linux/kernel/time/ntp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NTP state machine interfaces and logic.
   4 *
   5 * This code was mainly moved from kernel/timer.c and kernel/time.c
   6 * Please see those files for relevant copyright info and historical
   7 * changelogs.
   8 */
   9#include <linux/capability.h>
  10#include <linux/clocksource.h>
  11#include <linux/workqueue.h>
  12#include <linux/hrtimer.h>
  13#include <linux/jiffies.h>
  14#include <linux/math64.h>
  15#include <linux/timex.h>
  16#include <linux/time.h>
  17#include <linux/mm.h>
  18#include <linux/module.h>
  19#include <linux/rtc.h>
  20#include <linux/audit.h>
  21
  22#include "ntp_internal.h"
  23#include "timekeeping_internal.h"
  24
  25
  26/*
  27 * NTP timekeeping variables:
  28 *
  29 * Note: All of the NTP state is protected by the timekeeping locks.
  30 */
  31
  32
  33/* USER_HZ period (usecs): */
  34unsigned long                   tick_usec = USER_TICK_USEC;
  35
  36/* SHIFTED_HZ period (nsecs): */
  37unsigned long                   tick_nsec;
  38
  39static u64                      tick_length;
  40static u64                      tick_length_base;
  41
  42#define SECS_PER_DAY            86400
  43#define MAX_TICKADJ             500LL           /* usecs */
  44#define MAX_TICKADJ_SCALED \
  45        (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
  46#define MAX_TAI_OFFSET          100000
  47
  48/*
  49 * phase-lock loop variables
  50 */
  51
  52/*
  53 * clock synchronization status
  54 *
  55 * (TIME_ERROR prevents overwriting the CMOS clock)
  56 */
  57static int                      time_state = TIME_OK;
  58
  59/* clock status bits:                                                   */
  60static int                      time_status = STA_UNSYNC;
  61
  62/* time adjustment (nsecs):                                             */
  63static s64                      time_offset;
  64
  65/* pll time constant:                                                   */
  66static long                     time_constant = 2;
  67
  68/* maximum error (usecs):                                               */
  69static long                     time_maxerror = NTP_PHASE_LIMIT;
  70
  71/* estimated error (usecs):                                             */
  72static long                     time_esterror = NTP_PHASE_LIMIT;
  73
  74/* frequency offset (scaled nsecs/secs):                                */
  75static s64                      time_freq;
  76
  77/* time at last adjustment (secs):                                      */
  78static time64_t         time_reftime;
  79
  80static long                     time_adjust;
  81
  82/* constant (boot-param configurable) NTP tick adjustment (upscaled)    */
  83static s64                      ntp_tick_adj;
  84
  85/* second value of the next pending leapsecond, or TIME64_MAX if no leap */
  86static time64_t                 ntp_next_leap_sec = TIME64_MAX;
  87
  88#ifdef CONFIG_NTP_PPS
  89
  90/*
  91 * The following variables are used when a pulse-per-second (PPS) signal
  92 * is available. They establish the engineering parameters of the clock
  93 * discipline loop when controlled by the PPS signal.
  94 */
  95#define PPS_VALID       10      /* PPS signal watchdog max (s) */
  96#define PPS_POPCORN     4       /* popcorn spike threshold (shift) */
  97#define PPS_INTMIN      2       /* min freq interval (s) (shift) */
  98#define PPS_INTMAX      8       /* max freq interval (s) (shift) */
  99#define PPS_INTCOUNT    4       /* number of consecutive good intervals to
 100                                   increase pps_shift or consecutive bad
 101                                   intervals to decrease it */
 102#define PPS_MAXWANDER   100000  /* max PPS freq wander (ns/s) */
 103
 104static int pps_valid;           /* signal watchdog counter */
 105static long pps_tf[3];          /* phase median filter */
 106static long pps_jitter;         /* current jitter (ns) */
 107static struct timespec64 pps_fbase; /* beginning of the last freq interval */
 108static int pps_shift;           /* current interval duration (s) (shift) */
 109static int pps_intcnt;          /* interval counter */
 110static s64 pps_freq;            /* frequency offset (scaled ns/s) */
 111static long pps_stabil;         /* current stability (scaled ns/s) */
 112
 113/*
 114 * PPS signal quality monitors
 115 */
 116static long pps_calcnt;         /* calibration intervals */
 117static long pps_jitcnt;         /* jitter limit exceeded */
 118static long pps_stbcnt;         /* stability limit exceeded */
 119static long pps_errcnt;         /* calibration errors */
 120
 121
 122/* PPS kernel consumer compensates the whole phase error immediately.
