linux/kernel/time/clockevents.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * This file contains functions which manage clock event devices.
   4 *
   5 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   6 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   7 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
   8 */
   9
  10#include <linux/clockchips.h>
  11#include <linux/hrtimer.h>
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/smp.h>
  15#include <linux/device.h>
  16
  17#include "tick-internal.h"
  18
  19/* The registered clock event devices */
  20static LIST_HEAD(clockevent_devices);
  21static LIST_HEAD(clockevents_released);
  22/* Protection for the above */
  23static DEFINE_RAW_SPINLOCK(clockevents_lock);
  24/* Protection for unbind operations */
  25static DEFINE_MUTEX(clockevents_mutex);
  26
  27struct ce_unbind {
  28        struct clock_event_device *ce;
  29        int res;
  30};
  31
  32static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt,
  33                        bool ismax)
  34{
  35        u64 clc = (u64) latch << evt->shift;
  36        u64 rnd;
  37
  38        if (WARN_ON(!evt->mult))
  39                evt->mult = 1;
  40        rnd = (u64) evt->mult - 1;
  41
  42        /*
  43         * Upper bound sanity check. If the backwards conversion is
  44         * not equal latch, we know that the above shift overflowed.
  45         */
  46        if ((clc >> evt->shift) != (u64)latch)
  47                clc = ~0ULL;
  48
  49        /*
  50         * Scaled math oddities:
  51         *
  52         * For mult <= (1 << shift) we can safely add mult - 1 to
  53         * prevent integer rounding loss. So the backwards conversion
  54         * from nsec to device ticks will be correct.
  55         *
  56         * For mult > (1 << shift), i.e. device frequency is > 1GHz we
  57         * need to be careful. Adding mult - 1 will result in a value
  58         * which when converted back to device ticks can be larger
  59         * than latch by up to (mult - 1) >> shift. For the min_delta
  60         * calculation we still want to apply this in order to stay
  61         * above the minimum device ticks limit. For the upper limit
  62         * we would end up with a latch value larger than the upper
  63         * limit of the device, so we omit the add to stay below the
  64         * device upper boundary.
  65         *
  66         * Also omit the add if it would overflow the u64 boundary.
  67         */
  68        if ((~0ULL - clc > rnd) &&
  69            (!ismax || evt->mult <= (1ULL << evt->shift)))
  70                clc += rnd;
  71
  72        do_div(clc, evt->mult);
  73
  74        /* Deltas less than 1usec are pointless noise */
  75        return clc > 1000 ? clc : 1000;
  76}
  77
  78/**
  79 * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds
  80 * @latch:      value to convert
  81 * @evt:        pointer to clock event device descriptor
  82 *
  83 * Math helper, returns latch value converted to nanoseconds (bound checked)
  84 */
  85u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
  86{
  87        return cev_delta2ns(latch, evt, false);
  88}
  89EXPORT_SYMBOL_GPL(clockevent_delta2ns);
  90
  91static int __clockevents_switch_state(struct clock_event_device *dev,
  92                                      enum clock_event_state state)
  93{
  94        if (dev->features & CLOCK_EVT_FEAT_DUMMY)
  95                return 0;
  96
  97        /* Transition with new state-specific callbacks */
  98        switch (state) {
  99        case CLOCK_EVT_STATE_DETACHED:
 100                /* The clockevent device is getting replaced. Shut it down. */
 101
 102        case CLOCK_EVT_STATE_SHUTDOWN:
 103                if (dev->set_state_shutdown)
 104                        return dev->set_state_shutdown(dev);
 105                return 0;
 106
 107        case CLOCK_EVT_STATE_PERIODIC:
 108                /* Core internal bug */
 109                if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC))
 110                        return -ENOSYS;
 111                if (dev->set_state_periodic)
 112                        return dev->set_state_periodic(dev);
 113                return 0;
 114
 115        case CLOCK_EVT_STATE_ONESHOT:
 116                /* Core internal bug */
 117                if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
 118                        return -ENOSYS;
 119                if (dev->set_state_oneshot)
 120                        return dev->set_state_oneshot(dev);
 121                return 0;
 122
 123        case CLOCK_EVT_STATE_ONESHOT_STOPPED:
 124                /* Core internal bug */
 125                if (WARN_ONCE(!clockevent_state_oneshot(dev),
 126                              "Current state: %d\n",
 127                              clockevent_get_state(dev)))
 128                        return -EINVAL;
 129
 130                if (dev->set_state_oneshot_stopped)
 131                        return dev->set_state_oneshot_stopped(dev);
 132                else
 133                        return -ENOSYS;
 134
 135        default:
 136                return -ENOSYS;
 137        }
 138}
 139
 140/**
 141 * clockevents_switch_state - set the operating state of a clock event device
 142 * @dev:        device to modify
 143 * @state:      new state
 144 *
 145 * Must be called with interrupts disabled !
