linux/kernel/sched/debug.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/sched/debug.c
   4 *
   5 * Print the CFS rbtree and other debugging details
   6 *
   7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
   8 */
   9#include "sched.h"
  10
  11static DEFINE_SPINLOCK(sched_debug_lock);
  12
  13/*
  14 * This allows printing both to /proc/sched_debug and
  15 * to the console
  16 */
  17#define SEQ_printf(m, x...)                     \
  18 do {                                           \
  19        if (m)                                  \
  20                seq_printf(m, x);               \
  21        else                                    \
  22                pr_cont(x);                     \
  23 } while (0)
  24
  25/*
  26 * Ease the printing of nsec fields:
  27 */
  28static long long nsec_high(unsigned long long nsec)
  29{
  30        if ((long long)nsec < 0) {
  31                nsec = -nsec;
  32                do_div(nsec, 1000000);
  33                return -nsec;
  34        }
  35        do_div(nsec, 1000000);
  36
  37        return nsec;
  38}
  39
  40static unsigned long nsec_low(unsigned long long nsec)
  41{
  42        if ((long long)nsec < 0)
  43                nsec = -nsec;
  44
  45        return do_div(nsec, 1000000);
  46}
  47
  48#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
  49
  50#define SCHED_FEAT(name, enabled)       \
  51        #name ,
  52
  53static const char * const sched_feat_names[] = {
  54#include "features.h"
  55};
  56
  57#undef SCHED_FEAT
  58
  59static int sched_feat_show(struct seq_file *m, void *v)
  60{
  61        int i;
  62
  63        for (i = 0; i < __SCHED_FEAT_NR; i++) {
  64                if (!(sysctl_sched_features & (1UL << i)))
  65                        seq_puts(m, "NO_");
  66                seq_printf(m, "%s ", sched_feat_names[i]);
  67        }
  68        seq_puts(m, "\n");
  69
  70        return 0;
  71}
  72
  73#ifdef CONFIG_JUMP_LABEL
  74
  75#define jump_label_key__true  STATIC_KEY_INIT_TRUE
  76#define jump_label_key__false STATIC_KEY_INIT_FALSE
  77
  78#define SCHED_FEAT(name, enabled)       \
  79        jump_label_key__##enabled ,
  80
  81struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  82#include "features.h"
  83};
  84
  85#undef SCHED_FEAT
  86
  87static void sched_feat_disable(int i)
  88{
  89        static_key_disable_cpuslocked(&sched_feat_keys[i]);
  90}
  91
  92static void sched_feat_enable(int i)
  93{
  94        static_key_enable_cpuslocked(&sched_feat_keys[i]);
  95}
  96#else
  97static void sched_feat_disable(int i) { };
  98static void sched_feat_enable(int i) { };
  99#endif /* CONFIG_JUMP_LABEL */
 100
 101static int sched_feat_set(char *cmp)
 102{
 103        int i;
 104        int neg = 0;
 105
 106        if (strncmp(cmp, "NO_", 3) == 0) {
 107                neg = 1;
 108                cmp += 3;
 109        }
 110
 111        i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
 112        if (i < 0)
 113                return i;
 114
 115        if (neg) {
 116                sysctl_sched_features &= ~(1UL << i);
 117                sched_feat_disable(i);
 118        } else {
 119                sysctl_sched_features |= (1UL << i);
 120                sched_feat_enable(i);
 121        }
 122
 123        return 0;
 124}
 125
 126static ssize_t
 127sched_feat_write(struct file *filp, const char __user *ubuf,
 128                size_t cnt, loff_t *ppos)
 129{
 130        char buf[64];
 131        char *cmp;
 132        int ret;
 133        struct inode *inode;
 134
 135        if (cnt > 63)
 136                cnt = 63;
 137
 138        if (copy_from_user(&buf, ubuf, cnt))
 139                return -EFAULT;
 140
 141        buf[cnt] = 0;
 142        cmp = strstrip(buf);
 143
 144        /* Ensure the static_key remains in a consistent state */
 145        inode = file_inode(filp);
 146        cpus_read_lock();
 147        inode_lock(inode);
 148        ret = sched_feat_set(cmp);
 149        inode_unlock(inode);
 150        cpus_read_unlock();
 151        if (ret < 0)
 152                return ret;
 153
 154        *ppos += cnt;
 155
 156        return cnt;
 157}
 158