 123 * Otherwise, reduce the offset by a fixed factor times the time constant.
 124 */
 125static inline s64 ntp_offset_chunk(s64 offset)
 126{
 127        if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
 128                return offset;
 129        else
 130                return shift_right(offset, SHIFT_PLL + time_constant);
 131}
 132
 133static inline void pps_reset_freq_interval(void)
 134{
 135        /* the PPS calibration interval may end
 136           surprisingly early */
 137        pps_shift = PPS_INTMIN;
 138        pps_intcnt = 0;
 139}
 140
 141/**
 142 * pps_clear - Clears the PPS state variables
 143 */
 144static inline void pps_clear(void)
 145{
 146        pps_reset_freq_interval();
 147        pps_tf[0] = 0;
 148        pps_tf[1] = 0;
 149        pps_tf[2] = 0;
 150        pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
 151        pps_freq = 0;
 152}
 153
 154/* Decrease pps_valid to indicate that another second has passed since
 155 * the last PPS signal. When it reaches 0, indicate that PPS signal is
 156 * missing.
 157 */
 158static inline void pps_dec_valid(void)
 159{
 160        if (pps_valid > 0)
 161                pps_valid--;
 162        else {
 163                time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
 164                                 STA_PPSWANDER | STA_PPSERROR);
 165                pps_clear();
 166        }
 167}
 168
 169static inline void pps_set_freq(s64 freq)
 170{
 171        pps_freq = freq;
 172}
 173
 174static inline int is_error_status(int status)
 175{
 176        return (status & (STA_UNSYNC|STA_CLOCKERR))
 177                /* PPS signal lost when either PPS time or
 178                 * PPS frequency synchronization requested
 179                 */
 180                || ((status & (STA_PPSFREQ|STA_PPSTIME))
 181                        && !(status & STA_PPSSIGNAL))
 182                /* PPS jitter exceeded when
 183                 * PPS time synchronization requested */
 184                || ((status & (STA_PPSTIME|STA_PPSJITTER))
 185                        == (STA_PPSTIME|STA_PPSJITTER))
 186                /* PPS wander exceeded or calibration error when
 187                 * PPS frequency synchronization requested
 188                 */
 189                || ((status & STA_PPSFREQ)
 190                        && (status & (STA_PPSWANDER|STA_PPSERROR)));
 191}
 192
 193static inline void pps_fill_timex(struct __kernel_timex *txc)
 194{
 195        txc->ppsfreq       = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
 196                                         PPM_SCALE_INV, NTP_SCALE_SHIFT);
 197        txc->jitter        = pps_jitter;
 198        if (!(time_status & STA_NANO))
 199                txc->jitter = pps_jitter / NSEC_PER_USEC;
 200        txc->shift         = pps_shift;
 201        txc->stabil        = pps_stabil;
 202        txc->jitcnt        = pps_jitcnt;
 203        txc->calcnt        = pps_calcnt;
 204        txc->errcnt        = pps_errcnt;
 205        txc->stbcnt        = pps_stbcnt;
 206}
 207
 208#else /* !CONFIG_NTP_PPS */
 209
 210static inline s64 ntp_offset_chunk(s64 offset)
 211{
 212        return shift_right(offset, SHIFT_PLL + time_constant);
 213}
 214
 215static inline void pps_reset_freq_interval(void) {}
 216static inline void pps_clear(void) {}
 217static inline void pps_dec_valid(void) {}
 218static inline void pps_set_freq(s64 freq) {}
 219
 220static inline int is_error_status(int status)
 221{
 222        return status & (STA_UNSYNC|STA_CLOCKERR);
 223}
 224
 225static inline void pps_fill_timex(struct __kernel_timex *txc)
 226{
 227        /* PPS is not implemented, so these are zero */
 228        txc->ppsfreq       = 0;
 229        txc->jitter        = 0;
 230        txc->shift         = 0;
 231        txc->stabil        = 0;
 232        txc->jitcnt        = 0;
 233        txc->calcnt        = 0;
 234        txc->errcnt        = 0;
 235        txc->stbcnt        = 0;
 236}
 237
 238#endif /* CONFIG_NTP_PPS */
 239
 240
 241/**
 242 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
 243 *
 244 */
 245static inline int ntp_synced(void)
 246{
 247        return !(time_status & STA_UNSYNC);
 248}
 249
 250
 251/*
 252 * NTP methods:
 253 */
 254
 255/*
 256 * Update (tick_length, tick_length_base, tick_nsec), based
 257 * on (tick_usec, ntp_tick_adj, time_freq):
 258 */
 259static void ntp_update_frequency(void)
 260{
 261        u64 second_length;
 262        u64 new_base;
 263
 264        second_length            = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
 265                                                << NTP_SCALE_SHIFT;