 146 */
 147void clockevents_switch_state(struct clock_event_device *dev,
 148                              enum clock_event_state state)
 149{
 150        if (clockevent_get_state(dev) != state) {
 151                if (__clockevents_switch_state(dev, state))
 152                        return;
 153
 154                clockevent_set_state(dev, state);
 155
 156                /*
 157                 * A nsec2cyc multiplicator of 0 is invalid and we'd crash
 158                 * on it, so fix it up and emit a warning:
 159                 */
 160                if (clockevent_state_oneshot(dev)) {
 161                        if (WARN_ON(!dev->mult))
 162                                dev->mult = 1;
 163                }
 164        }
 165}
 166
 167/**
 168 * clockevents_shutdown - shutdown the device and clear next_event
 169 * @dev:        device to shutdown
 170 */
 171void clockevents_shutdown(struct clock_event_device *dev)
 172{
 173        clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
 174        dev->next_event = KTIME_MAX;
 175}
 176
 177/**
 178 * clockevents_tick_resume -    Resume the tick device before using it again
 179 * @dev:                        device to resume
 180 */
 181int clockevents_tick_resume(struct clock_event_device *dev)
 182{
 183        int ret = 0;
 184
 185        if (dev->tick_resume)
 186                ret = dev->tick_resume(dev);
 187
 188        return ret;
 189}
 190
 191#ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
 192
 193/* Limit min_delta to a jiffie */
 194#define MIN_DELTA_LIMIT         (NSEC_PER_SEC / HZ)
 195
 196/**
 197 * clockevents_increase_min_delta - raise minimum delta of a clock event device
 198 * @dev:       device to increase the minimum delta
 199 *
 200 * Returns 0 on success, -ETIME when the minimum delta reached the limit.
 201 */
 202static int clockevents_increase_min_delta(struct clock_event_device *dev)
 203{
 204        /* Nothing to do if we already reached the limit */
 205        if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
 206                printk_deferred(KERN_WARNING
 207                                "CE: Reprogramming failure. Giving up\n");
 208                dev->next_event = KTIME_MAX;
 209                return -ETIME;
 210        }
 211
 212        if (dev->min_delta_ns < 5000)
 213                dev->min_delta_ns = 5000;
 214        else
 215                dev->min_delta_ns += dev->min_delta_ns >> 1;
 216
 217        if (dev->min_delta_ns > MIN_DELTA_LIMIT)
 218                dev->min_delta_ns = MIN_DELTA_LIMIT;
 219
 220        printk_deferred(KERN_WARNING
 221                        "CE: %s increased min_delta_ns to %llu nsec\n",
 222                        dev->name ? dev->name : "?",
 223                        (unsigned long long) dev->min_delta_ns);
 224        return 0;
 225}
 226
 227/**
 228 * clockevents_program_min_delta - Set clock event device to the minimum delay.
 229 * @dev:        device to program
 230 *
 231 * Returns 0 on success, -ETIME when the retry loop failed.
 232 */
 233static int clockevents_program_min_delta(struct clock_event_device *dev)
 234{
 235        unsigned long long clc;
 236        int64_t delta;
 237        int i;
 238
 239        for (i = 0;;) {
 240                delta = dev->min_delta_ns;
 241                dev->next_event = ktime_add_ns(ktime_get(), delta);
 242
 243                if (clockevent_state_shutdown(dev))
 244                        return 0;
 245
 246                dev->retries++;
 247                clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
 248                if (dev->set_next_event((unsigned long) clc, dev) == 0)
 249                        return 0;
 250
 251                if (++i > 2) {
 252                        /*
 253                         * We tried 3 times to program the device with the
 254                         * given min_delta_ns. Try to increase the minimum
 255                         * delta, if that fails as well get out of here.