 159static int sched_feat_open(struct inode *inode, struct file *filp)
 160{
 161        return single_open(filp, sched_feat_show, NULL);
 162}
 163
 164static const struct file_operations sched_feat_fops = {
 165        .open           = sched_feat_open,
 166        .write          = sched_feat_write,
 167        .read           = seq_read,
 168        .llseek         = seq_lseek,
 169        .release        = single_release,
 170};
 171
 172__read_mostly bool sched_debug_enabled;
 173
 174static __init int sched_init_debug(void)
 175{
 176        debugfs_create_file("sched_features", 0644, NULL, NULL,
 177                        &sched_feat_fops);
 178
 179        debugfs_create_bool("sched_debug", 0644, NULL,
 180                        &sched_debug_enabled);
 181
 182        return 0;
 183}
 184late_initcall(sched_init_debug);
 185
 186#ifdef CONFIG_SMP
 187
 188#ifdef CONFIG_SYSCTL
 189
 190static struct ctl_table sd_ctl_dir[] = {
 191        {
 192                .procname       = "sched_domain",
 193                .mode           = 0555,
 194        },
 195        {}
 196};
 197
 198static struct ctl_table sd_ctl_root[] = {
 199        {
 200                .procname       = "kernel",
 201                .mode           = 0555,
 202                .child          = sd_ctl_dir,
 203        },
 204        {}
 205};
 206
 207static struct ctl_table *sd_alloc_ctl_entry(int n)
 208{
 209        struct ctl_table *entry =
 210                kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
 211
 212        return entry;
 213}
 214
 215static void sd_free_ctl_entry(struct ctl_table **tablep)
 216{
 217        struct ctl_table *entry;
 218
 219        /*
 220         * In the intermediate directories, both the child directory and
 221         * procname are dynamically allocated and could fail but the mode
 222         * will always be set. In the lowest directory the names are
 223         * static strings and all have proc handlers.
 224         */
 225        for (entry = *tablep; entry->mode; entry++) {
 226                if (entry->child)
 227                        sd_free_ctl_entry(&entry->child);
 228                if (entry->proc_handler == NULL)
 229                        kfree(entry->procname);
 230        }
 231
 232        kfree(*tablep);
 233        *tablep = NULL;
 234}
 235
 236static void
 237set_table_entry(struct ctl_table *entry,
 238                const char *procname, void *data, int maxlen,
 239                umode_t mode, proc_handler *proc_handler)
 240{
 241        entry->procname = procname;
 242        entry->data = data;
 243        entry->maxlen = maxlen;
 244        entry->mode = mode;
 245        entry->proc_handler = proc_handler;
 246}
 247
 248static struct ctl_table *
 249sd_alloc_ctl_domain_table(struct sched_domain *sd)
 250{
 251        struct ctl_table *table = sd_alloc_ctl_entry(9);
 252
 253        if (table == NULL)
 254                return NULL;
 255
 256        set_table_entry(&table[0], "min_interval",        &sd->min_interval,        sizeof(long), 0644, proc_doulongvec_minmax);
 257        set_table_entry(&table[1], "max_interval",        &sd->max_interval,        sizeof(long), 0644, proc_doulongvec_minmax);
 258        set_table_entry(&table[2], "busy_factor",         &sd->busy_factor,         sizeof(int),  0644, proc_dointvec_minmax);
 259        set_table_entry(&table[3], "imbalance_pct",       &sd->imbalance_pct,       sizeof(int),  0644, proc_dointvec_minmax);
 260        set_table_entry(&table[4], "cache_nice_tries",    &sd->cache_nice_tries,    sizeof(int),  0644, proc_dointvec_minmax);
 261        set_table_entry(&table[5], "flags",               &sd->flags,               sizeof(int),  0644, proc_dointvec_minmax);
 262        set_table_entry(&table[6], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax);
 263        set_table_entry(&table[7], "name",                sd->name,            CORENAME_MAX_SIZE, 0444, proc_dostring);
 264        /* &table[8] is terminator */
 265
 266        return table;
 267}
 268
 269static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
 270{
 271        struct ctl_table *entry, *table;
 272        struct sched_domain *sd;
 273        int domain_num = 0, i;
 274        char buf[32];