 266
 267        second_length           += ntp_tick_adj;
 268        second_length           += time_freq;
 269
 270        tick_nsec                = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
 271        new_base                 = div_u64(second_length, NTP_INTERVAL_FREQ);
 272
 273        /*
 274         * Don't wait for the next second_overflow, apply
 275         * the change to the tick length immediately:
 276         */
 277        tick_length             += new_base - tick_length_base;
 278        tick_length_base         = new_base;
 279}
 280
 281static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
 282{
 283        time_status &= ~STA_MODE;
 284
 285        if (secs < MINSEC)
 286                return 0;
 287
 288        if (!(time_status & STA_FLL) && (secs <= MAXSEC))
 289                return 0;
 290
 291        time_status |= STA_MODE;
 292
 293        return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
 294}
 295
 296static void ntp_update_offset(long offset)
 297{
 298        s64 freq_adj;
 299        s64 offset64;
 300        long secs;
 301
 302        if (!(time_status & STA_PLL))
 303                return;
 304
 305        if (!(time_status & STA_NANO)) {
 306                /* Make sure the multiplication below won't overflow */
 307                offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
 308                offset *= NSEC_PER_USEC;
 309        }
 310
 311        /*
 312         * Scale the phase adjustment and
 313         * clamp to the operating range.
 314         */
 315        offset = clamp(offset, -MAXPHASE, MAXPHASE);
 316
 317        /*
 318         * Select how the frequency is to be controlled
 319         * and in which mode (PLL or FLL).
 320         */
 321        secs = (long)(__ktime_get_real_seconds() - time_reftime);
 322        if (unlikely(time_status & STA_FREQHOLD))
 323                secs = 0;
 324
 325        time_reftime = __ktime_get_real_seconds();
 326
 327        offset64    = offset;
 328        freq_adj    = ntp_update_offset_fll(offset64, secs);
 329
 330        /*
 331         * Clamp update interval to reduce PLL gain with low
 332         * sampling rate (e.g. intermittent network connection)
 333         * to avoid instability.
 334         */
 335        if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
 336                secs = 1 << (SHIFT_PLL + 1 + time_constant);
 337
 338        freq_adj    += (offset64 * secs) <<
 339                        (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
 340
 341        freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
 342
 343        time_freq   = max(freq_adj, -MAXFREQ_SCALED);
 344
 345        time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
 346}
 347
 348/**
 349 * ntp_clear - Clears the NTP state variables
 350 */
 351void ntp_clear(void)
 352{
 353        time_adjust     = 0;            /* stop active adjtime() */
 354        time_status     |= STA_UNSYNC;
 355        time_maxerror   = NTP_PHASE_LIMIT;
 356        time_esterror   = NTP_PHASE_LIMIT;
 357
 358        ntp_update_frequency();
 359
 360        tick_length     = tick_length_base;
 361        time_offset     = 0;
 362
 363        ntp_next_leap_sec = TIME64_MAX;
 364        /* Clear PPS state variables */
 365        pps_clear();
 366}
 367
 368
 369u64 ntp_tick_length(void)
 370{
 371        return tick_length;
 372}
 373
 374/**
 375 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
 376 *
 377 * Provides the time of the next leapsecond against CLOCK_REALTIME in
 378 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
 379 */
 380ktime_t ntp_get_next_leap(void)
 381{
 382        ktime_t ret;
 383
 384        if ((time_state == TIME_INS) && (time_status & STA_INS))
 385                return ktime_set(ntp_next_leap_sec, 0);
 386        ret = KTIME_MAX;
 387        return ret;
 388}
 389
 390/*
 391 * this routine handles the overflow of the microsecond field
 392 *
 393 * The tricky bits of code to handle the accurate clock support
 394 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 395 * They were originally developed for SUN and DEC kernels.
 396 * All the kudos should go to Dave for this stuff.
 397 *
 398 * Also handles leap second processing, and returns leap offset
 399 */
 400int second_overflow(time64_t secs)
 401{
 402        s64 delta;
 403        int leap = 0;
 404        s32 rem;
 405
 406        /*
 407         * Leap second processing. If in leap-insert state at the end of the
 408         * day, the system clock is set back one second; if in leap-delete
 409         * state, the system clock is set ahead one second.
