linux/kernel/time/sched_clock.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Generic sched_clock() support, to extend low level hardware time
   4 * counters to full 64-bit ns values.
   5 */
   6#include <linux/clocksource.h>
   7#include <linux/init.h>
   8#include <linux/jiffies.h>
   9#include <linux/ktime.h>
  10#include <linux/kernel.h>
  11#include <linux/moduleparam.h>
  12#include <linux/sched.h>
  13#include <linux/sched/clock.h>
  14#include <linux/syscore_ops.h>
  15#include <linux/hrtimer.h>
  16#include <linux/sched_clock.h>
  17#include <linux/seqlock.h>
  18#include <linux/bitops.h>
  19
  20/**
  21 * struct clock_read_data - data required to read from sched_clock()
  22 *
  23 * @epoch_ns:           sched_clock() value at last update
  24 * @epoch_cyc:          Clock cycle value at last update.
  25 * @sched_clock_mask:   Bitmask for two's complement subtraction of non 64bit
  26 *                      clocks.
  27 * @read_sched_clock:   Current clock source (or dummy source when suspended).
  28 * @mult:               Multipler for scaled math conversion.
  29 * @shift:              Shift value for scaled math conversion.
  30 *
  31 * Care must be taken when updating this structure; it is read by
  32 * some very hot code paths. It occupies <=40 bytes and, when combined
  33 * with the seqcount used to synchronize access, comfortably fits into
  34 * a 64 byte cache line.
  35 */
  36struct clock_read_data {
  37        u64 epoch_ns;
  38        u64 epoch_cyc;
  39        u64 sched_clock_mask;
  40        u64 (*read_sched_clock)(void);
  41        u32 mult;
  42        u32 shift;
  43};
  44
  45/**
  46 * struct clock_data - all data needed for sched_clock() (including
  47 *                     registration of a new clock source)
  48 *
  49 * @seq:                Sequence counter for protecting updates. The lowest
  50 *                      bit is the index for @read_data.
  51 * @read_data:          Data required to read from sched_clock.
  52 * @wrap_kt:            Duration for which clock can run before wrapping.
  53 * @rate:               Tick rate of the registered clock.
  54 * @actual_read_sched_clock: Registered hardware level clock read function.
  55 *
  56 * The ordering of this structure has been chosen to optimize cache
  57 * performance. In particular 'seq' and 'read_data[0]' (combined) should fit
  58 * into a single 64-byte cache line.
  59 */
  60struct clock_data {
  61        seqcount_t              seq;
  62        struct clock_read_data  read_data[2];
  63        ktime_t                 wrap_kt;
  64        unsigned long           rate;
  65
  66        u64 (*actual_read_sched_clock)(void);
  67};
  68
  69static struct hrtimer sched_clock_timer;
  70static int irqtime = -1;
  71
  72core_param(irqtime, irqtime, int, 0400);
  73
  74static u64 notrace jiffy_sched_clock_read(void)
  75{
  76        /*
  77         * We don't need to use get_jiffies_64 on 32-bit arches here
  78         * because we register with BITS_PER_LONG
  79         */
  80        return (u64)(jiffies - INITIAL_JIFFIES);
  81}
  82
  83static struct clock_data cd ____cacheline_aligned = {
  84        .read_data[0] = { .mult = NSEC_PER_SEC / HZ,
  85                          .read_sched_clock = jiffy_sched_clock_read, },
  86        .actual_read_sched_clock = jiffy_sched_clock_read,
  87};
  88
  89static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
  90{
  91        return (cyc * mult) >> shift;
  92}
  93
  94unsigned long long notrace sched_clock(void)
  95{
  96        u64 cyc, res;
  97        unsigned int seq;
  98        struct clock_read_data *rd;
  99
 100        do {
 101                seq = raw_read_seqcount(&cd.seq);
 102                rd = cd.read_data + (seq & 1);
 103
 104                cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
 105                      rd->sched_clock_mask;
 106                res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
 107        } while (read_seqcount_retry(&cd.seq, seq));
 108
 109        return res;
 110}
 111
 112/*
 113 * Updating the data required to read the clock.
 114 *
 115 * sched_clock() will never observe mis-matched data even if called from
 116 * an NMI. We do this by maintaining an odd/even copy of the data and
 117 * steering sched_clock() to one or the other using a sequence counter.
 118 * In order to preserve the data cache profile of sched_clock() as much
 119 * as possible the system reverts back to the even copy when the update
 120 * completes; the odd copy is used *only* during an update.
 121 */
 122static void update_clock_read_data(struct clock_read_data *rd)
 123{
 124        /* update the backup (odd) copy with the new data */
 125        cd.read_data[1] = *rd;
 126
 127        /* steer readers towards the odd copy */
 128        raw_write_seqcount_latch(&cd.seq);
 129
 130        /* now its safe for us to update the normal (even) copy */
 131        cd.read_data[0] = *rd;
 132
 133        /* switch readers back to the even copy */
 134        raw_write_seqcount_latch(&cd.seq);
 135}
 136
 137/*
 138 * Atomically update the sched_clock() epoch.