 275
 276        for_each_domain(cpu, sd)
 277                domain_num++;
 278        entry = table = sd_alloc_ctl_entry(domain_num + 1);
 279        if (table == NULL)
 280                return NULL;
 281
 282        i = 0;
 283        for_each_domain(cpu, sd) {
 284                snprintf(buf, 32, "domain%d", i);
 285                entry->procname = kstrdup(buf, GFP_KERNEL);
 286                entry->mode = 0555;
 287                entry->child = sd_alloc_ctl_domain_table(sd);
 288                entry++;
 289                i++;
 290        }
 291        return table;
 292}
 293
 294static cpumask_var_t            sd_sysctl_cpus;
 295static struct ctl_table_header  *sd_sysctl_header;
 296
 297void register_sched_domain_sysctl(void)
 298{
 299        static struct ctl_table *cpu_entries;
 300        static struct ctl_table **cpu_idx;
 301        static bool init_done = false;
 302        char buf[32];
 303        int i;
 304
 305        if (!cpu_entries) {
 306                cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
 307                if (!cpu_entries)
 308                        return;
 309
 310                WARN_ON(sd_ctl_dir[0].child);
 311                sd_ctl_dir[0].child = cpu_entries;
 312        }
 313
 314        if (!cpu_idx) {
 315                struct ctl_table *e = cpu_entries;
 316
 317                cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
 318                if (!cpu_idx)
 319                        return;
 320
 321                /* deal with sparse possible map */
 322                for_each_possible_cpu(i) {
 323                        cpu_idx[i] = e;
 324                        e++;
 325                }
 326        }
 327
 328        if (!cpumask_available(sd_sysctl_cpus)) {
 329                if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
 330                        return;
 331        }
 332
 333        if (!init_done) {
 334                init_done = true;
 335                /* init to possible to not have holes in @cpu_entries */
 336                cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
 337        }
 338
 339        for_each_cpu(i, sd_sysctl_cpus) {
 340                struct ctl_table *e = cpu_idx[i];
 341
 342                if (e->child)
 343                        sd_free_ctl_entry(&e->child);
 344
 345                if (!e->procname) {
 346                        snprintf(buf, 32, "cpu%d", i);
 347                        e->procname = kstrdup(buf, GFP_KERNEL);
 348                }
 349                e->mode = 0555;
 350                e->child = sd_alloc_ctl_cpu_table(i);
 351
 352                __cpumask_clear_cpu(i, sd_sysctl_cpus);
 353        }
 354
 355        WARN_ON(sd_sysctl_header);
 356        sd_sysctl_header = register_sysctl_table(sd_ctl_root);
 357}
 358
 359void dirty_sched_domain_sysctl(int cpu)
 360{
 361        if (cpumask_available(sd_sysctl_cpus))
 362                __cpumask_set_cpu(cpu, sd_sysctl_cpus);
 363}
 364
 365/* may be called multiple times per register */
 366void unregister_sched_domain_sysctl(void)
 367{
 368        unregister_sysctl_table(sd_sysctl_header);
 369        sd_sysctl_header = NULL;
 370}
 371#endif /* CONFIG_SYSCTL */
 372#endif /* CONFIG_SMP */
 373
 374#ifdef CONFIG_FAIR_GROUP_SCHED
 375static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
 376{
 377        struct sched_entity *se = tg->se[cpu];
 378
 379#define P(F)            SEQ_printf(m, "  .%-30s: %lld\n",       #F, (long long)F)
 380#define P_SCHEDSTAT(F)  SEQ_printf(m, "  .%-30s: %lld\n",       #F, (long long)schedstat_val(F))
 381#define PN(F)           SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
 382#define PN_SCHEDSTAT(F) SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
 383
 384        if (!se)
 385                return;
 386
 387        PN(se->exec_start);
 388        PN(se->vruntime);
 389        PN(se->sum_exec_runtime);
 390
 391        if (schedstat_enabled()) {
 392                PN_SCHEDSTAT(se->statistics.wait_start);
 393                PN_SCHEDSTAT(se->statistics.sleep_start);
 394                PN_SCHEDSTAT(se->statistics.block_start);
 395                PN_SCHEDSTAT(se->statistics.sleep_max);