 410         */
 411        switch (time_state) {
 412        case TIME_OK:
 413                if (time_status & STA_INS) {
 414                        time_state = TIME_INS;
 415                        div_s64_rem(secs, SECS_PER_DAY, &rem);
 416                        ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
 417                } else if (time_status & STA_DEL) {
 418                        time_state = TIME_DEL;
 419                        div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
 420                        ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
 421                }
 422                break;
 423        case TIME_INS:
 424                if (!(time_status & STA_INS)) {
 425                        ntp_next_leap_sec = TIME64_MAX;
 426                        time_state = TIME_OK;
 427                } else if (secs == ntp_next_leap_sec) {
 428                        leap = -1;
 429                        time_state = TIME_OOP;
 430                        printk(KERN_NOTICE
 431                                "Clock: inserting leap second 23:59:60 UTC\n");
 432                }
 433                break;
 434        case TIME_DEL:
 435                if (!(time_status & STA_DEL)) {
 436                        ntp_next_leap_sec = TIME64_MAX;
 437                        time_state = TIME_OK;
 438                } else if (secs == ntp_next_leap_sec) {
 439                        leap = 1;
 440                        ntp_next_leap_sec = TIME64_MAX;
 441                        time_state = TIME_WAIT;
 442                        printk(KERN_NOTICE
 443                                "Clock: deleting leap second 23:59:59 UTC\n");
 444                }
 445                break;
 446        case TIME_OOP:
 447                ntp_next_leap_sec = TIME64_MAX;
 448                time_state = TIME_WAIT;
 449                break;
 450        case TIME_WAIT:
 451                if (!(time_status & (STA_INS | STA_DEL)))
 452                        time_state = TIME_OK;
 453                break;
 454        }
 455
 456
 457        /* Bump the maxerror field */
 458        time_maxerror += MAXFREQ / NSEC_PER_USEC;
 459        if (time_maxerror > NTP_PHASE_LIMIT) {
 460                time_maxerror = NTP_PHASE_LIMIT;
 461                time_status |= STA_UNSYNC;
 462        }
 463
 464        /* Compute the phase adjustment for the next second */
 465        tick_length      = tick_length_base;
 466
 467        delta            = ntp_offset_chunk(time_offset);
 468        time_offset     -= delta;
 469        tick_length     += delta;
 470
 471        /* Check PPS signal */
 472        pps_dec_valid();
 473
 474        if (!time_adjust)
 475                goto out;
 476
 477        if (time_adjust > MAX_TICKADJ) {
 478                time_adjust -= MAX_TICKADJ;
 479                tick_length += MAX_TICKADJ_SCALED;
 480                goto out;
 481        }
 482
 483        if (time_adjust < -MAX_TICKADJ) {
 484                time_adjust += MAX_TICKADJ;
 485                tick_length -= MAX_TICKADJ_SCALED;
 486                goto out;
 487        }
 488
 489        tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
 490                                                         << NTP_SCALE_SHIFT;
 491        time_adjust = 0;
 492
 493out:
 494        return leap;
 495}
 496
 497static void sync_hw_clock(struct work_struct *work);
 498static DECLARE_DELAYED_WORK(sync_work, sync_hw_clock);
 499
 500static void sched_sync_hw_clock(struct timespec64 now,
 501                                unsigned long target_nsec, bool fail)
 502
 503{
 504        struct timespec64 next;
 505
 506        ktime_get_real_ts64(&next);
 507        if (!fail)
 508                next.tv_sec = 659;
 509        else {
 510                /*
 511                 * Try again as soon as possible. Delaying long periods
 512                 * decreases the accuracy of the work queue timer. Due to this
 513                 * the algorithm is very likely to require a short-sleep retry
 514                 * after the above long sleep to synchronize ts_nsec.
 515                 */
 516                next.tv_sec = 0;
 517        }
 518
 519        /* Compute the needed delay that will get to tv_nsec == target_nsec */
 520        next.tv_nsec = target_nsec - next.tv_nsec;
 521        if (next.tv_nsec <= 0)
 522                next.tv_nsec += NSEC_PER_SEC;
 523        if (next.tv_nsec >= NSEC_PER_SEC) {
 524                next.tv_sec++;
 525                next.tv_nsec -= NSEC_PER_SEC;
 526        }
 527
 528        queue_delayed_work(system_power_efficient_wq, &sync_work,
 529                           timespec64_to_jiffies(&next));
 530}
 531
 532static void sync_rtc_clock(void)
 533{
 534        unsigned long target_nsec;
 535        struct timespec64 adjust, now;
 536        int rc;
 537
 538        if (!IS_ENABLED(CONFIG_RTC_SYSTOHC))
 539                return;
 540
 541        ktime_get_real_ts64(&now);
 542
 543        adjust = now;
 544        if (persistent_clock_is_local)
 545                adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
 546
 547        /*
 548         * The current RTC in use will provide the target_nsec it wants to be
 549         * called at, and does rtc_tv_nsec_ok internally.
