linux/kernel/sched/pelt.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Per Entity Load Tracking
   4 *
   5 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   6 *
   7 *  Interactivity improvements by Mike Galbraith
   8 *  (C) 2007 Mike Galbraith <efault@gmx.de>
   9 *
  10 *  Various enhancements by Dmitry Adamushko.
  11 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  12 *
  13 *  Group scheduling enhancements by Srivatsa Vaddagiri
  14 *  Copyright IBM Corporation, 2007
  15 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  16 *
  17 *  Scaled math optimizations by Thomas Gleixner
  18 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  19 *
  20 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  21 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  22 *
  23 *  Move PELT related code from fair.c into this pelt.c file
  24 *  Author: Vincent Guittot <vincent.guittot@linaro.org>
  25 */
  26
  27#include <linux/sched.h>
  28#include "sched.h"
  29#include "pelt.h"
  30
  31#include <trace/events/sched.h>
  32
  33/*
  34 * Approximate:
  35 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
  36 */
  37static u64 decay_load(u64 val, u64 n)
  38{
  39        unsigned int local_n;
  40
  41        if (unlikely(n > LOAD_AVG_PERIOD * 63))
  42                return 0;
  43
  44        /* after bounds checking we can collapse to 32-bit */
  45        local_n = n;
  46
  47        /*
  48         * As y^PERIOD = 1/2, we can combine
  49         *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
  50         * With a look-up table which covers y^n (n<PERIOD)
  51         *
  52         * To achieve constant time decay_load.
  53         */
  54        if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
  55                val >>= local_n / LOAD_AVG_PERIOD;
  56                local_n %= LOAD_AVG_PERIOD;
  57        }
  58
  59        val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
  60        return val;
  61}
  62
  63static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
  64{
  65        u32 c1, c2, c3 = d3; /* y^0 == 1 */
  66
  67        /*
  68         * c1 = d1 y^p
  69         */
  70        c1 = decay_load((u64)d1, periods);
  71
  72        /*
  73         *            p-1
  74         * c2 = 1024 \Sum y^n
  75         *            n=1
  76         *
  77         *              inf        inf
  78         *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
  79         *              n=0        n=p
  80         */
  81        c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
  82
  83        return c1 + c2 + c3;
  84}
  85
  86#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
  87
  88/*
  89 * Accumulate the three separate parts of the sum; d1 the remainder
  90 * of the last (incomplete) period, d2 the span of full periods and d3
  91 * the remainder of the (incomplete) current period.
  92 *
  93 *           d1          d2           d3
  94 *           ^           ^            ^
  95 *           |           |            |
  96 *         |<->|<----------------->|<--->|
  97 * ... |---x---|------| ... |------|-----x (now)
  98 *
  99 *                           p-1
 100 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
 101 *                           n=1
 102 *
 103 *    = u y^p +                                 (Step 1)
 104 *
 105 *                     p-1
 106 *      d1 y^p + 1024 \Sum y^n + d3 y^0         (Step 2)
 107 *                     n=1
 108 */
 109static __always_inline u32
 110accumulate_sum(u64 delta, struct sched_avg *sa,
 111               unsigned long load, unsigned long runnable, int running)
 112{
 113        u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
 114        u64 periods;
 115
 116        delta += sa->period_contrib;
 117        periods = delta / 1024; /* A period is 1024us (~1ms) */
 118
 119        /*
 120         * Step 1: decay old *_sum if we crossed period boundaries.
 121         */
 122        if (periods) {
 123                sa->load_sum = decay_load(sa->load_sum, periods);
 124                sa->runnable_load_sum =
 125                        decay_load(sa->runnable_load_sum, periods);
 126                sa->util_sum = decay_load((u64)(sa->util_sum), periods);
 127
 128                /*
 129                 * Step 2
 130                 */
 131                delta %= 1024;
 132                contrib = __accumulate_pelt_segments(periods,
 133                                1024 - sa->period_contrib, delta);
 134        }
 135        sa->period_contrib = delta;
 136
 137        if (load)
 138                sa->load_sum += load * contrib;
 139        if (runnable)
 140                sa->runnable_load_sum += runnable * contrib;
 141        if (running)
 142                sa->util_sum += contrib << SCHED_CAPACITY_SHIFT;
 143
 144        return periods;
 145}
 146
 147/*
 148 * We can represent the historical contribution to runnable average as the
 149 * coefficients of a geometric series.  To do this we sub-divide our runnable
 150 * history into segments of approximately 1ms (1024us); label the segment that
 151 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 152 *
 153 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 154 *      p0            p1           p2
 155 *     (now)       (~1ms ago)  (~2ms ago)
 156 *
 157 * Let u_i denote the fraction of p_i that the entity was runnable.
