl,
2402        .set_cpus_allowed       = set_cpus_allowed_dl,
2403        .rq_online              = rq_online_dl,
2404        .rq_offline             = rq_offline_dl,
2405        .task_woken             = task_woken_dl,
2406#endif
2407
2408        .set_curr_task          = set_curr_task_dl,
2409        .task_tick              = task_tick_dl,
2410        .task_fork              = task_fork_dl,
2411
2412        .prio_changed           = prio_changed_dl,
2413        .switched_from          = switched_from_dl,
2414        .switched_to            = switched_to_dl,
2415
2416        .update_curr            = update_curr_dl,
2417};
2418
2419int sched_dl_global_validate(void)
2420{
2421        u64 runtime = global_rt_runtime();
2422        u64 period = global_rt_period();
2423        u64 new_bw = to_ratio(period, runtime);
2424        struct dl_bw *dl_b;
2425        int cpu, ret = 0;
2426        unsigned long flags;
2427
2428        /*
2429         * Here we want to check the bandwidth not being set to some
2430         * value smaller than the currently allocated bandwidth in
2431         * any of the root_domains.
2432         *
2433         * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2434         * cycling on root_domains... Discussion on different/better
2435         * solutions is welcome!
2436         */
2437        for_each_possible_cpu(cpu) {
2438                rcu_read_lock_sched();
2439                dl_b = dl_bw_of(cpu);
2440
2441                raw_spin_lock_irqsave(&dl_b->lock, flags);
2442                if (new_bw < dl_b->total_bw)
2443                        ret = -EBUSY;
2444                raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2445
2446                rcu_read_unlock_sched();
2447
2448                if (ret)
2449                        break;
2450        }
2451
2452        return ret;
2453}
2454
2455void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2456{
2457        if (global_rt_runtime() == RUNTIME_INF) {
2458                dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2459                dl_rq->extra_bw = 1 << BW_SHIFT;
2460        } else {
2461                dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2462                          global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2463                dl_rq->extra_bw = to_ratio(global_rt_period(),
2464                                                    global_rt_runtime());
2465        }
2466}
2467
2468void sched_dl_do_global(void)
2469{
2470        u64 new_bw = -1;
2471        struct dl_bw *dl_b;
2472        int cpu;
2473        unsigned long flags;
2474
2475        def_dl_bandwidth.dl_period = global_rt_period();
2476        def_dl_bandwidth.dl_runtime = global_rt_runtime();
2477
2478        if (global_rt_runtime() != RUNTIME_INF)
2479                new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2480
2481        /*
2482         * FIXME: As above...
2483         */
2484        for_each_possible_cpu(cpu) {
2485                rcu_read_lock_sched();
2486                dl_b = dl_bw_of(cpu);
2487
2488                raw_spin_lock_irqsave(&dl_b->lock, flags);
2489                dl_b->bw = new_bw;
2490                raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2491
2492                rcu_read_unlock_sched();
2493                init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2494        }
2495}
2496
2497/*
2498 * We must be sure that accepting a new task (or allowing changing the
2499 * parameters of an existing one) is consistent with the bandwidth
2500 * constraints. If yes, this function also accordingly updates the currently
2501 * allocated bandwidth to reflect the new situation.
2502 *
2503 * This function is called while holding p's rq->lock.
2504 */
2505int sched_dl_overflow(struct task_struct *p, int policy,
2506                      const struct sched_attr *attr)
2507{
2508        struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2509        u64 period = attr->sched_period ?: attr->sched_deadline;
2510        u64 runtime = attr->sched_runtime;
2511        u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2512        int cpus, err = -1;
2513
2514        if (attr->sched_flags & SCHED_FLAG_SUGOV)
2515                return 0;
2516
2517        /* !deadline task may carry old deadline bandwidth */
2518        if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2519                return 0;
2520
2521        /*
2522         * Either if a task, enters, leave, or stays -deadline but changes
2523         * its parameters, we may need to update accordingly the total
2524         * allocated bandwidth of the container.
2525         */
2526        raw_spin_lock(&dl_b->lock);
2527        cpus = dl_bw_cpus(task_cpu(p));
2528        if (dl_policy(policy) && !task_has_dl_policy(p) &&
2529            !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2530                if (hrtimer_active(&p->dl.inactive_timer))
2531                        __dl_sub(dl_b, p->dl.dl_bw, cpus);
2532                __dl_add(dl_b, new_bw, cpus);
2533                err = 0;
2534        } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2535                   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2536                /*
2537                 * XXX this is slightly incorrect: when the task
2538                 * utilization decreases, we should delay the total
2539                 * utilization change until the task's 0-lag point.
2540                 * But this would require to set the task's "inactive
2541                 * timer" when the task is not inactive.
2542                 */
2543                __dl_sub(dl_b, p->dl.dl_bw, cpus);
2544                __dl_add(dl_b, new_bw, cpus);
2545                dl_change_utilization(p, new_bw);
2546                err = 0;
2547        } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2548                /*
2549                 * Do not decrease the total deadline utilization here,
2550                 * switched_from_dl() will take care to do it at the correct
2551                 * (0-lag) time.
2552                 */
2553                err = 0;
2554        }
2555        raw_spin_unlock(&dl_b->lock);
2556
2557        return err;
2558}
2559
2560/*
2561 * This function initializes the sched_dl_entity of a newly becoming
2562 * SCHED_DEADLINE task.
2563 *
2564 * Only the static values are considered here, the actual runtime and the
2565 * absolute deadline will be properly calculated when the task is enqueued
2566 * for the first time with its new policy.