 550         */
 551        rc = rtc_set_ntp_time(adjust, &target_nsec);
 552        if (rc == -ENODEV)
 553                return;
 554
 555        sched_sync_hw_clock(now, target_nsec, rc);
 556}
 557
 558#ifdef CONFIG_GENERIC_CMOS_UPDATE
 559int __weak update_persistent_clock64(struct timespec64 now64)
 560{
 561        return -ENODEV;
 562}
 563#endif
 564
 565static bool sync_cmos_clock(void)
 566{
 567        static bool no_cmos;
 568        struct timespec64 now;
 569        struct timespec64 adjust;
 570        int rc = -EPROTO;
 571        long target_nsec = NSEC_PER_SEC / 2;
 572
 573        if (!IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE))
 574                return false;
 575
 576        if (no_cmos)
 577                return false;
 578
 579        /*
 580         * Historically update_persistent_clock64() has followed x86
 581         * semantics, which match the MC146818A/etc RTC. This RTC will store
 582         * 'adjust' and then in .5s it will advance once second.
 583         *
 584         * Architectures are strongly encouraged to use rtclib and not
 585         * implement this legacy API.
 586         */
 587        ktime_get_real_ts64(&now);
 588        if (rtc_tv_nsec_ok(-1 * target_nsec, &adjust, &now)) {
 589                if (persistent_clock_is_local)
 590                        adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
 591                rc = update_persistent_clock64(adjust);
 592                /*
 593                 * The machine does not support update_persistent_clock64 even
 594                 * though it defines CONFIG_GENERIC_CMOS_UPDATE.
 595                 */
 596                if (rc == -ENODEV) {
 597                        no_cmos = true;
 598                        return false;
 599                }
 600        }
 601
 602        sched_sync_hw_clock(now, target_nsec, rc);
 603        return true;
 604}
 605
 606/*
 607 * If we have an externally synchronized Linux clock, then update RTC clock
 608 * accordingly every ~11 minutes. Generally RTCs can only store second
 609 * precision, but many RTCs will adjust the phase of their second tick to
 610 * match the moment of update. This infrastructure arranges to call to the RTC
 611 * set at the correct moment to phase synchronize the RTC second tick over
 612 * with the kernel clock.
 613 */
 614static void sync_hw_clock(struct work_struct *work)
 615{
 616        if (!ntp_synced())
 617                return;
 618
 619        if (sync_cmos_clock())
 620                return;
 621
 622        sync_rtc_clock();
 623}
 624
 625void ntp_notify_cmos_timer(void)
 626{
 627        if (!ntp_synced())
 628                return;
 629
 630        if (IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE) ||
 631            IS_ENABLED(CONFIG_RTC_SYSTOHC))
 632                queue_delayed_work(system_power_efficient_wq, &sync_work, 0);
 633}
 634
 635/*
 636 * Propagate a new txc->status value into the NTP state:
 637 */
 638static inline void process_adj_status(const struct __kernel_timex *txc)
 639{
 640        if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
 641                time_state = TIME_OK;
 642                time_status = STA_UNSYNC;
 643                ntp_next_leap_sec = TIME64_MAX;
 644                /* restart PPS frequency calibration */
 645                pps_reset_freq_interval();
 646        }
 647
 648        /*
 649         * If we turn on PLL adjustments then reset the
 650         * reference time to current time.