 396                PN_SCHEDSTAT(se->statistics.block_max);
 397                PN_SCHEDSTAT(se->statistics.exec_max);
 398                PN_SCHEDSTAT(se->statistics.slice_max);
 399                PN_SCHEDSTAT(se->statistics.wait_max);
 400                PN_SCHEDSTAT(se->statistics.wait_sum);
 401                P_SCHEDSTAT(se->statistics.wait_count);
 402        }
 403
 404        P(se->load.weight);
 405        P(se->runnable_weight);
 406#ifdef CONFIG_SMP
 407        P(se->avg.load_avg);
 408        P(se->avg.util_avg);
 409        P(se->avg.runnable_load_avg);
 410#endif
 411
 412#undef PN_SCHEDSTAT
 413#undef PN
 414#undef P_SCHEDSTAT
 415#undef P
 416}
 417#endif
 418
 419#ifdef CONFIG_CGROUP_SCHED
 420static char group_path[PATH_MAX];
 421
 422static char *task_group_path(struct task_group *tg)
 423{
 424        if (autogroup_path(tg, group_path, PATH_MAX))
 425                return group_path;
 426
 427        cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
 428
 429        return group_path;
 430}
 431#endif
 432
 433static void
 434print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
 435{
 436        if (rq->curr == p)
 437                SEQ_printf(m, ">R");
 438        else
 439                SEQ_printf(m, " %c", task_state_to_char(p));
 440
 441        SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
 442                p->comm, task_pid_nr(p),
 443                SPLIT_NS(p->se.vruntime),
 444                (long long)(p->nvcsw + p->nivcsw),
 445                p->prio);
 446
 447        SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
 448                SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
 449                SPLIT_NS(p->se.sum_exec_runtime),
 450                SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
 451
 452#ifdef CONFIG_NUMA_BALANCING
 453        SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
 454#endif
 455#ifdef CONFIG_CGROUP_SCHED
 456        SEQ_printf(m, " %s", task_group_path(task_group(p)));
 457#endif
 458
 459        SEQ_printf(m, "\n");
 460}
 461
 462static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
 463{
 464        struct task_struct *g, *p;
 465
 466        SEQ_printf(m, "\n");
 467        SEQ_printf(m, "runnable tasks:\n");
 468        SEQ_printf(m, " S           task   PID         tree-key  switches  prio"
 469                   "     wait-time             sum-exec        sum-sleep\n");
 470        SEQ_printf(m, "-------------------------------------------------------"
 471                   "----------------------------------------------------\n");
 472
 473        rcu_read_lock();
 474        for_each_process_thread(g, p) {
 475                if (task_cpu(p) != rq_cpu)
 476                        continue;
 477
 478                print_task(m, rq, p);
 479        }
 480        rcu_read_unlock();
 481}
 482
 483void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
 484{
 485        s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
 486                spread, rq0_min_vruntime, spread0;
 487        struct rq *rq = cpu_rq(cpu);
 488        struct sched_entity *last;
 489        unsigned long flags;
 490
 491#ifdef CONFIG_FAIR_GROUP_SCHED
 492        SEQ_printf(m, "\n");
 493        SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
 494#else
 495        SEQ_printf(m, "\n");
 496        SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
 497#endif
 498        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
 499                        SPLIT_NS(cfs_rq->exec_clock));
 500
 501        raw_spin_lock_irqsave(&rq->lock, flags);
 502        if (rb_first_cached(&cfs_rq->tasks_timeline))
 503                MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
 504        last = __pick_last_entity(cfs_rq);
 505        if (last)
 506                max_vruntime = last->vruntime;
 507        min_vruntime = cfs_rq->min_vruntime;
 508        rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
 509        raw_spin_unlock_irqrestore(&rq->lock, flags);
 510        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
 511                        SPLIT_NS(MIN_vruntime));
 512        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