 158 *
 159 * We then designate the fractions u_i as our co-efficients, yielding the
 160 * following representation of historical load:
 161 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 162 *
 163 * We choose y based on the with of a reasonably scheduling period, fixing:
 164 *   y^32 = 0.5
 165 *
 166 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 167 * approximately half as much as the contribution to load within the last ms
 168 * (u_0).
 169 *
 170 * When a period "rolls over" and we have new u_0`, multiplying the previous
 171 * sum again by y is sufficient to update:
 172 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 173 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 174 */
 175static __always_inline int
 176___update_load_sum(u64 now, struct sched_avg *sa,
 177                  unsigned long load, unsigned long runnable, int running)
 178{
 179        u64 delta;
 180
 181        delta = now - sa->last_update_time;
 182        /*
 183         * This should only happen when time goes backwards, which it
 184         * unfortunately does during sched clock init when we swap over to TSC.
 185         */
 186        if ((s64)delta < 0) {
 187                sa->last_update_time = now;
 188                return 0;
 189        }
 190
 191        /*
 192         * Use 1024ns as the unit of measurement since it's a reasonable
 193         * approximation of 1us and fast to compute.
 194         */
 195        delta >>= 10;
 196        if (!delta)
 197                return 0;
 198
 199        sa->last_update_time += delta << 10;
 200
 201        /*
 202         * running is a subset of runnable (weight) so running can't be set if
 203         * runnable is clear. But there are some corner cases where the current
 204         * se has been already dequeued but cfs_rq->curr still points to it.
 205         * This means that weight will be 0 but not running for a sched_entity
 206         * but also for a cfs_rq if the latter becomes idle. As an example,
 207         * this happens during idle_balance() which calls
 208         * update_blocked_averages()
 209         */
 210        if (!load)
 211                runnable = running = 0;
 212
 213        /*
 214         * Now we know we crossed measurement unit boundaries. The *_avg
 215         * accrues by two steps:
 216         *
 217         * Step 1: accumulate *_sum since last_update_time. If we haven't
 218         * crossed period boundaries, finish.
 219         */
 220        if (!accumulate_sum(delta, sa, load, runnable, running))
 221                return 0;
 222
 223        return 1;
 224}
 225
 226static __always_inline void
 227___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable)
 228{
 229        u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
 230
 231        /*
 232         * Step 2: update *_avg.