 256                         */
 257                        if (clockevents_increase_min_delta(dev))
 258                                return -ETIME;
 259                        i = 0;
 260                }
 261        }
 262}
 263
 264#else  /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
 265
 266/**
 267 * clockevents_program_min_delta - Set clock event device to the minimum delay.
 268 * @dev:        device to program
 269 *
 270 * Returns 0 on success, -ETIME when the retry loop failed.
 271 */
 272static int clockevents_program_min_delta(struct clock_event_device *dev)
 273{
 274        unsigned long long clc;
 275        int64_t delta = 0;
 276        int i;
 277
 278        for (i = 0; i < 10; i++) {
 279                delta += dev->min_delta_ns;
 280                dev->next_event = ktime_add_ns(ktime_get(), delta);
 281
 282                if (clockevent_state_shutdown(dev))
 283                        return 0;
 284
 285                dev->retries++;
 286                clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
 287                if (dev->set_next_event((unsigned long) clc, dev) == 0)
 288                        return 0;
 289        }
 290        return -ETIME;
 291}
 292
 293#endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
 294
 295/**
 296 * clockevents_program_event - Reprogram the clock event device.
 297 * @dev:        device to program
 298 * @expires:    absolute expiry time (monotonic clock)
 299 * @force:      program minimum delay if expires can not be set
 300 *
 301 * Returns 0 on success, -ETIME when the event is in the past.
 302 */
 303int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
 304                              bool force)
 305{
 306        unsigned long long clc;
 307        int64_t delta;
 308        int rc;
 309
 310        if (WARN_ON_ONCE(expires < 0))
 311                return -ETIME;
 312
 313        dev->next_event = expires;
 314
 315        if (clockevent_state_shutdown(dev))
 316                return 0;
 317
 318        /* We must be in ONESHOT state here */
 319        WARN_ONCE(!clockevent_state_oneshot(dev), "Current state: %d\n",
 320                  clockevent_get_state(dev));
 321
 322        /* Shortcut for clockevent devices that can deal with ktime. */
 323        if (dev->features & CLOCK_EVT_FEAT_KTIME)
 324                return dev->set_next_ktime(expires, dev);
 325
 326        delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
 327        if (delta <= 0)
 328                return force ? clockevents_program_min_delta(dev) : -ETIME;
 329
 330        delta = min(delta, (int64_t) dev->max_delta_ns);
 331        delta = max(delta, (int64_t) dev->min_delta_ns);
 332
 333        clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
 334        rc = dev->set_next_event((unsigned long) clc, dev);
 335
 336        return (rc && force) ? clockevents_program_min_delta(dev) : rc;
 337}
 338
 339/*
 340 * Called after a notify add to make devices available which were
 341 * released from the notifier call.
 342 */
 343static void clockevents_notify_released(void)
 344{
 345        struct clock_event_device *dev;
 346
 347        while (!list_empty(&clockevents_released)) {
 348                dev = list_entry(clockevents_released.next,
 349                                 struct clock_event_device, list);
 350                list_del(&dev->list);
 351                list_add(&dev->list, &clockevent_devices);
 352                tick_check_new_device(dev);
 353        }
 354}
 355
 356/*
 357 * Try to install a replacement clock event device
 358 */
 359static int clockevents_replace(struct clock_event_device *ced)
 360{
 361        struct clock_event_device *dev, *newdev = NULL;
 362
 363        list_for_each_entry(dev, &clockevent_devices, list) {
 364                if (dev == ced || !clockevent_state_detached(dev))
 365                        continue;
 366
 367                if (!tick_check_replacement(newdev, dev))
 368                        continue;
 369
 370                if (!try_module_get(dev->owner))
 371                        continue;
 372
 373                if (newdev)
 374                        module_put(newdev->owner);
 375                newdev = dev;
 376        }
 377        if (newdev) {
 378                tick_install_replacement(newdev);
 379                list_del_init(&ced->list);
 380        }
 381        return newdev ? 0 : -EBUSY;
 382}
 383
 384/*
 385 * Called with clockevents_mutex and clockevents_lock held
 386 */
 387static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu)
 388{
 389        /* Fast track. Device is unused */
 390        if (clockevent_state_detached(ced)) {
 391                list_del_init(&ced->list);
 392                return 0;
 393        }
 394
 395        return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY;
 396}
 397
 398/*
 399 * SMP function call to unbind a device
 400 */
 401static void __clockevents_unbind(void *arg)
 402{
 403        struct ce_unbind *cu = arg;
 404        int res;
 405
 406        raw_spin_lock(&clockevents_lock);
 407        res = __clockevents_try_unbind(cu->ce, smp_processor_id());
 408        if (res == -EAGAIN)
 409                res = clockevents_replace(cu->ce);
 410        cu->res = res;
 411        raw_spin_unlock(&clockevents_lock);
 412}
 413
 414/*
 415 * Issues smp function call to unbind a per cpu device. Called with
 416 * clockevents_mutex held.