 139 */
 140static void update_sched_clock(void)
 141{
 142        u64 cyc;
 143        u64 ns;
 144        struct clock_read_data rd;
 145
 146        rd = cd.read_data[0];
 147
 148        cyc = cd.actual_read_sched_clock();
 149        ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
 150
 151        rd.epoch_ns = ns;
 152        rd.epoch_cyc = cyc;
 153
 154        update_clock_read_data(&rd);
 155}
 156
 157static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
 158{
 159        update_sched_clock();
 160        hrtimer_forward_now(hrt, cd.wrap_kt);
 161
 162        return HRTIMER_RESTART;
 163}
 164
 165void __init
 166sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
 167{
 168        u64 res, wrap, new_mask, new_epoch, cyc, ns;
 169        u32 new_mult, new_shift;
 170        unsigned long r;
 171        char r_unit;
 172        struct clock_read_data rd;
 173
 174        if (cd.rate > rate)
 175                return;
 176
 177        WARN_ON(!irqs_disabled());
 178
 179        /* Calculate the mult/shift to convert counter ticks to ns. */
 180        clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
 181
 182        new_mask = CLOCKSOURCE_MASK(bits);
 183        cd.rate = rate;
 184
 185        /* Calculate how many nanosecs until we risk wrapping */
 186        wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
 187        cd.wrap_kt = ns_to_ktime(wrap);
 188
 189        rd = cd.read_data[0];
 190
 191        /* Update epoch for new counter and update 'epoch_ns' from old counter*/
 192        new_epoch = read();
 193        cyc = cd.actual_read_sched_clock();
 194        ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
 195        cd.actual_read_sched_clock = read;
 196
 197        rd.read_sched_clock     = read;
 198        rd.sched_clock_mask     = new_mask;
 199        rd.mult                 = new_mult;
 200        rd.shift                = new_shift;
 201        rd.epoch_cyc            = new_epoch;
 202        rd.epoch_ns             = ns;
 203
 204        update_clock_read_data(&rd);
 205
 206        if (sched_clock_timer.function != NULL) {
 207                /* update timeout for clock wrap */
 208                hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
 209        }
 210
 211        r = rate;
 212        if (r >= 4000000) {
 213                r /= 1000000;
 214                r_unit = 'M';
 215        } else {
 216                if (r >= 1000) {
 217                        r /= 1000;
 218                        r_unit = 'k';
 219                } else {
 220                        r_unit = ' ';
 221                }
 222        }
 223
 224        /* Calculate the ns resolution of this counter */
 225        res = cyc_to_ns(1ULL, new_mult, new_shift);
 226
 227        pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
 228                bits, r, r_unit, res, wrap);
 229
 230        /* Enable IRQ time accounting if we have a fast enough sched_clock() */
 231        if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
 232                enable_sched_clock_irqtime();
 233
 234        pr_debug("Registered %pS as sched_clock source\n", read);
 235}
 236
 237void __init generic_sched_clock_init(void)
 238{
 239        /*
 240         * If no sched_clock() function has been provided at that point,
 241         * make it the final one one.
 242         */
 243        if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
 244                sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
 245
 246        update_sched_clock();
 247
 248        /*
 249         * Start the timer to keep sched_clock() properly updated and
 250         * sets the initial epoch.
 251         */
 252        hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 253        sched_clock_timer.function = sched_clock_poll;
 254        hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
 255}
 256
 257/*
 258 * Clock read function for use when the clock is suspended.
 259 *
 260 * This function makes it appear to sched_clock() as if the clock
 261 * stopped counting at its last update.
 262 *
 263 * This function must only be called from the critical
 264 * section in sched_clock(). It relies on the read_seqcount_retry()
 265 * at the end of the critical section to be sure we observe the
 266 * correct copy of 'epoch_cyc'.
 267 */
 268static u64 notrace suspended_sched_clock_read(void)
 269{
 270        unsigned int seq = raw_read_seqcount(&cd.seq);
 271
 272        return cd.read_data[seq & 1].epoch_cyc;
 273}
 274
 275int sched_clock_suspend(void)
 276{
 277        struct clock_read_data *rd = &cd.read_data[0];
 278
 279        update_sched_clock();
 280        hrtimer_cancel(&sched_clock_timer);
 281        rd->read_sched_clock = suspended_sched_clock_read;
 282
 283        return 0;
 284}
 285
 286void sched_clock_resume(void)
 287{
 288        struct clock_read_data *rd = &cd.read_data[0];
 289
 290        rd->epoch_cyc = cd.actual_read_sched_clock();
 291        hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
 292        rd->read_sched_clock = cd.actual_read_sched_clock;
 293}
 294
 295static struct syscore_ops sched_clock_ops = {
 296        .suspend        = sched_clock_suspend,
 297        .resume         = sched_clock_resume,
 298};
 299
 300static int __init sched_clock_syscore_init(void)
 301{
 302        register_syscore_ops(&sched_clock_ops);
 303
 304        return 0;
 305}
 306device_initcall(sched_clock_syscore_init);
 307