2567 */
2568void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2569{
2570        struct sched_dl_entity *dl_se = &p->dl;
2571
2572        dl_se->dl_runtime = attr->sched_runtime;
2573        dl_se->dl_deadline = attr->sched_deadline;
2574        dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2575        dl_se->flags = attr->sched_flags;
2576        dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2577        dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2578}
2579
2580void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2581{
2582        struct sched_dl_entity *dl_se = &p->dl;
2583
2584        attr->sched_priority = p->rt_priority;
2585        attr->sched_runtime = dl_se->dl_runtime;
2586        attr->sched_deadline = dl_se->dl_deadline;
2587        attr->sched_period = dl_se->dl_period;
2588        attr->sched_flags = dl_se->flags;
2589}
2590
2591/*
2592 * This function validates the new parameters of a -deadline task.
2593 * We ask for the deadline not being zero, and greater or equal
2594 * than the runtime, as well as the period of being zero or
2595 * greater than deadline. Furthermore, we have to be sure that
2596 * user parameters are above the internal resolution of 1us (we
2597 * check sched_runtime only since it is always the smaller one) and
2598 * below 2^63 ns (we have to check both sched_deadline and
2599 * sched_period, as the latter can be zero).
2600 */
2601bool __checkparam_dl(const struct sched_attr *attr)
2602{
2603        /* special dl tasks don't actually use any parameter */
2604        if (attr->sched_flags & SCHED_FLAG_SUGOV)
2605                return true;
2606
2607        /* deadline != 0 */
2608        if (attr->sched_deadline == 0)
2609                return false;
2610
2611        /*
2612         * Since we truncate DL_SCALE bits, make sure we're at least
2613         * that big.
2614         */
2615        if (attr->sched_runtime < (1ULL << DL_SCALE))
2616                return false;
2617
2618        /*
2619         * Since we use the MSB for wrap-around and sign issues, make
2620         * sure it's not set (mind that period can be equal to zero).
2621         */
2622        if (attr->sched_deadline & (1ULL << 63) ||
2623            attr->sched_period & (1ULL << 63))
2624                return false;
2625
2626        /* runtime <= deadline <= period (if period != 0) */
2627        if ((attr->sched_period != 0 &&
2628             attr->sched_period < attr->sched_deadline) ||
2629            attr->sched_deadline < attr->sched_runtime)
2630                return false;
2631
2632        return true;
2633}
2634
2635/*
2636 * This function clears the sched_dl_entity static params.
2637 */
2638void __dl_clear_params(struct task_struct *p)
2639{
2640        struct sched_dl_entity *dl_se = &p->dl;
2641
2642        dl_se->dl_runtime               = 0;
2643        dl_se->dl_deadline              = 0;
2644        dl_se->dl_period                = 0;
2645        dl_se->flags                    = 0;
2646        dl_se->dl_bw                    = 0;
2647        dl_se->dl_density               = 0;
2648
2649        dl_se->dl_throttled             = 0;
2650        dl_se->dl_yielded               = 0;
2651        dl_se->dl_non_contending        = 0;
2652        dl_se->dl_overrun               = 0;
2653}
2654
2655bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2656{
2657        struct sched_dl_entity *dl_se = &p->dl;
2658
2659        if (dl_se->dl_runtime != attr->sched_runtime ||
2660            dl_se->dl_deadline != attr->sched_deadline ||
2661            dl_se->dl_period != attr->sched_period ||
2662            dl_se->flags != attr->sched_flags)
2663                return true;
2664
2665        return false;
2666}
2667
2668#ifdef CONFIG_SMP
2669int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2670{
2671        unsigned int dest_cpu;
2672        struct dl_bw *dl_b;
2673        bool overflow;
2674        int cpus, ret;
2675        unsigned long flags;
2676
2677        dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2678
2679        rcu_read_lock_sched();
2680        dl_b = dl_bw_of(dest_cpu);
2681        raw_spin_lock_irqsave(&dl_b->lock, flags);
2682        cpus = dl_bw_cpus(dest_cpu);
2683        overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
2684        if (overflow) {
2685                ret = -EBUSY;
2686        } else {
2687                /*
2688                 * We reserve space for this task in the destination
2689                 * root_domain, as we can't fail after this point.
2690                 * We will free resources in the source root_domain
2691                 * later on (see set_cpus_allowed_dl()).
2692                 */
2693                __dl_add(dl_b, p->dl.dl_bw, cpus);
2694                ret = 0;
2695        }
2696        raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2697        rcu_read_unlock_sched();
2698
2699        return ret;
2700}
2701
2702int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2703                                 const struct cpumask *trial)
2704{
2705        int ret = 1, trial_cpus;
2706        struct dl_bw *cur_dl_b;
2707        unsigned long flags;
2708
2709        rcu_read_lock_sched();
2710        cur_dl_b = dl_bw_of(cpumask_any(cur));
2711        trial_cpus = cpumask_weight(trial);
2712
2713        raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2714        if (cur_dl_b->bw != -1 &&
2715            cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2716                ret = 0;
2717        raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2718        rcu_read_unlock_sched();
2719
2720        return ret;
2721}
2722
2723bool dl_cpu_busy(unsigned int cpu)
2724{
2725        unsigned long flags;
2726        struct dl_bw *dl_b;
2727        bool overflow;
2728        int cpus;
2729
2730        rcu_read_lock_sched();
2731        dl_b = dl_bw_of(cpu);
2732        raw_spin_lock_irqsave(&dl_b->lock, flags);
2733        cpus = dl_bw_cpus(cpu);
2734        overflow = __dl_overflow(dl_b, cpus, 0, 0);
2735        raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2736        rcu_read_unlock_sched();
2737
2738        return overflow;
2739}
2740#endif
2741
2742#ifdef CONFIG_SCHED_DEBUG
2743void print_dl_stats(struct seq_file *m, int cpu)
2744{
2745        print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2746}
2747#endif /* CONFIG_SCHED_DEBUG */
2748