 513                        SPLIT_NS(min_vruntime));
 514        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
 515                        SPLIT_NS(max_vruntime));
 516        spread = max_vruntime - MIN_vruntime;
 517        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
 518                        SPLIT_NS(spread));
 519        spread0 = min_vruntime - rq0_min_vruntime;
 520        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
 521                        SPLIT_NS(spread0));
 522        SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
 523                        cfs_rq->nr_spread_over);
 524        SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
 525        SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
 526#ifdef CONFIG_SMP
 527        SEQ_printf(m, "  .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
 528        SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
 529                        cfs_rq->avg.load_avg);
 530        SEQ_printf(m, "  .%-30s: %lu\n", "runnable_load_avg",
 531                        cfs_rq->avg.runnable_load_avg);
 532        SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
 533                        cfs_rq->avg.util_avg);
 534        SEQ_printf(m, "  .%-30s: %u\n", "util_est_enqueued",
 535                        cfs_rq->avg.util_est.enqueued);
 536        SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
 537                        cfs_rq->removed.load_avg);
 538        SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
 539                        cfs_rq->removed.util_avg);
 540        SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_sum",
 541                        cfs_rq->removed.runnable_sum);
 542#ifdef CONFIG_FAIR_GROUP_SCHED
 543        SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
 544                        cfs_rq->tg_load_avg_contrib);
 545        SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
 546                        atomic_long_read(&cfs_rq->tg->load_avg));
 547#endif
 548#endif
 549#ifdef CONFIG_CFS_BANDWIDTH
 550        SEQ_printf(m, "  .%-30s: %d\n", "throttled",
 551                        cfs_rq->throttled);
 552        SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
 553                        cfs_rq->throttle_count);
 554#endif
 555
 556#ifdef CONFIG_FAIR_GROUP_SCHED
 557        print_cfs_group_stats(m, cpu, cfs_rq->tg);
 558#endif
 559}
 560
 561void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
 562{
 563#ifdef CONFIG_RT_GROUP_SCHED
 564        SEQ_printf(m, "\n");
 565        SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
 566#else
 567        SEQ_printf(m, "\n");
 568        SEQ_printf(m, "rt_rq[%d]:\n", cpu);
 569#endif
 570
 571#define P(x) \
 572        SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
 573#define PU(x) \
 574        SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
 575#define PN(x) \
 576        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
 577
 578        PU(rt_nr_running);
 579#ifdef CONFIG_SMP
 580        PU(rt_nr_migratory);
 581#endif
 582        P(rt_throttled);
 583        PN(rt_time);
 584        PN(rt_runtime);
 585
 586#undef PN
 587#undef PU
 588#undef P
 589}
 590
 591void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
 592{
 593        struct dl_bw *dl_bw;
 594
 595        SEQ_printf(m, "\n");
 596        SEQ_printf(m, "dl_rq[%d]:\n", cpu);
 597
 598#define PU(x) \
 599        SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
 600
 601        PU(dl_nr_running);
 602#ifdef CONFIG_SMP
 603        PU(dl_nr_migratory);
 604        dl_bw = &cpu_rq(cpu)->rd->dl_bw;
 605#else
 606        dl_bw = &dl_rq->dl_bw;
 607#endif
 608        SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
 609        SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
 610
 611#undef PU
 612}
 613
 614static void print_cpu(struct seq_file *m, int cpu)
 615{
 616        struct rq *rq = cpu_rq(cpu);
 617        unsigned long flags;
 618
 619#ifdef CONFIG_X86
 620        {
 621                unsigned int freq = cpu_khz ? : 1;
 622
 623                SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
 624                           cpu, freq / 1000, (freq % 1000));