 651         */
 652        if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
 653                time_reftime = __ktime_get_real_seconds();
 654
 655        /* only set allowed bits */
 656        time_status &= STA_RONLY;
 657        time_status |= txc->status & ~STA_RONLY;
 658}
 659
 660
 661static inline void process_adjtimex_modes(const struct __kernel_timex *txc,
 662                                          s32 *time_tai)
 663{
 664        if (txc->modes & ADJ_STATUS)
 665                process_adj_status(txc);
 666
 667        if (txc->modes & ADJ_NANO)
 668                time_status |= STA_NANO;
 669
 670        if (txc->modes & ADJ_MICRO)
 671                time_status &= ~STA_NANO;
 672
 673        if (txc->modes & ADJ_FREQUENCY) {
 674                time_freq = txc->freq * PPM_SCALE;
 675                time_freq = min(time_freq, MAXFREQ_SCALED);
 676                time_freq = max(time_freq, -MAXFREQ_SCALED);
 677                /* update pps_freq */
 678                pps_set_freq(time_freq);
 679        }
 680
 681        if (txc->modes & ADJ_MAXERROR)
 682                time_maxerror = txc->maxerror;
 683
 684        if (txc->modes & ADJ_ESTERROR)
 685                time_esterror = txc->esterror;
 686
 687        if (txc->modes & ADJ_TIMECONST) {
 688                time_constant = txc->constant;
 689                if (!(time_status & STA_NANO))
 690                        time_constant += 4;
 691                time_constant = min(time_constant, (long)MAXTC);
 692                time_constant = max(time_constant, 0l);
 693        }
 694
 695        if (txc->modes & ADJ_TAI &&
 696                        txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
 697                *time_tai = txc->constant;
 698
 699        if (txc->modes & ADJ_OFFSET)
 700                ntp_update_offset(txc->offset);
 701
 702        if (txc->modes & ADJ_TICK)
 703                tick_usec = txc->tick;
 704
 705        if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
 706                ntp_update_frequency();
 707}
 708
 709
 710/*
 711 * adjtimex mainly allows reading (and writing, if superuser) of
 712 * kernel time-keeping variables. used by xntpd.
 713 */
 714int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
 715                  s32 *time_tai, struct audit_ntp_data *ad)
 716{
 717        int result;
 718
 719        if (txc->modes & ADJ_ADJTIME) {
 720                long save_adjust = time_adjust;
 721
 722                if (!(txc->modes & ADJ_OFFSET_READONLY)) {
 723                        /* adjtime() is independent from ntp_adjtime() */
 724                        time_adjust = txc->offset;
 725                        ntp_update_frequency();
 726
 727                        audit_ntp_set_old(ad, AUDIT_NTP_ADJUST, save_adjust);
 728                        audit_ntp_set_new(ad, AUDIT_NTP_ADJUST, time_adjust);
 729                }
 730                txc->offset = save_adjust;
 731        } else {
 732                /* If there are input parameters, then process them: */
 733                if (txc->modes) {
 734                        audit_ntp_set_old(ad, AUDIT_NTP_OFFSET, time_offset);
 735                        audit_ntp_set_old(ad, AUDIT_NTP_FREQ,   time_freq);
 736                        audit_ntp_set_old(ad, AUDIT_NTP_STATUS, time_status);
 737                        audit_ntp_set_old(ad, AUDIT_NTP_TAI,    *time_tai);
 738                        audit_ntp_set_old(ad, AUDIT_NTP_TICK,   tick_usec);
 739
 740                        process_adjtimex_modes(txc, time_tai);
 741
 742                        audit_ntp_set_new(ad, AUDIT_NTP_OFFSET, time_offset);
 743                        audit_ntp_set_new(ad, AUDIT_NTP_FREQ,   time_freq);
 744                        audit_ntp_set_new(ad, AUDIT_NTP_STATUS, time_status);
 745                        audit_ntp_set_new(ad, AUDIT_NTP_TAI,    *time_tai);
 746                        audit_ntp_set_new(ad, AUDIT_NTP_TICK,   tick_usec);
 747                }
 748
 749                txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
 750                                  NTP_SCALE_SHIFT);
 751                if (!(time_status & STA_NANO))
 752                        txc->offset = (u32)txc->offset / NSEC_PER_USEC;
 753        }
 754
 755        result = time_state;    /* mostly `TIME_OK' */
 756        /* check for errors */
 757        if (is_error_status(time_status))
 758                result = TIME_ERROR;
 759
 760        txc->freq          = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
 761                                         PPM_SCALE_INV, NTP_SCALE_SHIFT);
 762        txc->maxerror      = time_maxerror;
 763        txc->esterror      = time_esterror;
 764        txc->status        = time_status;
 765        txc->constant      = time_constant;
 766        txc->precision     = 1;
 767        txc->tolerance     = MAXFREQ_SCALED / PPM_SCALE;