 233         */
 234        sa->load_avg = div_u64(load * sa->load_sum, divider);
 235        sa->runnable_load_avg = div_u64(runnable * sa->runnable_load_sum, divider);
 236        WRITE_ONCE(sa->util_avg, sa->util_sum / divider);
 237}
 238
 239/*
 240 * sched_entity:
 241 *
 242 *   task:
 243 *     se_runnable() == se_weight()
 244 *
 245 *   group: [ see update_cfs_group() ]
 246 *     se_weight()   = tg->weight * grq->load_avg / tg->load_avg
 247 *     se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg
 248 *
 249 *   load_sum := runnable_sum
 250 *   load_avg = se_weight(se) * runnable_avg
 251 *
 252 *   runnable_load_sum := runnable_sum
 253 *   runnable_load_avg = se_runnable(se) * runnable_avg
 254 *
 255 * XXX collapse load_sum and runnable_load_sum
 256 *
 257 * cfq_rq:
 258 *
 259 *   load_sum = \Sum se_weight(se) * se->avg.load_sum
 260 *   load_avg = \Sum se->avg.load_avg
 261 *
 262 *   runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum
 263 *   runnable_load_avg = \Sum se->avg.runable_load_avg
 264 */
 265
 266int __update_load_avg_blocked_se(u64 now, struct sched_entity *se)
 267{
 268        if (___update_load_sum(now, &se->avg, 0, 0, 0)) {
 269                ___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
 270                trace_pelt_se_tp(se);
 271                return 1;
 272        }
 273
 274        return 0;
 275}
 276
 277int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se)
 278{
 279        if (___update_load_sum(now, &se->avg, !!se->on_rq, !!se->on_rq,
 280                                cfs_rq->curr == se)) {
 281
 282                ___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
 283                cfs_se_util_change(&se->avg);
 284                trace_pelt_se_tp(se);
 285                return 1;
 286        }
 287
 288        return 0;
 289}
 290
 291int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq)
 292{
 293        if (___update_load_sum(now, &cfs_rq->avg,
 294                                scale_load_down(cfs_rq->load.weight),
 295                                scale_load_down(cfs_rq->runnable_weight),
 296                                cfs_rq->curr != NULL)) {
 297
 298                ___update_load_avg(&cfs_rq->avg, 1, 1);
 299                trace_pelt_cfs_tp(cfs_rq);
 300                return 1;
 301        }
 302
 303        return 0;
 304}
 305
 306/*
 307 * rt_rq:
 308 *
 309 *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
 310 *   util_sum = cpu_scale * load_sum
 311 *   runnable_load_sum = load_sum
 312 *
 313 *   load_avg and runnable_load_avg are not supported and meaningless.
 314 *
 315 */
 316
 317int update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
 318{
 319        if (___update_load_sum(now, &rq->avg_rt,
 320                                running,
 321                                running,
 322                                running)) {
 323
 324                ___update_load_avg(&rq->avg_rt, 1, 1);
 325                trace_pelt_rt_tp(rq);
 326                return 1;
 327        }
 328
 329        return 0;
 330}
 331
 332/*
 333 * dl_rq:
 334 *
 335 *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
 336 *   util_sum = cpu_scale * load_sum
 337 *   runnable_load_sum = load_sum
 338 *
 339 */
 340
 341int update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
 342{
 343        if (___update_load_sum(now, &rq->avg_dl,
 344                                running,
 345                                running,
 346                                running)) {
 347
 348                ___update_load_avg(&rq->avg_dl, 1, 1);
 349                trace_pelt_dl_tp(rq);
 350                return 1;
 351        }
 352
 353        return 0;
 354}
 355
 356#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
 357/*
 358 * irq:
 359 *
 360 *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
 361 *   util_sum = cpu_scale * load_sum
 362 *   runnable_load_sum = load_sum
 363 *
 364 */
 365
 366int update_irq_load_avg(struct rq *rq, u64 running)
 367{
 368        int ret = 0;
 369
 370        /*
 371         * We can't use clock_pelt because irq time is not accounted in
 372         * clock_task. Instead we directly scale the running time to
 373         * reflect the real amount of computation
 374         */
 375        running = cap_scale(running, arch_scale_freq_capacity(cpu_of(rq)));
 376        running = cap_scale(running, arch_scale_cpu_capacity(cpu_of(rq)));
 377
 378        /*
 379         * We know the time that has been used by interrupt since last update
 380         * but we don't when. Let be pessimistic and assume that interrupt has
 381         * happened just before the update. This is not so far from reality
 382         * because interrupt will most probably wake up task and trig an update
 383         * of rq clock during which the metric is updated.
 384         * We start to decay with normal context time and then we add the
 385         * interrupt context time.
 386         * We can safely remove running from rq->clock because
 387         * rq->clock += delta with delta >= running
 388         */
 389        ret = ___update_load_sum(rq->clock - running, &rq->avg_irq,
 390                                0,
 391                                0,
 392                                0);
 393        ret += ___update_load_sum(rq->clock, &rq->avg_irq,
 394                                1,
 395                                1,
 396                                1);
 397
 398        if (ret) {
 399                ___update_load_avg(&rq->avg_irq, 1, 1);
 400                trace_pelt_irq_tp(rq);
 401        }
 402
 403        return ret;
 404}
 405#endif
 406