 625        }
 626#else
 627        SEQ_printf(m, "cpu#%d\n", cpu);
 628#endif
 629
 630#define P(x)                                                            \
 631do {                                                                    \
 632        if (sizeof(rq->x) == 4)                                         \
 633                SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));    \
 634        else                                                            \
 635                SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
 636} while (0)
 637
 638#define PN(x) \
 639        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
 640
 641        P(nr_running);
 642        P(nr_switches);
 643        P(nr_load_updates);
 644        P(nr_uninterruptible);
 645        PN(next_balance);
 646        SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
 647        PN(clock);
 648        PN(clock_task);
 649#undef P
 650#undef PN
 651
 652#ifdef CONFIG_SMP
 653#define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
 654        P64(avg_idle);
 655        P64(max_idle_balance_cost);
 656#undef P64
 657#endif
 658
 659#define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
 660        if (schedstat_enabled()) {
 661                P(yld_count);
 662                P(sched_count);
 663                P(sched_goidle);
 664                P(ttwu_count);
 665                P(ttwu_local);
 666        }
 667#undef P
 668
 669        spin_lock_irqsave(&sched_debug_lock, flags);
 670        print_cfs_stats(m, cpu);
 671        print_rt_stats(m, cpu);
 672        print_dl_stats(m, cpu);
 673
 674        print_rq(m, rq, cpu);
 675        spin_unlock_irqrestore(&sched_debug_lock, flags);
 676        SEQ_printf(m, "\n");
 677}
 678
 679static const char *sched_tunable_scaling_names[] = {
 680        "none",
 681        "logarithmic",
 682        "linear"
 683};
 684
 685static void sched_debug_header(struct seq_file *m)
 686{
 687        u64 ktime, sched_clk, cpu_clk;
 688        unsigned long flags;
 689
 690        local_irq_save(flags);
 691        ktime = ktime_to_ns(ktime_get());
 692        sched_clk = sched_clock();
 693        cpu_clk = local_clock();
 694        local_irq_restore(flags);
 695
 696        SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
 697                init_utsname()->release,
 698                (int)strcspn(init_utsname()->version, " "),
 699                init_utsname()->version);
 700
 701#define P(x) \
 702        SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
 703#define PN(x) \
 704        SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
 705        PN(ktime);
 706        PN(sched_clk);
 707        PN(cpu_clk);
 708        P(jiffies);
 709#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
 710        P(sched_clock_stable());
 711#endif
 712#undef PN
 713#undef P
 714
 715        SEQ_printf(m, "\n");
 716        SEQ_printf(m, "sysctl_sched\n");
 717
 718#define P(x) \
 719        SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
 720#define PN(x) \
 721        SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
 722        PN(sysctl_sched_latency);
 723        PN(sysctl_sched_min_granularity);
 724        PN(sysctl_sched_wakeup_granularity);
 725        P(sysctl_sched_child_runs_first);
 726        P(sysctl_sched_features);
 727#undef PN
 728#undef P
 729
 730        SEQ_printf(m, "  .%-40s: %d (%s)\n",
 731                "sysctl_sched_tunable_scaling",
 732                sysctl_sched_tunable_scaling,
 733                sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
 734        SEQ_printf(m, "\n");
 735}
 736
 737static int sched_debug_show(struct seq_file *m, void *v)
 738{
 739        int cpu = (unsigned long)(v - 2);
 740
 741        if (cpu != -1)
 742                print_cpu(m, cpu);
 743        else
 744                sched_debug_header(m);
 745
 746        return 0;
 747}
 748
 749void sysrq_sched_debug_show(void)
 750{
 751        int cpu;
 752
 753        sched_debug_header(NULL);
 754        for_each_online_cpu(cpu)
 755                print_cpu(NULL, cpu);
 756
 757}
 758
 759/*
 760 * This itererator needs some explanation.