 768        txc->tick          = tick_usec;
 769        txc->tai           = *time_tai;
 770
 771        /* fill PPS status fields */
 772        pps_fill_timex(txc);
 773
 774        txc->time.tv_sec = (time_t)ts->tv_sec;
 775        txc->time.tv_usec = ts->tv_nsec;
 776        if (!(time_status & STA_NANO))
 777                txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
 778
 779        /* Handle leapsec adjustments */
 780        if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
 781                if ((time_state == TIME_INS) && (time_status & STA_INS)) {
 782                        result = TIME_OOP;
 783                        txc->tai++;
 784                        txc->time.tv_sec--;
 785                }
 786                if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
 787                        result = TIME_WAIT;
 788                        txc->tai--;
 789                        txc->time.tv_sec++;
 790                }
 791                if ((time_state == TIME_OOP) &&
 792                                        (ts->tv_sec == ntp_next_leap_sec)) {
 793                        result = TIME_WAIT;
 794                }
 795        }
 796
 797        return result;
 798}
 799
 800#ifdef  CONFIG_NTP_PPS
 801
 802/* actually struct pps_normtime is good old struct timespec, but it is
 803 * semantically different (and it is the reason why it was invented):
 804 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
 805 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
 806struct pps_normtime {
 807        s64             sec;    /* seconds */
 808        long            nsec;   /* nanoseconds */
 809};
 810
 811/* normalize the timestamp so that nsec is in the
 812   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
 813static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
 814{
 815        struct pps_normtime norm = {
 816                .sec = ts.tv_sec,
 817                .nsec = ts.tv_nsec
 818        };
 819
 820        if (norm.nsec > (NSEC_PER_SEC >> 1)) {
 821                norm.nsec -= NSEC_PER_SEC;
 822                norm.sec++;
 823        }
 824
 825        return norm;
 826}
 827
 828/* get current phase correction and jitter */
 829static inline long pps_phase_filter_get(long *jitter)
 830{
 831        *jitter = pps_tf[0] - pps_tf[1];
 832        if (*jitter < 0)
 833                *jitter = -*jitter;
 834
 835        /* TODO: test various filters */
 836        return pps_tf[0];
 837}
 838
 839/* add the sample to the phase filter */
 840static inline void pps_phase_filter_add(long err)
 841{
 842        pps_tf[2] = pps_tf[1];
 843        pps_tf[1] = pps_tf[0];
 844        pps_tf[0] = err;
 845}
 846
 847/* decrease frequency calibration interval length.
 848 * It is halved after four consecutive unstable intervals.
 849 */
 850static inline void pps_dec_freq_interval(void)
 851{
 852        if (--pps_intcnt <= -PPS_INTCOUNT) {
 853                pps_intcnt = -PPS_INTCOUNT;
 854                if (pps_shift > PPS_INTMIN) {
 855                        pps_shift--;
 856                        pps_intcnt = 0;
 857                }
 858        }
 859}
 860
 861/* increase frequency calibration interval length.
 862 * It is doubled after four consecutive stable intervals.
 863 */
 864static inline void pps_inc_freq_interval(void)
 865{
 866        if (++pps_intcnt >= PPS_INTCOUNT) {
 867                pps_intcnt = PPS_INTCOUNT;
 868                if (pps_shift < PPS_INTMAX) {
 869                        pps_shift++;
 870                        pps_intcnt = 0;
 871                }
 872        }
 873}
 874
 875/* update clock frequency based on MONOTONIC_RAW clock PPS signal
 876 * timestamps
 877 *
 878 * At the end of the calibration interval the difference between the
 879 * first and last MONOTONIC_RAW clock timestamps divided by the length
 880 * of the interval becomes the frequency update. If the interval was
 881 * too long, the data are discarded.
 882 * Returns the difference between old and new frequency values.
 883 */
 884static long hardpps_update_freq(struct pps_normtime freq_norm)
 885{
 886        long delta, delta_mod;
 887        s64 ftemp;
 888
 889        /* check if the frequency interval was too long */
 890        if (freq_norm.sec > (2 << pps_shift)) {
 891                time_status |= STA_PPSERROR;
 892                pps_errcnt++;
 893                pps_dec_freq_interval();
 894                printk_deferred(KERN_ERR
 895                        "hardpps: PPSERROR: interval too long - %lld s\n",
 896                        freq_norm.sec);
 897                return 0;
 898        }
 899
 900        /* here the raw frequency offset and wander (stability) is
 901         * calculated. If the wander is less than the wander threshold
 902         * the interval is increased; otherwise it is decreased.