 417 */
 418static int clockevents_unbind(struct clock_event_device *ced, int cpu)
 419{
 420        struct ce_unbind cu = { .ce = ced, .res = -ENODEV };
 421
 422        smp_call_function_single(cpu, __clockevents_unbind, &cu, 1);
 423        return cu.res;
 424}
 425
 426/*
 427 * Unbind a clockevents device.
 428 */
 429int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
 430{
 431        int ret;
 432
 433        mutex_lock(&clockevents_mutex);
 434        ret = clockevents_unbind(ced, cpu);
 435        mutex_unlock(&clockevents_mutex);
 436        return ret;
 437}
 438EXPORT_SYMBOL_GPL(clockevents_unbind_device);
 439
 440/**
 441 * clockevents_register_device - register a clock event device
 442 * @dev:        device to register
 443 */
 444void clockevents_register_device(struct clock_event_device *dev)
 445{
 446        unsigned long flags;
 447
 448        /* Initialize state to DETACHED */
 449        clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
 450
 451        if (!dev->cpumask) {
 452                WARN_ON(num_possible_cpus() > 1);
 453                dev->cpumask = cpumask_of(smp_processor_id());
 454        }
 455
 456        if (dev->cpumask == cpu_all_mask) {
 457                WARN(1, "%s cpumask == cpu_all_mask, using cpu_possible_mask instead\n",
 458                     dev->name);
 459                dev->cpumask = cpu_possible_mask;
 460        }
 461
 462        raw_spin_lock_irqsave(&clockevents_lock, flags);
 463
 464        list_add(&dev->list, &clockevent_devices);
 465        tick_check_new_device(dev);
 466        clockevents_notify_released();
 467
 468        raw_spin_unlock_irqrestore(&clockevents_lock, flags);
 469}
 470EXPORT_SYMBOL_GPL(clockevents_register_device);
 471
 472static void clockevents_config(struct clock_event_device *dev, u32 freq)
 473{
 474        u64 sec;
 475
 476        if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
 477                return;
 478
 479        /*
 480         * Calculate the maximum number of seconds we can sleep. Limit
 481         * to 10 minutes for hardware which can program more than
 482         * 32bit ticks so we still get reasonable conversion values.
 483         */
 484        sec = dev->max_delta_ticks;
 485        do_div(sec, freq);
 486        if (!sec)
 487                sec = 1;
 488        else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
 489                sec = 600;
 490
 491        clockevents_calc_mult_shift(dev, freq, sec);
 492        dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false);
 493        dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true);
 494}
 495
 496/**
 497 * clockevents_config_and_register - Configure and register a clock event device
 498 * @dev:        device to register
 499 * @freq:       The clock frequency
 500 * @min_delta:  The minimum clock ticks to program in oneshot mode
 501 * @max_delta:  The maximum clock ticks to program in oneshot mode
 502 *
 503 * min/max_delta can be 0 for devices which do not support oneshot mode.
 504 */
 505void clockevents_config_and_register(struct clock_event_device *dev,
 506                                     u32 freq, unsigned long min_delta,
 507                                     unsigned long max_delta)
 508{
 509        dev->min_delta_ticks = min_delta;
 510        dev->max_delta_ticks = max_delta;
 511        clockevents_config(dev, freq);
 512        clockevents_register_device(dev);
 513}
 514EXPORT_SYMBOL_GPL(clockevents_config_and_register);
 515
 516int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
 517{
 518        clockevents_config(dev, freq);
 519
 520        if (clockevent_state_oneshot(dev))
 521                return clockevents_program_event(dev, dev->next_event, false);
 522
 523        if (clockevent_state_periodic(dev))
 524                return __clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
 525
 526        return 0;
 527}
 528
 529/**
 530 * clockevents_update_freq - Update frequency and reprogram a clock event device.