 761 * It returns 1 for the header position.
 762 * This means 2 is CPU 0.
 763 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
 764 * to use cpumask_* to iterate over the CPUs.
 765 */
 766static void *sched_debug_start(struct seq_file *file, loff_t *offset)
 767{
 768        unsigned long n = *offset;
 769
 770        if (n == 0)
 771                return (void *) 1;
 772
 773        n--;
 774
 775        if (n > 0)
 776                n = cpumask_next(n - 1, cpu_online_mask);
 777        else
 778                n = cpumask_first(cpu_online_mask);
 779
 780        *offset = n + 1;
 781
 782        if (n < nr_cpu_ids)
 783                return (void *)(unsigned long)(n + 2);
 784
 785        return NULL;
 786}
 787
 788static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
 789{
 790        (*offset)++;
 791        return sched_debug_start(file, offset);
 792}
 793
 794static void sched_debug_stop(struct seq_file *file, void *data)
 795{
 796}
 797
 798static const struct seq_operations sched_debug_sops = {
 799        .start          = sched_debug_start,
 800        .next           = sched_debug_next,
 801        .stop           = sched_debug_stop,
 802        .show           = sched_debug_show,
 803};
 804
 805static int __init init_sched_debug_procfs(void)
 806{
 807        if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops))
 808                return -ENOMEM;
 809        return 0;
 810}
 811
 812__initcall(init_sched_debug_procfs);
 813
 814#define __P(F)  SEQ_printf(m, "%-45s:%21Ld\n",       #F, (long long)F)
 815#define   P(F)  SEQ_printf(m, "%-45s:%21Ld\n",       #F, (long long)p->F)
 816#define __PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
 817#define   PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
 818
 819
 820#ifdef CONFIG_NUMA_BALANCING
 821void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
 822                unsigned long tpf, unsigned long gsf, unsigned long gpf)
 823{
 824        SEQ_printf(m, "numa_faults node=%d ", node);
 825        SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
 826        SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
 827}
 828#endif
 829
 830
 831static void sched_show_numa(struct task_struct *p, struct seq_file *m)
 832{
 833#ifdef CONFIG_NUMA_BALANCING
 834        struct mempolicy *pol;
 835
 836        if (p->mm)
 837                P(mm->numa_scan_seq);
 838
 839        task_lock(p);
 840        pol = p->mempolicy;
 841        if (pol && !(pol->flags & MPOL_F_MORON))
 842                pol = NULL;
 843        mpol_get(pol);
 844        task_unlock(p);
 845
 846        P(numa_pages_migrated);
 847        P(numa_preferred_nid);
 848        P(total_numa_faults);
 849        SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
 850                        task_node(p), task_numa_group_id(p));
 851        show_numa_stats(p, m);
 852        mpol_put(pol);
 853#endif
 854}
 855
 856void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
 857                                                  struct seq_file *m)
 858{
 859        unsigned long nr_switches;
 860
 861        SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
 862                                                get_nr_threads(p));
 863        SEQ_printf(m,
 864                "---------------------------------------------------------"
 865                "----------\n");
 866#define __P(F) \
 867        SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
 868#define P(F) \
 869        SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
 870#define P_SCHEDSTAT(F) \
 871        SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
 872#define __PN(F) \
 873        SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
 874#define PN(F) \
 875        SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
 876#define PN_SCHEDSTAT(F) \
 877        SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
 878
 879        PN(se.exec_start);
 880        PN(se.vruntime);
 881        PN(se.sum_exec_runtime);
 882
 883        nr_switches = p->nvcsw + p->nivcsw;
 884
 885        P(se.nr_migrations);