 903         */
 904        ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
 905                        freq_norm.sec);
 906        delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
 907        pps_freq = ftemp;
 908        if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
 909                printk_deferred(KERN_WARNING
 910                                "hardpps: PPSWANDER: change=%ld\n", delta);
 911                time_status |= STA_PPSWANDER;
 912                pps_stbcnt++;
 913                pps_dec_freq_interval();
 914        } else {        /* good sample */
 915                pps_inc_freq_interval();
 916        }
 917
 918        /* the stability metric is calculated as the average of recent
 919         * frequency changes, but is used only for performance
 920         * monitoring
 921         */
 922        delta_mod = delta;
 923        if (delta_mod < 0)
 924                delta_mod = -delta_mod;
 925        pps_stabil += (div_s64(((s64)delta_mod) <<
 926                                (NTP_SCALE_SHIFT - SHIFT_USEC),
 927                                NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
 928
 929        /* if enabled, the system clock frequency is updated */
 930        if ((time_status & STA_PPSFREQ) != 0 &&
 931            (time_status & STA_FREQHOLD) == 0) {
 932                time_freq = pps_freq;
 933                ntp_update_frequency();
 934        }
 935
 936        return delta;
 937}
 938
 939/* correct REALTIME clock phase error against PPS signal */
 940static void hardpps_update_phase(long error)
 941{
 942        long correction = -error;
 943        long jitter;
 944
 945        /* add the sample to the median filter */
 946        pps_phase_filter_add(correction);
 947        correction = pps_phase_filter_get(&jitter);
 948
 949        /* Nominal jitter is due to PPS signal noise. If it exceeds the
 950         * threshold, the sample is discarded; otherwise, if so enabled,
 951         * the time offset is updated.
 952         */
 953        if (jitter > (pps_jitter << PPS_POPCORN)) {
 954                printk_deferred(KERN_WARNING
 955                                "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
 956                                jitter, (pps_jitter << PPS_POPCORN));
 957                time_status |= STA_PPSJITTER;
 958                pps_jitcnt++;
 959        } else if (time_status & STA_PPSTIME) {
 960                /* correct the time using the phase offset */
 961                time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
 962                                NTP_INTERVAL_FREQ);
 963                /* cancel running adjtime() */
 964                time_adjust = 0;
 965        }
 966        /* update jitter */
 967        pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
 968}
 969
 970/*
 971 * __hardpps() - discipline CPU clock oscillator to external PPS signal
 972 *
 973 * This routine is called at each PPS signal arrival in order to
 974 * discipline the CPU clock oscillator to the PPS signal. It takes two
 975 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
 976 * is used to correct clock phase error and the latter is used to
 977 * correct the frequency.
 978 *
 979 * This code is based on David Mills's reference nanokernel
 980 * implementation. It was mostly rewritten but keeps the same idea.
 981 */
 982void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
 983{
 984        struct pps_normtime pts_norm, freq_norm;
 985
 986        pts_norm = pps_normalize_ts(*phase_ts);
 987
 988        /* clear the error bits, they will be set again if needed */
 989        time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
 990
 991        /* indicate signal presence */
 992        time_status |= STA_PPSSIGNAL;
 993        pps_valid = PPS_VALID;
 994
 995        /* when called for the first time,
 996         * just start the frequency interval */
 997        if (unlikely(pps_fbase.tv_sec == 0)) {
 998                pps_fbase = *raw_ts;
 999                return;
1000        }
1001
1002        /* ok, now we have a base for frequency calculation */
1003        freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
1004
1005        /* check that the signal is in the range
1006         * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
1007        if ((freq_norm.sec == 0) ||
1008                        (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1009                        (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1010                time_status |= STA_PPSJITTER;
1011                /* restart the frequency calibration interval */
1012                pps_fbase = *raw_ts;
1013                printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1014                return;
1015        }
1016
1017        /* signal is ok */
1018
1019        /* check if the current frequency interval is finished */
1020        if (freq_norm.sec >= (1 << pps_shift)) {
1021                pps_calcnt++;
1022                /* restart the frequency calibration interval */
1023                pps_fbase = *raw_ts;
1024                hardpps_update_freq(freq_norm);
1025        }
1026
1027        hardpps_update_phase(pts_norm.nsec);
1028
1029}
1030#endif  /* CONFIG_NTP_PPS */
1031
1032static int __init ntp_tick_adj_setup(char *str)
1033{
1034        int rc = kstrtos64(str, 0, &ntp_tick_adj);
1035        if (rc)
1036                return rc;
1037
1038        ntp_tick_adj <<= NTP_SCALE_SHIFT;
1039        return 1;
1040}
1041
1042__setup("ntp_tick_adj=", ntp_tick_adj_setup);
1043
1044void __init ntp_init(void)
1045{
1046        ntp_clear();
1047}
1048