 531 * @dev:        device to modify
 532 * @freq:       new device frequency
 533 *
 534 * Reconfigure and reprogram a clock event device in oneshot
 535 * mode. Must be called on the cpu for which the device delivers per
 536 * cpu timer events. If called for the broadcast device the core takes
 537 * care of serialization.
 538 *
 539 * Returns 0 on success, -ETIME when the event is in the past.
 540 */
 541int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
 542{
 543        unsigned long flags;
 544        int ret;
 545
 546        local_irq_save(flags);
 547        ret = tick_broadcast_update_freq(dev, freq);
 548        if (ret == -ENODEV)
 549                ret = __clockevents_update_freq(dev, freq);
 550        local_irq_restore(flags);
 551        return ret;
 552}
 553
 554/*
 555 * Noop handler when we shut down an event device
 556 */
 557void clockevents_handle_noop(struct clock_event_device *dev)
 558{
 559}
 560
 561/**
 562 * clockevents_exchange_device - release and request clock devices
 563 * @old:        device to release (can be NULL)
 564 * @new:        device to request (can be NULL)
 565 *
 566 * Called from various tick functions with clockevents_lock held and
 567 * interrupts disabled.
 568 */
 569void clockevents_exchange_device(struct clock_event_device *old,
 570                                 struct clock_event_device *new)
 571{
 572        /*
 573         * Caller releases a clock event device. We queue it into the
 574         * released list and do a notify add later.
 575         */
 576        if (old) {
 577                module_put(old->owner);
 578                clockevents_switch_state(old, CLOCK_EVT_STATE_DETACHED);
 579                list_del(&old->list);
 580                list_add(&old->list, &clockevents_released);
 581        }
 582
 583        if (new) {
 584                BUG_ON(!clockevent_state_detached(new));
 585                clockevents_shutdown(new);
 586        }
 587}
 588
 589/**
 590 * clockevents_suspend - suspend clock devices
 591 */
 592void clockevents_suspend(void)
 593{
 594        struct clock_event_device *dev;
 595
 596        list_for_each_entry_reverse(dev, &clockevent_devices, list)
 597                if (dev->suspend && !clockevent_state_detached(dev))
 598                        dev->suspend(dev);
 599}
 600
 601/**
 602 * clockevents_resume - resume clock devices
 603 */
 604void clockevents_resume(void)
 605{
 606        struct clock_event_device *dev;
 607
 608        list_for_each_entry(dev, &clockevent_devices, list)
 609                if (dev->resume && !clockevent_state_detached(dev))
 610                        dev->resume(dev);
 611}
 612
 613#ifdef CONFIG_HOTPLUG_CPU
 614
 615# ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 616/**
 617 * tick_offline_cpu - Take CPU out of the broadcast mechanism
 618 * @cpu:        The outgoing CPU
 619 *
 620 * Called on the outgoing CPU after it took itself offline.
 621 */
 622void tick_offline_cpu(unsigned int cpu)
 623{
 624        raw_spin_lock(&clockevents_lock);
 625        tick_broadcast_offline(cpu);
 626        raw_spin_unlock(&clockevents_lock);
 627}
 628# endif
 629
 630/**
 631 * tick_cleanup_dead_cpu - Cleanup the tick and clockevents of a dead cpu
 632 */
 633void tick_cleanup_dead_cpu(int cpu)
 634{
 635        struct clock_event_device *dev, *tmp;
 636        unsigned long flags;
 637
 638        raw_spin_lock_irqsave(&clockevents_lock, flags);
 639
 640        tick_shutdown(cpu);
 641        /*
 642         * Unregister the clock event devices which were
 643         * released from the users in the notify chain.
