1
2
3
4
5
6#include <linux/clocksource.h>
7#include <linux/init.h>
8#include <linux/jiffies.h>
9#include <linux/ktime.h>
10#include <linux/kernel.h>
11#include <linux/moduleparam.h>
12#include <linux/sched.h>
13#include <linux/sched/clock.h>
14#include <linux/syscore_ops.h>
15#include <linux/hrtimer.h>
16#include <linux/sched_clock.h>
17#include <linux/seqlock.h>
18#include <linux/bitops.h>
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36struct clock_read_data {
37 u64 epoch_ns;
38 u64 epoch_cyc;
39 u64 sched_clock_mask;
40 u64 (*read_sched_clock)(void);
41 u32 mult;
42 u32 shift;
43};
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60struct clock_data {
61 seqcount_t seq;
62 struct clock_read_data read_data[2];
63 ktime_t wrap_kt;
64 unsigned long rate;
65
66 u64 (*actual_read_sched_clock)(void);
67};
68
69static struct hrtimer sched_clock_timer;
70static int irqtime = -1;
71
72core_param(irqtime, irqtime, int, 0400);
73
74static u64 notrace jiffy_sched_clock_read(void)
75{
76
77
78
79
80 return (u64)(jiffies - INITIAL_JIFFIES);
81}
82
83static struct clock_data cd ____cacheline_aligned = {
84 .read_data[0] = { .mult = NSEC_PER_SEC / HZ,
85 .read_sched_clock = jiffy_sched_clock_read, },
86 .actual_read_sched_clock = jiffy_sched_clock_read,
87};
88
89static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
90{
91 return (cyc * mult) >> shift;
92}
93
94unsigned long long notrace sched_clock(void)
95{
96 u64 cyc, res;
97 unsigned int seq;
98 struct clock_read_data *rd;
99
100 do {
101 seq = raw_read_seqcount(&cd.seq);
102 rd = cd.read_data + (seq & 1);
103
104 cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
105 rd->sched_clock_mask;
106 res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
107 } while (read_seqcount_retry(&cd.seq, seq));
108
109 return res;
110}
111
112
113
114
115
116
117
118
119
120
121
122static void update_clock_read_data(struct clock_read_data *rd)
123{
124
125 cd.read_data[1] = *rd;
126
127
128 raw_write_seqcount_latch(&cd.seq);
129
130
131 cd.read_data[0] = *rd;
132
133
134 raw_write_seqcount_latch(&cd.seq);
135}
136
137
138
139
140static void update_sched_clock(void)
141{
142 u64 cyc;
143 u64 ns;
144 struct clock_read_data rd;
145
146 rd = cd.read_data[0];
147
148 cyc = cd.actual_read_sched_clock();
149 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
150
151 rd.epoch_ns = ns;
152 rd.epoch_cyc = cyc;
153
154 update_clock_read_data(&rd);
155}
156
157static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
158{
159 update_sched_clock();
160 hrtimer_forward_now(hrt, cd.wrap_kt);
161
162 return HRTIMER_RESTART;
163}
164
165void __init
166sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
167{
168 u64 res, wrap, new_mask, new_epoch, cyc, ns;
169 u32 new_mult, new_shift;
170 unsigned long r;
171 char r_unit;
172 struct clock_read_data rd;
173
174 if (cd.rate > rate)
175 return;
176
177 WARN_ON(!irqs_disabled());
178
179
180 clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
181
182 new_mask = CLOCKSOURCE_MASK(bits);
183 cd.rate = rate;
184
185
186 wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
187 cd.wrap_kt = ns_to_ktime(wrap);
188
189 rd = cd.read_data[0];
190
191
192 new_epoch = read();
193 cyc = cd.actual_read_sched_clock();
194 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
195 cd.actual_read_sched_clock = read;
196
197 rd.read_sched_clock = read;
198 rd.sched_clock_mask = new_mask;
199 rd.mult = new_mult;
200 rd.shift = new_shift;
201 rd.epoch_cyc = new_epoch;
202 rd.epoch_ns = ns;
203
204 update_clock_read_data(&rd);
205
206 if (sched_clock_timer.function != NULL) {
207
208 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
209 }
210
211 r = rate;
212 if (r >= 4000000) {
213 r /= 1000000;
214 r_unit = 'M';
215 } else {
216 if (r >= 1000) {
217 r /= 1000;
218 r_unit = 'k';
219 } else {
220 r_unit = ' ';
221 }
222 }
223
224
225 res = cyc_to_ns(1ULL, new_mult, new_shift);
226
227 pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
228 bits, r, r_unit, res, wrap);
229
230
231 if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
232 enable_sched_clock_irqtime();
233
234 pr_debug("Registered %pS as sched_clock source\n", read);
235}
236
237void __init generic_sched_clock_init(void)
238{
239
240
241
242
243 if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
244 sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
245
246 update_sched_clock();
247
248
249
250
251
252 hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
253 sched_clock_timer.function = sched_clock_poll;
254 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
255}
256
257
258
259
260
261
262
263
264
265
266
267
268static u64 notrace suspended_sched_clock_read(void)
269{
270 unsigned int seq = raw_read_seqcount(&cd.seq);
271
272 return cd.read_data[seq & 1].epoch_cyc;
273}
274
275int sched_clock_suspend(void)
276{
277 struct clock_read_data *rd = &cd.read_data[0];
278
279 update_sched_clock();
280 hrtimer_cancel(&sched_clock_timer);
281 rd->read_sched_clock = suspended_sched_clock_read;
282
283 return 0;
284}
285
286void sched_clock_resume(void)
287{
288 struct clock_read_data *rd = &cd.read_data[0];
289
290 rd->epoch_cyc = cd.actual_read_sched_clock();
291 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
292 rd->read_sched_clock = cd.actual_read_sched_clock;
293}
294
295static struct syscore_ops sched_clock_ops = {
296 .suspend = sched_clock_suspend,
297 .resume = sched_clock_resume,
298};
299
300static int __init sched_clock_syscore_init(void)
301{
302 register_syscore_ops(&sched_clock_ops);
303
304 return 0;
305}
306device_initcall(sched_clock_syscore_init);
307