 886
 887        if (schedstat_enabled()) {
 888                u64 avg_atom, avg_per_cpu;
 889
 890                PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
 891                PN_SCHEDSTAT(se.statistics.wait_start);
 892                PN_SCHEDSTAT(se.statistics.sleep_start);
 893                PN_SCHEDSTAT(se.statistics.block_start);
 894                PN_SCHEDSTAT(se.statistics.sleep_max);
 895                PN_SCHEDSTAT(se.statistics.block_max);
 896                PN_SCHEDSTAT(se.statistics.exec_max);
 897                PN_SCHEDSTAT(se.statistics.slice_max);
 898                PN_SCHEDSTAT(se.statistics.wait_max);
 899                PN_SCHEDSTAT(se.statistics.wait_sum);
 900                P_SCHEDSTAT(se.statistics.wait_count);
 901                PN_SCHEDSTAT(se.statistics.iowait_sum);
 902                P_SCHEDSTAT(se.statistics.iowait_count);
 903                P_SCHEDSTAT(se.statistics.nr_migrations_cold);
 904                P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
 905                P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
 906                P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
 907                P_SCHEDSTAT(se.statistics.nr_forced_migrations);
 908                P_SCHEDSTAT(se.statistics.nr_wakeups);
 909                P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
 910                P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
 911                P_SCHEDSTAT(se.statistics.nr_wakeups_local);
 912                P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
 913                P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
 914                P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
 915                P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
 916                P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
 917
 918                avg_atom = p->se.sum_exec_runtime;
 919                if (nr_switches)
 920                        avg_atom = div64_ul(avg_atom, nr_switches);
 921                else
 922                        avg_atom = -1LL;
 923
 924                avg_per_cpu = p->se.sum_exec_runtime;
 925                if (p->se.nr_migrations) {
 926                        avg_per_cpu = div64_u64(avg_per_cpu,
 927                                                p->se.nr_migrations);
 928                } else {
 929                        avg_per_cpu = -1LL;
 930                }
 931
 932                __PN(avg_atom);
 933                __PN(avg_per_cpu);
 934        }
 935
 936        __P(nr_switches);
 937        SEQ_printf(m, "%-45s:%21Ld\n",
 938                   "nr_voluntary_switches", (long long)p->nvcsw);
 939        SEQ_printf(m, "%-45s:%21Ld\n",
 940                   "nr_involuntary_switches", (long long)p->nivcsw);
 941
 942        P(se.load.weight);
 943        P(se.runnable_weight);
 944#ifdef CONFIG_SMP
 945        P(se.avg.load_sum);
 946        P(se.avg.runnable_load_sum);
 947        P(se.avg.util_sum);
 948        P(se.avg.load_avg);
 949        P(se.avg.runnable_load_avg);
 950        P(se.avg.util_avg);
 951        P(se.avg.last_update_time);
 952        P(se.avg.util_est.ewma);
 953        P(se.avg.util_est.enqueued);
 954#endif
 955        P(policy);
 956        P(prio);
 957        if (task_has_dl_policy(p)) {
 958                P(dl.runtime);
 959                P(dl.deadline);
 960        }
 961#undef PN_SCHEDSTAT
 962#undef PN
 963#undef __PN
 964#undef P_SCHEDSTAT
 965#undef P
 966#undef __P
 967
 968        {
 969                unsigned int this_cpu = raw_smp_processor_id();
 970                u64 t0, t1;
 971
 972                t0 = cpu_clock(this_cpu);
 973                t1 = cpu_clock(this_cpu);
 974                SEQ_printf(m, "%-45s:%21Ld\n",
 975                           "clock-delta", (long long)(t1-t0));
 976        }
 977
 978        sched_show_numa(p, m);
 979}
 980
 981void proc_sched_set_task(struct task_struct *p)
 982{
 983#ifdef CONFIG_SCHEDSTATS
 984        memset(&p->se.statistics, 0, sizeof(p->se.statistics));
 985#endif
 986}
 987