 644         */
 645        list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
 646                list_del(&dev->list);
 647        /*
 648         * Now check whether the CPU has left unused per cpu devices
 649         */
 650        list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
 651                if (cpumask_test_cpu(cpu, dev->cpumask) &&
 652                    cpumask_weight(dev->cpumask) == 1 &&
 653                    !tick_is_broadcast_device(dev)) {
 654                        BUG_ON(!clockevent_state_detached(dev));
 655                        list_del(&dev->list);
 656                }
 657        }
 658        raw_spin_unlock_irqrestore(&clockevents_lock, flags);
 659}
 660#endif
 661
 662#ifdef CONFIG_SYSFS
 663static struct bus_type clockevents_subsys = {
 664        .name           = "clockevents",
 665        .dev_name       = "clockevent",
 666};
 667
 668static DEFINE_PER_CPU(struct device, tick_percpu_dev);
 669static struct tick_device *tick_get_tick_dev(struct device *dev);
 670
 671static ssize_t sysfs_show_current_tick_dev(struct device *dev,
 672                                           struct device_attribute *attr,
 673                                           char *buf)
 674{
 675        struct tick_device *td;
 676        ssize_t count = 0;
 677
 678        raw_spin_lock_irq(&clockevents_lock);
 679        td = tick_get_tick_dev(dev);
 680        if (td && td->evtdev)
 681                count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name);
 682        raw_spin_unlock_irq(&clockevents_lock);
 683        return count;
 684}
 685static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL);
 686
 687/* We don't support the abomination of removable broadcast devices */
 688static ssize_t sysfs_unbind_tick_dev(struct device *dev,
 689                                     struct device_attribute *attr,
 690                                     const char *buf, size_t count)
 691{
 692        char name[CS_NAME_LEN];
 693        ssize_t ret = sysfs_get_uname(buf, name, count);
 694        struct clock_event_device *ce;
 695
 696        if (ret < 0)
 697                return ret;
 698
 699        ret = -ENODEV;
 700        mutex_lock(&clockevents_mutex);
 701        raw_spin_lock_irq(&clockevents_lock);
 702        list_for_each_entry(ce, &clockevent_devices, list) {
 703                if (!strcmp(ce->name, name)) {
 704                        ret = __clockevents_try_unbind(ce, dev->id);
 705                        break;
 706                }
 707        }
 708        raw_spin_unlock_irq(&clockevents_lock);
 709        /*
 710         * We hold clockevents_mutex, so ce can't go away
 711         */
 712        if (ret == -EAGAIN)
 713                ret = clockevents_unbind(ce, dev->id);
 714        mutex_unlock(&clockevents_mutex);
 715        return ret ? ret : count;
 716}
 717static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev);
 718
 719#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 720static struct device tick_bc_dev = {
 721        .init_name      = "broadcast",
 722        .id             = 0,
 723        .bus            = &clockevents_subsys,
 724};
 725
 726static struct tick_device *tick_get_tick_dev(struct device *dev)
 727{
 728        return dev == &tick_bc_dev ? tick_get_broadcast_device() :
 729                &per_cpu(tick_cpu_device, dev->id);
 730}
 731
 732static __init int tick_broadcast_init_sysfs(void)
 733{
 734        int err = device_register(&tick_bc_dev);
 735
 736        if (!err)
 737                err = device_create_file(&tick_bc_dev, &dev_attr_current_device);
 738        return err;
 739}
 740#else
 741static struct tick_device *tick_get_tick_dev(struct device *dev)
 742{
 743        return &per_cpu(tick_cpu_device, dev->id);
 744}
 745static inline int tick_broadcast_init_sysfs(void) { return 0; }
 746#endif
 747
 748static int __init tick_init_sysfs(void)
 749{
 750        int cpu;
 751
 752        for_each_possible_cpu(cpu) {
 753                struct device *dev = &per_cpu(tick_percpu_dev, cpu);
 754                int err;
 755
 756                dev->id = cpu;
 757                dev->bus = &clockevents_subsys;
 758                err = device_register(dev);
 759                if (!err)
 760                        err = device_create_file(dev, &dev_attr_current_device);
 761                if (!err)
 762                        err = device_create_file(dev, &dev_attr_unbind_device);
 763                if (err)
 764                        return err;
 765        }
 766        return tick_broadcast_init_sysfs();
 767}
 768
 769static int __init clockevents_init_sysfs(void)
 770{
 771        int err = subsys_system_register(&clockevents_subsys, NULL);
 772
 773        if (!err)
 774                err = tick_init_sysfs();
 775        return err;
 776}
 777device_initcall(clockevents_init_sysfs);
 778#endif /* SYSFS */
 779